九年级数学上册 圆 几何综合综合测试卷(word含答案)

九年级数学上册 圆 几何综合综合测试卷(word含答案)
九年级数学上册 圆 几何综合综合测试卷(word含答案)

九年级数学上册 圆 几何综合综合测试卷(word 含答案)

一、初三数学 圆易错题压轴题(难)

1.如图,以A (0,3)为圆心的圆与x 轴相切于坐标原点O ,与y 轴相交于点B ,弦BD

的延长线交x 轴的负半轴于点E ,且∠BEO =60°,AD 的延长线交x 轴于点C .

(1)分别求点E 、C 的坐标;

(2)求经过A 、C 两点,且以过E 而平行于y 轴的直线为对称轴的抛物线的函数解析式; (3)设抛物线的对称轴与AC 的交点为M ,试判断以M 点为圆心,ME 为半径的圆与⊙A 的位置关系,并说明理由.

【答案】(1)点C 的坐标为(-3,0)(2)2343333

y x x =++3)⊙M 与⊙A 外切 【解析】

试题分析:(1)已知了A 点的坐标,即可得出圆的半径和直径,可在直角三角形BOE 中,根据∠BEO 和OB 的长求出OE 的长进而可求出E 点的坐标,同理可在直角三角形OAC 中求出C 点的坐标;

(2)已知了对称轴的解析式,可据此求出C 点关于对称轴对称的点的坐标,然后根据此点坐标以及C ,A 的坐标用待定系数法即可求出抛物线的解析式;

(3)两圆应该外切,由于直线DE ∥OB ,因此∠MED=∠ABD ,由于AB=AD ,那么

∠ADB=∠ABD ,将相等的角进行置换后可得出∠MED=∠MDE ,即ME=MD ,因此两圆的圆心距AM=ME+AD ,即两圆的半径和,因此两圆外切.

试题解析:(1)在Rt△EOB 中,3

cot60232EO OB =??==, ∴点E 的坐标为(-2,0).

在Rt△COA 中,tan tan60333OC OA CAO OA =?∠=??==, ∴点C 的坐标为(-3,0).

(2)∵点C 关于对称轴2x =-对称的点的坐标为F (-1,0), 点C 与点F (-1,0)都在抛物线上. 设()()13y a x x =++,用(03A ,代入得

()()30103a =++,

∴3

3

a =. ∴()()3

13y x x =

++,即 2343333

y x x =

++. (3)⊙M 与⊙A 外切,证明如下: ∵ME ∥y 轴,

∴MED B ∠=∠.

∵B BDA MDE ∠=∠=∠, ∴MED MDE ∠=∠. ∴ME MD =.

∵MA MD AD ME AD =+=+, ∴⊙M 与⊙A 外切.

2.如图,在平面直角坐标系中,O 为坐标原点,△ABC 的边BC 在y 轴的正半轴上,点A 在x 轴的正半轴上,点C 的坐标为(0,8),将△ABC 沿直线AB 折叠,点C 落在x 轴的负半轴D (?4,0)处.

(1)求直线AB 的解析式;

(2)点P 从点A 出发以每秒45个单位长度的速度沿射线AB 方向运动,过点P 作PQ ⊥AB ,交x 轴于点Q ,PR ∥AC 交x 轴于点R ,设点P 运动时间为t (秒),线段QR 长为d ,求d 与t 的函数关系式(不要求写出自变量t 的取值范围);

(3)在(2)的条件下,点N 是射线AB 上一点,以点N 为圆心,同时经过R 、Q 两点作⊙N ,⊙N 交y 轴于点E ,F .是否存在t ,使得EF =RQ ?若存在,求出t 的值,并求出圆心N 的坐标;若不存在,说明理由.

