等比数列单元测试题(一) 百度文库

等比数列单元测试题(一) 百度文库
等比数列单元测试题(一) 百度文库

一、等比数列选择题

1.已知数列{}n a ,{}n b 满足12a =,10.2b =,1112

3

3n n n a b a ++=+,11344

n n n b a b +=+,则使0.01n n a b -<成立的最小正整数n 为( ) A .5 B .7 C .9

D .11

2.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9=

( ) A .4

B .5

C .8

D .15

3.已知各项不为0的等差数列{}n a 满足2

6780a a a -+=,数列{}n b 是等比数列,且

77b a =,则3810b b b =( )

A .1

B .8

C .4

D .2

4.已知等比数列{}n a 的各项均为正数,公比为q ,11a >,676712a a a a +>+>,记

{}n a 的前n 项积为n

T

,则下列选项错误的是( ) A .01q << B .61a >

C .121T >

D .131T >

5.已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则数列{na n }的前n 项和为( )

A .-3+(n +1)×2n

B .3+(n +1)×2n

C .1+(n +1)×2n

D .1+(n -1)×2n

6.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”你的计算结果是( ) A .80里

B .86里

C .90里

D .96里 7.等比数列{}n a 的前n 项积为n T ,且满足11a >,10210310a a ->,

1021031

01

a a -<-,则使得1n T >成立的最大自然数n 的值为( )

A .102

B .203

C .204

D .205

8.等比数列{}n a 的各项均为正数,且101010113a a =.则313232020log log log a a a +++=

( ) A .3

B .505

C .1010

D .2020

9.记n S 为正项等比数列{}n a 的前n 项和,若2415S S ==,,则7S =( ). A .710S =

B .723

S =

C .7623

S =

D .7127

3

S =

10.公差不为0的等差数列{}n a 中,2

3711220a a a -+=,数列{}n b 是等比数列,且

77b a =,则68b b =( )

A .2

B .4

C .8

D .16

11.已知正项等比数列{}n a 满足7652a a a =+,若存在两项m a ,n a

14a =,则

14

m n

+的最小值为( ) A .

53

B .

32

C .

43

D .

116

12.已知q 为等比数列{}n a 的公比,且1212a a =-,31

4a =,则q =( ) A .1- B .4

C .12-

D .12

±

13.在各项均为正数的等比数列{}n a 中,22

6598225a a a a ++=,则113a a 的最大值是

( ) A .25

B .

254

C .5

D .

25

14.设等比数列{}n a 的前n 项和为n S ,若4

2

5S S =,则等比数列{}n a 的公比为( ) A .2

B .1或2

C .-2或2

D .-2或1或2

15.已知等比数列{}n a 的前n 项和为2,2n S a =,公比2q ,则5S 等于( )

A .32

B .31

C .16

D .15 16.已知1,a ,x ,b ,16这五个实数成等比数列,则x 的值为( )

A .4

B .-4

C .±4

D .不确定

17.正项等比数列{}n a 的公比是1

3

,且241a a =,则其前3项的和3S =( ) A .14

B .13

C .12

D .11

18.在等比数列{}n a 中,首项11,2a =11

,,232

n q a ==则项数n 为( ) A .3

B .4

C .5

D .6

19.数列{}n a 满足:点()1,n n a -(n N ∈,2n ≥)在函数()2x f x =的图像上,则{}n a 的前10项和为( ) A .4092

B .2047

C .2046

D .1023

20.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件

11a >,66771

1,

01

a a a a -><-,则下列结论正确的是( ) A .681a a >

B .01q <<

C .n S 的最大值为7S

D .n T 的最大值为7T

二、多选题

21.已知等差数列{}n a ,其前n 项的和为n S ,则下列结论正确的是( ) A .数列|n S n ??

?

???

