风电场并网测试方案

风电场并网测试方案
风电场并网测试方案

风电场

并网测试方案

(A 版/0)

编制:

审核:

批准:

新能源发电有限有限公司

2017年12月

目录

一、风电场基本信息 (1)

二、无功补偿装置基本信息 (1)

三、检测依据相关标准 (2)

四、检测用设备 (3)

五、测试测试项目信息 (3)

六、测试步骤 (4)

七、风险点分析 (5)

八、安全措施 (6)

中电风电场入网测试方案

风电场联系人:电话:

一、风电场基本信息

二、#1、#2无功补偿装置基本信息

三、检测依据相关标准

[1]GB/T 20297-2006 《静止无功补偿装置(SVC)现场试验》

[2]GB/T 19963-2011 风电场接入电力系统技术规定

[3]Q/GDW 11064-2013 风电场无功补偿装置技术性能和测试规范

[4] Q-GDW630-2011 风电场功率调节能力和电能质量测试规程

[5]调技2012(14号)《山东电网风电场并网检测规程》

[6]Q/GDW 241-2008 《链式静止同步补偿器》

[7] GB/T4549 电能质量及公用电网谐波

四、检测用设备

1.德国MAVOWATT30电能质量分析仪;

2.同控电量(波形)记录分析仪TK8024;

3.DEWETRON5000数据采集系统。

五、测试项目信息

六、测试步骤

1.电能质量测试

测试步骤如下:

a)电能质量测试点设在风电场并网点处;

b)校核被测风电场实际投入电网的容量;

c)测试各项电能质量指标参数,在系统正常运行的方式下,连续测量至少满72小时(每10%功率区间收集5个10min序列);

d)读取测试数据并进行分析,输出统计报表和测量曲线,并判别是否满足GB/T 12325 电能质量供电电压允许偏差、GB/T 12326 电能质量电压波动和闪变、GB/T 14549 电能质量公用电网谐波、GB/T 15543 电能质量三相电压不平衡、GB/T 15945 电能质量电力系统频率允许偏差的国家标准要求。

2.功率调节能力测试

测试步骤如下:

2.1风电场有功功率设定值控制

(1) 测试点设在风电场并网点;

(2) 测试期间风电场入网功率在额定容量的75%以上;

(3) 通过AGC控制系统,设定输入有功功率曲线如下;

(4) 测试期间在并网点采集在并网点采集三相电压、三相电流,给出有功功率变化曲线。

2.2风电场有功功率变化

(1) 在风电场正常运行、风电场并网和风电场正常停机三种不同的工况下,分别测量风电场的有功功率变化;

(2)测试期间风电场有功输出在额定容量的75%以上。

(3)在并网点采集三相电压、三相电流,给出有功功率变化曲线,计算功率变化。

2.3无功功率调节能力测试

(1) 测试点设在风电场并网点;

(2) 根据测试点电压实际特点制定电压曲线,风电场有功输出在60%Pn以上与30%Pn以下时各做一次;

(3) 保证测试期间风电场无功补偿装置正常运行;

(4) 测试期间在测试点采集三相电压、三相电流,给出无功、电压曲线。

3.无功补偿测试

(1) 测试点设在SVG35kV出线;

(2) 依据Q/GDW 11064-2013 风电场无功补偿装置技术性能和测试规范,按照

附录测试项目进行试验;

(3) 保证测试期间风电场无功补偿装置正常运行;

(4) 测试期间在测试点采集相关数据。

七、风险点分析

1.触电风险:二次线带电接线,存在触电风险;措施:严格遵守电气作业安全的有

关规章制度,提高作业人员的操作水平;不得带电搬迁测试设备、并接拆换测试电线;

测试设备保护接地。

2.火灾风险:CT回路开路、PT回路短接,存在风险;措施:接线前仔细查看施

工图纸,找准测试回路;对仪器测试线进行检查确保CT回路线无短线,PT 回路无短接;测试点准备灭火器。

3.跌落、物体打击:风机现场查看风机参数,山体落石,存在风险。措施:佩戴

安全帽、防砸防滑鞋等。

八、安全措施

参与风电场网测试工作的测试人员应严格遵守相关测试安全规程和风电场的有关安全规定,并在测试期间采取如下安全措施:

(1)设备、场地安全

为了保证设备和场地的安全,风电场应专门划定测试安全区域。测试区域用围栏保护,并配有警示牌。

(2)接地安全

测试设备应采取专门的接地措施。

(3)人员安全

进入测试现场的人员必须遵守风电场和风力发电机组安全操作规则。测试人员进入测试区域后必须佩戴安全帽等安全装备,不准靠近高压设备、不准私自进入非安全区域。

如需登塔作业需遵守如下规定:在身上扣紧安全背带;调整系索和双减震器,不能超过1.0m 的坠落高度;在攀登装置上扣紧防坠器并检查它的功能。

测试人员进入风机塔筒工作时,必须得到测试风电场相关人员同意,并在风电场人员的监护下进行。

(4) 防火措施

在测试设备和塔底配置灭火设备;

安排专门人员负责防火和灭火事宜;

及时发现和消除隐患。

(5)注意事项

风电场并网测试工作属于带电作业,需要将仪器的测试线接到带电的电压与电流回路中,尤其是电流回路,仪器的测试线不是电流钳,需要将测试线串接在电流回路中,然后将回路中的电流连片打开,如果操作不慎,会非常危险。为此,需要采取以下措施:

1)测试开始前,仔细审查施工图纸,准确找出需要接线的电压与电流回路位置;

2)对仪器测试线进行检查,严防测试线出现CT回路开路及PT短路问题;

3)选择在风电场负荷小的时候进行电流测试线的串接工作,此时相对安全;

4)测试区域周围设置警戒栏,防止无关人员进入测试区域。

九、附录

风电场入网检测原始记录

编号:DQ201708002

1风电场提供信息

2测试前确认试验条件

3试验前检查

4测试记录数据文件名及存放位置

D:/2017年风电并网检测/7风电场(风电场名称)/无功补偿装置并网性能测试

5测试过程记录

详见表1无功补偿装置运行参数确认单、表2最大输出能力及调节精度记录、表3系统调节时间检测记录、表4最大输出能力测试、表5连续调节能力试验记录、表6电压调节试验记录、表7功率因数调节试验记录、表8控制模式切换试验记录、表9风电场电能质量测试记录表、表10 风电场有功控制能力测试记录表、表11 风电场有功功率变化测试记录表、表12 风电场无功/电压调节能力测试记录表。

