实验2 数值数组及运算

实验2 数值数组及运算
实验2 数值数组及运算

实验2 数值数组及运算

一、实验目的

(1)掌握一维数组、二维数组、多项式和高维数组的创建

(2)掌握对数组操作的常用函数

二、实验内容

1.使用冒号运算符创建下面各表达式对应的向量。

a) x=linspace(1,10,5); x=1:2.25:10

b) x=linspace(-5,5); x=-5:0.1:5

c) x=logspace(1,3,3); x=10.^[1;3]

d) x=logspace(1,3,5);

2.利用MATLAB 内置函数计算下面的值。

a) cosh(5) cosh(5)

b) sinh(-2) sinh(-2)

c) (e 5+e -5)/2 (exp(5)+exp(-5))/2

d) erf(1.2) ,其中,ηηd e x erf x

?-=02

)((提示:用help 查一下erf 的调用格式)

erf(1.2)

3.用linspace 函数创建下面表达式的对应向量

a) x=0:10; x=linspace(0,10,11)

b) x=0:0.2:10; x=linspace(0,10,51)

c) x=-12:12; x=linspace(-12,12,25)

d) x=10:-1:1; x=linspace(10,1,10)

4.给定行向量[]78910=x 和列向量????

?

???????=4321y ,至少使用两种不同的方法求行向量z 。其中i i i y x z -=

x=[10 9 8 7]; y=[1 2 3 4]’; z=x-y ’

5.在MATLAB 中输入下列矩阵,再求出他们的乘积矩阵C ,并将C 矩阵的右下角的2×3子矩阵赋给D 矩阵。

???????

?????????=49819323753175323321A ,????????????++=3498143576255332763441i i B

A=[1 2 3 3;2 3 5 7;1 3 5 7;3 2 3 9;1 8 9 4];

B=[1+4i 4 3 6 7;2 3 3 5 5;2 6+7i 5 3 4;1 8 9 4 3];

C=A*B

D=C(4:5,3:5)

6.根据下面两个矩阵,执行下列的矩阵运算指令。

??????????=136782078451220124A ,????

??????=087654321B A=[4 12 20;12 45 78;20 78 136];

B=[1 2 3;4 5 6;7 8 0];

I=[1 0 0;0 1 0;0 0 1];

(1) A+5*B 和A-B+I 分别是多少(I 是单位矩阵)

A+5*B A-B+I

(2) A.*B 和A*B 将分别给出什么结果,他们是否相同,为什么?

A.*B A*B

不带点式矩阵相乘,带点式数组相乘

(3) 得出A.^B ,A\B 和A/B 的结果

A.^B A\B A/B

(4) 找出A 矩阵中大于50到100之间的元素,B 矩阵中大于5的元素 A(find((A>50)&(A<100))) B(find(B>5))

7.若[]NaN Inf Inf NaN A 521-=,运行下面的指令,并解释为什么会出现这样的结果。isnan(A),isfinite(A),isinf(A),any(A),all(A).

8.求出以下矩阵的逆矩阵。

??????????----=627943251A ,????

??????---=)6sin()2sin()7sin()9sin()4sin()3sin()2sin()5sin()1sin(B inv(A) inv(B) inv(取逆)

9.编写MATLAB 语句来手工输入矩阵A ,然后从矩阵A 得到矩阵B

??????????=987654321A ,????

??????=321654987B A=[1 2 3;4 5 6;7 8 9];

B=flipud(A) flipud(第一行与最后一行互换)

10. 矩阵可以看成是行向量和列向量的组合。给定行向量[]321=u 和

[]654=v ,用一条语句求2×3矩阵A 。其中u 是第一行,v 是第二行。

u=[1 2 3];

v=[4 5 6];

A=[u;v]

11. 给定矩阵???

??????=71812511C ,用两行语句实现从C 中引用列向量,得出]18211['=s 和]715['=t 。

C=[11 5;2 1;18 7];

s=C(:,1) t=C(:,2)

12. 使用diag 函数和冒号运算符创建下面矩阵

?????

???????????????????????????????19000

0130000700001)(,1000020000300004)(,4000030000200001)(c b a diag(1:1:4) diag(4:-1:1) diag(1:6:19)

13. 使用diag 函数创建n ×n 对称三对角阵。 ?????

