漏电检测方法

漏电检测方法
漏电检测方法

家里有地方漏电是件麻烦事,自己又不懂如何判断呢?小编带你解决难题,一起来看看家里漏电如何检测吧!

如果一合闸,漏电开关就跳闸,这类属火线漏电,检查方法如下:

1.把各分开关全断开,合上总闸,逐一合上分开关,合到哪个,漏电开关就跳,就是那路有问题。

2.把电器的插头全拔下,逐一插上电器插头,插到哪个引起跳闸,就是哪个电器有问题。

3.把灯全关了,逐一开灯,开到哪个灯引起跳闸,就是该灯(或线路)有问题。

如果合闸,并不马上跳闸,时间一长,就跳闸,而且跳闸时间不一致,这类属零线漏电,检查方法比较专业,用兆欧表才行(如果把所有插座上的电器全拔下插头还会跳闸,问题应出在线路上)

方法:先把主零线拆开,把所有分开关断开,用兆欧表逐一查每路线路零线对地绝缘,找出问题线路后,再看看该专线有哪些电器是直接接线的(比如电灯或某些空调机等),分别查,如果不管电器的事,就是线路出问题了,只能换线。微信号技成培训值得你关注!

电线漏电会产生强大的电磁感线,可以用一个有磁性的针放在纸上,放到测试部位,若针方向发生偏转,说明有电。

最简单的工具电笔和万用表,家庭线路最好装漏电保护器。

电气线路由于使用年限较长,会引起绝缘老化、绝缘子损坏、绝缘层受潮或磨损等情况,在线路上产生漏电现象。此时在总刀闸上接一只电流表,取下负载,并接通负载开关。

若电流表指针摆动,说明线路漏电。切断零线;

若电流表指针不变,说明火线与大地之间漏电;

若电流表指针回零,说明火线与零线之间漏电;

若电流表指示变小,但不为零,则表明火线与零线、火线与大地间均有漏电。取下分路熔断器或拉开刀闸,电流表指示不变则表明总线漏电;电流表指示为零说明分路漏电;电流

表指示变小,但不为零,则表明总线与分路都漏电。确定好漏电分路后,依次拉断该线路的开关。当拉断到某一开关,电流表指示为零,说明该线路漏电;若变小说明该线路漏电外还有别处也漏电;若所有的开关都拉断,电流表指示不变则表明该线路的干线漏电。

碰撞检测

原文地址:https://www.360docs.net/doc/b215254656.html,/Program/Visual/3D/3DCollision.mht 碰撞 1.碰撞检测和响应 碰撞在游戏中运用的是非常广泛的,运用理论实现的碰撞,再加上一些小技巧,可以让碰撞检测做得非常精确,效率也非常高。从而增加游戏的功能和可玩性。 2D碰撞检测 2D的碰撞检测已经非常稳定,可以在许多著作和论文中查询到。3D的碰撞还没有找到最好的方法,现在使用的大多数方法都是建立在2D基础上的。 碰撞检测 碰撞的检测不仅仅是运用在游戏中,事实上,一开始的时候是运用在模拟和机器人技术上的。这些工业上的碰撞检测要求非常高,而碰撞以后的响应也是需要符合现实生活的,是需要符合人类常规认识的。游戏中的碰撞有些许的不一样,况且,更重要的,我们制作的东西充其量是商业级别,还不需要接触到纷繁复杂的数学公式。 最理想的碰撞,我想莫过于上图,完全按照多边形的外形和运行路径规划一个范围,在这个范围当中寻找会产生阻挡的物体,不管是什么物体,产生阻挡以后,我们运动的物体都必须在那个位置产生一个碰撞的事件。最美好的想法总是在实现上有一些困难,事实上我们可以这么做,但是效率却是非常非常低下的,游戏中,甚至于工业中无法忍受这种速度,所以我们改用其它的方法来实现。 最简单的方法如上图,我们寻找物体的中心点,然后用这个中心点来画一个圆,如果是一个3D的物体,那么我们要画的就是一个球体。在检测物体碰撞的时候,我们只要检测两个物体的半径相加是否大于这两个物体圆心的实际距离。 这个算法是最简单的一种,现在还在用,但是不是用来做精确的碰撞检测,而是用来提