表1无功补偿装置运行参数确认单

表2调节精度试验记录表

表3系统调节时间检测记录表

表4最大输出能力试验记录表

表5连续调节能力试验记录表

表6电压调节试验记录表

表7功率因数调节试验记录表

表8控制模式切换试验记录表

表9风电场电能质量测试记录表

表10 风电场有功功率控制测试记录表

注:风电场输出功率到达75%以上额定容量,设定值偏差为装机容量5%,调节时间120s。

表11 风电场有功功率变化测试记录表

表12 风电场无功/电压调节能力测试记录表

试验措施技术及安全交底记录表

风电道路施工方案

风电道路施工方案 Final approval draft on November 22, 2020

******工程 道路施工方案 编制人: 审核人: 审批人: 施工单位:(章) 年月日 1工程概况及工程量 工程概况 该风电场采用汽车吊进行吊装。风场道路路线长 m,路基宽,路面设计宽度为,道路两边在挖方区设土质边沟。 现场施工道路起点位于X= , Y= , 道路施工考虑大型吊车行走,路面宽度6m,道路两侧各留路肩,路基宽度7m,极限最小圆曲线半径30m,最大纵坡一般不超过8%,最大不超过12%。 本工程道路等级为四级厂外公路,根据公路工程技术标准,设计车速度为20km/h。路面采用300mm厚山皮石面层。 道路平面坐标控制测量依据1954北京坐标系,高程控制测量依据1985国家工程基准。工程量和工期 工程量 本期风电场道路长约: km,道路路基土石方量:挖方: m3,填方: m3。施工工期 本工程计划开工日期2015年月日,完工日期2015年月日。 2.编制依据

3.作业前的条件和准备作业前必须具备的条件

工前经全面技术交底,施工中全体人员应服从统一指挥,协调一致。作业机具(包括配置、等级、精度等) 根据施工内容的需要进行工器具的配置(规格及准确度等)。

施工器具 4.作业程序、方法 施工顺序: 中桩定位→支引边桩→地表清除→路基修筑、找坡、碾压检测→中线复测→山皮石铺筑、找平、碾压检测 作业方法及程序: 、测量放线 根据场区测量控制网和现场原有山道实际状况采用全站仪放出道路轴线上的各控制点,打出边桩用钢尺放出道路开挖线,同时效验中线偏差,进行开挖后找坡、整平、碾压,再用全站仪和钢尺中桩确定,返高后用天然碎石回填。回填后需在其上重新放出道路轴线,标高从就近的测量控制点引测。 、土方工程 场区道路开挖时由各段道路的一端向另一端推进,本工程所有路面横向坡度符合图纸设计要求。开挖的弃土用自卸汽车运到指定的地点。挖土应设专人统一指挥,用水准仪随时测 量来控制挖土标高。 路基 土方路堤分层填筑压实,用透水性不良的土填筑路堤时,应控制其含水量在最佳压实含水量±2%之内。 土方路堤,必须根据设计断面,分层压实。严禁出现虚土、松动土,待土壤的含水率接近最佳值后即可用压路机进行碾压。按照由边到中,重叠二分之一轮宽的原则进行碾压,碾压先慢后快,碾压遍数以路基达到设计要求的压实系数为准。

风电场水土保持施工方案策划

风电场水土保持施工方案策划 摘要水是生命之源,土是生存之本,水土是人类赖以生存和发展的基本条件,是不可替代的基础资源。21世纪社会进入高速发展建设时期,发展建设中的环境保护引起了普遍关注,世界各国对水土保持的要求也越来越高,而社会公众对水土保持的关注程度普遍提高、需求迫切,因此水土保持在发展建设过程中愈加重要。 关键词风电场;水土保持;施工方案;策划 前言 风能是一种可再生的清洁能源,利用风能发电代替燃煤发电,能节省煤炭消耗,大大减少“三废”排放,符合国家提倡的发展可再生能源政策,可节约不可再生的一次能源,具有显著的社会环境效益和一定的经济效益。风电场水土保持施工方案通过对风电场工程的建设规模、工程施工的特点、风机场地及升压站布置进行分析、研究和规划,初步预测施工准备期、施工期和自然恢复期项目区的水土流失面积和数量,分析项目的工程建设区和直接影响区范围,预测可能造成的水土流失程度及其危害,提出水土流失防治方案和总体布局,以指导风电场工程在建设的同时,能按照方案的要求落实水土保持措施,做到边施工、边治理,尽可能減少水土流失,为建立良好的生态环境打下基础。 1 方案编制的目的和意义 (1)根据“谁开发、谁保护,谁造成水土流失、谁负责治理”的原则,明确风电场工程建设过程中参建单位所应承担的水土流失防治范围和责任。 (2)明确风电场工程的水土流失防治目标、防治措施及方案实施进度,编制切实可行的水土保持方案,为实现水土流失防治目标提供技术保障,为项目布局及施工组织提供完善意见,确保水土资源的可持续利用。 (3)将水土流失的防治措施纳入工程建设的总体安排和年度计划,做到水土保持措施与主体工程“同时设计、同时施工、同时投入使用”,充分有效地发挥水土保持措施的作用和功效,有效地遏制水土资源的破坏,保护、恢复和重建良好的生态环境[1]。 2 水土保持施工方案 2.1 责任范围的确定 项目建设区是指开发建设项目的永久、临时、租用地和管辖使用土地范围。包括风机场地、升压站、直埋电缆用地等永久占地,以及施工道路、施工及安装场地、临时堆土场等临时占地。

风电电能质量检测系统

风电电能质量检测系统 横河电机低电压穿越(LVRT)解决方案 低电压穿越(Low Voltage Ride Through, LVRT)是指在风力发电机并网点电压跌落的时候,风机能够保持并网,甚至向电网提供一定的无功功率,支持电网恢复,直到电网恢复正常,从而“穿越”这个低电压时间(区域)。 如果风电机组不具备LVRT能力,就会在电网故障导致电压跌落时,由于风机自身的保护系统动作使风机与电网断开,电网电压会降的更低,甚至有使系统崩溃的风险。 国际电工委员会(International Electro technical Commission,简称IEC)针对风力发电机组发布了IEC61400系列技术标准。其中的第21部分即IEC61400-21,内容是关于并网风力 发电机组电能质量特性测试,规定了风电电能质量的测试项目、测试原理以及测试指标等,是风力发电电能质量测试的基本依据。低电压穿越能力的标准就是之中的重要组成部分。 IEC61400-21主要测试项目包括: 1.低电压穿越 2.谐波、间谐波、高频谐波 3.闪变 4.有功功率、无功功率 5.电网保护、重连时间 不同国家(和地区)所提出的LVRT要求不尽相同。目前在一些风力发电占主导地位的国家,如丹麦、德国等已经相继制定了基于IEC61400-21的新的电网运行准则。中国也已经发布了基于IEC61400-21的国内风力发电机组并网标准。 IEC61400-21定量地给出了风电系统离网的条件(如最低电压跌落深度和跌落持续时间),只有当电网电压跌落低于规定曲线以后才允许风力发电机脱网,当电压在凹陷部分时,发电机应提供无功功率。 图1 IEC61400-21标准中的风电系统离网的条件 ●红线所示程度以上的电网跌落,不能导致风机脱网或发电单元运行不稳定。 ●风电场内的风电机组具有在并网点电压跌至20%额定电压时能够保持并网运行625 ms的低电压穿越能力。 ●风场电压在发生跌落后2s内能够恢复到额定电压的90%时,风场必须保持并网运行。 ●风电场升压变高压侧电压不低于额定电压的90%时,风电场必须不间断并网运行。 IEC61400-21标准中低电压穿越测试要求记录风力发电机输出端的有功功率、无功功率、有功电流、无功电流和电压随时间的变化。