【答案】(1)132y x =-+(2)d =5t (3)故当 t =85

,或8

15,时,QR =EF ,N (-6,6)或(2,2). 【解析】

试题分析:(1)由C (0,8),D (-4,0),可求得OC ,OD 的长,然后设OB=a ,则BC=8-a ,在Rt △BOD 中,由勾股定理可得方程:(8-a )2=a 2+42,解此方程即可求得B 的坐标,然后由三角函数的求得点A 的坐标,再利用待定系数法求得直线AB 的解析式;

(2)在Rt

△AOB 中,由勾股定理可求得AB 的长,继而求得∠BAO 的正切与余弦,由PR//AC 与折叠的性质,易证得RQ=AR ,则可求得d 与t 的函数关系式;

(3)首先过点分别作NT ⊥RQ 于T ,NS ⊥EF 于S ,易证得四边形NTOS 是正方形,然后分别从点N 在第二象限与点N 在第一象限去分析求解即可求解; 试题解析:

(1)∵C (0,8),D (-4,0), ∴OC=8,OD=4, 设OB=a ,则BC=8-a ,

由折叠的性质可得:BD=BC=8-a , 在Rt △BOD 中,∠BOD=90°,DB 2=OB 2+OD 2, 则(8-a )2=a 2+42, 解得:a=3, 则OB=3, 则B (0,3), tan ∠ODB=

3

4

OB OD = , 在Rt △AOC 中,∠AOC=90°,tan ∠ACB=3

4

OA OC = , 则OA=6, 则A (6,0),

设直线AB 的解析式为:y=kx+b ,

则60{3

k b b +== ,解得:1

{23

k b =-= , 故直线AB 的解析式为:y=-1

2

x +3; (2)如图所示:

在Rt △AOB 中,∠AOB=90°,OB=3,OA=6, 则2

2

135,tan 2OB OB OA BAO OA +=∠=

= ,255OA

cos BAO AB

∠==, 在Rt △PQA 中,905APQ AP t ∠=?=, 则AQ=

10cos AP

t BAO

=∠ ,

∵PR ∥AC , ∴∠APR=∠CAB ,

由折叠的性质得:∠BAO=∠CAB , ∴∠BAO=∠APR , ∴PR=AR ,

∵∠RAP+∠PQA=∠APR+∠QPR=90°, ∴∠PQA=∠QPR , ∴RP=RQ , ∴RQ=AR ,

∴QR=

1

2 AQ=5t, 即d=5t;

(3)过点分别作NT ⊥RQ 于T ,NS ⊥EF 于S , ∵EF=QR , ∴NS=NT ,

∴四边形NTOS 是正方形,

则TQ=TR=

1522QR t = , ∴111515

1022224

NT AT AQ TQ t t t ==-=-=()

() , 分两种情况,

若点N 在第二象限,则设N (n ,-n ),

点N 在直线1

32

y x =-+ 上, 则1

32

n n -=-

+ , 解得:n=-6,

故N (-6,6),NT=6,

15

64

t = , 解得:8

5

t = ;

若点N 在第一象限,设N (N ,N ),

可得:1

32

n n =-+ , 解得:n=2,

故N (2,2),NT=2,

即15

24

t =, 解得:t=8

15

∴当 t =

85,或8

15

,时,QR =EF ,N (-6,6)或(2,2)。 点睛:此题考查了折叠的性质、待定系数法求一次函数的解析式、正方形的判定与性质、等腰三角形的性质、平行线的性质以及三角函数等知识.此题难度较大,注意掌握辅助线的作法,注意数形结合思想与方程思想的应用。

3.如图,点A 在直线l 上,点Q 沿着直线l 以3厘米/秒的速度由点A 向右运动,以AQ 为边作Rt△ABQ,使∠BAQ=90°,tan∠ABQ=

3

4

,点C 在点Q 右侧,CQ=1厘米,过点C 作直线m⊥l,过△ABQ 的外接圆圆心O 作OD⊥m 于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使DF=

1

3

CD ,以DE 、DF 为邻边作矩形DEGF .设运动时间为t 秒.

