基于I2C的嵌入式触摸屏驱动设计

基于I2C的嵌入式触摸屏驱动设计
基于I2C的嵌入式触摸屏驱动设计

Linux/Android 多点触摸支持

2011-10-10 13:28

在内核2.6.30开始,添加了对多点触摸的支持。在

ENAC(http://lii-enac.fr/en/architecture/linux-input/)中给出来多点触摸的例子,支持Ubuntu10.10、Fedora14、Android。而且还直接支持win7的HID 多点协议,加载相关驱动后,只需VID/PID对应上,那么支持WIN7多点的,在LINUX中也可实现多点触摸了。

整个处理过程就是:touch screen-->drivers-->input

subsystem-->evdev-->user space。由于touchscreen的不同,要使Linux支持多点触摸,还是要搭配或开发驱动。在驱动层中主要是把数据接收下来,然后根据多点触摸协议,上传到input 子系统。

下面是多点触摸协议:

for (i=0; i

input_event(input, EV_ABS, ABS_MT_TOUCH_MAJOR, point[i].valid); //如果当前点有效,则point[i].valid大于0的数即可

input_event(input, EV_ABS, ABS_MT_POSITION_X, point[i].x);

input_event(input, EV_ABS, ABS_MT_POSITION_Y, point[i].y);

input_mt_sync(input);

}

//一帧数据发送完成,发送一个同步信号

input_sync(input);

Linux多点触摸接口

2011-10-10 13:39

输入子系统----硬件设备驱动

按键、触摸屏、键盘、鼠标等输入都可以利用input接口函数来实现设备驱动,驱动层负责和底层硬件打交道,向系统报告按键、触摸屏、键盘、鼠标等输入事件,驱动报告的事件经过InputCore和 Eventhandler最终到达用户空间。

通过input子系统,具体的输入设备驱动只需要完成如下工作:

1.在模块加载函数中注册输入设备,注册输入设备的函数为

int input_register_device(struct input_dev *dev);

2.在模块加载函数中告知input子系统它可以报告的事件。设备驱动通过

set_bit()告诉input子系统它支持哪些事件:set_bit(EV_KEY,

button_dev.evbit);

3.在键被按下/抬起、触摸屏被触摸/抬起/移动、鼠标被移动/单击/抬起时通过input_ report_xxx()报告发生的事件及对应的键值/坐标等状态。主要的事件类型:

function :

void input_report_key(struct input_dev *dev, unsigned int code, int value);

void input_report_rel(struct input_dev *dev, unsigned int code, int value);

void input_report_abs(struct input_dev *dev, unsigned int code, int value);

input_sync()用于事件同步,它告知事件的接收者驱动已经发出了一个完整的报告。

比如:在触摸屏设备驱动中,一次坐标及按下状态的整个报告过程如下:

input_report_abs(input_dev, ABS_X, x); //X坐标

input_report_abs(input_dev, ABS_Y, y); //Y坐标

input_report_abs(input_dev, ABS_PRESSURE, pres); //压力

input_sync(input_dev); //同步

4.在模块卸载函数中注销输入设备:

void input_unregister_device(struct input_dev *dev);

一个设备可以支持一个或多个事件类型。每个事件类型下面还需要设置具体的触发事件,比如EV_KEY事件,支持哪些按键等。

多点触摸接口

译自:linux-2.6.31.14\Documentation\input\multi-touch-protocol.txt

简介

为了使用功能强大的多点触控设备,就需要一种方案去上报用户层所需的详细的手指触摸数据。这个文档所描述的多点触控协议可以让内核驱动程序向用户层上报任意多指的数据信息。

使用说明

单点触摸信息是以ABS承载并按一定顺序发送,如BTN_TOUCH、ABS_X、ABS_Y、SYNC。而多点触摸信息则是以ABS_MT承载并按一定顺序发送,如

ABS_MT_POSITION_X、ABS_MT_POSITION_Y,然后通过调用input_mt_sync()产生一个 SYN_MT_REPORT event来标记一个点的结束,告诉接收方接收当前手指的信息并准备接收其它手指的触控信息。最后调用 input_sync()函数上报触摸信息开始动作并告诉接收方开始接收下一系列多点触摸信息。

协议定义了一系列ABS_MT事件,这些事件被分为几大类,充许只应用其中的一部份,多点触摸最小的事件集中应包括ABS_MT_TOUCH_MAJOR、

ABS_MT_POSITION_X和 ABS_MT_POSITION_Y,以此来实现多点触摸。如果设备支持ABS_MT_WIDTH_MAJOR这个事件,那么此事件可以提供手指触摸接触面积大小。触摸方向等信息可以由ABS_MT_TOUCH_MINOR, ABS_MT_WIDTH_MINOR and

ABS_MT_ORIENTATION提供。ABS_MT_TOOL_TYPE提供触摸设备的类别,如手或是笔或是其它。最后有些设备可能会支持ABS_MT_TRACKING_ID,用来支持硬件跟踪多点信息,即该点属于哪一条线等。

下面是两点触摸支持的最小事件集序列:

ABS_MT_TOUCH_MAJOR

ABS_MT_POSITION_X

ABS_MT_POSITION_Y

SYN_MT_REPORT //上报第一个点

ABS_MT_TOUCH_MAJOR

ABS_MT_POSITION_X

ABS_MT_POSITION_Y

SYN_MT_REPORT //上报第二个点

SYN_REPORT //开始动作

Event 原语

“接触”一词用来描述一个物体直接碰到另一个物体的表面。

ABS_MT_TOUCH_MAJOR描述了主接触面的长轴,它和X,Y同一个单位,如果一个面的分辨率为X*Y,则ABS_MT_TOUCH_MAJOR的最大值为sqrt(X^2+Y^2)

ABS_MT_TOUCH_MINOR描述了接触面的短轴,如果接触面是圆形,它可以不用。

ABS_MT_WIDTH_MAJOR描述了接触工具的长轴

ABS_MT_WIDTH_MINOR描述了接触工具的短轴

ABS_MT_TOUCH_MAJOR := max(X, Y)

ABS_MT_TOUCH_MINOR := min(X, Y)

ABS_MT_ORIENTATION := bool(X > Y)

以上四个参数可以用来生成额外的触摸信息,如

ABS_MT_TOUCH_MAJOR/ABS_MT_WIDTH_MAJOR的比率可以用来描述压力。

ABS_MT_ORIENTATION

ABS_MT_POSITION_X接触面的中心点X坐标

ABS_MT_POSITION_Y接触面的中心点Y坐标

ABS_MT_TOOL_TYPE描述接触工具类型,很多内核驱动无法区分此参数如手指及笔,如果是这样,该参数可以不用,协议目前支持MT_TOOL_FINGER和MT_TOOL_PEN 两种类型。

ABS_MT_BLOB_ID形状集ID,集合几个点以描述一个形状,很多驱动没有形状属性,此参数可以不用。

ABS_MT_TRACKING_ID描述了从接触开始到释放的整个过程的集合,如果设备不支持,此参数可是不用。

触摸轨迹

仅有少数设备可以明触的标识真实的 trackingID,多数情况下 trackingID 只能来标识一次触摸动作的过程。

多点触摸指定的应用是创建手势动作, TOUCH和 WIDTH参数经常用来区别手指的压力和手指间的距离,另外 MINOR类的参数可以用来区别设备的接触面的大小(点接触还是面接触),ORIENTATION可以产生旋转事件。