三峡达坂城风电场度技术监督计划

三峡新能源达坂城风电有限公司2013年度技术监督工作计划为了保证生产设备的安全、稳定运行,提高发电设备可靠性,全面完成2013年度生产工作任务,技术监督工作必须全面坚持“安全第一,预防为主”的电力生产方针,实行技术负责制,按照依法监督原则,对公司运行、检修和技术改造实施全过程、全方位的技术监督管理,全面建立技术检测、技术标准,技术推进的技术监督体系,严格执行技术监督管理制度,做好各项技术监督管理工作。一、严格按照国家和行业标准开展技术监督工作。按期完成各项监督指标,针对技术监督过程中发现的设备缺陷或异常现象,及时提出和制定合理处理意见和措施。加大对监控设备的检测监督力度,确保被监控设备在受控状态下运行。二、积极开展技术监督分析总结会。严格按照技术监督管理制度规定,各技术专业监督组每月组织召开技术监督工作会议,公司技术监督主管部门每季度组织进行全厂范围的技术监督工作会,检查、总结、布置各专业技术监督工作,并严格按照技术监督工作报告制度

规定,及时向上报及相关部门上报技术监督工作开展完成情况。三、加强对各技术监督专业成员的技术培训工作,提高技术监督人员的理论知识和实践能力。积极创造条件选送部门技术监督骨干外出参加技术监督培训,加强与相关单位的专业技术交流。通过物质、精神奖励等有效手段,提高技术监督人员的责任感、使命感,提高技术监督人员的积极性、主动性和创造性,保证公司技术监督工作真实、 可靠、完整、连续开展。四、在认真开展技术监督 工作基础上,加大设备改造和科技化水平,紧紧围 绕“强化管理、提高效益” 的发展要求,依靠先进科技,提高公司设备运行可靠性。在努力开展技术监 督工作过程中,扎实开展节能降耗工作,有针对性 的解决影响设备经济运行的问题,提高设备经济运 行能力,推动我公司的可持续发展。五、全面、按时、高质量完成2013年度技术监督重点项目,切实 保证各监督项目的落实和受控。在设备改造、检修 过程中,技术监督人员要实地进行实质性的技术监 督工作,掌握现场设备状况的第一手资料,为进一 步做好设备改造、检修工作提供可靠依据。

风电场升压站建筑工程主要施工方案

风电场升压站建筑工程主要施工方案 1.1测量放线、轴线及标高控制 1.1.1定位放线 进行定位放线前,应对场地进行平整。根据建筑总平面图上的放线基点及总平面图上测量控制点与保护室线关系放线,确定轴线的位置。根据建筑平面图上各轴线的位置关系放线得到其它各轴线的位置。 在施工中必须层层分中弹线,浇筑完基础及各层现浇板后,应及时校对轴线和标高,使其偏差在允许范围内,同时控制建筑物的竖向高差在1/1000以内,总高差不大于20mm。 电气设备独立基础需要单独放线,预埋件放线时严格按照图纸尺寸放线,并层层复核,在浇筑有预埋件的基础时,在浇筑过程中需跟踪测量,防止浇筑期间振捣时震动偏差。 1.1.2标高控制 将设计给定的高程引至施工现场进行控制,将引出的标高引至永久性物体上并作好标记,标记点均匀分布,标出±0?00标高,用卷尺控制水平线,向上引测点,测点不少于3处,并用水准仪对引上来的标高进行闭合检查。 1.2基础工程 3开挖时选用局部大开挖。,土方开挖采用机械开挖. 台挖掘机,结合装载机,土方就近平整回填,

基础回填土采用人工回填夯实,平板打夯机夯实法,回填次序从下而上,从低至高分层铺筑,每层厚度控制在30cm内。基础边50cm范围须人工夯实,墙基两侧必须对称夯实。 每层土铺好后,配以人工和平板式打夯机及时打夯,人工初步压实后,再用平板式打夯机打夯。打夯机打夯前,先用人工进行整平,打夯机依次打夯,一夯压半夯,夯夯相接,行行相连,两遍纵横交叉,打夯不留间隙。 填土严禁使用生活垃圾、有机质含量过高的耕植土等不符合要求的土,回填土密实度严格按施工规范要求进行抽样检查,以保证达到设计要求。 1.3主体工程 1.3.1模板工程 (1)模板工程以木模板为主,拼接、φ48钢管、木方备楞、对拉螺栓紧固(框架局部异形截面另外加工部分异型钢模板或用δ=25mm厚木板制安),阳角模可采用50×5角钢钻孔制作。 (2)模板的支撑方法 ①框架梁柱模板均采用φ12~φ16对拉螺栓固定。 ②一般梁板的支顶采用φ48×3.5脚手钢管,立管接头采用 对接扣件,接头位置严格按《脚手架搭设规范》要. 求设置,水平拉杆双向竖向间距≤1.5m,每个顶柱允许承载≤0.8t。(梁的支顶要考虑预制空心楼板的荷载。)

本特利风力发电机状态监测解决方案

本特利风力发电机状态监测解决方案 1

本特利内华达ADAPT.Wind TM风力发电机状态监测解决方案-实现对风电机组产品生命周期的有效延伸 随着中国市场对清洁能源需求的日益增长,在风电行业出现持续增长的同时,如何对制造后的产品实现在运行层面有效监测,提升风机的实际使用寿命周期,从而实现风力发电生产的持续竞争力等一系列需求,也逐渐成为了风机制造商,风场业主与运行人员最为关心的话题之一。 本特利内华达ADAPT.wind TM状态监测系统解决方案提供了从传感器到监测器和软件以及故障诊断服务的一体化可扩展的解决方案,经过主动预防性地检测风电机组传动系统早期的故障和问题,不但帮助风机制造厂商及时对安装机组进行故障预警及诊断,提升售后质保期内的产品安全可靠性,为高效率服务提供更加可视的平台,同时也极大的帮助运营商控制运行维护成本,更加优化管理风电场的资产,提高设备的可利用率并降低维护的费用,提升风场经济效益。ADAPT.wind TM系统不但已作为GE风电机组配置的标准状态监测解决方案在全球使用,同时它还能够根据整机制造商的要求,灵活配置在其它任何整机制造商生产的风电机组上。 为什么要振动状态监测?