为等差数列 B .数列{}2

n

a 为等比数列

C .若,()m n a n a m m n ==≠,则0m n a +=

D .若,()m n S n S m m n ==≠,则0m n S += 22.若数列{}n a 的前n 项和是n S ,且22n n S a =-,数列{}n b 满足2log n n b a =,则下列选项正确的为( ) A .数列{}n a 是等差数列

B .2n

n a =

C .数列{}2n

a 的前n 项和为21

22

3

n +-

D .数列11n n b b +??

?????

的前n 项和为n T ,则

1n T <

23.已知正项等比数列{}n a 的前n 项和为n S ,若31a =,13511121

4

a a a ++=,则( ) A .{}n a 必是递减数列 B .531

4

S =

C .公比4q =或

14

D .14a =或

14

24.已知数列{}n a 是公比为q 的等比数列,4n n b a =+,若数列{}n b 有连续4项在集合{-50,-20,22,40,85}中,则公比q 的值可以是( ) A .34

-

B .23

-

C .43

-

D .32

-

25.已知数列{}n a 的前n 项和为n S ,1+1

4,()n n a S a n N *

==∈,数列12(1)n n n n a +??+??+?

?的前n 项和为n T ,n *∈N ,则下列选项正确的是( )

A .24a =

B .2n

n S =

C .38

n T ≥

D .12

n T <

26.关于递增等比数列{}n a ,下列说法不正确的是( )

A .当101a q >??>?

B .10a >

C .1q >

D .1

1n

n a a +< 27.记单调递增的等比数列{a n }的前n 项和为S n ,若2410a a +=,23464a a a =,则

( )

A .1

12n n n S S ++-= B .12n n

a

C .21n

n S =-

D .1

21n n S -=-

28.已知数列{}n a 是等比数列,那么下列数列一定是等比数列的是( )

A .1{}n

a B .2

2log ()n a

C .1{}n n a a ++

D .12{}n n n a a a ++++

29.在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚

痛减一半,如此六日过其关”.则下列说法正确的是( ) A .此人第六天只走了5里路

B .此人第一天走的路程比后五天走的路程多6里

C .此人第二天走的路程比全程的

1

4

还多1.5里 D .此人走的前三天路程之和是后三天路程之和的8倍

30.已知数列{} n a 满足11a =,1

21++=+n n a a n ,*n N ∈, n S 是数列1 n a ??????

的前n 项和,则下列结论中正确的是( ) A .()211

21n n

S n a -=-? B .212

n n S S =

C .2311222

n n n S S ≥

-+ D .212

n n S S ≥+

31.已知数列{}n a 前n 项和为n S .且1a p =,122(2)n n S S p n --=≥(p 为非零常数)测下列结论中正确的是( ) A .数列{}n a 为等比数列 B .1p =时,41516

S =

C .当12

p =

时,()*

,m n m n a a a m n N +?=∈ D .3856a a a a +=+ 32.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件

11a >,671a a >,

671

01

a a -<-,则下列结论正确的是( ) A .01q <<

B .8601a a <<

C .n S 的最大值为7S

D .n T 的最大值为6T

33.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并满足条件

1201920201,1a a a >>,

201920201

01

a a -<-,下列结论正确的是( )

A .S 2019

B .2019202010a a -<

C .T 2020是数列{}n T 中的最大值

D .数列{}n T 无最大值

34.设数列{}n x ,若存在常数a ,对任意正数r ,总存在正整数N ,当n N ≥,有

n x a r -<,则数列{}n x 为收敛数列.下列关于收敛数列正确的有( )

A .等差数列不可能是收敛数列

B .若等比数列{}n x 是收敛数列,则公比(]1,1q ∈-

C .若数列{}n x 满足sin cos 22n x n n ππ????

=

? ?????

,则{}n x 是收敛数列

D .设公差不为0的等差数列{}n x 的前n 项和为()0n n S S ≠,则数列1n S ??

????