高效率的模糊碰撞检测查询,到了这个范围以后,再进行更加精密的碰撞检测。一种比较精密的碰撞检测查询就是继续这种画圆的思路,然后把物体细分,对于物体的每个部件继续画圆,然后再继续进行碰撞检测,直到系统规定的,可以容忍的误差范围以后才触发碰撞事件,进行碰撞的一些操作。 有没有更加简单的方法呢?2D游戏中有许多图片都是方方正正的,所以我们不必把碰撞的范围画成一个圆的,而是画成一个方的。这个正方形,或者说是一个四边形和坐标轴是对齐的,所以运用数学上的一些方法,比如距离计算等还是比较方便的。这个检测方法就叫AABBs(Axis-aligned Bounding Boxes)碰撞检测,游戏中已经运用的非常广泛了,因为其速度快,效率高,计算起来非常方便,精确度也是可以忍受的。 做到这一步,许多游戏的需求都已经满足了。但是,总是有人希望近一步优化,而且方法也是非常陈旧的:继续对物体的各个部分进行细分,对每个部件做AABB的矩形,那这个优化以后的系统就叫做OBB系统。虽然说这个优化以后的系统也不错,但是,许多它可以运用到的地方,别人却不爱使用它,这是后面会继续介绍的地方。 John Carmack不知道看的哪本书,他早在DOOM中已经使用了BSP系统(二分空间分割),再加上一些小技巧,他的碰撞做得就非常好了,再加上他发明的castray算法,DOOM已经不存在碰撞的问题,解决了这样的关键技术,我想他不再需要在什么地方分心了,只要继续研究渲染引擎就可以了。(Windows游戏编程大师技巧P392~P393介绍)(凸多边形,多边形退化,左手定律)SAT系统非常复杂,是SHT(separating hyperplane theorem,分离超平面理论)的一种特殊情况。这个理论阐述的就是两个不相关的曲面,是否能够被一个超平面所分割开来,所谓分割开来的意思就是一个曲面贴在平面的一边,而另一个曲面贴在平面的另一边。我理解的就是有点像相切的意思。SAT是SHT的特殊情况,所指的就是两个曲面都是一些多边形,而那个超平面也是一个多边形,这个超平面的多边形可以在场景中的多边形列表中找到,而超平面可能就是某个多边形的表面,很巧的就是,这个表面的法线和两个曲面的切面是相对应的。接下来的证明,我想是非常复杂的事情,希望今后能够找到源代码直接运用上去。而我们现在讲究的快速开发,我想AABB就足以满足了。 3D碰撞检测 3D的检测就没有什么很标准的理论了,都建立在2D的基础上,我们可以沿用AABB或者OBB,或者先用球体做粗略的检测,然后用AABB和OBB作精细的检测。BSP技术不流行,但是效率不错。微软提供了D3DIntersect函数让大家使用,方便了许多,但是和通常一样,当物体多了以后就不好用了,明显的就是速度慢许多。 碰撞反应 碰撞以后我们需要做一些反应,比如说产生反冲力让我们反弹出去,或者停下来,或者让阻挡我们的物体飞出去,或者穿墙,碰撞最讨厌的就是穿越,本来就不合逻辑,查阅了那么多资料以后,从来没有看到过需要穿越的碰撞,有摩擦力是另外一回事。首先看看弹性碰撞。弹性碰撞就是我们初中物理中说的动量守恒。物体在碰撞前后的动量守恒,没有任何能量损失。这样的碰撞运用于打砖块的游戏中。引入质量的话,有的物体会是有一定的质量,这些物体通常来说是需要在碰撞以后进行另外一个方向的运动的,另外一些物体是设定为质量无限大的,这些物体通常是碰撞墙壁。 当物体碰到质量非常大的物体,默认为碰到了一个弹性物体,其速度会改变,但是能量不会受到损失。一般在代码上的做法就是在速度向量上加上一个负号。 绝对的弹性碰撞是很少有的,大多数情况下我们运用的还是非弹性碰撞。我们现在玩的大多数游戏都用的是很接近现实的非弹性碰撞,例如Pain-Killer中的那把吸力枪,它弹出去的子弹吸附到NPC身上时的碰撞响应就是非弹性碰撞;那把残忍的分尸刀把墙打碎的初始算法就是一个非弹性碰撞,其后使用的刚体力学就是先建立在这个算法上的。那么,是的,如果需要非弹性碰撞,我们需要介入摩擦力这个因素,而我们也无法简单使用动量守恒这个公式。 我们可以采取比较简单的方法,假设摩擦系数μ非常大,那么只要物体接触,并且拥有一个加速度,就可以产生一个无穷大的摩擦力,造成物体停止的状态。 基于别人的引擎写出一个让自己满意的碰撞是不容易的,那么如果自己建立一个碰撞系

漏电流测试方法

测量接地漏电流 漏电比对人墙MD(地),容易理解和考虑漏电流接地端子的电流。 上的MD(红色和黑色),您认为图左侧的代码表示你的手或脚 测量正常状态 ?连接? 连接到墙上的插座适配器· 2P 3P 3P插头连接到被测设备ME。 插入之间的地面和地面终端适配器导致3P · 2P墙的MD,测量电流从插入被测ME设备的3P接地引脚泄漏。 开关电源极性连接到墙上的插头转接器转换成半旋转3P · 2P。

?测量? 打开电源测试ME设备,对MD(最好的测量范围从最高量程)输出电压测量。 其结果是除以1kΩ的当前记录测量(因为它可能被转换成测量μAMV)。 再次切换极性,测量功率,并具有重要价值的测量。 ?决定? 另一种形式,无论附加,0.5毫安大致正常 单一故障条件(一电源线开路)测量 ?连接? 删除连接2P 3P ·正常情况下,适配器,该适配器只有一个刀片极2P 3P连接· 2P剥离(漏电电流∵ 单一故障条件下,只有电力导线断开one 。) 壁挂2P插头插座条。 开关电源极性连接到墙上插座旋转2P半条。 交换式电源供应断开的导线连接到其他2P刀片更换地带极适配器3P · 2P。

?测量? 打开电源测试ME设备,对MD(最好的测量范围从最高量程)输出电压测量。 其结果是除以1kΩ的当前记录测量(因为它可能被转换成测量μAMV)。 极性开关电源,开关电源的测量4供应断开的导线,最大测量值。 ?决定? 另一种形式连接,正常值小于1mA无关。 外部泄漏电流测量 测量正常状态 ?连接? 连接到墙上的插座适配器· 2P 3P 3P插头连接到被测设备ME。3P · 2P适配器地线连接到地面的墙。 ME的设备金属部件测试(如果外部覆盖着绝缘设备,如铝箔贴为20cm × 10CM部分)之间插入墙壁和地面终端的医师,设备的测试ME外观测量泄漏电流。 开关电源极性连接到墙上的插头转接器转换成半旋转3P · 2P。

常见的微生物检测方法

常见的微生物检测 方法

摘要:微生物的检测,无论在理论研究还是在生产实践中都具有重要的意义,本文分生长量测定法,微生物计数法,生理指标法和商业化快速微生物检测简要介绍了利用微生物重量,体积,大小,生理代谢物等指标的二十余种常见的检测方法,简要介绍了这些方法的原理,应用范围和优缺点。 概述: 一个微生物细胞在合适的外界条件下,不断的吸收营养物质,并按自己的代谢方式进行新陈代谢。如果同化作用的速度超过了异化作用,则其原生质的总量(重量,体积,大小)就不断增加,于是出现了个体的生长现象。如果这是一种平衡生长,即各细胞组分是按恰当的比例增长时,则达到一定程度后就会发生繁殖,从而引起个体数目的增加,这时,原有的个体已经发展成一个群体。随着群体中各个个体的进一步生长,就引起了这一群体的生长,这可从其体积、重量、密度或浓度作指标来衡量。微生物的生长不同于其它生物的生长,微生物的个体生长在科研上有一定困难,一般情况下也没有实际意义。微生物是以量取胜的,因此,微生物的生长一般指群体的扩增。微生物的生长繁殖是其在内外各种环境因素相互作用下的综合反映。因此生长繁殖情况就可作为研究各种生理生化和遗传等问题的重要指标,同