???????------=2100121001210012D a=[2 2 2 2];b=[-1 -1 -1]

D=diag(a)+diag(b,-1)+diag(b,1)

14. 创建如下矩阵

????

??????=001010100E e=eye(3);E=fliplr(e) fliplr(第一列与最后一列互换) 15. 用一条语句创建如下矩阵(提示:使用矩阵相加以及内置命令tril (取

下三角),ones (全一),eye (单位阵)和zeros (全零))triu(取下三角)

???????

?????????----------=1111111111101111001110001A a=2*eye(5)-ones(5) b=tril(a) b(:,5)=1

16. 使用rehape 函数和冒号运算符创建下列矩阵。

??????-----=????

??????=642024531135)(,24181262216104201482)(B b A a reshape(2:2:24,3,4) reshape(-5:1:6,2,6) reshape(按列加)

17. 对下列每个矩阵(a )找出每个矩阵各列中绝对值最大的元素;(b )找出每个矩阵各行中绝对值最大的元素;(c )找出每个矩阵中绝对值最大的元素;(d )找出每个矩阵中绝对值最小的元素;

??????????++-+---+=)47()43()11()13()22()29(C ,??????????++-+---+=)47()43()11()13()22()29(2222D ,???????

?????????----=474311132229E C=A+B D=A+B.*abs(B) E=A./B

注意:C ,D 和E 矩阵由下列矩阵运算得到:??????????--=731329A 和????

??????--=441122B abs(取绝对值)max(最大)min(最小)

先求C :

1)c=C(:,1) max(real(c))

d=C(:,2) max(real(d))

2)e=C(1,:) max(real(e))

f=C(2,:) max(real(f))

求D :

1)c=D(:,1) max(real(c))

d=D(:,2) max(real(d))

2)e=D(1,:) max(real(e))

f=D(2,:) max(real(f))

求E :

1)c=E(:,1) max(real(c))

d=E(:,2) max(real(d))

2)e=E(1,:) max(real(e))

f=E(2,:) max(real(f))

18. 思考下面的程序,并解释为什么第一条语句A*B 是合法的,而第二句不合法,这个错误是由那条语句造成的。

>>A=ones(3,2);B=2*ones(2,3);A*B;

>>A(2,3)=2;

>>A*B;

???Error using = => *

Inner Matrix dimension must agree.

19. 解释下列程序中使用.*数组运算符造成的错误。如果不使用循环创建向量w ,怎样可以使得)(*)()(i v i u i w =。

>> u=0:3;v=(3:-1:0)’;

>>w=u.*v;

???Error using = => *

Inner Matrix dimension must agree.

20. 为什么下列程序中),(k k A 和),(i i A 表达式的出错信息各不相同? >> clear all

>> A=ones(3,3);

>> A(k,k)

??? Undefined function or variable ‘k ’.

>>A(i,i)

??? Index exceeds matrix dimensions.

21. 定义多项式6251223++-x x x ,并计算x =2时多项式的值

poly2sym(方程组) a=[1 -12 25 6]; p=poly2sym(a) x(2)

22. 求下面矩阵的特征多项式

?????

???????------=2100121001210012D D=[2 -1 0 0;-1 2 -1 0;0 -1 2 -1;0 0 -1 2];

PA=poly(D)

PPA=poly2str(PA,’s ’)

23.已知一多项式的零点为{2,-3,1+2i ,1-2i ,0,-6},求这个多项式的系数(从高到底排列),并计算多项式在点x =0.8,-1.2时的值

R=[-0.5 -0.3+0.4i -0.3-0.4i];

P=poly(R)

PR=real(P)

PPR=poly2str(PR,’x ’)

x(0.8)

x(-1.2)