风电机组会长期承受诸多无法预知的运行条件,这些都可能会对机组运行造成非常严重的不良影响。如果能尽早地发现这些问题并加以处理,那么必然会提高风机的可利用率,同时也能够降低维护成本。因此先进的状态监测技术与专业经验对于可靠地进行资产设备管理而言至关重要。 齿轮箱是首要问题 行星齿轮箱的故障是风电机组制造商和运行人员主要担心的问题。据统计仅与齿轮箱本身的故障问题直接相关的维护费用就占到了风电场运行与维护费用的25%-30%。本特利内华达风机状态监测系统让运行人员能够远程获知齿轮箱的运行状况。经过该系统获取的齿轮箱早期故障状态数据,使运行人员在齿轮箱出现轻微故障时,能够合理地改变运行方式,延长机组的运行时间,从而保证发电收益,而且能够降低被动式故障检修的风险,避免非计划停机或灾难性事故的发生。 对风场的所有风机实施主动预防性的状态监测还能够帮助运行人员有效地规划和合理地安排机组的停机维护计划。将所有需要停机维护的风机集中安排在一次检修计划中进行检修,只需使用一台吊车,这样便能节省近百万的维护费用。 为什么要使用本特利内华达ADAPT.wind TM系统? 它能使您从使用的第一天就对机组运行状况了如指掌。经过

风电道路施工方案

风电道路施工方案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

******工程 道路施工方案 编制人: 审核人: 审批人: 施工单位:(章) 年月日 1工程概况及工程量 工程概况 该风电场采用汽车吊进行吊装。风场道路路线长 m,路基宽,路面设计宽度为,道路两边在挖方区设土质边沟。 现场施工道路起点位于X= , Y= , 道路施工考虑大型吊车行走,路面宽度6m,道路两侧各留路肩,路基宽度7m,极限最小圆曲线半径30m,最大纵坡一般不超过8%,最大不超过12%。 本工程道路等级为四级厂外公路,根据公路工程技术标准,设计车速度为20km/h。路面采用300mm厚山皮石面层。 道路平面坐标控制测量依据1954北京坐标系,高程控制测量依据1985国家工程基准。工程量和工期 工程量 本期风电场道路长约: km,道路路基土石方量:挖方: m3,填方: m3。 施工工期 本工程计划开工日期2015年月日,完工日期2015年月日。 2.编制依据

3.作业前的条件和准备作业前必须具备的条件

工前经全面技术交底,施工中全体人员应服从统一指挥,协调一致。作业机具(包括配置、等级、精度等) 根据施工内容的需要进行工器具的配置(规格及准确度等)。

施工器具 4.作业程序、方法 施工顺序: 中桩定位→支引边桩→地表清除→路基修筑、找坡、碾压检测→中线复测→山皮石铺筑、找平、碾压检测 作业方法及程序: 、测量放线 根据场区测量控制网和现场原有山道实际状况采用全站仪放出道路轴线上的各控制点,打出边桩用钢尺放出道路开挖线,同时效验中线偏差,进行开挖后找坡、整平、碾压,再用全站仪和钢尺中桩确定,返高后用天然碎石回填。回填后需在其上重新放出道路轴线,标高从就近的测量控制点引测。 、土方工程 场区道路开挖时由各段道路的一端向另一端推进,本工程所有路面横向坡度符合图纸设计要求。开挖的弃土用自卸汽车运到指定的地点。挖土应设专人统一指挥,用水准仪随时测 量来控制挖土标高。 路基 土方路堤分层填筑压实,用透水性不良的土填筑路堤时,应控制其含水量在最佳压实含水量±2%之内。 土方路堤,必须根据设计断面,分层压实。严禁出现虚土、松动土,待土壤的含水率接近最佳值后即可用压路机进行碾压。按照由边到中,重叠二分之一轮宽的原则进行碾压,碾压先慢后快,碾压遍数以路基达到设计要求的压实系数为准。

XX风电场工程绿色施工方案

一、工程概况 1、工程概述 1.1 工程名称 XX风电场工程。 1.2 工程地点 XX省XX市XX镇。 1.3 工程性质、规模、工程范围 1.4 质量目标 1.4.1工程质量验评结果均达到行业和XX集团公司要求;实现达标投产要求。 1.4.2本工程范围内的建筑、安装、调试项目的合格率达到100%。不发生重大及以上质量事故。 1.4.3绿色、文明施工目标:噪音不影响周边农牧民,污水排放达标不影响环境,文明施工考核优良,绿色施工达标。 1.5 开工、完工日期 计划开工日期:XX年XX月XX日,计划完工日期:XX年XX月XX日。 二、编制依据 1、《建筑工程绿色施工评价标准》GB/50640-2010 2、《建筑施工现场环境与卫生标准》JGJ146-2004 3、《建筑施工现场安全检查标准》JGJ59-2011 4、《节水型生活用水器具》CJ164-2002 5、《建筑照明设计标准》GB50034-2004 6、《污水综合排放标准》GB8978-2002 7、《施工现场临时建筑物技术规范》JGJ/T188-2009 三、绿色施工目标与要求 运用ISO14000和ISO18000管理体系,在保证质量、安全等基本要求的前提下,通过科学管理和技术进步,最大限度的节约资源与减少对环境负面影响的施工活动——尽可能的应用绿色施工的新技术、新设备、新材料与新工艺,实现四节一环保(节能、节地、节水、节材和环境保护)。

绿色与施工指标体系由节地与室外环境、节能与能源利用、节水与水资源利用、节材与材料资源、环境质量等五类指标组成。 生活能耗控制指标: 1、施工现场作业人员生活用电平均每人每月<25千瓦时(含食堂、浴室等生活区公共用电)。 2、施工现场作业人员生活用水平均每人每月<1.5立方米(含食堂、浴室等生活区公共用水)。 节材控制指标 1、建筑材料损耗不高于现行定额规定的损耗比例。 2、模板等周转材料的周转率不低于定额要求。 3、工程废料回收再利用率: 1)钢、木等材料再利用率≥50%。 2)砂石、碎砖类材料再利用率≥80%。 四、绿色施工管理组织机构: 1、成立绿色施工管理领导小组 组长:项目经理: 副组长: 成员: 2、绿色施工领导小组职责分工 2.1、项目经理:负责各作业队之间的统筹与协调,全面落实绿色施工的管理工作,建立项目责任制,确定目标和指标,负责资源提供。 2.2、项目总工职责:组织编制绿色施工方案,制定项目绿色施工技术措施,执行绿色施工导则和标准。 2.3、领导小组成员职责:组织相关人员按绿色施工责任要求进行实施,并进行自查,落实改进措施。定期组织对当月绿色施工实施情况进行检查,且做好检查记录,并做好考核、评比工作。 2.4、设备物资部负责人:对进场材料验收和数量核对,建立原材料进场和耗用台帐,逐月和分阶段统计消耗数量,与合约部门预算对比,以掌握材料消耗情况。 2.5、技术员:熟悉图纸和规范要求,组织施工生产,落实工程进度计划和绿色施工措施,负责向施工班组交底。