时,微生物在生产实践上的各种应用或是对致病,霉腐微生物的防治都和她们的生长抑制紧密相关。因此有必要介绍一下微生物生长情况的检测方法。既然生长意味着原生质含量的增加,因此测定的方法也都直接或间接的以次为根据,而测定繁殖则都要建立在计数这一基础上。微生物生长的衡量,能够从其重量,体积,密度,浓度,做指标来进行衡量。 生长量测定法 体积测量法:又称测菌丝浓度法。 经过测定一定体积培养液中所含菌丝的量来反映微生物的生长状况。方法是,取一定量的待测培养液(如10毫升)放在有刻度的离心管中,设定一定的离心时间(如5分钟)和转速(如5000 rpm),离心后,倒出上清夜,测出上清夜体积为v,则菌丝浓度为(10-v)/10。菌丝浓度测定法是大规模工业发酵生产上微生物生长的一个重要监测指标。这种方法比较粗放,简便,快速,但需要设定一致的处理条件,否则偏差很大,由于离心沉淀物中夹杂有一些固体营养物,结果会有一定偏差。 称干重法:

农药残留检测的管理方法

蔬菜中农药残留检测方法汇总 2010-01-28 15:30:48 来源:实验室设备信息网浏览:40 次 农药残留监测体系的建立,对农药残留的监测手段和检测水平提出了更高要求,并促进了农药残留快速检测方法的研究和应用进展,使农药残留检测技术朝着更加快速方便、灵敏可靠的方向发展,逐渐以农药残留专业检测机构的少量检测为中心,向现场检测及实验室的大量检测辐射。 1 仪器分析法(Apparatus Analysis) 1.1 固相萃取技术(Solid Phase Extraction,SPE) 固相萃取法是1种基于液相色谱分离机制的样品制 备方法,已广泛应用于农药残留检测工作。它根据液相分离、解读、浓缩等原理,使样品溶液混合物通过柱子后,样品中某一组分保留在柱中,选择合适的溶剂把保留在柱中的组分冼脱下来,从而达到分离、净化的目的。SPE克服了液-液萃取技术及一般柱层析的缺点,具有高效、简便、快速、安全、重复性好、便于前处理自动化等特点。根据柱中填料大体可分为吸附型(如硅胶、大孔吸附树脂等)、分配型(C8,C

18、苯基柱等)和离子交换型。R.Rodriguez等人采用固相萃取法通过改变移动相中缓冲液的浓度、pH值、表面活性剂的浓度和类型对蔬菜中的木精、笨基苯酚、锑比灵和有机磷残留量进行分析,结果表明:pH9.2,缓冲液中含有4m mol/L硼酸和75mmol/L胆酸钠能够得到最好的结果。 1.2 固相微萃取(Solid Phase Micro-extraction,SPM E) 加拿大Waterloo大学Pawliszyn 1990年首创的一种无需溶剂的萃取技术,它是在固相萃取的基础上发展起来的一种新型的预处理技术。SPME技术由固相萃取技术(SPE)发展而来,对目标化合物有较好的选择性,并且有较高的灵敏度,适用于微量、痕量分析。到目前为止,SPME在农药残留分析上的应用70%以上集中于有机氛、有机磷和三嗪类农药,60%以上集中于水环境样品,也有涉及蔬菜、土壤、生物等基质。H.Berada等人应用固相微萃取法对胡萝卜、洋葱和土豆3种蔬菜12个标样中利谷隆和精胺残留量进行检测,发现仅有土豆3种标样的残留含量低于最大残留量。

钯碳含量检测方法

钯炭的含量检测方法 稀王水溶液:盐酸∶硝酸∶水= 3∶1∶1 取供试品约5g置于250ml烧杯中,加入50ml盐酸溶液(1∶1)煮沸10分钟清洗其表面。再用水煮沸洗涤三次。将表面处理好的供试品转移到称量瓶内,放入干燥箱,110℃干燥1小时,取出放入干燥器中,放冷至室温。精密称取处理好的供试品1.0g,置于250ml烧杯中,加入20ml稀王水,置于带调压器的电炉上加热至近沸,直至供试品全部溶解,再继续加热,使溶液体积浓缩至约5ml,然后分三次加入浓盐酸(每次4ml),分别蒸至近干,加入14ml 10%氯化钠溶液,蒸至近干,加入200ml 7%(V/V)盐酸溶液,在搅拌下缓慢加入20ml 1%丁二酮肟乙醇溶液。待沉淀完全后,用已在110℃干燥至恒重的四号石英砂芯漏斗抽滤,用7%(V/V)盐酸溶液洗涤至滤液无色,再用水洗涤至滤液呈中性。将石英砂芯漏斗抽干后,置干燥箱内110℃干燥1小时。取出放入干燥器冷却0.5小时称 重,直至恒重。 Pd含量按下式计算: Pd% = [(W1-W0)×0.3161/W]×100% W1为沉淀与四号石英砂芯漏斗恒重的重量,g; W0为四号石英砂芯漏斗恒重的重量,g; W为供试品重,g; 0.3161为丁二酮肟钯对钯的换算系数。 允许差:两次平行测定结果之差应不大于0.1%,取其算术平均值为测定 结果。

仅供个人用于学习、研究;不得用于商业用途。 For personal use only in study and research; not for commercial use. Nur für den pers?nlichen für Studien, Forschung, zu kommerziellen Zwecken verwe ndet werden. Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales. толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях. 以下无正文

全球汽车安全碰撞实验详细介绍及安全常识

(一)车型碰撞安全指标查询系统 1. 欧洲新车安全评鉴协会Euro-NCAP (1)NCAP新车碰撞简介 衡量新车安全性能好不好,不能由厂家自己说了算,要经过试验验证。其中“汽车碰撞安全性能试验”就是主要项目之一,也是人们最关注的试验项目,因为车祸大部分都是碰撞,这个测试结果基本反映了汽车对乘员和行人的安全程度。 美国、欧洲和日本都制定了相关的乘员碰撞保护安全法规。例如美国国家公路交通安全管理局(NHTSA)颁布的FMVSS208《乘员碰撞保护》法规、欧盟重新修订的《正面碰撞乘员保护》法规、日本运输省颁布的TRAIS11-4-30《正面碰撞的安全基准》法规等,定期对本国生产及进口新车进行正面碰撞或侧面碰撞进行安全性试验,以检查汽车内驾驶员及乘员在碰撞时的受伤害程度。但是,这些安全法规仅是这些国家或区域国家政府管理部门对汽车产品安全性的最低要求,而汽车生产企业追求的却是行业上公认的NCAP(New Car Assessment Program),中文称为新车评估计划。它是一个行业性组织,定期将企业送来或者市场上出现的新车进行碰撞试验,它规定的实车碰撞速度往往比政府制定的安全法规的碰撞速度要高,从而在更严重的碰撞环境下评价车内乘员的伤害程度,根据头部、胸部、腿部等主要部位的伤害程度将