一定是收敛数列

35.已知正项等比数列{}n a 满足12a =,4232a a a =+,若设其公比为q ,前n 项和为

n S ,则( )

A .2q

B .2n

n a = C .102047S = D .12n n n a a a +++<

【参考答案】***试卷处理标记,请不要删除

一、等比数列选择题 1.C 【分析】

令n n n c a b =-,由1112

3

3n n n a b a ++=+

,11344

n n n b a b +=+可知数列{}n c 是首项为1.8,公比为12的等比数列,即1

1.812n n c -?? ?

??

=?,则1

10.0121.8n -??< ?

??

?,解不等式可得n 的最小

值. 【详解】

令n n n c a b =-,则11120.2 1.8c a b =-=-=

1111131313

4444412123334

3n n n n n n n n n n n

n c a b a b a b b a a a b ++++??=-=+--=+-- ??+?111222

n n n a b c -== 所以数列{}n c 是首项为1.8,公比为12的等比数列,所以1

1.812n n c -?? ?

??

=?

由0.01n n a b -<,即1

10.0121.8n -??< ?

??

?,整理得12180n ->

由72128=,82256=,所以18n -=,即9n =

故选:C. 【点睛】

本题考查了等比数列及等比数列的通项公式,解题的关键是根据已知的数列递推关系式,利用等比数列的定义,得到数列{}n c 为等比数列,考查了学生的分析问题能力能力与运算求解能力,属于中档题. 2.C

【分析】

由等比中项,根据a 3a 11=4a 7求得a 7,进而求得b 7,再利用等差中项求解. 【详解】 ∵a 3a 11=4a 7, ∴2

7a =4a 7, ∵a 7≠0, ∴a 7=4, ∴b 7=4, ∴b 5+b 9=2b 7=8. 故选:C 3.B 【分析】

根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】

因为各项不为0的等差数列{}n a 满足2

6780a a a -+=,

所以2

7720a a -=,解得72a =或70a =(舍);

又数列{}n b 是等比数列,且772b a ==,

所以3

3810371178b b b b b b b ===.

故选:B. 4.D 【分析】

等比数列{}n a 的各项均为正数,11a >,676712a a a a +>+>,可得67(1)(1)0a a --<,因此61a >,71a <,01q <<.进而判断出结论. 【详解】 解:

等比数列{}n a 的各项均为正数,11a >,676712a a a a +>+>,

67(1)(1)0a a ∴--<,

11a >,若61a <,则一定有71a <,不符合

由题意得61a >,71a <,01q ∴<<,故A 、B 正确. 6712a a +>,671a a ∴>,

6121231267()1T a a a a a a =?=>,故C 正确,

13

1371T a =<,故D 错误,

∴满足1n T >的最大正整数n 的值为12.

故选:D . 5.D 【分析】

利用已知条件列出方程组求解即可得1,a q ,求出数列{a n }的通项公式,再利用错位相减法求和即可. 【详解】

设等比数列{a n }的公比为q ,易知q ≠1,

所以由题设得()

()

3136

1617

11631a q S q a q S q ?-?==-?

?-?

=

=?-?

, 两式相除得1+q 3=9,解得q =2, 进而可得a 1=1, 所以a n =a 1q n -1=2n -1, 所以na n =n ×2n -1.

设数列{na n }的前n 项和为T n , 则T n =1×20+2×21+3×22+…+n ×2n -1, 2T n =1×21+2×22+3×23+…+n ×2n ,

两式作差得-T n =1+2+22+…+2n -1-n ×2n =

12

12

n

---n ×2n =-1+(1-n )×2n , 故T n =1+(n -1)×2n . 故选:D. 【点睛】

本题主要考查了求等比数列的通项公式问题以及利用错位相减法求和的问题.属于较易题. 6.D 【分析】

由题意得每天行走的路程成等比数列{}n a 、且公比为1

2

,由条件和等比数列的前项和公式求出1a ,由等比数列的通项公式求出答案即可. 【详解】

由题意可知此人每天走的步数构成

1

2

为公比的等比数列, 由题意和等比数列的求和公式可得611[1()]

2378

1

12a -=-, 解得1192a =,∴此人第二天走1

192962

?