24.创建2×2×3的三维矩阵,让第一页上的元素全为1,第二页上的元素全为2,第三页上的元素全为3。

matlab2011教程之二数值数组及向量化运算

第 2 章 数值数组及向量化运算本章集中讲述两个数据类型(数值数组和逻辑数组)、两个特有概念变量(非数和空)、 以及MATLAB的数组运算和向量化编程。值得指出:本章内容是读者今后编写各种科学计 算M码的基本构件。 数值数组(Numeric Array)是MATLAB最重要的数据类型数组。在各种维度的数值数 组中,二维数组为最基本、最常用。本章对二维数组创建、标识、寻访、扩充、收缩等方 法进行了详尽细腻的描述,并进而将这些方法推广到高维数组。 本章讲述的逻辑数组主要产生于逻辑运算和关系运算。它是MATLAB 援引寻访数据、 构成数据流控制条件、、编写复杂程序所不可或缺的重要构件。 数组运算是MATLAB区别于其它程序语言的重要特征,是MATLAB绝大多数函数指 令、Simulink许多库模块的本性,是向量化编程的基础。为此,本章专辟第2.2节用于阐述MATLAB的这一重要特征。 在此提醒读者注意:随书光盘mbook目录上保存着本章相应的电子文档“ch02_数值数 组及向量化运算.doc”。该文档中有本章全部算例的可执行指令,以及相应的运算结果。 2.1数值数组的创建和寻访 2.1.1一维数组的创建 1递增/减型一维数组的创建 (1)“冒号”生成法 (2)线性(或对数)定点法 2其他类型一维数组的创建 (1)逐个元素输入法 (2)运用MATLAB函数生成法 【例2.1-1】一维数组的常用创建方法举例。 a1=1:6 a2=0:pi/4:pi a3=1:-0.1:0 a1 = 1 2 3 4 5 6 a2 = 0 0.7854 1.5708 2.3562 3.1416 a3 = Columns 1 through 8 1.0000 0.9000 0.8000 0.7000 0.6000 0.5000 0.4000 0.3000 Columns 9 through 11 0.2000 0.1000 0 b1=linspace(0,pi,4) b2=logspace(0,3,4) b1 = 0 1.0472 2.0944 3.1416 b2 =

数值计算实验课题目

数值实验课试题 本次数值实验课结课作业,请按题目要求内容写一篇文章。按题目要求 人数自由组合,每组所选题目不得相同(有特别注明的题目除外)。试题如下: 1)解线性方程组的Gauss 消去法和列主元Gauss 消去法(2人)/*张思珍,巩艳华*/ 用C 语言将不选主元和列主元Gauss 消去法编写成通用的子程序,然后用你编写的程序求解下列84阶的方程组 ???? ?????? ? ??=??????????? ????????????? ? ?1415151515768 168 168 168 1681684 8382321 x x x x x x 参考书目: 1.《计算机数值方法》,施吉林、刘淑珍、陈桂芝编 2.《数值线性代数》,徐树方、高立、张平文编 3.《数值分析简明教程》,王能超编 2)解线性方程组的平方根法(4人)/*朱春成、黄锐奇、张重威、章杰*/ 用C 语言将平方根法和改进的平方根法编写成通用的子程序,然后用你编写的程序求解对称正定方程组b Ax =,其中 (1)b 随机的选取,系数矩阵为100阶矩阵 ?????? ???? ? ? ?101 1101 1101 1101 1101110 ; (2)系数矩阵为40阶的Hilbert 矩阵,即系数矩阵A 的第i 行第j 列元素为 1 1-+= j i a ij ,向量b 的第i 个分量为∑=-+ = n j i j i b 1 1 1. 参考书目: 1.《计算机数值方法》,施吉林、刘淑珍、陈桂芝编 2.《数值线性代数》,徐树方、高立、张平文编