试验车的安全性进行分级。尽管NCAP不是政府强制性实验,但由于它代表性广泛,标准科学,试验严格,组织公正,直接面向消费者公布试验结果,通过碰撞测试向消费者表示什么汽车是安全的或是最安全的。因此各大汽车企业都非常重视NCAP,把它作为汽车开发的重要评估依据,在NCAP试验取得良好成绩的厂家,也将试验结果作为产品推广的宣传内容。 NCAP最早出现在美国,随后欧洲和日本等国都制订了相关的NCAP。其中欧洲的NCAP(European New Car Assessment Program)最具影响力和代表性。它由欧洲各国汽车联合会、政府机关、消费者权益组识、汽车俱乐部等组织组成,由国际汽车联合会(FIA)牵头。欧洲NCAP不依附于任何汽车生产企业,所需经费由欧盟提供,不定期对已上市的新车和进口车进行碰撞试验,每年都组织几次。 欧洲NCAP的碰撞测试有两个基本项目,即正面和侧面碰撞。正面碰撞速度为64公里/小时,侧面碰撞速度为50公里/小时。在车辆碰撞时邀请生产企业直接参与以示公正性,还允许其产品有两次碰撞机会,当厂家获知初次碰撞结果不理想时,会对产品进行改进或安装安全装置,再进行第二次碰撞,以获得最好的成绩为准。 NCAP的碰撞测试成绩通过星级(★)表示,共有五个星级,星级越高表示该车的碰撞安全性能越好,达到33分为满分。? (2)欧洲NCAP碰撞测试项目详解 ①NCAP正面碰撞测试标准详解

农药残留主要的检测方法

农药残留主要的检测方法1 农业生产中农药的应用地位 农业的可持续发展关系到国家经济建设和社会稳定的全局。农作物病、虫、草害等是农业生产的重要生物灾害。据资料记载中国有害生物为2,300多种,这些有害生物不仅种类多、分布广泛,而且成灾条件复杂,发生频繁。如不进行防治,每年将损失粮食总产量15%、棉花20%-25%、蔬菜25%以上。我国农药每年实际产量约40万吨,仅次于美国据世界第二位,年用量约27万吨,居世界前列。据统计,九十年代我国农业平均每年发生病虫草鼠44亿亩次,防治面积为49亿亩次,仅以防治有害生物计算,每年挽回的粮食损失即达6,500多万吨,相当于亿人的口粮(按每人每年200千克计算)。 在生物灾害的综合治理中,根据目前植物保护学科发展的水平,化学防治仍然是最方便、最稳定、最有效、最可靠、最廉价的防治手段。尤其是当遇到突发性、侵入型生物灾害发生时,尚无任何防治方法能够代替化学农药,唯有化学防治方能奏效。在可预见的未来,农业生产离不开农药。 2 农药残留检测的必要性 随着农业产业化的发展,农产品的生产越来越依赖于农药、抗生素和激素等外源物质。我国农药在粮食、蔬菜、水果、茶叶上的用量居高不下,而这些物质的不合理使用必将导致农产品中的农药残留超标,影响消费者食用安全,严重时会造成消费者致病、发育不正常,甚至直接导致中毒死亡。农药残留超标也会影响农产品的贸易。

3 农药残留主要的检测方法 国际上用于农药残留快速检测方法种类繁多,究其原理来说主要分为两大类:生化测定法和色谱快速检测法。 生化检测法是利用生物体内提取出的某种生化物质进行的生化反应来判断 农药残留是否存在以及农药污染情况,在测定时样本无需经过净化,或净化比较简单,检测速度快。生化检测法中又以酶抑制法和酶联免疫法应用最为广泛。 色谱快速检测法通过尽可能的简化样品净化步骤,直接提取进样分析蔬菜和水果中的有机磷类农药残留。上述快速检测方法在具体应用中可以根据实际情况和方法各自适用范围及优缺点来选择使用。 (一)、农药残毒速测法 农药残毒速测法只限于检测蔬菜和水果中的有机磷和氨基甲酸酯类农药残毒,是依据有机磷和氨基甲酸酯类农药抑制生物体内乙酰胆碱酯酶的活性来检测上述两类农药残毒的原理。 近年来,每年因食用残留量严重超标农产品引起急性中毒事故时常发生,特别是食用了高毒有机磷类农药和氨基甲酸酯类农药严重超标的蔬菜和水果极易引起急性中毒,甚至导致食用者死亡。由于蔬菜、水果类鲜食农产品保存时间相对短的特点,因此市场急需有机磷和氨基甲酸酯类农药(这两种农药中高毒农药比例大,比如甲胺磷、对硫磷、氧化乐果、甲拌磷、克百威、涕灭威等)残毒快速检测方法。 农药残毒速测法可以快速检测上述两类农药严重超标的蔬菜、水果,通过将一部分含农药残毒的蔬菜不允许上市场,达到防止食用引起急性中毒问题出现。同时该方法还具有短时间能够检测大量样本、检测成本低,对于检测人员技术水平要求低,易于在基层(如:蔬菜、水果生产基地和批发市场等)推广等特点,是目前阶段我国控制高毒农药残留的一种有效方法,也是目前国内应用最为广泛的农药残毒快速检测方法。但是农药残毒速测法也有其本身局限性,如:检测农药种类只限于有机磷和氨基甲酸酯类农药,不能给出定性、定量检测结果,检测限普遍高国际和国内规定的残留限量标准值,因此不能作为法律仲裁依据。农业部农药检定所依据酶抑制法原理制定了甲胺磷、氧化乐果等8种有机磷农药,克百威、涕灭威等10种氨基甲酸酯类农药的蔬菜农药残毒快速检测法农业行业标准。尽管农药残毒快速检测法还存在一定缺陷,但是在东南亚一些国家如韩国、泰国、越南以及我国的台湾、香港地区仍然得到了广泛使用,特别是在台湾应用是从1985开始,经过20多年的持续发展,已经形成了一整套完整的管理制度,快速检测方法涵盖苯硫磷等27种有机磷、丁硫克百威等13种氨基甲酸酯类农药。