参考代码:

(1)注册多点触摸设备

ts->input_dev = input_allocate_device();

if (ts->input_dev == NULL) {

ret = -ENOMEM;

printk(KERN_ERR "Failed to allocate input device\n"); goto err_input_dev_alloc_failed;

}

ts->input_dev->name = "MT-touchscreen";

set_bit(EV_SYN, ts->input_dev->evbit);

set_bit(EV_KEY, ts->input_dev->evbit);

set_bit(EV_ABS, ts->input_dev->evbit);

set_bit(BTN_TOUCH, ts->input_dev->keybit);

max_x=0x77b;

max_y=0xb38;

input_set_abs_params(ts->input_dev, ABS_X, 0, max_x, 0, 0); input_set_abs_params(ts->input_dev, ABS_Y, 0, max_y, 0, 0); input_set_abs_params(ts->input_dev, ABS_PRESSURE, 0, 255, 0, 0);

input_set_abs_params(ts->input_dev, ABS_TOOL_WIDTH, 0, 15, 0, 0);

input_set_abs_params(ts->input_dev, ABS_MT_POSITION_X, 0, max_x, 0, 0);

input_set_abs_params(ts->input_dev, ABS_MT_POSITION_Y, 0, max_y, 0, 0);

input_set_abs_params(ts->input_dev, ABS_MT_TOUCH_MAJOR, 0, 255, 0, 0);

input_set_abs_params(ts->input_dev, ABS_MT_WIDTH_MAJOR, 0, 15, 0, 0);

ret = input_register_device(ts->input_dev);

if (ret) {

printk(KERN_ERR "Unable to register %s input device\n", ts->input_dev->name);

goto err_input_register_device_failed;

(2) 报点

for(i=0;i

input_report_abs(ts->input_dev, ABS_MT_TOUCH_MAJOR, 1);

input_report_abs(ts->input_dev, ABS_MT_POSITION_X, ts->x[i]);

input_report_abs(ts->input_dev, ABS_MT_POSITION_Y, ts->y[i]);

input_mt_sync(ts->input_dev);

ts->upsend=0;

}

if(finger){

input_sync(ts->input_dev);

}else{

if(!ts->upsend){

input_report_abs(ts->input_dev, ABS_MT_TOUCH_MAJOR, 0);

input_mt_sync(ts->input_dev);

input_sync(ts->input_dev);

ts->upsend=1;

}

}

基于I2C的嵌入式多点触摸屏幕驱动设计(1)更新

于2011-03-21 16:09:33文章出处: OFweek

关键字:I2C 嵌入式多点触摸屏幕驱动

引言

随着嵌入式设备的开发和推广,触摸屏作为新式输入设备已经随处可见,手机、PDA、MID以及ATM 机等设备都已经用到了触摸屏。而科技在不断发展,触摸屏也由一开始的4线式单点电阻触摸屏发展到今天的各种多点式电容触摸屏。本文通过对以cypress 7958为代表的I2C总线接口电容式多点触摸屏的研究,设计了针对Linux操作系统的多点触摸的屏幕驱动,以及不运行操作系统前提下的单片机对触摸屏的驱动,取得了良好的效果。

1 研究平台介绍

1.1 ARM11处理器S3C6410X

S3C6410X是基于ARM1176JZFS核的用于手持、移动等终端设备的通用处理器。S3C6410X是一款低功率、高性价比、高性能的用于移动电话和通用处理RS IC处理器。为2.5G和3G通信服务提供了优化的硬件性能,采用64/32位的内部总线架构,融合了AXI、AHB、APB总线。还有很多强大的硬件加速器,包括运动视频处理、音频处理、2D加速、显示处理和缩放。

1.2 电容式多点触摸屏

电容式触摸屏在触摸屏4边均镀上狭长的电极,在导电体内形成一个低电压交流电场。在触摸屏幕时,由于人体电场,手指与导体层间会形成一个耦合电容,4边电极发出的电流会流向触点,而电流强度与手指到电极的距离成正比,位于触摸屏幕后的控制器会计算电流的比例及强弱,准确算出触摸点的位置。电容触摸屏的双玻璃不但能保护导体及感应器,更有效地防止外在环境因素对触摸屏造成影响,就算屏幕沾有污秽、尘埃或油渍,电容式触摸屏依然能准确算出触摸位置。与电阻触摸屏相对比,电容式触摸屏就是支持多点触摸的人机交互方式,普通电阻式触摸屏只能进行单一点的触控。

1.3 ARM工具链

本文针对ARM核的单片机使用了arm none linux gnueabi 4.3.2交叉编译链,实现对ARM支持的二进制文件编译,用以成功编译ARMLinux 2.6.28内核。

1.4 移植条件

对于本文所述内容,所有支持Linux操作系统运行的处理器(包括嵌入式处理器)都可以运行,而所有支持I2C总线协议的单片机也可以在不使用操作系统的前提下将触摸屏作为一种普通输入设备进行使用。

2 研究过程

图1显示了本文中针对嵌入式Linux平台下的驱动软硬件结构体系。

图1 驱动软硬件结构体系

2.1 I2C设备在平台部分声明

CYPRESS 7958多点触摸屏的I2C地址为0x20,在使用前需要在平台设备处进行I2C设备声明,这样才可以使Linux驱动找到其对应的I2C地址进行操作。首先要声明该I2C设备结构体,代码如下:

static struct i2c_board_info i2c_devs1[]__initdata={

{I2C_BOARD_INFO(“cyp ress 7958”,0x20),},/*cypress 7958 touch pannel controller*/

};

然后在static void __init smdk6410_mac hine_init(void)函数中声明该I2C设备:

i2c_register_board_info(1,i2c_devs1,ARRAY_SIZE(i2c_devs1));

2.2 Cypress 7958驱动部分设计

2.2.1 注册和注销模块

首先建立I2C驱动结构体,cypress_7958_driver,代码如下:

static struct i2c_driver cypress_7958_driver={

.probe=cypress_7958_probe,

.remove=cypress_7958_remove,

.id_table=cypress_7958_id,

.driver={

.name=CYPRESS_7958_NAME,

},

};

然后建立_INIT初始化函数与_EXIT注销设备函数:static int __devinit cypress_7958_ts_init(void),static void __exit cypress_7958_exit(void),通过i2c_add_driver与i2c_del_driver函数进行I2C设备的注册与注销。

2.2.2 触摸屏驱动入口函数的设计

由上节中声明的I2C结构体得知,在设备被检查到的时候进入static int synaptics_ts_probe(struct

i2c_client *client,const struct i2c_device_id *id)函数,在该函数中需要进行触摸屏工作模式的初始化,对作为输入设备的触摸屏驱动在Linux平台下的设备名注册,同时初始化触摸事件触发时引起的中断操作。

(1)Cypress 7958模式初始化

作为多点触摸屏幕,Cypress 7958有很多相关的配置寄存器,本文中不再赘述,初始化部分仅需对屏幕是否工作在正常工作模式下进行检查,通过读取0x28地址的寄存器,如果值为0x07,则屏幕工作正常,否则返回错误值。

ret=i2c_smbus_read_byte_data(ts 》client,0x28);

if(ret!=0x07){

printk(KERN_ERR,“Cypress Detect Errorn”);

return ret;