(1)直接用含t 的代数式表示BQ 、DF ; (2)当0<t <1时,求矩形DEGF 的最大面积;

(3)点Q 在整个运动过程中,当矩形DEGF 为正方形时,求t 的值. 【答案】(1)BQ=5t ,DF=23t;(2)16;(3)t 的值为3

5

或3. 【解析】

试题分析:(1)AB 与OD 交于点H ,根据题中的比例关系和勾股定理可表示出BQ 的长;根据垂直于同一条直线的两直线平行和三角形的中位线定理可求得AH 的长,再根据矩形的判定定理和矩形的性质可求CD 的长,即可表示出FD ;

(2)根据题意表示出矩形的长和宽,然后构造二次函数,通过二次函数的最值可求解; (3)当矩形为正方形时,分别让其长与宽相等,列方程求解即可. 试题解析:(1)5t BQ =,2

DF=

t 3

(2)DE=OD-OE=32t+1-52t=1-t ,()2

2211

·t 13326

S DF DE t t ??==-=--+ ???,∴当t=

12时,矩形DEGF 的最大面积为

1

6

; (3)当矩形DEGF 为正方形时,221133t t t t -=

-=或,解得3

35

t t ==或.

4.如图1,△ABC 内接于⊙O ,直径AD 交BC 于点E ,延长AD 至点F ,使DF =2OD ,连接FC 并延长交过点A 的切线于点G ,且满足AG ∥BC ,连接OC ,若cos ∠BAC =1

3

,BC =8. (1)求证:CF 是⊙O 的切线; (2)求⊙O 的半径OC ;

(3)如图2,⊙O 的弦AH 经过半径OC 的中点F ,连结BH 交弦CD 于点M ,连结FM ,试求出FM 的长和△AOF 的面积.

【答案】(1)见解析;(2)3233

22

32【解析】 【分析】

(1)由DF=2OD ,得到OF=3OD=3OC ,求得

1

3

OE OC OC OF ==,推出△COE ∽△FOE ,根据相似三角形的性质得到∠OCF=∠DEC=90°,于是得到CF 是⊙O 的切线;

(2)利用三角函数值,设OE=x ,OC=3x ,得到CE=3,根据勾股定理即可得到答案; (3)连接BD ,根据圆周角定理得到角相等,然后证明△AOF ∽△BDM ,由相似三角形的性质,得到FM 为中位线,即可求出FM 的长度,由相似三角形的性质,以及中线分三角形的面积为两半,即可求出面积. 【详解】

解:(1) ∵DF =2OD , ∴OF =3OD =3OC , ∴

1

3

OE OC OC OF ==,

∵∠COE =∠FOC , ∴△COE ∽△FOE , ∴∠OCF =∠DEC =90°, ∴CF 是⊙O 的切线; (2)∵∠COD =∠BAC , ∴cos ∠BAC =cos ∠COE =1

3

OE OC =, ∴设OE =x ,OC =3x , ∵BC =8, ∴CE =4, ∵CE ⊥AD , ∴OE 2+CE 2=OC 2, ∴x 2+42=9x 2,

∴x =2(负值已舍去), ∴OC =3x =32, ∴⊙O 的半径OC 为32; (3)如图,连结BD ,

由圆周角定理,则∠OAF=∠DBM ,2AOF ADC ∠=∠, ∵BC ⊥AD , ∴AC AB =, ∴∠ADC=∠ADB ,

∴2AOF ADC BDM ∠=∠=∠, ∴△AOF ∽△BDM ; ∵点F 是OC 的中点, ∴AO :OF=BD :DM=2, 又∵BD=DC , ∴DM=CM , ∴FM 为中位线, ∴3

22

∴S△AOF: S△BDM=(32:26)2

3

4 =;

11111

8(322)42 22222

BDM BCD

S S BC DE

??

==??=???-=;

∴S△AOF=

3

42

4

?=32;

【点睛】

本题考查了圆的综合问题,圆周角定理,切线的判定和性质,相似三角形的判定和性质,利用勾股定理求边长,以及三角形中线的性质,解题的关键是熟练掌握所学的定理和性质,运用属性结合的思想进行解题.