3.《数值分析简明教程》,王能超编 3)三对角线方程组的追赶法(3人)/*黄佳礼、唐伟、韦锡倍*/ 用C 语言将三对角线方程组的追赶法法编写成通用的子程序,然后用你编写的程序求解如下84阶三对角线方程组 ???? ?????? ? ??=??????????? ????????????? ? ?1415151515768 168 168 168 16816 84 8382321 x x x x x x 参考书目: 1.《计算机数值方法》,施吉林、刘淑珍、陈桂芝编 2.《数值分析简明教程》,王能超编 4)线性方程组的Jacobi 迭代法(3人)/*周桂宇、杨飞、李文军*/ 用C 语言将Jacobi 迭代法编写成独立的子程序,并用此求解下列方程组, 精确到小数点后5位 ???? ? ??=????? ??????? ? ?-149012 2111221 3 2 1 x x x 参考书目: 1.《计算机数值方法》,施吉林、刘淑珍、陈桂芝编 2.《数值线性代数》,徐树方、高立、张平文编 3.《数值分析简明教程》,王能超编 5)线性方程组的Gauss-Seidel 迭代法(3人)/*张玉超、范守平、周红春*/ 用C 语言将Gauss-Seidel 迭代法编写成独立的子程序,并用此求解下列方程组,精确到小数点后5位 ???? ? ??=????? ??????? ? ?--39721 1111112 3 2 1 x x x 参考书目: 1.《计算机数值方法》,施吉林、刘淑珍、陈桂芝编 2.《数值线性代数》,徐树方、高立、张平文编 3.《数值分析简明教程》,王能超编 6)解线性方程组的最速下降法法(2人)/*赵育辉、阿热孜古丽*/ 用C 语言将最速下降法编写成通用的子程序,然后用你编写的程序求解对称

数值分析实验报告1

实验一误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 其中ε(1.1)和(1.221,,,a a 的输出b ”和“poly ε。 (1(2 (3)写成展 关于α solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。 实验过程: 程序: a=poly(1:20); rr=roots(a); forn=2:21 n form=1:9 ess=10^(-6-m);

ve=zeros(1,21); ve(n)=ess; r=roots(a+ve); -6-m s=max(abs(r-rr)) end end 利用符号函数:(思考题一)a=poly(1:20); y=poly2sym(a); rr=solve(y) n

很容易的得出对一个多次的代数多项式的其中某一项进行很小的扰动,对其多项式的根会有一定的扰动的,所以对于这类病态问题可以借助于MATLAB来进行问题的分析。 学号:06450210 姓名:万轩 实验二插值法

曲线拟合的数值计算方法实验

曲线拟合的数值计算方法实验 【摘要】实际工作中,变量间未必都有线性关系,如服药后血药浓度与时间的关系;疾病疗效与疗程长短的关系;毒物剂量与致死率的关系等常呈曲线关系。曲线拟合(curve fitting)是指选择适当的曲线类型来拟合观测数据,并用拟合的曲线方程分析两变量间的关系。曲线直线化是曲线拟合的重要手段之一。对于某些非线性的资料可以通过简单的变量变换使之直线化,这样就可以按最小二乘法原理求出变换后变量的直线方程,在实际工作中常利用此直线方程绘制资料的标准工作曲线,同时根据需要可将此直线方程还原为曲线方程,实现对资料的曲线拟合。常用的曲线拟合有最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束。 关键词曲线拟合、最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束 一、实验目的 1.掌握曲线拟合方式及其常用函数指数函数、幂函数、对数函数的拟合。 2.掌握最小二乘法、线性插值、三次样条插值、端点约束等。 3.掌握实现曲线拟合的编程技巧。 二、实验原理 1.曲线拟合 曲线拟合是平面上离散点组所表示的坐标之间的函数关系的一种数据处理方法。用解析表达式逼近离散数据的一种方法。在科学实验或社会活动中,通过 实验或观测得到量x与y的一组数据对(X i ,Y i )(i=1,2,...m),其中各X i 是彼此不同的。人们希望用一类与数据的背景材料规律相适应的解析表达式,y=f(x,c)来反映量x与y之间的依赖关系,即在一定意义下“最佳”地逼近或 拟合已知数据。f(x,c)常称作拟合模型,式中c=(c 1,c 2 ,…c n )是一些待定参 数。当c在f中线性出现时,称为线性模型,否则称为非线性模型。有许多衡量拟合优度的标准,最常用的一种做法是选择参数c使得拟合模型与实际观测值在