}

(2)输入设备名注册

创建struct input_dev结构体,通过input_allocate_device()函数进行设备名的创建,然后通过set_bit 函数进行输入设备功能声明。因为是多点触摸屏,可以产生EV_SYN,EV_KEY,BTN_TOUCH,BTN_2(多点触摸),EV_ABS等功能,故对之进行声明:

set_bit(EV_SYN,ts 》input_dev 》evbit);

set_bit(EV_KEY,ts 》input_dev 》evbit);

set_bit(BTN_TOUCH,ts 》input_dev 》keybit);

set_bit(BTN_2,ts 》input_dev 》keybit);

set_bit(EV_ABS,ts 》input_dev 》evbit);

然后完成对事件的具体配置:

input_set_abs_params(ts 》input_dev,ABS_X,0,max_y,0,0);

input_set_abs_params(ts 》input_dev,ABS_Y,0,max_x,0,0);

input_set_abs_params(ts 》input_dev,ABS_PRESSURE,0,255,0,0);

input_set_abs_params(ts 》input_dev,ABS_TOOL_WIDTH,0,15,0,0);

input_set_abs_params(ts 》input_dev,ABS_HAT0X,0,max_y,0,0);

input_set_abs_params(ts 》input_dev,ABS_HAT0Y,0,max_x,0,0);

input_set_abs_params(ts 》input_dev,ABS_MT_POSITION_X,0,max_y,0,0);

input_set_abs_params(ts 》input_dev,ABS_MT_POSITION_Y,0,max_x,0,0);

input_set_abs_params(ts 》input_dev,ABS_MT_TOUCH_MAJOR,0,255,0,0);

input_set_abs_params(ts 》input_dev,ABS_MT_WIDTH_MAJOR,0,15,0,0);

最后通过input_register_device(ts 》input_dev)函数完成对该设备名的注册。

(3) 驱动事件产生中断函数初始化

Cypress 7958触摸屏在触摸事件产生时会在IRQ引脚产生一个低电平信号,将该引脚连接到GPN(15)引脚上,同时创建GPIO中断函数:

s3c_gpio_cfgpin(S3C64XX_GPN(15),S3C_GPIO_SFN(2));

client?>irq=gpio_to_irq(S3C64XX_GPN(15));

irqflags=IRQF_TRIGGER_LOW;

然后通过ret=request_irq(client?>irq, cypress_7958_irq_handler, irqflags, client?>name, ts)进行中断函数申请。创建cypress_7958_irq_handler函数:

static irqreturn_t cypress_7958_irq_handler(int irq, void *dev_id){

struct synaptics_ts_data *ts=dev_id;

//int ret=gpio_get_value(S3C64XX_GPN(15));

//printk("%s:ret=%dn",__func__,ret);

disable_irq_nosync(ts?>client?>irq);

queue_work(cypress_7958_wq, &ts?>work);

return IRQ_HAND LED;

}

当驱动事件被触发之后通过queue_work函数进入驱动工作区cypress_7958_wq,进行驱动层对应用层的信息上报。

2.2.3 触摸屏工作区函数设计

触摸屏工作区函数需要完成事件信息获取以及驱动层对应用层的信息上报功能,通过INIT_WORK(&ts?>work, cypress_7958_work_func)函数完成驱动工作区函数的初始化声明,在驱动事件中断产生之后进入工作区函数cypress_7958_work_func。

(1) 触摸屏事件信息获取

Cypress 7958的事件触发信息存储在寄存器中,只需要通过i2c_smbus_read_byte_data函数对其寄存器信息进行读取即可完成其事件信息的获取,也可以通过i2c_transfer完成对其寄存器信息的批量读取:

buf[0]=i2c_smbus_read_byte_data(ts?>client, 0x12);

buf[1]=i2c_smbus_read_byte_data(ts?>client, 0x13);

buf[2]=i2c_smbus_read_byte_data(ts?>client, 0x14);

buf[3]=i2c_smbus_read_byte_data(ts?>client, 0x15);

buf[4]=i2c_smbus_read_byte_data(ts?>client, 0x16);

buf[5]=i2c_smbus_read_byte_data(ts?>client, 0x17);

buf[6]=i2c_smbus_read_byte_data(ts?>client, 0x18);

buf[7]=i2c_smbus_read_byte_data(ts?>client, 0x19);

buf[8]=i2c_smbus_read_byte_data(ts?>client, 0x1a);

buf[9]=i2c_smbus_read_byte_data(ts?>client, 0x1b);

buf[10]=i2c_smbus_read_byte_data(ts?>client, 0x1c);

buf[11]=i2c_smbus_read_byte_data(ts?>client, 0x1d);

buf[12]=i2c_smbus_read_byte_data(ts?>client, 0x1e);

buf[13]=i2c_smbus_read_byte_data(ts?>client, 0x1f);

(2) 触摸屏事件信息上报

通过对buf数组的分析,获取当前事件具体信息,然后通过input_report系列函数进行事件信息的应用层上报:

if(fingermark==2){

input_report_key(ts?>input_dev,ABS_MT_TRACKING_ID,0);

input_report_abs(ts?>input_dev, ABS_MT_TOUCH_MAJOR, f1z);

input_report_abs(ts?>input_dev, ABS_MT_POSITION_X, f1x);

input_report_abs(ts?>input_dev, ABS_MT_POSITION_Y, f1y);

input_mt_sync(ts?>input_dev);

input_report_key(ts?>input_dev,ABS_MT_TRACKING_ID,1);

input_report_abs(ts?>input_dev, ABS_MT_TOUCH_MAJOR, f2z);

input_report_abs(ts?>input_dev, ABS_MT_POSITION_X, f2x); input_report_abs(ts?>input_dev, ABS_MT_POSITION_Y, f2y); input_mt_sync(ts?>input_dev)

input_sync(ts?>input_dev);

}

else if(fingermark==1){

input_report_key(ts?>input_dev,ABS_MT_TRACKING_ID,0); input_report_abs(ts?>input_dev, ABS_MT_TOUCH_MAJOR, f1z); input_report_abs(ts?>input_dev, ABS_MT_POSITION_X, f1x); input_report_abs(ts?>input_dev, ABS_MT_POSITION_Y, f1y); input_mt_sync(ts?>input_dev);

input_sync(ts?>input_dev);

}

else{

input_report_abs(ts?>input_dev, ABS_MT_TOUCH_MAJOR, 0); input_mt_sync(ts?>input_dev);

input_sync(ts?>input_dev);

}

2.3 Cypress 7958驱动在内核中的移植

通过改写Makefile与KCONFIG完成Cypress 7985在内核中的移植,以帮助GCC工具链实现对内核的编译。

2.3.1 Kconfig的修改

在/driver/input/touchscreen/Kconfig中添加如下语句:

config TOUCHSCREEN_CYPRESS

tristate "CYPRESS 7958 touchscreens"

help

Say Y here if you have a CYPRESS 7958 touchscreen connected to your system.

If unsure, say N.