=里, ∴第二天走了96里,

故选:D . 7.C 【分析】

由题意可得1021031a a >,1021031,1a a ><,利用等比数列的性质即可求解. 【详解】

由10210310a a ->,即1021031a a >,则有2

1021a q ?>,即0q >。

所以等比数列{}n a 各项为正数, 由

1021031

01

a a -<-,即102103(1)(1)0a a --<, 可得:1021031,1a a ><, 所以10220412203204102103()1T a a a a a a =??

?=?>,

103205122032042051031T a a a a a a =??

??=<,

故使得1n T >成立的最大自然数n 的值为204,

故选:C 【点睛】

关键10220412203204102103()1T a a a a a a =??

?=?>点点睛:在分析出1021031a a >,

1021031,1a a ><的前提下,由等比数列的性质可得102204102103()1T a a ==?>,

1032051031T a =<,即可求解,属于难题.

8.C 【分析】

利用等比数列的性质以及对数的运算即可求解. 【详解】

由120202201932018101010113a a a a a a a a =====,

所以313232020log log log a a a ++

+

()10103101010113log log 31010a a ===.

故选:C 9.D 【分析】

利用等比数列前n 项和公式列出方程组,求出首项和公比,由此能求出这个数列的前7项和. 【详解】

n S 为正项等比数列{}n a 的前n 项和,21S =,45S =,

∴21410(1)

11(1)

51q a q q

a q q ?

?>?

?-?=?

-??-?=-??

,解得113a =,2q ,

771

(12)

1273123

S -∴==

-.

故选:D . 10.D 【分析】

根据等差数列的性质得到774a b ==,数列{}n b 是等比数列,故2

687b b b ==16.

【详解】

等差数列{}n a 中,31172a a a +=,故原式等价于2

7a -740a =解得70a =或74,a =

各项不为0的等差数列{}n a ,故得到774a b ==,

数列{}n b 是等比数列,故2

687b b b ==16.

故选:D. 11.B 【分析】

设正项等比数列{}n a 的公比为0q >,由7652a a a =+,可得2

2q q =+,解得2q

根据存在两项m a 、n a

14a =

14a =,6m n +=.对m ,n 分类讨论即可得出. 【详解】

解:设正项等比数列{}n a 的公比为0q >, 满足:7652a a a =+,

22q q ∴=+,

解得2q

存在两项m a 、n a

14a =,

∴14a =,

6m n ∴+=,

m ,n 的取值分别为(1,5),(2,4),(3,3),(4,2),(5,1),

14m n

+的最小值为143242+=.

故选:B . 12.C 【分析】

利用等比通项公式直接代入计算,即可得答案; 【详解】

()21114

221

11111

22211121644a a q a q q q q a q a q ??=-=--??????=?=-????=?=

????

, 故选:C. 13.B 【分析】

由等比数列的性质,求得685a a +=,再结合基本不等式,即可求得113a a 的最大值,得到答案. 【详解】

由等比数列的性质,可得()2

2222

65986688682225a a a a a a a a a a ++=++=+=,

又因为0n a >,所以685a a +=,所以2

68113682524a a a a a a +??=≤=

???

, 当且仅当685

2

a a ==时取等号. 故选:B . 14.C 【分析】

设等比数列{}n a 的公比为q ,由等比数列的前n 项和公式运算即可得解. 【详解】

设等比数列{}n a 的公比为q , 当1q =时,

41

21

422S a S a ==,不合题意; 当1q ≠时,()

()4142

422

2111115111a q S q q q S q

a q q

---===+=---,解得2q =±. 故选:C. 15.B 【分析】

先求得首项,根据等比数列的求和公式,代入首项和公比的值,即可计算出5S 的值. 【详解】

因为等比数列{}n a 的前n 项和为2,2n S a =,公比2q

,所以2

11a a q

=

=,又因为1111n

n

a q S q

q

,所以()551123112

S -=

=-.