Uni ty 中的碰撞检测方法

Unity 中的碰撞检测方法 碰撞检测技术是游戏和虚拟现实中最核心、最基本的技术。碰撞检测技术在游戏和虚拟现实场景中非常重要,它保证了真实世界的正确虚拟化。例如对于角色的控制欲规划,碰撞检测可以帮助角色避开场景中出现的障碍物。为使用户在虚拟场景中能够感受到自己确实在场景中,就需要能够实时地检测角色与障碍物之间的碰撞检测,并及时作出响应。然而在一个场景中,可能存在许多种不同类型的碰撞,这就要求有不同的碰撞检测方法来适应各种类型的碰撞。 目前,在虚拟现实技术中出现了很多种碰撞检测方法,其目的无非有3个: 检测模型之间是否发生碰撞; 预测即将发生的碰撞; 动态获取模型之间的距离。 在Unity 中主要有3种碰撞检测方法与上面的3个模型对应,分别是基本碰撞检测、触发器碰撞检测和光线投射。 无论是PC 端还是移动应用端,碰撞检测技术始终是程序开发的难点,甚至可以用碰撞检测技术作为衡量引擎是否完善的标准。好的碰撞检测技术要求对象在场景中可以平滑移动,同时还要满足精确性和稳定性,防止对象在特殊情况下发生违背常规的状况。例如,人物无缘无故被卡住不能前进,或者人物穿越了障碍物。目前,引擎Unity ,其功能非常强大,集成了强大的碰撞检测功能,其中一个显著特点就是跨平台游戏开发。 碰撞检测方法 碰撞检测定义 碰撞的发生无非是检测两个物体对象之间的物理接触,在Unity 中是使用碰撞器组件覆盖在物体表面,用来负责与其它物体之间的碰撞。这种从其它碰撞器检测和取得碰撞信息的方法称为碰撞检测。Unity 碰撞检测方法分类 在Unity 中,可以检测两个物体之间的碰撞,也可以检测特定碰撞器之间的碰撞,甚至可以使用光线投射预先检测碰撞。本文以一个角色与3D 物体的碰撞为例说明这3种碰撞方法的不同。 基本碰撞检测 在Unity 中,要实现碰撞检测,就必须给每个对象添加相应的碰撞器。默认情况下,Unity 会自动将碰撞器添加到创建的对象中,当然也可以自己添加碰撞器。判断角色是否和其它物体发生碰撞,可以使用Unity的角色控制碰撞器。Unity 专门有一个方法OnControllerColliderHit用来检测角色控制器和其它物体之间的碰撞,只需要将包含OnControllerColliderHit 的脚本绑定到角色控制器即可。 function OnControllerColliderHit (hit : ControllerColliderHit){ //碰撞发生后的动作 } 其中,hit 是一个ControllerColliderHit 类型变量,包含着碰撞发生时所有产生的信息。通过hit 变量,可以获知角色和哪一个物体发生了碰撞。通过记录碰撞时所产生的信息,角色可以做出真实的反应。

漏电测试仪使用说明

M9000漏电保护器测试仪使用说明书 一、概述 M9000型漏电保护器测试仪,可测量漏电保护器动作电流、分断时间;还可测量交流电压。线路及设备漏电流等。M9000测试仪为90年浙江省电力科技项目,产品标准参照GB6829-86等有关标准制订,经省级审定备案,编号Q33N23453-90。 本仪器采用集成电路,体积小、功能多、准确度高、性能价格比高,便于携带使用、能测试各种类型的漏电保护器。测试结果以数字显示,直观,分辨力高,在测漏电保护器动作电流和分断时间时,操作只需几秒钟,显示结果自动暂存数秒钟后自动复零,操作极其方便。 本仪器测量交流电压范围宽,能适合任何低电压系统。 本仪器能检测线路漏电流以及用电设备在工作位置上总的漏电流。在测漏电流时,方便安全可靠,并有过流保护措施。 M9000测试仪不需另接电源,只用一节9V叠层电池,就能连续工作200小时以上。仪器配有包装兼工作背袋,可随身携带进行测试。 M9000测试仪可广泛应用于供电部门,农电部门,漏电保护器生产厂家,建筑、矿山、机床等行业的劳动安检部门以及广大电工。 二、主要技术性能 1.显示:三位半液晶数字显示;有自动暂存、锁定、复零、溢出、电池更换指示及熔丝熔断指示。 2.交流漏电流测量:范围:0—500mA(配500mA熔断体)。 准确度等级:1.0,分辨为:1mA。

3.可调交流漏电流测量: 范围:B型5—100、100—200mA。 C型5—100、100—200200—300mA。 4.交流电压测量: 范围:0—450V。 准确度等级:1.5,分辨力:1V 5.分断时间测量: 范围:5—1000ms。 误差:±10%,分辨力:1mS。 6.电源: DC9V±1V,功耗:小于20mw。 7.使用条件: ①温度:工作范围0—40℃,极限条件,-10—50℃。 ②湿度:工作范围30℃(20—75)%RH。 ③频率:工作范围:50±2.5HZ。 ④海拔:不超过2000m。 ⑤使用时应避免外界强电、磁场影响,并避免阳光直射和腐蚀性气体等有害环境。 8.尺寸:165×120×60mm 9.重量:约0.5KG。 三、工作原理 四、接线图

生物检查法

1 1 0 0 生物检查法 1 1 0 1无菌检查法 无菌检查法系用于检査药典要求无菌的药品、生物制 品、医疗器具、原料、辅料及其他品种是否无菌的一种方法。若供试品符合无菌检查法的规定,仅表明了供试品在该检验条件下未发现微生物污染。 无菌检查应在无菌条件下进行,试验环境必须达到无菌 检査的要求,检验全过程应严格遵守无菌操作,防止微生物污染,防止污染的措施不得影响供试品中微生物的检出。单向流空气区、工作台面及环境应定期按医药工业洁净室(区)悬浮粒子、浮游菌和沉降菌的测试方法的现行国家标准进行洁净度确认。隔离系统应定期按相关的要求进行验证,其内部环境的洁净度须符合无菌检查的要求。日常检验还需对试验环境进行监控。 培养基 硫乙醇酸盐流体培养基主要用于厌氧菌的培养,也可用于 需氧菌的培养;胰酪大豆胨液体培养基用于真菌和需氧菌的培养。 培养基的制备及培养条件 培养基可按以下处方制备,亦可使用按该处方生产的符 合规定的脱水培养基或成品培养基。配制后应采用验证合格的灭菌程序灭菌。制备好的培养基应保存在2〖25°C、避光