荆竹山风电工程项目部测量方案.doc

临湘荆竹山风电场工程施工测量技术方案 集团有限公司 深能源翰嘎利风电工程项目部 2016年11月

编写:周衍旺 校核:刘强高 审核:柳建军 批准:易美康 目录

1.工程概况 (1) 1.1地形地貌 (1) 1.2交通条件 (1) 2.施工测量准备工作 (1) 2.1资料收集 (1) 2.2现场的勘察 (2) 2.3全面熟悉设计图表 (2) 2.4测量人员及仪器配备 (3) 3.建立测量制度 (3) 4.施工测量的复测和加密 (4) 5.风机中心桩放样、高程获取及预埋件、基础环安装测量 (4) 5.1风机中心桩的放样 (4) 5.2高程测量方法 (5) 5.3预埋件、基础环安装测量 (6) 6.基础土(石)方量的计算 (6) 7. 质量保证措施 (6) 7.1仪器鉴定 (6) 7.2原控制点的复测 (7) 7.3控制测量 (7) 7.4完善测量记录 (7) 8.安全保证措施 (7) 9.工程竣工验收 (7)

1.工程概况 1.1地形地貌 科右中旗东俯东北平原,西临蒙古高原,南通哲里木粮仓,北接呼伦贝尔草原。场址附近属于丘陵区,地表为草地,山头绝对高程多在300~350m间,相对高度多不足百米。山脊普遍较宽,山坡平缓。场址区地面高程约在263~340m之间。风电场的面积大约为25km2。 1.2交通条件 本工程项目位于内蒙古兴安盟科右中旗巴彦呼舒镇北部平原,科尔沁右翼中旗交通便利,目前已有111国道和省级大通道从风电场区附近通过,县级公路有6条,贯穿全旗各地。 2.施工测量准备工作 2.1资料收集 我部在施工复测之前,首先将设计单位移交的有关资料,如科右中旗翰嘎利湖风电场一期工程地形测量技术报告,翰嘎利风电场地形图,25个风机中心坐标,地勘报告等进行室内检核和现场核对。全面了解路线、风机位置及地形情况,以便确定相应的测量方法。对于设计单位提供的以上资料,我项目部工程管理部及测量队要全面的熟悉图纸并进行认真的审核,对于在审核中所发现错误或者表述不清之

我国风力发电场地分布情况

我国风力发电场的分布情况 我国有效风能分布图 根据图中国风力资源分布状况图,我国风能资源丰富的地区主要分布在以下地区: (1)三北(东北、华北、西北)地区丰富带,风能功率密度在200~300瓦/米2以上,有的可达500瓦/米2以上,如阿拉山口、达坂城、辉腾锡勒、锡林浩特的灰腾梁等、可利用的小时数在5000小时以上,有的可达7000小时以上.这一风能丰富带的形成,主要是由于三北地区处于中高纬度的地理位置有关. (2)东南沿海及附近岛屿包括山东、江苏、上海、浙江、福建、广东、广西和海南等省(市)沿海近10 公里宽的地带,年风功率密度在200W/m2米以上. (3)内陆个别地区由于湖泊和特殊地形的影响,形成一些风能丰富点,如鄱阳湖附近地区和湖北的九宫山和利川等地区. (4)近海地区,我国东部沿海水深5米到20米的海域面积辽阔,按照与陆上风能资源同样的方法估测,10米高度可利用的风能资源约是陆上的3倍,即7亿多千瓦. 根据中国气象科学研究院绘制的全国平均风功率密度分布图,中国陆地10m高度层的风能总储量为32.26亿KW,居世界第一位。我国陆上实际可开发风能资源储量为2.53亿千瓦,近

海风场的可开发风能资源是陆上3倍,则总的可开发风能资源约10亿千瓦。也就是说,如果中国的风力资源开发60%,那么仅风能就可以支撑中国目前每年全部的电力需求。 中国的风电资源不仅丰富,而且分布基本均匀。东南沿海及其岛屿、青藏高原、西北、华北、新疆、内蒙古和东北部分地区都属于风能储藏量比较丰富的地区,而甘肃、山东、苏北、皖北等地区也有相当大比例的风能资源可以有效利用。我国陆地上从新疆、甘肃、宁夏到内蒙古,是一个大风力带;同时还有许多大风口,如张家口地区,鄱阳湖湖口地区、云南大理等。这些为风能的集中开发利用提供了极大的便利。 到2008年底,中国的风电装机容量达到1200万千瓦,现在在全世界是位居第四位,装机容量近三年来是连续成倍增长。如果按照现在这样的增长速度,到2010年底,可能会达到3000万千瓦。 目前中国已经有20多个省区开发建设了风电场,已建成风电场近240个,安装风电机组1.1万多台。按照有关规划,未来两年,中国将在河北、内蒙古、辽宁、吉林、新疆等地区建成10多个百万千瓦级的大型风电基地,并初步形成几个千万千瓦级风电基地。除了发展陆上风电外,中国还将加快海上风电建设。 由上图可知中国的风力资源主要集中在一下几个地方: 新疆、内蒙古、黑龙江、辽宁、吉林、山东、甘肃、河北、浙江、上海、江苏、福建、广东、海南等地 一下是这几个地方的风电场分布情况: 1.新疆 以下是新疆主要的几个风电场: 新疆省是目前中国风力发电最大的省。 达坂城风电一厂:装置32台100~600千瓦机组,共12100千瓦 达坂城风电二厂:装置146台300~600千瓦机组,共75000千瓦 布尔津风电厂:装置7台150千瓦机组,共1050千瓦。总装机4.95万千瓦的新疆新华布尔津风电场开工建设。届时,布尔津县风电总装机容量为14.85万千瓦,每年可提供绿色电能3.6亿度。 阿拉山口风电厂:装置2台600千瓦机组,共1200千瓦。总投资5.2183亿元的国电新疆阿拉山口风电场总体规划装机容量1000兆瓦。现阶段已经规划的200兆瓦分四期建设。一、二期规划装机各49.5MW,计划今明两年完成,“十二五”初期完成三、四期开发建设。目前一期49.5MW风电项目33台风机吊装工作已经全部完成,预计今年10月底投产发电。在整个施工过程中,工程人员加班加点,工程未受“7·5”事件影响。阿拉山口是新疆著名的九大风区之一,全年8级以上大风就有165天,具有风力强、风向稳定和风频率高等特点,极具风电开发潜力。 乌鲁木齐托里风电厂:位在乌鲁木齐县托里乡,装置20台1500千瓦机组,共3万千瓦宁夏省