以实现将文件编译选项添加到MAKE MENUCONFIG中。由于触摸屏驱动属于系统基本输入设备驱动,本身调用了I/O中断,不能实现模块编译,只能完全编译进内核。在后续的研发中发现可以使用时钟中断将其模块化编译进内核,但由于时钟中断影响UCLINUX时间片的运行,故弃之不用。

2.3.2 Makefile的修改

然后在/driver/input/touchscreen/Makefile中添加对应编译信息:

obj?$(CONFIG_TOUCHSCREEN_CYPRESS) +=touchscreen_cypress.o

最终在编译选项中将/MAKEFILE中的ARCH选项设置为S3C6410,在make menuconfig 命令之后的选项中选择TOUCHSREEN_CYPRESS选项并选择编译进内核。

结语

本设计以I2C方式对多点触摸屏进行驱动,通过嵌入式Linux将多点触摸输入方式应用到嵌入式应用系统中,丰富了单一的键盘输入与单点输入方式,减小了系统尺寸,提高了系统的可靠性。使得嵌入式系统的输入方式简单易行,同时也增强了嵌入式系统与人之间的通信能力,简化了繁琐的调试。采用三星公司的S3C6410 ARM11处理器,加快了实验的操作步骤。实践证明,该设计驱动多点触摸屏幕的速度以及稳定性满足调试要求。该设计只需对

底层驱动进行简单修改,就可直接应用于单片机以及其他全部可以运行Linux的嵌入式系统中。

嵌入式系统设计与应用

嵌入式系统设计与应用第五章程序设计与分析(1) 西安交通大学电信学院 任鹏举

本章主要内容 Software Design Cycle ●嵌入式软件中的组件(状态机 、循环缓存器、队列) ●编程模型,如数据流和控制图●编译方法介绍 ●根据性能、大小和功耗来分析 和优化程序 ●如何测试程序以验证其正确性

1 嵌入式程序组件 ●状态机(State machine) 用变量来表示内部的状态,根据输入完成状态的转移交通灯控制、CPU design controller ●循环缓冲区(Circular buffer) I/O input buffer ●队列(Queue)

状态机(1) ● 反应系统(reactive system ):响应外部事件的系统。 ●外部输入是间歇到达● 适合使用状态机描述 ● 有限状态机是表示有限个状态以及在这些状态之间的转移和动作等行为的数学模型。 ●Moore 机:● Mealy 机:输出只由当前状态确定 输出依赖于当前状态和输入

状态机(2) 例子:一个简单的座位安全带控制器 idle buzzer seated belted 未入座/-入座/定时器启动 未系安全带且定时器未超时/- 未系安全带/定时器启动系好安全带/-系好安全带/蜂鸣器关闭 定时器超时/蜂鸣器启动 未入座/-未入座/蜂鸣器关闭输入/输出-= 无动作

状态机(3) #define IDLE 0#define SEATED 1#define BELTED 2#define BUZZER 3switch (state) { case IDLE: if (seat) { state = SEATED; timer_on = TRUE; } break; case SEATED: if (belt) state = BELTED; else if (timer) state = BUZZER; break; case BELTED: if (!seat) state = IDLE; else if (!belt) state = SEATED; break; case BUZZER: if (belt) state = BELTED; else if (!seat) state = IDLE; break; } Inputs :seat, belt, timer Outputs: buzzer

设备驱动程序

驱动程序 驱动程序一般指的是设备驱动程序(Device Driver),是一种可以使计算机和设备通信的特殊程序。相当于硬件的接口,操作系统只有通过这个接口,才能控制硬件设备的工作,假如某设备的驱动程序未能正确安装,便不能正常工作。 因此,驱动程序被比作“硬件的灵魂”、“硬件的主宰”、和“硬件和系统之间的桥梁”等。 中文名 驱动程序 外文名 Device Driver 全称 设备驱动程序 性质 可使计算机和设备通信的特殊程序 目录 1定义 2作用 3界定 ?正式版 ?认证版 ?第三方 ?修改版 ?测试版 4驱动程序的开发 ?微软平台 ?Unix平台 5安装顺序 6inf文件 1定义 驱动程序(Device Driver)全称为“设备驱动程序”,是一种可以使计算机和设备通信的特殊程序,可以说相当于硬件的接口,操作系统只能通过这个接口,才能控制硬件设备的工作,假如某设备的驱动程序未能正确安装,便不能正常工作。 惠普显卡驱动安装 正因为这个原因,驱动程序在系统中的所占的地位十分重要,一般当操作系统安装完毕后,首要的便是安装硬件设备的驱动程序。不过,大多数情况下,我们并不需要安装所有硬件设备的驱动程序,例如硬盘、显示器、光驱等就不需要安装驱动程序,而显卡、声卡、扫描仪、摄像头、Modem等就需要安装驱动程序。另外,不同版本的操作系统对硬件设

备的支持也是不同的,一般情况下版本越高所支持的硬件设备也越多,例如笔者使用了Windows XP,装好系统后一个驱动程序也不用安装。 设备驱动程序用来将硬件本身的功能告诉操作系统,完成硬件设备电子信号与操作系统及软件的高级编程语言之间的互相翻译。当操作系统需要使用某个硬件时,比如:让声卡播放音乐,它会先发送相应指令到声卡驱动程序,声卡驱动程序接收到后,马上将其翻译成声卡才能听懂的电子信号命令,从而让声卡播放音乐。 所以简单的说,驱动程序提供了硬件到操作系统的一个接口以及协调二者之间的关系,而因为驱动程序有如此重要的作用,所以人们都称“驱动程序是硬件的灵魂”、“硬件的主宰”,同时驱动程序也被形象的称为“硬件和系统之间的桥梁”。 戴尔电脑驱动盘 驱动程序即添加到操作系统中的一小块代码,其中包含有关硬件设备的信息。有了此信息,计算机就可以与设备进行通信。驱动程序是硬件厂商根据操作系统编写的配置文件,可以说没有驱动程序,计算机中的硬件就无法工作。操作系统不同,硬件的驱动程序也不同,各个硬件厂商为了保证硬件的兼容性及增强硬件的功能会不断地升级驱动程序。如:Nvidia显卡芯片公司平均每个月会升级显卡驱动程序2-3次。驱动程序是硬件的一部分,当你安装新硬件时,驱动程序是一项不可或缺的重要元件。凡是安装一个原本不属于你电脑中的硬件设备时,系统就会要求你安装驱动程序,将新的硬件与电脑系统连接起来。驱动程序扮演沟通的角色,把硬件的功能告诉电脑系统,并且也将系统的指令传达给硬件,让它开始工作。 当你在安装新硬件时总会被要求放入“这种硬件的驱动程序”,很多人这时就开始头痛。不是找不到驱动程序的盘片,就是找不到文件的位置,或是根本不知道什么是驱动程序。比如安装打印机这类的硬件外设,并不是把连接线接上就算完成,如果你这时候开始使用,系统会告诉你,找不到驱动程序。怎么办呢参照说明书也未必就能顺利安装。其实在安装方面还是有一定的惯例与通则可寻的,这些都可以帮你做到无障碍安装。 在Windows系统中,需要安装主板、光驱、显卡、声卡等一套完整的驱动程序。如果你需要外接别的硬件设备,则还要安装相应的驱动程序,如:外接游戏硬件要安装手柄、方向盘、摇杆、跳舞毯等的驱动程序,外接打印机要安装打印机驱动程序,上网或接入局域网要安装网卡、Modem甚至ISDN、ADSL的驱动程序。说了这么多的驱动程序,你是否有一点头痛了。下面就介绍Windows系统中各种的不同硬件设备的驱动程序,希望能让你拨云见日。 在Windows 9x下,驱动程序按照其提供的硬件支持可以分为:声卡驱动程序、显卡驱动程序、鼠标驱动程序、主板驱动程序、网络设备驱动程序、打印机驱动程序、扫描仪驱动程序等等。为什么没有CPU、内存驱动程序呢因为CPU和内存无需驱动程序便可使用,不仅如此,绝大多数键盘、鼠标、硬盘、软驱、显示器和主板上的标准设备都可以用Windows 自带的标准驱动程序来驱动,当然其它特定功能除外。如果你需要在Windows系统中的DOS 模式下使用光驱,那么还需要在DOS模式下安装光驱驱动程序。多数显卡、声卡、网卡等内置扩展卡和打印机、扫描仪、外置Modem等外设都需要安装与设备型号相符的驱动程序,否则无法发挥其部分或全部功能。驱动程序一般可通过三种途径得到,一是购买的硬件附