16.A 【分析】

根据等比中项的性质有216x =,而由等比通项公式知2

x q =,即可求得x 的值. 【详解】

由题意知:216x =,且若令公比为q 时有20x q =>, ∴4x =, 故选:A 17.B 【分析】

根据等比中项的性质求出3a ,从而求出1a ,最后根据公式求出3S ; 【详解】

解:因为正项等比数列{}n a 满足241a a =,由于2243a a a =,所以2

31a =. 所以31a =,2

11a q ∴=,因为1

3

q =

,所以19a =. 因此()3131131a q S q

-==-.

故选:B 18.C 【分析】

根据等比数列的通项公式求解即可. 【详解】

由题意可得等比数列通项5

1

11122n n n a a q -????

=== ? ?????

,则5n = 故选:C 19.A 【分析】

根据题中条件,先得数列的通项,再由等比数列的求和公式,即可得出结果. 【详解】

因为点()1,n n a -(n N ∈,2n ≥)在函数()2x f x =的图像上, 所以()12

,2n

n a n N n -=∈≥,因此()12n n a n N ++=∈,

即数列{}n a 是以4为首项,以2为公比的等比数列, 所以{}n a 的前10项和为()10412409212

-=-.

故选:A.

【分析】

根据11a >,66771

1,01

a a a a -><-,分0q < ,1q ≥,01q <<讨论确定q 的范围,然后再逐项判断. 【详解】

若0q <,因为11a >,所以670,0a a <>,则670a a ?<与671a a ?>矛盾, 若1q ≥,因为11a >,所以671,1a a >>,则67101a a ->-,与671

01

a a -<-矛盾, 所以01q <<,故B 正确;

因为

671

01

a a -<-,则6710a a >>>,所以()26870,1a a a =∈,故A 错误; 因为0n a >,01q <<,所以1

11n n a q a S q q

=

---单调递增,故C 错误; 因为7n ≥时,()0,1n a ∈,16n ≤≤时,1n a >,所以n T 的最大值为6T ,故D 错误; 故选:B 【点睛】

关键点点睛:本题的关键是通过穷举法确定01q <<.

二、多选题

21.ABC 【分析】

设等差数列{}n a 的首项为1a ,公差为d , ()11n a a n d +-=,其前n 项和为

()

112

n n n S na d -=+,结合等差数列的定义和前n 项的和公式以及等比数列的定义对选

项进行逐一判断可得答案. 【详解】

设等差数列{}n a 的首项为1a ,公差为d , ()11n a a n d +-= 其前n 项和为()

112

n n n S na d -=+ 选项A.

112n S n a d n -=+,则+1111+1222n n S S n n d a d a d n n -?

???-=+-+

= ? ?????(常数) 所以数列|n S n ??

?

???

为等差数列,故A 正确. 选项B. ()1122n a n d a +-=,则1

12222n n n n

a a a d a ++-==(常数),所以数列{}

2n a

为等比数列,故B

选项C. 由,m n a n a m ==,得()()1111m n

a a m d n

a a n d m ?=+-=??

=+-=?? ,解得11,1a m n d =+-=- 所以()()()111110m n a a n m d n m n m +=++-=+-++-?-=,故C 正确. 选项D. 由,m n S n S m ==,则()112

n n n n S a d m -=+=,()112

m m m m S a d n -=+

=

将以上两式相减可得:()()()2212d

m n a m m n n n m ??-+

---=-?

?