风电叶片监控系统解决方案

风电叶片监控系统解决方案

为什么要对叶片进行状态监测? ?叶片是风机中受压最大的部件之一 -面临着极端的外部条件,而且动态载荷大。 ?叶片更换费用非常昂贵 ?在极端损坏情况下,风机必须立刻停机减少直接或二次损害。 ?如果能提早发现损伤,叶片可以很好地被修复。 ?目前,主要检测手段是视觉,但这种方法时间间隔长,非实时,且花费巨大。 →完全不适用于海上风机 ?状态监测系统的两大功能 -提高可利用小时数 ?覆冰检测 ?静态和动态载荷评估 -叶片损伤检测 ?雷击检测 ?叶片内部和外部损伤

损伤检测 ?更早检测到叶片的损伤 →降低维修成本 ?严重损伤给出自动停机信号→安全操作,避免灾难?经过DNV GL认证 →得到官方认可 覆冰检测 ?精确检测叶片覆冰 →安全操作 ?自动重启 →可获得更高收益 ?经过DNV GL认证 →得到官方认可 改善运营 ?检测动态不平衡 →提高收益 →降低载荷 ?动态载荷配准 →预防过载 ?显著的运行状态检测 →避免额外支出

覆冰检测DNV-GL证书/ 叶片状态监测系统DNV-GL 证书 ?BLADE control?覆冰检测,2008年获得了DNV-GL 的认证。 ?含自动启机功能的认证 ?BLADE control?在2013年获得了首个风机叶片状态监测 系统的GL认证。

BLADEcontrol?检测的叶片故障类型 ?气动表面壳体损伤 -裂痕和分层,尤其是前缘和尾缘 -雷击导致的叶尖开裂 ?结构支撑件的损伤(致命) -腹板分层或断裂 -梁/ 翼梁分层或断裂 -叶片轴承损伤 腹板 翼梁 气动表面 前缘 尾缘 ?松动部件 -叶片内 -轮毂内 -叶片外部 (防损保护层,扰流器)?气动不平衡 -变桨偏差 -变桨传感器故障

全国风电场装机概况

全国风电场装机概况

————————————————————————————————作者:————————————————————————————————日期:

全国风电场装机概况 2006-6-2 14:02:00 全国风力发电信息中心 序号风电场名称装机台数装机容量(kW) 1新疆达坂城风电二厂197112800 2宁夏贺兰风电场132112200 3内蒙古辉腾锡勒风电场9468500 4广东南澳风电场12856390 5河北承德风电场8853700 6甘肃玉门风电场7452200 7广东惠来石碑山风电场8752200 8内蒙古克旗达里风电场7351360 9内蒙古克旗赛罕坝风电场7351360 10吉林洮北青山风电场5849300 11山东长岛风电场5944750 12新疆达坂城风电一厂6935700 13河北尚义满井风电场2334500 14辽宁仙人岛风电场4832660 15福建六鳌风电场3630600 16吉林通榆风电场4930060 17新疆达板城三场2030000 18黑龙江富锦风电场2724300 19辽宁东岗风电场3822450 20辽宁海洋红风电场2821000

21浙江括苍山风电场3319800 22广东汕尾红海湾风电场2516500 23上海南汇风电场1116500 24山东即墨凤山风电场1516400 25吉林洮南风电场1916150 26黑龙江伊春大青山风电场1916150 27福建南日岛风电场19 16150 28浙江苍南风电场2614350 29广东惠来海湾石风电场2213200 30山东栖霞风电场1912200 31黑龙江木兰风电场2012000 32辽宁康平风电场1210200 33辽宁彰武风电场1210200 34河北张北风电场249850 35辽宁法库风电场129600 36吉林长岭风电场119350 37河北张北满井风电场69000 38海南东方风电场198755 39辽宁横山风电场247400 40内蒙古朱日和风电场326900 41福建平潭风电场106000 42福建东山风电场106000 43山东荣成风电场46000 44黑龙江穆棱十文字风电场44900 45内蒙古锡林风电场134780

xxx风电场 雨季施工技术措施

xxx风电场雨季施工技术措施 1 编制说明 xx年度雨季已经到来,为了保证项目部的财产不受雨季洪水的侵害,确保xx风电场施工现场各项施工工作的正常进行、确保工程质量及安全文明施工,编制此措施做到防范于未然,请各相关单位遵照执行。 2 水文地貌概况(此部分内容参考招投标文件或施工组织总设计上的相应部分) 3 施工现场目前情况(雨季施工项目) 3.1综合楼及主控楼、35KV配电间框架结构正在进行施工,下步将进行砌筑抹灰装饰装修施工,变电站区域内地下管线还未施工,但马上即将要开工,围墙及护坡工程正在施工,生活消防水泵房及杂用水泵房、车库及材料库等附属结构马上要进行施工。 3.2山上施工道路正在施工。 3.3风机基础基坑正在开挖,基础正在施工。 3.4 35KV集电线路土建工程。 4 汛期关注重点 4.1土建部分: 综合楼、主控楼及35KV配电间、围墙及护坡、35KV集电基础施工等,在综合楼及主控楼的装修工艺要求较高,35KV集电线路基础掏挖注意塌方问题。其中风机基础结构为大体积砼,施工工艺要求较高。因此,混凝土施工是重点,工艺的优劣受雨季影响比较大,要有雨季突降雨的防范措施,制定操作性强的应急处理预案,施工技术交底中要强调防雨内容;接地焊接、钢筋焊接亦是重点,要有防雨的针对性措施,确实保证接地施工质量与钢筋制作安装的质量;土建试验室要根据现场的情况测定砂石的含水率,及时调整混凝土配比。 雨季施工中,安全工作要高度重视。综合楼、主控楼等周转工具及钢筋吊装施工要有防滑、防坠措施;综合楼、主控楼等上人上料通道要保证畅通,严禁堵塞;步道上防滑条要牢固,粘的粘土要及时清理,防止脚滑,间距要合适。要特别关注电气部分,要勤检查并做好记录,有问题宁可停止作业,也不能有侥幸心理;雨后必须设专人检查电气接地、绝缘状况并要有记录,无问题后才可使用,严禁雨后不检查就使用电气。 4.2安装工程