(完整word版)嵌入式系统设计与应用

嵌入式系统设计与应用 本文由kenneth67贡献 ppt文档可能在W AP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 课程名称:课程名称:嵌入式系统设计与应用 总学时:其中讲课36学时,上机实践环节12 36学时12学时总学时:其中讲课36学时,上机实践环节12学时教材:嵌入式系统设计教程》教材:《嵌入式系统设计教程》电子工业出版社马洪连参考书:参考书:1、《嵌入式系统开发与应用》北航出版社、田泽编著. 嵌入式系统开发与应用》北航出版社、田泽编著. 2、《ARM体系结构与编程》清华大学出版社杜春雷编著ARM体系结构与编程体系结构与编程》嵌入式系统设计与实例开发—ARM ARM与C/OS3、《嵌入式系统设计与实例开发ARM与μC/OS-Ⅱ》清华大学出版社王田苗、魏洪兴编著清华大学出版社王田苗、ARM嵌入式微处理器体系结构嵌入式微处理器体系结构》4、《ARM嵌入式微处理器体系结构》北航出版社、马忠梅等著. 北航出版社、马忠梅等著. 张石.ARM嵌入式系统教程嵌入式系统教程》5、张石.《ARM嵌入式系统教程》.机械工业出版2008年社.2008年9月 1 课程内容 绪论:绪论: 1)学习嵌入式系统的意义2)高校人才嵌入式培养情况嵌入式系统设计(实验课)3)嵌入式系统设计(实验课)内容安排 第1章嵌入式系统概况 1.1 嵌入式系统的定义1.2 嵌入式系统的应用领域及发展趋势1.3 嵌入式系统组成简介 第2章嵌入式系统的基本知识 2.1 2.2 2.3 嵌入式系统的硬件基础嵌入式系统的软件基础ARM微处理器的指令系统和程序设计ARM微处理器的指令系统和程序设计 2 第3章 3.1 3.2 3.3 基于ARM架构的嵌入式微处理器基于ARM架构的嵌入式微处理器ARM 概述嵌入式微处理器的组成常用的三种ARM ARM微处理器介绍常用的三种ARM 微处理器介绍 第4章 4.1 4.2 4.3 4.4 4.5 4.6 嵌入式系统设计 概述嵌入式系统的硬件设计嵌入式系统接口设计嵌入式系统人机交互设备接口嵌入式系统的总线接口和网络接口设计嵌入式系统中常用的无线通信技术 3 第5章嵌入式系统开发环境与相关开发技术 5.1 5.2 5.3 5.4 5.5 6.1 6.2 6.3 6.4 概述嵌入式系统的开发工具嵌入式系统调试技术嵌入式系统开发经验嵌入式系统的Bootloader Bootloader技术嵌入式系统的Bootloader技术μC/OS-II操作系统概述C/OS-II操作系统概述ADS开发环境ARM ADS开发环境C/OS-II操作系统在ARM系统中的移植操作系统在ARM μC/OS-II操作系统在ARM系统

嵌入式系统设计与应用复习资料.docx

嵌入式系统设计与应用复习资料 (一)?单项选择题: 1. 下面哪个系统属于嵌入式系统。 ( 八、“天河一号”计算机系统 C 、联想S10±网木 D ) B 、联想T400笔记本计算机 D 、联想OPhone 手机 2. 软硕件协同设计方法与传统设计方法的最大不同Z 处在于(B )。 A 、软硬件分开描述 C 、协同测试 3. 卜?面关于哈佛结构描述正确的是(A A 、程序存储空间与数据存储空间分离 C 、程序存储空间与数据存储空间合并 4. 下面哪一种工作模式不属于ARM 特权模式 A 、用户模式 B 、系统模式 C 、 5. ARM7TDM1的工作状态包括(D )。 A 、测试状态和运行状态 C 、就绪状态和运行状态 6. USB 接口移动硬盘最合适的传输类型为( A 、控制传输 B 、批量传输 C 、 7. 下而哪一种功能单元不属于I/O 接口电路。(D ) A 、USB 控制器 B 、UART 控制器 C 、以太网控制器 &下面哪个操作系统是恢入式操作系统。(B ) As Red-hat Linux B 、 PCLinux C 、 Ubuntu Linux D 、 SUSE Linux 9. 使用Host-Target 联合开发嵌入式应用,(B )不是必须的。 A 、宿主机 B 、银河麒麟操作系统 C 、目标机 D 、交叉编译器 10. 下面哪个系统不属于嵌入式系统(D )。 A 、MP3播放器 B 、GPS 接收机 C 、“银河玉衡”核心路由器 D 、“犬河一号”计算机系统 11. 在嵌入式系统设计中,嵌入式处理器选型是在进行(C )吋完成。 A 、需求分析 B 、系统集成 C 、体系结构设计 D 、软便件设计 12. 下面哪一类嵌入式处理器最适合于用于工业控制(B )。 A 、嵌入式微处理器 B 、微控制器 C 、DSP D 、以上都不合适 13. 关于ARM 了程序和Thumb 了程序互相调用描述正确的是(B )。 A 、 系统初始化Z 后,ARM 处理器只能工作在一种状态,不存在互相调用。 B 、 只要遵循一定调用的规则,Thumb 子程序和ARM 子程序就可以互相调用。 C 、 只要遵循一定调用的规则,仅能Thumb 子程序调用ARM 子程序。 D 、 只耍遵循一定调用的规则,仅能ARM 子程序调用Thumb 子程序。 14. 关于ARM 处理器的异常的描述不正确的是(C )。 A 、复位属于异常 B 、除数为零会引起异常 B 、软硬件统一描述 D 、协同验证 B 、存储空间与10空间分离 D 、存储空间与10空间合并 (A )0 软中断模式 D 、FTQ 模式 B 、挂起状态和就绪状态 D 、ARM 状态和Thumb 状态 B )0 中断传输 D 、等时传输 D 、LED