的环境,若保存于非密闭容器中,一般在3 周内使用;若保存于密闭容器中,一般可在一年内使用。 1. 硫乙酵酸盐流体培养基 胰酪胨 15_ 0g 氣化钠 2. 5g 酵母浸出粉5. 0g 新配制的0. 1 % 刃天 无水葡萄糖 5.0g 青溶液1.0ml L-胱氨酸 0. 5g 琼脂0. 75g 硫乙醇酸钠0.5g 水1000ml (或硫乙醇酸)(0_3ml) 除葡萄糖和刃天青溶液外,取上述成分混合,微温溶 解,调节p H 为弱碱性,煮沸,滤清,加人葡萄糖和刃天青溶液,摇匀,调节p H , 使灭菌后在2 5 ° C的p H 值为 7.1 土0.2。分装至适宜的容器中,其装量与容器高度的比例应符合培养结束后培养基氧化层(粉红色)不超过培养基深度的1/2。灭菌。在供试品接种前,培养基氧化层的高度不得超过培养基深度的1/5,否则,须经100°C水浴加热至粉红 色消失(不释过2 0分钟),迅速冷却,只限加热一次,并防止被污染。 除另有规定外,硫乙醇酸盐流体培养基置3 0〖3 5 C 培养。 2.胰酪大豆胨液体培养基 胰酪胨1 7 .0g 氣化钠 5.0g

双氧水残留检测方法的验证

清洗水中残留双氧水检测方法的验证 1.目的:用于纯化水储罐、纯化水输送管道系统的双氧水消毒验证;纯化水活性炭过滤器清洗消毒后的清洗效果验证。 2.依据与原理: 2.1依据:参照《中国药典》2010年版; 2.2原理:双氧水具有强氧化性,与碘化钾(KI)中碘离子(I-)发生氧化还原反应,使碘离子还原成碘: H2O2+KI→H2O+I2 I2遇淀粉显蓝色 3.试剂、试液配制: 3.1 碘化钾(分析纯) 3.2 1%淀粉溶液(分析纯):称取淀粉1.0g,加纯化水配制成100ml; 3.3 双氧水:(药用级) 按下述公式:100ml:n=x:1%,(n为浓双氧水浓度,x为配制1%双氧水所用的浓双氧水体积数,100ml为需配制1%双氧水的体积数)准确量取xml浓双氧水定容至100ml,即得1%双氧水。用纯化水将1%双氧水稀释成0.1%、0.01%、0.001%、0.0001%、0.00001%的标准溶液,备用。 4.试验内容及方法: 4.1方法灵敏度测试: 用100ml洁净比色管取上述新配置的双氧水试液各50ml,各加碘化钾1.5g,加3滴1%淀粉溶液摇匀,溶液呈梯度蓝色,至0.0001%时呈极浅蓝色,0.00001%浓度时几乎无色。表明碘化钾、淀粉指示剂对双氧水有灵敏的显色作用。 4.2显色稳定性测试: 将上述显色液存放于室温,每隔1小时观察溶液颜色,蓝色程度能维持的时间。 4.3空白试验:

另取100ml洁净比色管,加纯化水50ml,加碘化钾1.5g,充分振摇,加3滴1%淀粉溶液摇匀做空白试验,观察颜色。 4.4双氧水稳定性测试:按3.2方法配制5组双氧水稀释浓度的溶液各100ml,按每2小时检测双氧水浓度(限度)1次,观察双氧水的显色变化,判断双氧水的稳定性。 5.清洗水的残留量测试试验: 5.1洗脱液残留量可接受标准:0.001% 5.2测试方法: 用100ml洁净的比色管,纯化水管道消毒后用纯化水清洗,取不同清洗时间的最后洗脱纯化水50ml,加碘化钾1.5g,充分摇匀,加3滴1%淀粉溶液摇匀,作为测试液;另取100ml洁净的比色管,将市售双氧水配制成0.001%,取50ml,加碘化钾1.5g,充分摇匀,加3滴1%淀粉溶液摇匀,作为对照液;将两比色管分别置于白色瓷板或白纸上,垂直观察,测试液显色深度不得深于对照液。 在纯化水储罐取样点采样检测不显色。 6.检测方法验证结果及评价: 6.1方法灵敏度:本方法极灵敏,显色由深蓝色至极淡蓝色呈明显的梯度色差,至0.00001%时几乎无色,纯化水显无色;表明本方法很灵敏。结果见表1。 6.2显色的稳定性:双氧水在稀释状态下不稳定,但形成碘与淀粉反应后的色泽较稳定,能维持6个小时以上,本方法可以作为消毒验证时的判别方法。结果见表2。 6.3空白试验:以生产的纯化水作显色试验,不显色,表明无氧化剂,没有发生氧化还原反应,不干扰本方法测定。结果见表1。 6.4双氧水稳定性测试:双氧水在2小时时色度与初始色度比无变化;第4小时已由原深蓝色(1%)变为淡蓝色(0.1%);第6小时已由原深蓝色(1%)变为淡蓝色(0.01%);说明双氧水在稀释浓度下不太稳定,可以推断,残留双氧水在纯化水管路循环状态下很快破坏,或是自身降解,或是被氧化还原掉。结果见表3。

淀粉含量检测方法

谷物中淀粉含量的测定 本方法参考GB/T5009.9-2008《食品中淀粉的测定》的第二法酸水解法。 适用范围:本方法适用于谷物原料中淀粉含量的测定。 原理:试样经除去脂肪及可溶性糖类后,其中淀粉用酸水解成具有还原性的糖,然后按还原糖测定,并折算成淀粉。 方法一 1 试剂和材料 1.1 酒石酸铜甲液:34.639g CuSO4溶于水,加入0.5mL浓H2SO4,稀释到 500mL; 酒石酸铜乙液:173g酒石酸钾钠,加50g NaOH,稀释到500mL; 1.2 氢氧化钠溶液:c(NaOH)=1mol/L; 1.3 硫酸铁溶液:50g/L(称取50g硫酸铁,加入200mL水后,慢慢加入100mL 硫酸,冷后加入稀释至1000mL); 1.4 高锰酸钾标准滴定溶液:c(1/5KMnO4)=0.1mol/L; 1.5 乙醇溶液:85% v/v; 1.6 HCL:1+1和1+3; 1.7 NaOH溶液:40%; 1.8 乙酸铅溶液:20%; 1.9 硫酸钠:10%。 2 仪器设备 2.1粉碎磨:粉碎样品,使其完全通过孔径0.45mm(40目)筛。 2.2锥形瓶:250mL。