某风电沉降观测方案

****** 风电工程沉降观测方案 一、工程概况: 岚县河口风电工程安装了24 台风机。地质环境属于覆矿风场,风机运行期间,附近矿区采矿,露天挖掘作业将部分风机所在的山体周围挖掘严重。特别是#10 风机,山体周围被挖成断壁状,破坏了山体原来的地貌,严重威胁到风机的安全运行。目前矿区已停止对#10 风机所在山体的挖掘工作。为保障风机的安全运行,防止发生倒塔事故,掌握风机在特种地理环境和地质条件下的基础沉降数据,检修公司试验研究所对该风机进行了跟踪观测。目前已取得第一次观测数据作为后续观测的初始数据。便于进一步比较分析,形成沉降-时间关系曲线。 二、现场实际情况、观测点、基准点的布置 工程上对建筑物的沉降观测一般采用水准测的方法,在建筑物上埋设观测点,沉降观测点应依据建筑物的形状、结构、地质条件、桩形等因素综合考虑,布设在最能敏感反映建筑物沉降变化的地点。一般布设在建筑物四角、差异沉降量大的位置、地质条件有明显不同的区段以及沉降裂缝的两侧。埋设时注意观测点与建筑物的联结要牢靠,使得观测点的变化能真正反映建筑物的变化情况。在建筑物附近并能躲开建筑物影响的范围外(一般取80m-100 m)埋设水准点,水准点可利用已有的、稳定性好的埋石点和墙脚水准点,水准点经过校验是稳定的,利用水准仪测量观测点与水准点之间的高程差,来判断建筑物是否发生沉降。观测点、水准点应不受环境条件及人为损坏。 对于风机基础沉降的观测,《中国大唐集团新能源股份有限公司机务技术监督实施细则》中规定:沿风机基础底座周边与基础底座轴线相交的位置布点,每台风机设置沉降观测点不得少于 4 个,对每个观测点均需观测和记录,水准工作基点应尽量靠近观测点位置,但应在基础沉降影响范围之外,即距风机基础边线至少应大于80m,基准点一般不少于3个。

三峡达坂城风电场2013年度技术监督计划讲解

三峡新能源达坂城风电有限公司2013 年度技术监督工作计划 为了保证生产设备的安全、稳定运行,提高发电设备可靠性,全面完成2013 年度生产工作任务,技术监督工作必须全面坚持“安全第一,预防为主”的电力生产方针,实行技术负责制,按照依法监督原则,对公司运行、检修和技术改造实施全过程、全方位的技术监督管理,全面建立技术检测、技术标准,技术推进的技术监督体系,严格执行技术监督管理制度,做好各项技术监督管理工作。 一、严格按照国家和行业标准开展技术监督工作。按期完成各项监督指标,针对技术监督过程中发现的设备缺陷或异常现象,及时提出和制定合理处理意见和措施。加大对监控设备的检测监督力度,确保被监控设备在受控状态下运行。 二、积极开展技术监督分析总结会。严格按照技术监督管理制度规定,各技术专业监督组每月组织召开技术监督工作会议,公司技术监督主管部门每季度组织进行全厂范围的技术监督工作会,检查、总结、布置各专业技术监督工作,并严格按照技术监督工作报告制度规定,及时向上报及相关部门上报技术监督工作开展完成情况。 三、加强对各技术监督专业成员的技术培训工作,提高技术监督人员的理论知识和实践能力。积极创造条件选送部门技术监督骨干外出参加技术监督培训,加强与相关单位的专业技术交流。通过物质、精神奖励等有效手段,提高技术监督人员的责任 感、使命感,提高技术监督人员的积极性、主动性和创造性,保证公司技术监督工作真实、 可靠、完整、连续开展。

四、在认真开展技术监督工作基础上,加大设备改造和科技化水平,紧紧围绕“强化管理、提高效益” 的发展要求,依靠先进科技,提高公司设备运行可靠性。在努力开展技术监督工作过程中,扎实开展节能降耗工作,有针对性的解决影响设备经济运行的问题,提高设备经济运行能力,推动我公司的可持续发展。 五、全面、按时、高质量完成2013 年度技术监督重点项目,切实保证各监督项目的落实和受控。在设备改造、检修过程中,技术监督人员要实地进行实质性的技术监督工作,掌握现场设备状况的第一手资料,为进一步做好设备改造、检修工作提供可靠依据。

风电场施工组织设计方案

编制说明 《》是我单位根据招标人提供的设计文件,招标文件的描述及现场考察结果, 参考现行国规,结合我单位多年来的各类工程建设经验,并格按照ISO9001质量管理体系、GB/T28001职业安全健康管理体系、ISO14001环境管理体系,针对本工程场道路、风机基础等施工重点,本着为建设单位保质量、保工期的最终要求,并经我单位工程技术人员论证和案研讨比较,提出了我们的施工案,在施工中将进一步深化完善各分部、分项工程施工案,并报建设单位和监理审批,实现华能即墨丰城风电场一期49.5MW工程风机吊装平台、场道路、风机基础、箱变基础、接地施工A标段“优质、高速、安全、低耗、环保”的施工总目标。

第一章、编制依据 一、招标文件 华能即墨丰城风电场一期49.5MW工程风机吊装平台、场道路、风机基础、箱变基础、接地施工A标段招标文件。 二、主要技术标准、规规程

三、主要法规 四、其他文件 1、省文明施工管理规定; 2、省建设主管部门的管理条例及办法; 3、现场调查所取得的资料; 4、我单位编制的华能即墨丰城风电场一期49.5MW工程风机吊装平台、场道路、风机基础、箱变基础、接地施工A标段预算资料; 5、建筑业十项新技术; 6、施工案研讨记录。

第二章、工程概况 一、工程简介 二、工程概况 华能即墨丰城风电场一期工程场址位于即墨市境,即墨市位于东经120°07′~121°23′,北纬36°18′~36°37′之间,东临黄海,与日本、国隔海相望,南依崂山,近靠。地势由东南向西北倾斜,东部多为低山丘陵,西部低洼。 本期工程共设20台风机,风机轮毂高度75m,单机容量为1.5MW,风机基础设计级别为2级,结构安全等级为2级,抗震设计烈度为6度,相应地震动峰值加速度0.05g。本工程分两个标段,其中A标段为1#~10#风机基础、箱变基础、吊装平台、接地工程及场道路(包括升压站的进站道路、利用道路的改造);B标段为11#~20#风机基础、箱变基础、吊装平台、接地工程及风机间连接道路(包括利用道路的改造)。 风机基础采用圆形钢筋混凝土扩展基础,天然地基。圆形基础底