Linux设备驱动程序举例

Linux设备驱动程序设计实例2007-03-03 23:09 Linux系统中,设备驱动程序是操作系统内核的重要组成部分,在与硬件设备之间 建立了标准的抽象接口。通过这个接口,用户可以像处理普通文件一样,对硬件设 备进行打开(open)、关闭(close)、读写(read/write)等操作。通过分析和设计设 备驱动程序,可以深入理解Linux系统和进行系统开发。本文通过一个简单的例子 来说明设备驱动程序的设计。 1、程序清单 //MyDev.c 2000年2月7日编写 #ifndef __KERNEL__ #define __KERNEL__//按内核模块编译 #endif #ifndef MODULE #define MODULE//设备驱动程序模块编译 #endif #define DEVICE_NAME "MyDev" #define OPENSPK 1 #define CLOSESPK 2 //必要的头文件 #include //同kernel.h,最基本的内核模块头文件 #include //同module.h,最基本的内核模块头文件 #include //这里包含了进行正确性检查的宏 #include //文件系统所必需的头文件 #include //这里包含了内核空间与用户空间进行数据交换时的函数宏 #include //I/O访问 int my_major=0; //主设备号 static int Device_Open=0; static char Message[]="This is from device driver"; char *Message_Ptr; int my_open(struct inode *inode, struct file *file) {//每当应用程序用open打开设备时,此函数被调用 printk ("\ndevice_open(%p,%p)\n", inode, file); if (Device_Open) return -EBUSY;//同时只能由一个应用程序打开 Device_Open++; MOD_INC_USE_COUNT;//设备打开期间禁止卸载 return 0; } static void my_release(struct inode *inode, struct file *file)

江苏科技大学通信专业嵌入式系统设计及应用_复习大纲

嵌入式系统设计复习 题型: 1、填空,15分左右 2、选择,30分左右 3、简答题40分左右 4、综述15分左右 第一章嵌入式系统概述 提纲: 1、掌握嵌入式系统的定义 2、了解嵌入式系统的一般组成 嵌入式微处理器、外围硬件设备、嵌入式操作系统以及用户的应用程序 (嵌入式系统一般由嵌入式计算机和执行部件组成。其中嵌入式计算机是整个嵌入式系统的核心,主要包括硬件层、中间层、系统软件层以及应用软件层) 知识点: 1、嵌入式系统的定义与特点 定义:是以应用为中心、以计算机技术为基础、软件硬件可裁剪、适应应用系统对功能、可靠性、成本、体积、功耗严格要求的专用计算机系统 特点:软件硬件可裁剪 ①专用性:嵌入式系统具有特定的功能,用于特定的任务; ②低成本:嵌入式系统极其关注成本; ③低功耗:嵌入式系统大都有功耗的要求; ④高实时性OS; ⑤嵌入式系统的运行环境广泛; ⑥嵌入式系统的软件通常要求固态化存储; ⑦嵌入式系统的软件、硬件可靠性要求更高; 2.RISC指令系统的特点 答:指令系统:RISC设计者把上要精力放在那些经常使用的指令上,尽量使它们具有简单高效的特色。对不常用的功能,常通过组合指令来实现。因此,在RISC机器上实现特殊功能时,效率可能较低。但可以利用流水技术和超标量技术加以改进和弥补。 存储器操作:RISC对存储器操作有限制,使控制简单化 程序:RISC汇编语言程序一般需要较大的内存空间,实现特殊功能时程序复杂,不易设计 中断:RISC机器在一条指令执行的适当地方可以响应中断 CPU:由于RISC CPU包含少的单元电路,因而面积小、功耗低 设计周期:RISC微处理器结构简单,布局紧凑,设计周期短,且易于采用最新技术易用性:RISC微处理器结构简单,指令规整,性能容易把握,易学易用 应用范围:由于RISC指令系统的确定与特定的应用领域有关,所以RISC机器更适合于嵌入式应用 3、嵌入式系统由硬件与软件组成,其中软件的组成 答:由实时多任务操作系统、文件系统、图形用户界面接口、网络系统及通用组件模块组成 4、嵌入式系统的运行可靠性指标

linux 触摸屏驱动程序设计

物理与电子工程学院 《嵌入式系统设计》 课程小论文 课题题目linux 触摸屏驱动程序设计系别物理与电子工程学院 年级08级 专业电子科学与技术 学号050208110 学生姓名储旭 日期2011-12-21

目录 第 1 章嵌入式 linux 触摸屏驱动程序设计........................................................................ - 2 - 1.1 课题设计的目的.......................................................................................................... - 2 - 1.2 课题设计要求.............................................................................................................. - 2 - 第二章课题设计平台构建与流程............................................................................................ - 2 - 2.1 嵌入式系统开发平台构建.......................................................................................... - 2 - 2.1.1 cygwin 开发环境............................................................................................ - 2 - 2.1.2 Linux 开发环境.............................................................................................. - 5 - 2.1.3 Embest IDE 开发环境.................................................................................... - 5 - 2.2 触摸屏设计流程.......................................................................................................... - 5 - 2.3 课题设计硬件结构与工作原理.................................................................................. - 6 - 2.3.1 硬件结构概述.................................................................................................. - 6 - 2.3.2 触摸屏工作原理.............................................................................................. - 8 - 第三章 Bootloader 移植与下载.............................................................................................. - 9 - 3.1 Vivi 源代码的安装.................................................................................................... - 9 - 3.2 Vivi 源代码分析...................................................................................................... - 10 - 3.3 Vivi 源代码的编译与下载...................................................................................... - 11 - 第四章 Linux 内核移植与下载.............................................................................................. - 12 - 4.1 Linux 内核源代码的安装........................................................................................ - 12 - 4.2 Linux 内核源代码分析与移植................................................................................ - 14 - 4.3 Linux 内核编译与下载............................................................................................ - 14 - 第五章触摸屏功能模块程序设计与交叉编译...................................................................... - 16 - 5.1 功能模块驱动程序设计............................................................................................ - 16 - 5.2 触摸屏功能模块交叉编译........................................................................................ - 20 - 第六章根文件系统建立与文件系统下载.............................................................................. - 20 - 6.1 Cramfs 根文件系统分析.......................................................................................... - 20 - 6.2 文件系统映像文件生成............................................................................................ - 21 - 6.3 功能模块运行与调试................................................................................................ - 22 - 第七章课题设计总结与体会.................................................................................................. - 26 - 参考文献:................................................................................................................................ - 27 -

一个简单的演示用的Linux字符设备驱动程序.

实现如下的功能: --字符设备驱动程序的结构及驱动程序需要实现的系统调用 --可以使用cat命令或者自编的readtest命令读出"设备"里的内容 --以8139网卡为例,演示了I/O端口和I/O内存的使用 本文中的大部分内容在Linux Device Driver这本书中都可以找到, 这本书是Linux驱动开发者的唯一圣经。 ================================================== ===== 先来看看整个驱动程序的入口,是char8139_init(这个函数 如果不指定MODULE_LICENSE("GPL", 在模块插入内核的 时候会出错,因为将非"GPL"的模块插入内核就沾污了内核的 "GPL"属性。 module_init(char8139_init; module_exit(char8139_exit; MODULE_LICENSE("GPL"; MODULE_AUTHOR("ypixunil"; MODULE_DESCRIPTION("Wierd char device driver for Realtek 8139 NIC"; 接着往下看char8139_init( static int __init char8139_init(void {

int result; PDBG("hello. init.\n"; /* register our char device */ result=register_chrdev(char8139_major, "char8139", &char8139_fops; if(result<0 { PDBG("Cannot allocate major device number!\n"; return result; } /* register_chrdev( will assign a major device number and return if it called * with "major" parameter set to 0 */ if(char8139_major == 0 char8139_major=result; /* allocate some kernel memory we need */ buffer=(unsigned char*(kmalloc(CHAR8139_BUFFER_SIZE, GFP_KERNEL; if(!buffer { PDBG("Cannot allocate memory!\n"; result= -ENOMEM;