()()()112

d

m n a m n m n n m -+-+-=-,又m n ≠

所以()1112d a m n +

+-=-,即()1112

d

m n a +-=-- ()()()()()()()1

11112

m n m n m n d S m n a m n a m n a m n +++-=++

=+++--=-+,所

以D 不正确. 故选:ABC 【点睛】

关键点睛:本题考查等差数列和等比数列的定义的应用以及等差数列的前n 项和公式的应

用,解答本题的关键是利用通项公式得出()()1111m n

a a m d n

a a n d m ?=+-=??=+-=??,从中解出1,a d ,从而

判断选项C ,由前n 项和公式得到()112

n n n n S a d m -=+

=,

()112

m m m m S a d n -=+

=,然后得出

()1112

d

m n a +-=--,在代入m n S +中可判断D ,属于中档题. 22.BD 【分析】

根据22n n S a =-,利用数列通项与前n 项和的关系得1,1

,2n n

S n a S n =?=?≥?,求得通项n a ,然

后再根据选项求解逐项验证. 【详解】

当1n =时,12a =,

当2n ≥时,由22n n S a =-,得1122n n S a --=-, 两式相减得:12n n a a -=, 又212a a =,

所以数列{}n a 是以2为首项,以2为公比的等比数列,

所以2n n a =,24n

n a =,数列{

}2n

a

的前n 项和为()14144414

3

n n n S +--'=

=

-, 则22log log 2n

n n b a n ===,

所以()11111

11

n n b b n n n n +==-??++,

所以 1111111

(11123411)

n T n n n =-+-++-=-<++, 故选:BD 【点睛】

方法点睛:求数列的前n 项和的方法 (1)公式法:①等差数列的前n 项和公式,()()

11122

n n n a a n n S na d +-=

=+②等比数列的前n 项和公式()

11,1

1,11n

n na q S a q q q

=??=-?≠?

-?;

(2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.

(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.

(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.

(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 23.BD 【分析】

设设等比数列{}n a 的公比为q ,则0q >,由已知得11121

14

a a ++=,解方程计算即可得答案. 【详解】

解:设等比数列{}n a 的公比为q ,则0q >,

因为2

153

1a a a ==,2311a a q == , 所以511151351515111111121

11114

a a a a a a a a a a a a a ++=++=++=+=+++=,

解得1412a q =???=??或1

142.

a q ?=??

?=?, 当14a =,12q =时,5514131

21412

S ?

?- ?

??==-,数列{}n a 是递减数列;

当11

4

a =

,2q 时,531

4

S =

,数列{}n a 是递增数列; 综上,5314

S =. 故选:BD. 【点睛】

本题考查数列的等比数列的性质,等比数列的基本量计算,考查运算能力.解题的关键在于结合等比数列的性质将已知条件转化为11121

14

a a ++=,进而解方程计算. 24.BD 【分析】

先分析得到数列{}n a 有连续四项在集合{54-,24-,18,36,81}中,再求等比数列的公比. 【详解】 4n n b a =+ 4n n a b ∴=-

数列{}n b 有连续四项在集合{-50,-20,22,40,85}中

∴数列{}n a 有连续四项在集合{54-,24-,18,36,81}中

数列{}n a 是公比为q 的等比数列,

∴在集合{54-,24-,18,36,81}中,数列{}n a 的连续四项只能是:24-,36,

54-,81或81,54-,36,24-.

∴363242

q =

=--或2432

36q -==-. 故选:BD 25.ACD 【分析】

在1+14,()n n a S a n N *

==∈中,令1n =,则A 易判断;由3

2122S a a =+=,B 易判断;

令12(1)n n n b n n a ++=

+,13

8

b =,

2n ≥时,()()1112211(1)12212n n n n n n n b n n a n n n n +++++=

==-++?+?,裂项求和3182

n T ≤<,

则CD 可判断. 【详解】

解:由1+14,()n n a S a n N *

==∈,所以2114a S a ===,故A 正确;

32212822S a a =+==≠,故B 错误;

+1n n S a =,12,n n n S a -≥=,所以2n ≥时,11n n n n n a S S a a -+=-=-,1

2n n

a a +=, 所以2n ≥时,2422n n

n a -=?=,

令12(1)n n n b n n a ++=

+,12123

(11)8

b a +==+,

2n ≥时,()()11

12211

(1)12212n n n n n n n b n n a n n n n +++++=

==-++?+?,

113

8

T b ==,2n ≥时,

()()2334

113111111111

822323242

2122122

n n n n T n n n ++=+-+-++

-=-

82

n T ≤<,故CD 正确;