5.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,以D为圆心,D长为半径作作⊙D.

⑴求证:AC是⊙D的切线.

⑵设AC与⊙D切于点E,DB=1,连接DE,BF,EF.

①当∠BAD= 时,四边形BDEF为菱形;

②当AB= 时,△CDE为等腰三角形.

【答案】(1)见解析;(2)①30°2+1

【解析】

【分析】

(1) 作DE⊥AC于M,由∠ABC=90°,进一步说明DM=DB,即DB是⊙D的半径,即可完成证明;

(2)①先说明△BDF是等边三角形,再运用直角三角形的内角和定理解答即可;②先说明DE=CE=BD=1,再设AB=x,则AE=x,分别表示出AC、BC、AB的长,然后再运用勾股定理解答即可.

【详解】

⑴证明:如图:作DE⊥AC于M,

∵∠ABC=90°,∠BAC的平分线交BC于点D,∴DE=DB.

∴DM是⊙D的半径,

∴AC是⊙D的切线;

⑵①如图:

∵四边形BDEF为菱形;

∴△BDF是等边三角形

∴∠ADB=60°

∴∠BAD=90°-60°=30°

∴当∠BAD=30°时,四边形BDEF为菱形;

②∵△CDE为等腰三角形.

∴DE=CE=BD=1,

∴2

设AB=x,则AE=x

∴在Rt△ABC中,AB=x,AC=1+x,2∴()2

22

+=+,解得2+1 x x

(12)1

∴当2+1时,△CDE为等腰三角形.

【点睛】

本题考查的是切线的判定、菱形的性质和判定、等腰三角形的判定与性质以及勾股定理的灵活运用;熟练掌握切线的判定方法和灵活应该勾股定理是解答本题的关键.

6.已知ABD △内接于圆O ,点C 为弧BD 上一点,连接BC AC AC 、,交BD 于点E ,CED ABC ∠=∠.

(1)如图1,求证:弧AB =弧AD ;

(2)如图2,过B 作BF AC ⊥于点F ,交圆O 点G ,连接AG 交BD 于点H ,且

222EH BE DH =+,求CAG ∠的度数;

(3)如图3,在(2)的条件下,圆O 上一点M 与点C 关于BD 对称,连接ME ,交

AB 于点N ,点P 为弧AD 上一点,PQ BG ∥交AD 于点Q ,交BD 的延长线于点R ,AQ BN =,ANE 的周长为20,52DR =O 半径.

【答案】(1)见解析;(2)∠CAG=45°;(3)r=62 【解析】 【分析】

(1)证∠ABD=∠ACB 可得;

(2)如下图,△AHD 绕点A 旋转至△ALE 处,使得点D 与点B 重合,证△ALE ≌△AHE ,利用勾股定理逆定理推导角度;

(3)如下图,延长QR 交AB 于点T ,分别过点N 、Q 作BD 的垂线,交于点V ,I ,取QU=AE ,过点U 作UK 垂直BD.先证△AEN ≌△QUD ,再证△NVE ≌△RKU ,可得到NV=KR=DK ,进而求得OB 的长. 【详解】