iic设备驱动程序.doc

IIC设备驱动程序 IIC设备是一种通过IIC总线连接的设备,由于其简单性,被广泛引用于电子系统中。在现代电子系统中,有很多的IIC设备需要进行相互之间通信 IIC总线是由PHILIPS公司开发的两线式串行总线,用于连接微处理器和外部IIC设备。IIC设备产生于20世纪80年代,最初专用与音频和视频设备,现在在各种电子设备中都广泛应用 IIC总线有两条总线线路,一条是串行数据线(SDA),一条是串行时钟线(SCL)。SDA负责数据传输,SCL负责数据传输的时钟同步。IIC设备通过这两条总线连接到处理器的IIC总线控制器上。一种典型的设备连接如图: 与其他总线相比,IIC总线有很多重要的特点。在选择一种设备来完成特定功能时,这些特点是选择IIC设备的重要依据。 主要特点: 1,每一个连接到总线的设备都可以通过唯一的设备地址单独访问 2,串行的8位双向数据传输,位速率在标准模式下可达到100kb/s;快速模式下可以达到400kb/s;告诉模式下可以达到3.4Mb/s 3,总线长度最长7.6m左右 4,片上滤波器可以增加抗干扰能力,保证数据的完成传输 5,连接到一条IIC总线上的设备数量只受到最大电容400pF的限制 6,它是一个多主机系统,在一条总线上可以同时有多个主机存在,通过冲突检测方式和延时等待防止数据不被破坏。同一时间只能有一个主机占用总线 IIC总线在传输数据的过程中有3种类型的信号:开始信号、结束信号、和应答信号 >>开始信号(S): 当SCL为高电平时,SDA由高电平向低电平跳变,表示将要开始传输数据 >>结束信号(P):当SCL为高电平时,SDA由低电平向高电平跳变,表示结束传输数据 >>响应信号(ACK): 从机接收到8位数据后,在第9个周期,拉低SDA电平,表示已经收到数据。这个信号称为应答信号 开始信号和结束信号的波形如下图:

嵌入式系统设计与应用-西安交通大学教师个人主页

嵌入式系统设计与应用第六章进程和操作系统(3)西安交通大学电信学院孙宏滨 i n S u n i 'a n J i a o t o n g U i v e r s i t y I n t e r n a l T e a c h i n g U s e O n l y

● 我们该如何评估调度策略?● 能满足所有截止时限 ● CPU 利用率---CPU 执行有用工作所占的时间比例● 调度开销---做调度决策所需的时间 i n S u n i 'a n J i a o t o n g U i v e r s i t y I n t e r n a l T e a c h i n g U s e O n l y

● 分配优先级主要有两种方法:● 静态优先级:在整个执行过程中优先级始终不变● 动态优先级:在执行过程中优先级发生变化 i n S u n i 'a n J i a o t o n g U i v e r s i t y I n t e r n a l T e a c h i n g U s e O n l y

● 单调速率调度(Rate-Monotonic Scheduling, RMS ):首先为实时操作系统开发的调度策略之一,直至现在仍然被广泛使用。● RMS 属于静态调度策略。事实证明,固定优 先级的做法在许多情况下都足以有效地调度进程。● RMS 的理论基础是单调速率分析(Rate Monotonic Analysis, RMA )。i n S u n i 'a n J i a o t o n g U i v e r s i t y I n t e r n a l T e a c h i n g U s e O n l y

TI-I2C驱动

TI-I2C驱动 一、与I2C驱动相关的文件分成两部分: 1)应用层接口部分: 程序在svn中的路径如下: 在https://dareglob-971006/svn/eocOS/branches/eocOS_v4/branches/bsp/user/i2c目录下,i2ctest.c文件,提供了lm75a_temp_read()方法,用来读取LM75A设备温度寄存器中的温度信息的功能。 2)内核驱动部分: 内核位于svn中的路径如下: https://dareglob-971006/svn/eocOS/branches/eocOS_v4/branches/bsp/kernel (1)总线驱动: i2c-davinci.c:在内核目录中driver/i2c/busses目录下,适用于TI的I2C总线驱动程序。I2C总线驱动是对I2C硬件体系结构中适配器端的实现。 (2)I2C驱动代码核心: i2c-core.c:在内核目录中driver/i2c/目录下,是I2C代码的核心,用于沟通虚拟文件系统与底层实现。该文件提供了I2C总线驱动和设备驱动的注册、注销方法,I2C通信方法上层的、与具体适配器无关的代码以及探测设备、检测设备地址的上层代码等。 (3)I2C设备驱动: lm75.c:在内核目录中driver/hwmon目录下,是针对LM75A以及其他能兼容的温度传感器的设备驱动。I2C设备驱动是对I2C硬件体系结构中设备端的实现,设备一般挂接在受CPU控制的I2C适配器上,通过I2C适配器与CPU交换数据。二、I2C简要工作流程 1)在总线驱动初始化时候,当通过Linux内核源代码/driver/base/platform.c文件中定义platform_driver_register()函数注册platform_driver结构体时,其中probe指针指向的davinci_i2c_probe()函数将被调用,以初始化适配器硬件。 2)而davinci_i2c_remove()函数则完成与davinci_i2c_probe()相反的功能。用于内存和中断等系统资源的释放和注销。 3)总线驱动i2c-davinci.c中,定义了i2c_davinci_xfer函数。该函数是I2C总线通信传输函数。并且I2C适配器对应的i2c_algorithm结构体实例为i2c_davinci_algo,其中的master_xfer函数指针指向i2c_davinci_xfer函数。 4)当设备被打开,并且用户开始读操作时,会调用设备驱动lm75.c中show_temp()函数,该函数会调用i2c-core.c中的i2c_smbus_xfer()函数,i2c_smbus_xfer()函数会检查适配器对应的i2c_algorithm结构体中是否注册了smbus_xfer函数(目前i2c_davinci_algo中未注册smbus_xfer函数),程序会调用i2c_smbus_xfer_emulated()函数,最终,还是会调用标准的I2C总线通信函数master_xfer(),由于master_xfer 已经指向i2c_davinci_xfer函数,所以会调用总线驱动i2c-davinci.c中的i2c_davinci_xfer函数来读取信息。 三、接口函数 1)应用层接口: Int lm75a_temp_read(float *temp) 读取lm75a 温度 2)内核中:lm75.c文件 static ssize_t show_temp(struct device *dev, struct device_attribute *da,char *buf)