2.3回流冷凝装置:能与250mL锥形瓶瓶口相匹配。 3操作步骤 称取样品(粉碎过40目筛)2.0g~5.0g,准确至0.0002g,置于放有慢速滤纸 的漏斗中,用50mL石油醚分5次洗去样品中脂肪,再用150mL85%乙醇溶液 分数次洗涤残渣,以除去可溶性糖类物质,滤干乙醇溶液,将滤纸连同残渣一 并转移至250mL锥形瓶中。 加100mL水、30mL(1+1)HCl,在沸水浴上回流2h,回流完毕后,立即在 流水中冷却,待样品水解液冷却完全后,加2滴甲基红指示剂,先用NaOH溶 液(400g/L)调至黄色,再用(1+1)的HCl调至水解液刚变红色。若水解液颜色 较深,可用pH试纸测试,使试样水解液的pH值约为7,然后加20mL的乙酸 铅溶液(200g/L),摇匀,放置10min,再加20mL的硫酸钠溶液(100g/L),以 除去过多的铅。摇匀后,将全部溶液及滤渣转入500mL容量瓶中,用水洗涤锥 形瓶,洗液合并于容量瓶中,定容,摇匀,过滤,弃去初滤液20mL,滤液供 测定用。 吸取25.00mL滤液于三角瓶中,加25mL酒石酸铜甲液,再加25mL酒石 酸铜乙液,在电炉上加热(在3min内煮沸)并煮沸2min,取下过滤,并用60℃ 水洗涤烧杯和沉淀至洗液不呈碱性为止,将漏斗连同滤纸一同放至前面使用过 的烧杯上,向滤纸内加入硫酸铁(50g/L)40mL,使氧化亚铜完全溶解,摇匀溶液,再加25mL水,用玻璃棒搅拌到看不见Cu2O,以0.1mol/l高锰酸钾标准滴定溶 液滴定至呈微红色,10s不褪色为终点。同样条件做空白。 方法二 1 试剂 1.1 碱性酒石酸铜甲液:称取15g硫酸铜(CuS04·5H2O)及0.050g亚甲蓝,加适量 水溶解,再加水稀释至1000mL。

(整理)3d碰撞检测技术

核心提示:10.3 碰撞检测技术到目前为止,构造的各种对象都是相互独立的,在场景中漫游各种物体,墙壁、树木对玩家(视点)好像是虚设,可以任意从其中穿越。为了使场景人物更加完善,还需要使用碰撞检测技术。 10.3.1 碰撞检测技术简介无论是PC游戏,还是移动应用, 10.3 碰撞检测技术 到目前为止,构造的各种对象都是相互独立的,在场景中漫游各种物体,墙壁、树木对玩家(视点)好像是虚设,可以任意从其中穿越。为了使场景人物更加完善,还需要使用碰撞检测技术。 10.3.1 碰撞检测技术简介 无论是PC游戏,还是移动应用,碰撞检测始终是程序开发的难点,甚至可以用碰撞检测作为衡量游戏引擎是否完善的标准。 好的碰撞检测要求人物在场景中可以平滑移动,遇到一定高度的台阶可以自动上去,而过高的台阶则把人物挡住,遇到斜率较小的斜坡可以上去,斜率过大则会把人物挡住,在各种前进方向被挡住的情况下都要尽可能地让人物沿合理的方向滑动而不是被迫停下。 在满足这些要求的同时还要做到足够精确和稳定,防止人物在特殊情况下穿墙而掉出场景。 做碰撞检测时,该技术的重要性容易被人忽视,因为这符合日常生活中的常识。如果出现Bug,很容易被人发现,例如人物无缘无故被卡住不能前进或者人物穿越了障碍。所以,碰撞检测是让很多程序员头疼的算法,算法复杂,容易出错。 对于移动终端有限的运算能力,几乎不可能检测每个物体的多边形和顶点的穿透,那样的运算量对手机等设备来讲是不可完成的,所以移动游戏上使用的碰撞检测不可能使用太精确的检测,而且对于3D碰撞检测问题,还没有几乎完美的解决方案。目前只能根据需要来取舍运算速度和精确性。 目前成功商业3D游戏普遍采用的碰撞检测是BSP树及AABB(axially aligned bounding box)包装盒(球)方式。简单地讲,AABB检测法就是采用一个描述用的立方体或者球形体包裹住3D物体对象的整体(或者是主要部分),之后根据包装盒的距离、位置等信息来计算是否发生碰撞,如图10-24所示。 除了球体和正方体以外,其他形状也可以作包装盒,但是相比计算量和方便性来讲还是立方体和球体更方便些,所以其他形状的包装只用在一些特殊场合使用。BSP树是用来控制检测顺序和方向的数据描述。 在一个游戏场景中可能存在很多物体,它们之间大多属于较远位置或者相对无关的状态,一个物体的碰撞运算没必要遍历这些物体,同时还可以节省重要的时间。

表面微生物检测方法[1]

空气、食品接触面微生物检验方法、检验标准 1、目的: 检测生产车间空气、操作人员手部、与食品有直接接触面的机械设备的微生物指标,生产区域环境当中病原微生物的监控,达到规定标准,以控制食品成品的质量。 2、参照标准: 中华人民共和国国家标准《一次性使用卫生用品卫生标准》GB15979-1995、《HACCP原理与实施》、中华人民共和国国家标准《公共场所空气微生物检验方法细菌总数测定》GB/T 18204.1-2000、中华人民共和国进出口商品检验行业标准SN 0169-92/SN 0172-92/ SN 0170-92、出入境检验检疫局二000四年《出入食品微生物检验培训教材》中《出入食品生产厂卫生细菌检验方法》、日本东京冷冻食品检验方法。 3、采样与检测方法: 3.1空气的采样与测试方法 3.1.1样品采集: (1)取样频率: a)车间转换不同卫生要求的产品时,在加工前进行采样,以便了解车间卫生清扫消毒情况。 b)全厂统一放长假后,车间生产前,进行采样。 c)产品检验结果超内控标准时,应及时对车间进行采样,如有检验不合格点,整改后再进行采样检验。 d)实验性新产品,按客户规定频率采样检验。 e)正常生产状态的采样,每周一次。 (2)采样方法 在动态下进行,室内面积不超过30 m2,在对角线上设里、中、外三点,里、外点位置距墙1 m;室内面积超过30 m2,设东、西、南、北、中五点,周围4点距墙1 m。采样时,将含平板计数琼脂培养基的平板(直