(1)∵∠CED 是△BEC 的外角,∴∠CED=∠EBC+∠BCA ∵∠ABC=∠ABD+∠EBC 又∵∠CED=∠ABC ∴∠ABD=∠ACB ∴弧AB=弧AD

(2)如下图,△AHD 绕点A 旋转至△ALE 处,使得点D 与点B 重合

∵△ALB是△AHD旋转所得

∴∠ABL=∠ADB,AL=AH

设∠CAG=a,则∠CBG=a

∵BG⊥AC

∴∠BCA=90°-a,∴∠ADB=∠ABD=90°-a

∴在△BAD中,BAE+∠HAD=180-a-(90°-a)-(90°-a)=a

∴∠LAE=∠EAH=a

∵LA=AH,AE=AE

∴△ALE≌△AHE,∴LE=EH

∵HD=LB,222

=+

EH BE DH

∴△LBE为直角三角形

∴∠LBE=(90°-a)+(90°-a)=90°,解得:a=45°

∴∠CAG=45°

(3)如下图,延长QR交AB于点T,分别过点N、Q作BD的垂线,交于点V,I,取QU=AE,过点U作UK垂直BD

由(2)得∠BAD=90°

∴点O在BD上

设∠R=n,则∠SER=∠BEC=∠MEB=90°-n

∴∠AEN=2n

∵SQ⊥AC

∴∠TAS=∠AQS=∠DQR,AN=QD

∵QU=AE

∴△AEN ≌△QUD ∴∠QUD=∠AEN=2n ∴UD=UR=NE , ∵△ANE 的周长为20 ∴QD+QR=20 在△DQR 中,QD=7 ∵∠ENR=∠UDK=∠R=n ∴△NVE ≌△RKU ∴NV=KR=DK=52

2

∴BN=5

∴BD=122,OB=62r = 【点睛】

本题考查了圆的证明,涉及到全等、旋转和勾股定理,解题关键是结合图形特点,适当构造全等三角形

7.如图,在ABC ?中,90C ∠=?,30CAB ∠=?,10AB =,点D 在线段AB 上,

2AD =.点P 从D 点出发,沿DB 方向运动,以DP 为直径作O ,当P 运动到点B 时

停止运动,设DP m =.

(1)AO =___________,BP =___________.(用m 的代数式表示) (2)当m 为何值时,

O 与ABC ?的一边相切?

(3)在点P 整个运动过程中,过点P 作

O 的切线交折线AC CB -于点E ,将线段EP

绕点E 顺时针旋转60?得到EF ,过F 作FG EP ⊥于G .

①当线段FG 长度达到最大时,求m 的值;

②直接写出点F 所经过的路径长是________.(结果保留根号) 【答案】(1)22

m

AO =+

,8BP m =-;(2)4m =或32348m =;(3)

112;②

115

3762+ 【解析】 【分析】

(1)观察图中AO 和DP 的数量关系可得22

DP

AO =+

,而BP AB AP =-,将DP m =代入即可.

(2)O 与ABC ?的一边相切有两种情况,先与AC 相切,再与BC 相切;两种情况的

解答方法都是连接圆心与切点,构造直角三角形,根据条件所给的特殊角的三角函数解答. (3)①根据旋转的性质可得PF PE =,在Rt EFG ?中根据三角函数可得

cos30FG PE ?=?,故当E 点与C 点重合,PE 取得最大值时,FG 有最大值,解之即可.

②明显以E 点与C 点重合前后为节点,点F 的运动轨迹分两部分,第一部分为从P 开始运动到E 点与C 点重合,即图中的12F F ,根据1212F F AC AF CF =--求解;第二部分,根据tan EF EP

EBF EB EB

∠==为定值可知其轨迹为图中的2F B ,在2Rt F BC 中用勾股定理求解即可. 【详解】

(1)2222

DP m

AO =+=+,8BP AB AP m =-=- (2)情况1:与AC 相切时, Rt AOH ?中,∵30A ∠=?

∴2AO OH = ∴22

m

m +

=解得4m =

情况2:与BC 相切时,

Rt BON ?中,∵60B ∠=?

3

cos

2

ON

B

OB

==即

3

2

2

8

2

m

m

=

-

解得32348

m=-

(3)①

在Rt EFG

?中,∵30

EFG A

∠=∠=?,90

EGF

∠=?,∴

3

cos30cos30

2

FG EF PE EP

??

=?=?=,

∴当FG最大时即PE最大

当点E与点C重合时,PE的值最大.

易知此时

53553

AC BC

EP

AB

??

===.