一个简单字符设备驱动实例

如何编写Linux设备驱动程序 Linux是Unix操作系统的一种变种,在Linux下编写驱动程序的原理和思想完全类似于其他的Unix系统,但它dos或window环境下的驱动程序有很大的区别。在Linux环境下设计驱动程序,思想简洁,操作方便,功能也很强大,但是支持函数少,只能依赖kernel中的函数,有些常用的操作要自己来编写,而且调试也不方便。本文是在编写一块多媒体卡编制的驱动程序后的总结,获得了一些经验,愿与Linux fans共享,有不当之处,请予指正。 以下的一些文字主要来源于khg,johnsonm的Write linux device driver,Brennan's Guide to Inline Assembly,The Linux A-Z,还有清华BBS上的有关device driver的一些资料. 这些资料有的已经过时,有的还有一些错误,我依据自己的试验结果进行了修正. 一、Linux device driver 的概念 系统调用是操作系统内核和应用程序之间的接口,设备驱动程序是操作系统内核和机器硬件之间的接口。设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件,应用程序可以象操作普通文件一样对硬件设备进行操作。设备驱动程序是内核的一部分,它完成以下的功能: 1)对设备初始化和释放; 2)把数据从内核传送到硬件和从硬件读取数据; 3)读取应用程序传送给设备文件的数据和回送应用程序请求的数据; 4)检测和处理设备出现的错误。 在Linux操作系统下有两类主要的设备文件类型,一种是字符设备,另一种是块设备。字符设备和块设备的主要区别是:在对字符设备发出读/写请求时,实际的硬件I/O一般就紧接着发生了,块设备则不然,它利用一块系统内存作缓冲区,当用户进程对设备请求能满足用户的要求,就返回请求的数据,如果不能,就调用请求函数来进行实际的I/O操作。块设备是主要针对磁盘等慢速设备设计的,以免耗费过多的CPU时间来等待. 已经提到,用户进程是通过设备文件来与实际的硬件打交道。每个设备文件都都有其文件属性(c/b),表示是字符设备还是块设备。另外每个文件都有两个设备号,第一个是主设备号,标识驱动程序,第二个是从设备号,标识使用同一个设备驱动程序的不同的硬件设备,比如有两个软盘,就可以用从设备号来区分他们。设备文件的主设备号必须与设备驱动程序在登记时申请的主设备号一致,否则用户进程将无法访问到驱动程序. 最后必须提到的是,在用户进程调用驱动程序时,系统进入核心态,这时不再是抢先式调度。也就是说,系统必须在你的驱动程序的子函数返回后才能进行其他的工作。如果你的驱动程序陷入死循环,不幸的是你只有重新启动机器了,然后就是漫长的fsck。 二、实例剖析 我们来写一个最简单的字符设备驱动程序。虽然它什么也不做,但是通过它可以了解Linux的设备驱动程序的工作原理.把下面的C代码输入机器,你就会获得一个真正的设备

嵌入式系统触摸屏驱动程序设计

ARM9嵌入式系统课程设计 --嵌入式系统触摸屏驱动程序设计 班级:通信 学号:11 姓名:*** 指导老师:*** 课程设计时间:2011.12.4---2011.12.8

目录 第一章引言 (1) 1.1 课程设计目的 (1) 第二章课程设计平台构建与流程 (2) 2.1 嵌入式系统开发平台构建 (2) 2.1.1cygwin 开发环境 (2) 2.1.2 Linux 开发环境 (4) 2.1.3 Embest IDE 开发环境 (4) 2.2 课程设计流程 (4) 2.3 课程设计硬件结构与工作原理 (6) 第三章 Bootloader移植与下载 (9) 3.1 Vivi源代码安装 (9) 3.2 Vivi源代码分析与移植 (9) 3.3 Vivi编译与下载 (10) 第四章 Linux内核移植与下载 (11) 4.1 Linux内核源代码安装 (11) 4.2 Linux内核源代码分析与移植 (11) 4.3 Linux内核编译与下载 (12) 第五章触摸屏功能模块程序设计与交叉编译 (14) 5.1 触摸屏模块功能 (14) 5.2 功能模块驱动程序设计 (14) 5.3 功能模块交叉编译 (17) 第六章根文件系统建立与文件系统下载 (18) 6.1 根文件系统分析 (18) 6.2 文件系统映像文件生成 (18) 6.3 文件系统下载 (19) 6.4 功能模块运行与调试 (19) 第七章课程设计总结与体会 (25) 参考文献 (26)

第一章引言 1.1 课程设计目的 1)进一步了解嵌入式开发工具链的构造过程; 2)掌握开发主机与嵌入式系统通信的方法; 3)通过实际程序设计和调试,逐步掌握模块化程序设计方法和调试技术,提高阅读和修改程序的能力; 4)通过完成一个嵌入式Linux系统开发的完整过程,使我们了解开发嵌入式Linux应用系统的全过程,为今后学习打下基础,积累实际操作的经验。 5)基于Linux操作系统,以及Emest III实验箱,利用触摸屏返回触点坐标值及动作信息。 6)坐标及动作的具体显示:触摸笔动作,触点X坐标值,触点Y坐标值。 1.2 课程设计任务与要求 1)理解基于Linux的嵌入式系统交叉开发环境,对嵌入式系统的开发流程有详细的了解; 2)掌握开发工具链的构建方法,能独立进行系统开发操作; 3)掌握Linux的常用命令,在Linux系统下能熟练的使用这些常用命令; 4)熟悉Linux内核的知识以及原理,并掌握Linux内核的编译和烧写; 5)基于Linux操作系统,以及Emest III实验箱,利用触摸屏返回触点坐标值及动作信。坐标及动作的具体显示:触摸笔动作,触点X坐标值,触点Y坐标值。

I2C设备与驱动的关联

I2C设备与驱动的关联 作者:leeoo 联系方式:neu_linuxer@https://www.360docs.net/doc/b215916548.html, 在Linux操作系统中,驱动程序的加载分为两种:内核启动时自动加载和用户手动加载;硬件设备也可以采用两种方式添加到系统中:在系统启动前及系统运行时的热插拨。下面,我们以arm体系结构下的at91处理器中的I2C控制器为例,介绍一下硬件设备及相关的驱动程序是如何绑定及松绑的。 1.平台驱动注册过程 1.1 at91_i2c_init()函数 在文件drivers/i2c/busses/i2c-at91.c中,定义了结构体struct platform_driver并进行了初始化,通过使用module_init()宏进行声明,当模块被加载到内核时会调用 at91_i2c_init()函数。在此函数中,调用了platform_driver_register()函数来完成注册。 static struct platform_driver at91_i2c_driver = { .probe = at91_i2c_probe, .remove = __devexit_p(at91_i2c_remove), .suspend = at91_i2c_suspend, .resume = at91_i2c_resume, .driver = { .name = "at91_i2c", .owner = THIS_MODULE, }, }; static int __init at91_i2c_init(void) { return platform_driver_register(&at91_i2c_driver); } 1.2 platform_driver_register()函数 在文件drivers/base/platform.c中,实现并导出了platform_driver_register()函数,以便使其他模块中的函数可以调用此函数。它在完成简单的包装后,调用了driver_register()函数,完成了从平台实现到Linux内核实现的过渡。 在此,我们需要关注一下platform_match()和platform_drv_probe()函数。 platform_match() 函数确定驱动与设备的关联,而platform_drv_probe()函数会在随后介绍的函数中被调用。 //比较驱动信息中的name与设备信息中的name两者是否一致 static int platform_match(struct device * dev, struct device_driver * drv) { struct platform_device *pdev = container_of(dev, struct platform_device, dev); return (strncmp(pdev->name, drv->name, BUS_ID_SIZE) == 0); } struct bus_type platform_bus_type = { .name = "platform", .dev_attrs = platform_dev_attrs, .match = platform_match, .uevent = platform_uevent, .suspend = platform_suspend, .suspend_late = platform_suspend_late, .resume_early = platform_resume_early, .resume = platform_resume, }; EXPORT_SYMBOL_GPL(platform_bus_type); /** * platform_driver_register * @drv: platform driver structure */ int platform_driver_register(struct platform_driver *drv) { drv->driver.bus = &platform_bus_type;

相关文档
最新文档