故选:ACD. 【点睛】

方法点睛:已知n a 与n S 之间的关系,一般用()11,12n n

n a n a S S n -=?=?-≥?递推数列的通项,注

意验证1a 是否满足()12n n n a S S n -=-≥;裂项相消求和时注意裂成的两个数列能够抵消求和. 26.BCD 【分析】

利用等比数列单调性的定义,通过对首项1a ,公比q 不同情况的讨论即可求得答案. 【详解】

A ,当10

1a q >??>?

时,从第二项起,数列的每一项都大于前一项,所以数列{}n a 递增,正确;

B ,当10a > ,0q <时,{}n a 为摆动数列,故错误;

C ,当10a <,1q >时,数列{}n a 为递减数列,故错误;

D ,若10a >,1

1n

n a a +<且取负数时,则{}n a 为 摆动数列,故错误, 故选:BCD . 【点睛】

本题考查等比数列的单调性的判断,意在考查对基础知识的掌握情况,属基础题. 27.BC 【分析】

根据数列的增减性由所给等式求出1a d 、,写出数列的通项公式及前n 项和公式,即可进行判断. 【详解】

数列{a n }为单调递增的等比数列,且24100a a +=>,0n a ∴>

23464a a a =,2364a ∴=,解得34a =,

2410a a +=,4

410q q

∴+=即22520q q -+=,解得2q

12

, 又数列{a n }为单调递增的等比数列,取2q

,3124

14

a a q =

==, 1

2

n n

a ,212121

n n n S -==--,()1121212n n n

n n S S ++-=---=.

故选:BC 【点睛】

本题考查等比数列通项公式基本量的求解、等比数列的增减性、等比数列求和公式,属于基础题. 28.AD 【分析】

主要分析数列中的项是否可能为0,如果可能为0,则不能是等比数列,在不为0时,根据等比数列的定义确定. 【详解】

1n a =时,22log ()0n a =,数列22{log ()}n a 不一定是等比数列, 1q =-时,10n n a a ++=,数列1{}n n a a ++不一定是等比数列,

由等比数列的定义知1{}n

a 和12{}n n n a a a ++++都是等比数列. 故选AD . 【点睛】

本题考查等比数列的定义,掌握等比数列的定义是解题基础.特别注意只要数列中有一项为0,则数列不可能是等比数列. 29.BCD 【分析】

设此人第n 天走n a 里路,则{}n a 是首项为1a ,公比为1

2

q = 的等比数列,由6=378S 求得首项,然后逐一分析四个选项得答案. 【详解】

解:根据题意此人每天行走的路程成等比数列, 设此人第n 天走n a 里路,则{}n a 是首项为1a ,公比为1

2

q =

的等比数列. 所以6

61161[1()](1)2=3781112

a a q S q --==--,解得1

192a =. 选项A:5

561119262a a q ??==?= ???

,故A 错误, 选项B:由1192a =,则61378192186S a -=-=,又1921866-=,故B 正确.

选项C:211192962

a a q ==?

=,而61

94.54S =,9694.5 1.5-=,故C 正确.

选项D:2

123111(1)192(1)33624

a a a a q q ++=++=?++=,

则后3天走的路程为378336=42-, 而且336428÷=,故D 正确. 故选:BCD 【点睛】

本题考查等比数列的性质,考查等比数列的前n 项和,是基础题. 30.CD 【分析】

根据数列{} n a 满足11a =,121++=+n n a a n ,得到1223+++=+n n a a n ,两式相减得:

22n n a a +-=,然后利用等差数列的定义求得数列{} n a 的通项公式,再逐项判断.