风电监测的方法详解

风电监测的方法详解 为了分析和找寻可能的监测方法,需要细剖风力电机的物理现象交互过程:风力(风速、风压)->叶片(应变、振动、转动)->轴(转速、振动、噪音)->齿轮箱(振动、摩擦、发热、噪音)->发电机(振动、摩擦、发热)->电线(发热)。 那么即可以从振动信号(振动、转速)、油液信号(摩擦时交换物质被带入润滑油/液压油中)、应变信号、红外信号(温度)、噪音信号和效能信号(风速、转速、电能质量)六大类进行监测。 (1)油液监测。油液监测是早期预警的重要手段。齿轮间的啮合摩擦会使金属颗粒被带入油液当中,随着时间的推移就会出现磨损、裂痕等状况。大多数的轴承与齿轮老化,都是因为使用润滑油不当而导致进一步损伤风机传动系统。这类监控包含油粒子( Oilparticle) 计数与温度测量。通过如粒子计数器等装置,即可了解润滑油的品质与可能的污染状态。而工业级用油中的水污染物,扮演了极重要的角色。水分过高可能导致元件过热、腐蚀,出现严重故障。 (2)振动监测。油液监测是中期预警的重要手段。通过振动监视可以了解旋转机械设备的状态,因此振动是风电机组监测最重要的方面之一。风电机组都包括主轴承、齿轮箱与发电机,通过振动监测可以有效地了解这些设备的健康状态。根据有效的频率范围,可以使用位置传感器(低频段)、速度传感器(中频段) ,或加速度传感器(高频段)。振动传感器固定在待测部件之上,从而获取与瞬时本地运动相应的模拟信号。针对这类测量,采集设备应具备高采样率、高动态范围与抗混叠等功能。此外,还可以监测风机机舱与塔架的结构振动,从而了解结构弯曲,以及风力的气体动力效应。通过监视这些振动信号,就可以在关键部件发生重大故障之前,先发现部件是否产生任何问题,比如齿轮或轴承的老化/破损。而针对旋转机械,必须对传感器信号进行阶次分析以获取谐波信息。谐波(Harmonics)可以用来判断部件性能,进行早期诊断。 (3)应变监测。油液监测是中期预警的重要手段。应变监测常见于结构健康监测等应用中,且在风力发电领域逐渐凸显其重要性。实验室往往通过应力测量,测试风机叶片的使用寿命。这些测量通常使用金属馅(Metalfoil) 应变计,相应的数据采集装置则需要具备电压激励与桥路补偿等功能。应变计可安装于叶片的任何位置,但根据传感器数目的不同,其分布位置也有所差异。传感器应妥善安

我国风力发电场的分布情况

我国风力发电场的分布情况

我国风力发电场的分布情况 我国有效风能分布图 根据图中国风力资源分布状况图,我国风能资源丰富的地区主要分布在以下地区: (1)三北(东北、华北、西北)地区丰富带,风能功率密度在200~300瓦/米2以上,有的可达500瓦/米2以上,如阿拉山口、达坂城、辉腾锡勒、锡林浩特的灰腾梁等、可利用的小时数在5000小时以上,有的可达7000小时以上.这一风能丰富带的

形成,主要是由于三北地区处于中高纬度的地理位置有关. (2)东南沿海及附近岛屿包括山东、江苏、上海、浙江、福建、广东、广西和海南等省(市)沿海近10 公里宽的地带,年风功率密度在200W/m2米以上. (3)内陆个别地区由于湖泊和特殊地形的影响,形成一些风能丰富点,如鄱阳湖附近地区和湖北的九宫山和利川等地区. (4)近海地区,我国东部沿海水深5米到20米的海域面积辽阔,按照与陆上风能资源同样的方法估测,10米高度可利用的风能资源约是陆上的3倍,即7亿多千瓦. 根据中国气象科学研究院绘制的全国平均风功率密度分布图,中国陆地10m高度层的风能总储量为32.26亿KW,居世界第一位。我国陆上实际可开发风能资源储量为 2.53亿千瓦,近海风场的可开发风能资源是陆上3倍,则总的可开发风能资源约10亿千瓦。也就是说,如果中国的

风力资源开发60%,那么仅风能就可以支撑中国目前每年全部的电力需求。 中国的风电资源不仅丰富,而且分布基本均匀。东南沿海及其岛屿、青藏高原、西北、华北、新疆、内蒙古和东北部分地区都属于风能储藏量比较丰富的地区,而甘肃、山东、苏北、皖北等地区也有相当大比例的风能资源可以有效利用。我国陆地上从新疆、甘肃、宁夏到内蒙古,是一个大风力带;同时还有许多大风口,如张家口地区,鄱阳湖湖口地区、云南大理等。这些为风能的集中开发利用提供了极大的便利。 到2008年底,中国的风电装机容量达到1200万千瓦,现在在全世界是位居第四位,装机容量近三年来是连续成倍增长。如果按照现在这样的增长速度,到2010年底,可能会达到3000万千瓦。 目前中国已经有20多个省区开发建设了风电场,已建成风电场近240个,安装风电机组1.1万多台。按照有关规划,未来两年,中国将在河北、内蒙古、辽宁、吉林、新疆等地区建成10多个百万千瓦级的大型风电基地,并初步形成几个千万千瓦级风电基地。除了发展陆上风电

风电施工组织设计方案

第一部分总体策划 第1章编制依据及执行标准和规 1.1 编制依据 《电力建设工程施工技术管理导则》 国投吐番小草湖一期49.5MW风电场工程招标文件 国投吐番小草湖一期49.5MW风电场工程招标文件公告及招标编号中能建西北电力建设第四工程公司施工技术管理标准 我司对国投吐番小草湖一期49.5MW风电场施工现场实际情况的调查1.2 执行标准和规程规 《建筑地基基础工程施工质量验收规》GB50202-2002 《混凝土结构工程施工质量验收规》GB50204-2002 《混凝土结构设计规》GB50010-2002 《混凝土质量控制标准》GB50164-1992 《硅酸盐水泥、普通硅酸盐水泥》GB175-1999 《混凝土外加剂》GB8076-1997 《混凝土外加剂应用技术规》GB50119-2003 《普通混凝土用碎或卵质量标准及检验法》JGJ53-1992 《普通混凝土用砂质量标准及检验法》JGJ52-1992 《混凝土拌合用水标准》JGJ63-1989 《普通混凝土配合比设计规程》JGJ55-2000 《钢筋焊接及验收规程》JGJ18-2003 《钢筋混凝土用热轧带肋钢筋》GB1499-1998

《电气装置安装工程接地装置施工及验收规》GB50169-92 《接地装置工频特性参数的测量导则》DL475-92 《电气装置安装工程电缆线路施工及验收规》GB50168-92 以上标准若有新的版本则执行新标准,替代原有标准。 第2章工程概况 2.1 工程建设规模 2.1.1 工程名称 国投吐番小草湖一期49.5MW风电场工程 2.1.2 投资单位 国投电力控股股份有限公司 2.1.3 工程建设规模 国投吐番小草湖一期49.5MW风电场工程规划33台1500kW风力发电机组。每台风力发电机组均配置一台箱式变压器。 本标段工程包括如下容:风机基础地基处理,风机基础施工,箱式变电站基础施工,场检修道路施工。 2.2 工程自然条件 2.2.1工程地址 国投吐番小草湖风电场一期49.5MW项目位于新疆维吾尔自治区吐番地区,与乌木齐市公路里程约133km,与吐番市公路里程约72km,与大河沿镇公路里程约48km。风电场位于新疆吐番小草湖规划风区中的小草风电场,场地开阔,交通条件较好。 2.2.2 工程地质情况

相关文档
最新文档