在Rt EAP

?中,∵30

A

∠=?∴

15

3

2

AP EP

==

1511

2

22

m DP

==-=

(3)F轨迹如图:从1F到2F到B

11

3323

3

AF AE EF AD PE

=-=-==,

2

53

CF CP

==,

故12122353113

53326

F F AC AF CF =--=-

-=

, 2F 到B 轨迹是线段理由如下:

∵60FEP ∠=?,30PEB ∠=?,∴90FEB ∠=?. ∴tan EF EP

EBF EB EB

∠=

=为定值, ∴点F 的第二段的轨迹是线段2BF .

在2Rt F BC 中,2

222225357

52BF BC F C ??=+=+= ? ???

, 所以点F 所经过的路径长是115

3762

+. 【点睛】

本题是综合了圆的性质,直线与圆相切的条件,锐角三角函数,勾股定理以及旋转的性质等知识的动点动图问题,熟练掌握各个知识点是基础,充分理解题意并作图,化动为静是解答关键.

8.已知AB 是

O 的一条弦,点C 在O 上,联结CO 并延长,交弦AB 于点D ,且

CD CB =.

(1)如图1,如果BO 平分ABC ∠,求证:AB BC =; (2)如图2,如果AO OB ⊥,求:AD DB 的值;

(3)延长线段AO 交弦BC 于点E ,如果EOB ?是等腰三角形,且

O 的半径长等于

2,求弦BC 的长.

【答案】(1)证明见解析;(23

351和22【解析】 【分析】

(1)由题意利用弦心距即可求证结果,

(2)此题关键先求出AO ,做辅助线构造特殊三角形,并求证出∠AOD ,再根据平行线分

线段成比例求出比值即可,

(3)分情况讨论两种情况:OE=BE时或OB=BE时两种情况,利用三角形相似即△COE~△CBO找到相似比,利用相似比求解即可.

【详解】

(1)过点O作OP⊥AB,垂足为点P;OQ⊥BC,垂足为点Q,

∵BO平分∠ABC,

∴OP=OQ,

∵OP,OQ分别是弦AB、BC 的弦心距,

∴AB= BC;

(2)∵OA=OB,

∴∠A=∠OBD,

∵CD=CB,

∴∠CDB =∠CBD,

∴∠A+∠AOD =∠CBO +∠OBD,

∴∠AOD =∠CBO,

∵OC=OB,

∴∠C =∠CBO,

∴∠DOB =∠C +∠CBO = 2∠CBO = 2∠AOD,

∵AO⊥OB,

∴∠ AOB =∠AOD +∠BOD =3∠AOD = 90°,

∴∠AOD=30°,

过点D作DH⊥AO,垂足为点H,

∴∠AHD=∠DHO=90°,

∴tan∠AOD =HD

OH

=

3

3

∵∠AHD=∠AOB=90°,∴HD‖OB,

D

A OB

H AH

O

∵OA=OB,

∴HD=AH , ∵HD ‖OB ,

3

AH HD OH O AH DB H ===

; (3)∵∠C=∠CBO , ∴∠OEB =∠C+∠COE >∠CBO , ∴OE≠OB ; 若OB = EB =2时,

∵∠C=∠C ,∠COE =∠AOD =∠CBO , ∴△COE ~△CBO , ∴CO CE

BC CO =, ∴

222

BC BC =-, ∴2BC -2BC -4=0,

∴BC =舍去)或,

∴; 若OE = EB 时, ∵∠EOB =∠CBO ,

∵∠OEB =∠C+∠COE =2∠C =2∠CBO 且∠OEB +∠CBO +∠EOB = 180°, ∴4∠CBO=180°,∠CBO=45°, ∴∠OEB=90°,

∴cos ∠CBO=EB OB =

, ∵OB=2,

∴ ,

∵OE 过圆心,OE ⊥BC ,

∴. 【点睛】

此题考查圆的相关知识:圆心距及圆内三角形相似的相关知识,属于综合题型,难度较高.

9.如图,平行四边形ABCD 中,AB=5,BC=8,cosB=

4

5

,点E 是BC 边上的动点,以C 为圆心,CE 长为半径作圆C ,交AC 于F ,连接AE ,EF .