【详解】

因为数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, 所以1223+++=+n n a a n , 两式相减得:22n n a a +-=,

所以奇数项为1,3,5,7,….的等差数列; 偶数项为2,4,6,8,10,….的等差数列; 所以数列{} n a 的通项公式是n a n =, A. 令2n =时, 311111236S =++=,而 ()13

22122

?-?=,故错误; B. 令1n =时, 213122

S =+=,而 111

22S =,故错误;

C. 当1n =时, 213122

S =+

=,而 3113

2222-+=,成立,当2n ≥时,

211111...23521n n S S n =++++--,因为221n n >-,所以

11212n n >-,所以111111311...1 (352148222)

n n n ++++>++++=--,故正确; D. 因为21111

...1232n n S S n n n n

-=

+++++++,令()1111...1232f n n n n n

=

+++++++,因为()11111

1()021*******f n f n n n n n n +-=

+-=->+++++,所以()f n 得到递增,所以()()1

12

f n f ≥=,故正确; 故选:CD 【点睛】

本题主要考查等差数列的定义,等比数列的前n 项和公式以及数列的单调性和放缩法的应用,还考查了转化求解问题的能力,属于较难题. 31.AC 【分析】

由122(2)n n S S p n --=≥和等比数列的定义,判断出A 正确;利用等比数列的求和公式判断B 错误;利用等比数列的通项公式计算得出C 正确,D 不正确. 【详解】

由122(2)n n S S p n --=≥,得22

p a =

. 3n ≥时,1222n n S S p ---=,相减可得120n n a a --=,

又2112a a =,数列{}n a 为首项为p ,公比为1

2

的等比数列,故A 正确; 由A 可得1p =时,441

11521812

S -

=

=-,故B 错误; 由A 可得m n m n a a a +?=等价为212

1122

m n m n p p ++?=?,可得12p =,故C 正确;

3827

11

33||||22

128a a p p ??+=+=? ???,56451112||||22128a a p p ??+=+=? ???

, 则3856a a a a +>+,即D 不正确; 故选:AC. 【点睛】

本题考查等比数列的通项公式和求和公式,考查数列的递推关系式,考查学生的计算能力,属于中档题.

【分析】

先分析公比取值范围,即可判断A ,再根据等比数列性质判断B,最后根据项的性质判断C,D. 【详解】

若0q <,则67670,00a a a a <>∴<与671a a >矛盾; 若1q ≥,则

11a >∴671,1a a >>∴

67101a a ->-与671

01

a a -<-矛盾; 因此01q <<,所以A 正确;

667710101

a a a a -<∴>>>-,因此2

768(,1)0a a a =∈,即B 正确; 因为0n a >,所以n S 单调递增,即n S 的最大值不为7S ,C 错误;

因为当7n ≥时,(0,1)n a ∈,当16n ≤≤时,(1,)n a ∈+∞,所以n T 的最大值为6T ,即D 正确; 故选:ABD 【点睛】

本题考查等比数列相关性质,考查综合分析判断能力,属中档题. 33.AB 【分析】

由已知确定0q <和1q ≥均不符合题意,只有01q <<,数列{}n a 递减,从而确定

20191a >,202001a <<,从可判断各选项.

【详解】

当0q <时,2

2019202020190a a a q =<,不成立;

当1q ≥时,201920201,1a a >>,

201920201

01

a a -<-不成立;

故01q <<,且20191a >,202001a <<,故20202019S S >,A 正确;

2201920212020110a a a -=-<,故B 正确;

因为20191a >,202001a <<,所以2019T 是数列{}n T 中的最大值,C ,D 错误; 故选:AB 【点睛】

本题考查等比数列的单调性,解题关键是确定20191a >,202001a <<. 34.BCD 【分析】

根据等差数列前n 和公式以及收敛数列的定义可判断A ;根据等比数列的通项公式以及收敛的定义可判断B ;根据收敛的定义可判断C ;根据等差数列前n 和公式以及收敛数列的定义可判断D.

相关主题