径9 cm)置采样点(约桌面高度),并避开空调、门窗等空气流通处,打开平皿盖,使平板在空气中暴露5 min。采样后必须尽快对样品进行相应指标的检测,送检时间不得超过6h,若样品保存于0~4℃条件时,送检时间不得超过24h。 3.1.2菌落培养: (1)在采样前将准备好的平板计数琼脂培养基平板置37℃±1℃培养24 h,取出检查有无污染,将污染培养基剔除。 (2)将已采集样品的培养基在6 h内送实验室,细菌总数于37℃±1℃培养48h观察结果,计数平板上细菌菌落数。 (3)菌落计算: a) 记录平均菌落数,用“个/皿”来报告结果。用肉眼直接计数,标记或 在菌落计数器上点计,然后用5~10倍放大镜检查,不可遗漏。 b) 若培养皿上有2个或2个以上的菌落重叠,可分辨时仍以2 个或2个 以上菌落计数。 3.2工作台(机械器具)表面与工人手表面采样与测试方法: 3.2.1样品采集: (1)取样频率: a)车间转换不同卫生要求的产品时,在加工前进行擦拭检验,以便了解车 间卫生清扫消毒情况。 b)全厂统一放长假后,车间生产前,进行全面擦拭检验。 c)产品检验结果超内控标准时,应及时对车间可疑处进行擦拭,如有检验 不合格点,整改后再进行擦拭检验。 d)实验新产品,按客户规定擦拭频率擦拭检验。 e)对工作表面消毒产生怀疑时,进行擦拭检验。 f)正常生产状态的擦拭,每周一次。 (2)采样方法: a) 工作台(机械器具):用浸有灭菌生理盐水的棉签在被检物体表面(取 与食品直接接触或有一定影响的表面)取25cm2的面积,在其内涂抹10次,然后剪去手接触部分棉棒,将棉签放入含10mL灭菌生理盐水的

农药残留主要的检测方法

农药残留主要的检测方法 1 农业生产中农药的应用地位 农业的可持续发展关系到国家经济建设和社会稳定的全局。农作物病、虫、草害等是农业生产的重要生物灾害。据资料记载中国有害生物为2,300多种,这些有害生物不仅种类多、分布广泛,而且成灾条件复杂,发生频繁。如不进行防治,每年将损失粮食总产量15%、棉花20%-25%、蔬菜25%以上。我国农药每年实际产量约40万吨,仅次于美国据世界第二位,年用量约27万吨,居世界前列。据统计,九十年代我国农业平均每年发生病虫草鼠44亿亩次,防治面积为49亿亩次,仅以防治有害生物计算,每年挽回的粮食损失即达6,500多万吨,相当于3.25亿人的口粮(按每人每年200千克计算)。 在生物灾害的综合治理中,根据目前植物保护学科发展的水平,化学防治仍然是最方便、最稳定、最有效、最可靠、最廉价的防治手段。尤其是当遇到突发性、侵入型生物灾害发生时,尚无任何防治方法能够代替化学农药,唯有化学防治方能奏效。在可预见的未来,农业生产离不开农药。 2 农药残留检测的必要性 随着农业产业化的发展,农产品的生产越来越依赖于农药、抗生素和激素等外源物质。我国农药在粮食、蔬菜、水果、茶叶上的用量居高不下,而这些物质的不合理使用必将导致农产品中的农药残留超标,影响消费者食用安全,严重时会造成消费者致病、发育不正常,甚至直接导致中毒死亡。农药残留超标也会影响农产品的贸易。

3 农药残留主要的检测方法 国际上用于农药残留快速检测方法种类繁多,究其原理来说主要分为两大类:生化测定法和色谱快速检测法。 生化检测法是利用生物体内提取出的某种生化物质进行的生化反应来判断农药残留是否存在以及农药污染情况,在测定时样本无需经过净化,或净化比较简单,检测速度快。生化检测法中又以酶抑制法和酶联免疫法应用最为广泛。 色谱快速检测法通过尽可能的简化样品净化步骤,直接提取进样分析蔬菜和水果中的有机磷类农药残留。上述快速检测方法在具体应用中可以根据实际情况和方法各自适用范围及优缺点来选择使用。 (一)、农药残毒速测法 农药残毒速测法只限于检测蔬菜和水果中的有机磷和氨基甲酸酯类农药残毒,是依据有机磷和氨基甲酸酯类农药抑制生物体内乙酰胆碱酯酶的活性来检测上述两类农药残毒的原理。 近年来,每年因食用残留量严重超标农产品引起急性中毒事故时常发生,特别是食用了高毒有机磷类农药和氨基甲酸酯类农药严重超标的蔬菜和水果极易引起急性中毒,甚至导致食用者死亡。由于蔬菜、水果类鲜食农产品保存时间相对短的特点,因此市场急需有机磷和氨基甲酸酯类农药(这两种农药中高毒农药比例大,比如甲胺磷、对硫磷、氧化乐果、甲拌磷、克百威、涕灭威等)残毒快速检测方法。 农药残毒速测法可以快速检测上述两类农药严重超标的蔬菜、水果,通过将一部分含农药残毒的蔬菜不允许上市场,达到防止食用引起急性中毒问题出现。同时该方法还具有短时间能够检测大量样本、检测成本低,对于检测人员技术水平要求低,易于在基层(如:蔬菜、水果生产基地和批发市场等)推广等特点,是目前阶段我国控制高毒农药残留的一种有效方法,也是目前国内应用最为广泛的农药残毒快速检测方法。但是农药残毒速测法也有其本身局限性,如:检测农药种类只限于有机磷和氨基甲酸酯类农药,不能给出定性、定量检测结果,检测限普遍高国际和国内规定的残留限量标准值,因此不能作为法律仲裁依据。农业部农药检定所依据酶抑制法原理制定了甲胺磷、氧化乐果等8种有机磷农药,克百威、涕灭威等10种氨基甲酸酯类农药的蔬菜农药残毒快速检测法农业行业标准。尽管农药残毒快速检测法还存在一定缺陷,但是在东南亚一些国家如韩国、泰国、越南以及我国的台湾、香港地区仍然得到了广泛使用,特别是在台湾应用是从1985开始,经过20多年的持续发展,已经形成了一整套完整的管理制度,快速检测方法涵盖苯硫磷等27种有机磷、丁硫克百威等13种氨基甲酸酯类农药。

相关文档
最新文档