(1)求AC的长;

(2)当AE与圆C相切时,求弦EF的长;

(3)圆C与线段AD没有公共点时,确定半径CE的取值范围.

【答案】(1)AC=5;(2)

410

5

EF=;(3)03

CE

≤<或58

CE

<≤.

【解析】【分析】

(1)过A作AG⊥BC于点G,由cos

4

5

B=,得到BG=4,AG=3,然后由勾股定理即可求出

AC的长度;

(2)当点E与点G重合时,AE与圆C相切,过点F作FH⊥CE,则CE=CF=4,则CH=3.2,FH=2.4,得到EH=0.8,由勾股定理,即可得到EF的长度;

(3)根据题意,可分情况进行讨论:①当圆C与AD相离时;②当CE>CA时;分别求出CE的取值范围,即可得到答案.

【详解】

解:(1)过A作AG⊥BC于点G,如图:

在Rt△ABG中,AB=5,

4 cos

5

BG

B

AB

==,

∴BG=4,

∴AG=3,

∴844

CG=-=,

∴点G是BC的中点,

在Rt△ACG中,22

345

AC+=;

(2)当点E与点G重合时,AE与圆C相切,过点F作FH⊥CE,如图:

∴CE=CF=4, ∵AB=AC=5, ∴∠B=∠ACB , ∴4

cos cos 5

CH B ACB CF =∠==, ∴CH=3.2,

在Rt △CFH 中,由勾股定理,得 FH=2.4, ∴EH=0.8,

在Rt △EFH 中,由勾股定理,得

22410

0.8 2.4EF =+=

; (3)根据题意,圆C 与线段AD 没有公共点时,可分为以下两种情况: ①当圆C 与AD 相离时,则CE

∴半径CE 的取值范围是:03CE ≤<; ②当CE>CA 时,点E 在线段BC 上,

∴半径CE 的取值范围是:58CE <≤;

综合上述,半径CE 的取值范围是:03CE ≤<或58CE <≤. 【点睛】

本题考查了解直角三角形,直线与圆的位置关系,平行四边形的性质,勾股定理,以及线段的动点问题,解题的关键是熟练掌握所学的知识,正确作出辅助线,正确确定动点的位置,从而进行解题.

10.如图,二次函数y =﹣

56

x 2

+bx +c 与x 轴的一个交点A 的坐标为(﹣3,0),以点A 为圆心作圆A ,与该二次函数的图象相交于点B ,C ,点B ,C 的横坐标分别为﹣2,﹣5,连接AB ,AC ,并且满足AB ⊥AC .

(1)求该二次函数的关系式;

(2)经过点B 作直线BD ⊥AB ,与x 轴交于点D ,与二次函数的图象交于点E ,连接AE ,请判断△ADE 的形状,并说明理由;

(3)若直线y =kx +1与圆A 相切,请直接写出k 的值. 【答案】(1)y =﹣56

x 2﹣376x ﹣11;(2)△ADE 是等腰三角形,理由见解析;(3)k 的

值为﹣

1

2

或2 【解析】 【分析】

(1)利用三垂线判断出()ACN BAM AAS ???,进而得出(2,2)B --,(5,1)C --,最后将点B ,C 坐标代入抛物线解析式中即可得出结论;

(2)先判断出ABM BDM ??∽,得出点D 坐标,进而求出直线BD 的解析式,求出点E 坐标,即可得出结论; (3)分两种情况,

Ⅰ、切点在x 轴上方,利用三垂线判断出()AQG FPG AAS ???,得出AQ PF =,GQ PG =,设成点G 坐标,进而得出3AQ m =+,PF km =,PG m =-,1GQ km =+,

即可得出结论;

Ⅱ、切点在x 轴下方,同Ⅰ的方法即可得出结论. 【详解】

解:(1)如图1,过点B 作BM x ⊥轴于M ,过点C 作CN x ⊥轴于N ,

相关主题
相关文档
最新文档