太原理工大学数值计算方法实验报告

本科实验报告 课程名称:计算机数值方法 实验项目:方程求根、线性方程组的直接解 法、线性方程组的迭代解法、代数插值和最 小二乘拟合多项式 实验地点:行勉楼 专业班级: ******** 学号: ********* 学生姓名: ******** 指导教师:李誌,崔冬华 2016年 4 月 8 日

y = x*x*x + 4 * x*x - 10; return y; } float Calculate(float a,float b) { c = (a + b) / 2; n++; if (GetY(c) == 0 || ((b - a) / 2) < 0.000005) { cout << c <<"为方程的解"<< endl; return 0; } if (GetY(a)*GetY(c) < 0) { return Calculate(a,c); } if (GetY(c)*GetY(b)< 0) { return Calculate(c,b); } } }; int main() { cout << "方程组为:f(x)=x^3+4x^2-10=0" << endl; float a, b; Text text; text.Getab(); a = text.a; b = text.b; text.Calculate(a, b); return 0; } 2.割线法: // 方程求根(割线法).cpp : 定义控制台应用程序的入口点。// #include "stdafx.h" #include"iostream"

心得体会 使用不同的方法,可以不同程度的求得方程的解,通过二分法计算的程序实现更加了解二分法的特点,二分法过程简单,程序容易实现,但该方法收敛比较慢一般用于求根的初始近似值,不同的方法速度不同。面对一个复杂的问题,要学会简化处理步骤,分步骤一点一点的循序处理,只有这样,才能高效的解决一个复杂问题。

习题2-数值数组及向量化运算

习题2 1.请读者先运行以下指令 a=0;b=pi; t1=a:pi/9:pi; t2=linspace(a,b,10); T=t1*t2'; F=find(T<0); 然后,请回答变量a、t1、T、F的维度、规模、长度分别是多少? t1完全等于t2吗?为什么? 1)产生数据 a=0;b=pi; t1=a:pi/9:pi; t2=linspace(a,b,10); T=t1*t2'; F=find(T<0); 2)罗列各变量的特征 Na=ndims(a);Nt1=ndims(t1);NT=ndims(T);NF=ndims(F) ; Sa=size(a);St1=size(t1);ST=size(T);SF=size(F); La=length(a);Lt1=length(t1);LT=length(T);LF=lengt h(F); fprintf('数组%7s%8s%8s%8s\n','a','t1','T','F') fprintf('维度数%5d%8d%8d%8d\n',Na,Nt1,NT,NF) fprintf('规模%5d%3d%5d%3d%5d%3d%5d%3d\n',Sa,St1,ST,SF) fprintf('长度%7d%8d%8d%8d\n',La,Lt1,LT,LF) 数组 a t1 T F 维度数2 2 2 2 规模 1 1 1 10 1 1 0 0 长度 1 10 1 0 3)判断数组相等 P=t1==t2 %对不同浮点计算方法获得的数进行比较的本指令,不推荐使用 E=max(abs(t1-t2)) P =

1 1 1 1 1 1 0 1 1 1 E = 4.4409e-16 可见2个数组中的元素不完全相等。应记住:这种现象在数值计算中常常会遇到;并且,若想检验同一个量的不同方法、途径算得的结果,应尽量不用“==”符判断,而应借助“两个量间的(相对)误差水平是否小于某个容差”进行判断。比如 pp=abs(t1-t2)<1e-14 pp = 1 1 1 1 1 1 1 1 1 1 2.对于指令A=reshape(1:18,3,6)产生的数组 A = 1 4 7 10 13 16 2 5 8 11 14 17 3 6 9 12 15 18 先请你用一条指令,使A数组中取值为2、4、8、16的元素都被重新赋值为NaN。然后,再请你用一条指令,把A数组的第4、5两列元素都被重新赋值为Inf。 1)产生数组A A=reshape(1:18,3,6) A = 1 4 7 10 13 16 2 5 8 11 14 17 3 6 9 12 15 18 2)利用单序号实现对2、4、8、16的元素的重新赋值 A([2,4,8,16])=NaN %这些位置元素的重赋值不可能采用“全下标”一次性实现 A = 1 NaN 7 10 13 NaN NaN 5 NaN 11 14 17 3 6 9 12 15 18 3)利用全下标和冒号对第4、5列元素进行重赋值 A(:,[4,5])=Inf A = 1 NaN 7 InfInfNaN

数值计算实验报告

(此文档为word格式,下载后您可任意编辑修改!) 2012级6班###(学号)计算机数值方法 实验报告成绩册 姓名:宋元台 学号: 成绩:

数值计算方法与算法实验报告 学期: 2014 至 2015 第 1 学期 2014年 12月1日课程名称: 数值计算方法与算法专业:信息与计算科学班级 12级5班 实验编号: 1实验项目Neton插值多项式指导教师:孙峪怀 姓名:宋元台学号:实验成绩: 一、实验目的及要求 实验目的: 掌握Newton插值多项式的算法,理解Newton插值多项式构造过程中基函数的继承特点,掌握差商表的计算特点。 实验要求: 1. 给出Newton插值算法 2. 用C语言实现算法 二、实验内容 三、实验步骤(该部分不够填写.请填写附页)

1.算法分析: 下面用伪码描述Newton插值多项式的算法: Step1 输入插值节点数n,插值点序列{x(i),f(i)},i=1,2,……,n,要计算的插值点x. Step2 形成差商表 for i=0 to n for j=n to i f(j)=((f(j)-f(j-1)(x(j)-x(j-1-i)); Step3 置初始值temp=1,newton=f(0) Step4 for i=1 to n temp=(x-x(i-1))*temp*由temp(k)=(x-x(k-1))*temp(k-1)形成 (x-x(0).....(x-x(i-1)* Newton=newton+temp*f(i); Step5 输出f(x)的近似数值newton(x)=newton. 2.用C语言实现算法的程序代码 #includeMAX_N) { printf("the input n is larger than MAX_N,please redefine the MAX_N.\n"); return 1; } if(n<=0) { printf("please input a number between 1 and %d.\n",MAX_N); return 1; } printf("now input the (x_i,y_i)i=0,...%d\n",n); for(i=0;i<=n;i++) { printf("please input x(%d) y(%d)\n",i,i);

实验二 数组及其运算

实验二 数组及其运算 一、实验目的 1.熟练矩阵、数组的创建; 2. 熟悉Matlab 的基本矩阵操作,运算符和字符串处理; 3. 熟悉矩阵的逻辑运算和关系运算; 二、实验设备 1.方正电脑 2.MATLAB 软件 三、实验内容 1.在指令窗中输入:x=1:0.2:2和y=2:-0.2:1,观察所生成的数组。 x = 1.0000 1.2000 1.4000 1.6000 1.8000 2.0000 y = 2.0000 1.8000 1.6000 1.4000 1.2000 1.0000 2.要求在[]π20上产生50个等距采样数据的一维数组,试用两种不同的指令实现。 X=linspace(0,2*pi,50) X=0:(2*pi)/49:(2*pi) 2.设x=-74o ,y=27 o ,22 的值。 x=-74/180*pi; y=27/180*pi; d=sin(x^2+y^2)/(sqrt(tan(abs(x+y)))+pi) d = 0.2273 3. 当a 取-3.0,-2.9,-2.8,…,2.8,2.9,3.0时,求0.3sin(0.3)a e a -+在各点的函 数值。 a=-3.0:0.1:3.0; y=exp(-0.3*a).*sin(a+0.3) Columns 1 through 10

-1.0512 -1.2305 -1.3863 -1.5184 -1.6267 -1.7116 -1.7734 -1.8129 -1.8309 -1.8285 Columns 11 through 20 -1.8069 -1.7675 -1.7117 -1.6411 -1.5572 -1.4617 -1.3564 -1.2428 -1.1228 -0.9978 Columns 21 through 30 -0.8696 -0.7397 -0.6095 -0.4804 -0.3538 -0.2308 -0.1126 0.0000 0.1060 0.2047 Columns 31 through 40 0.2955 0.3779 0.4515 0.5160 0.5714 0.6174 0.6543 0.6821 0.7010 0.7115 Columns 41 through 50 0.7138 0.7085 0.6959 0.6768 0.6516 0.6210 0.5856 0.5460 0.5030 0.4572 Columns 51 through 60 0.4093 0.3597 0.3093 0.2586 0.2080 0.1582 0.1097 0.0628 0.0180 -0.0245 Column 61 -0.0641 4. 已知 ??????=??????=5051 3501 ,05314320B A 求下列表达式的值: (1) A&B ans = 0 0 1 1 1 1 0 0 (2) A|B ans = 1 1 1 1 1 1 1 1 (3) ~A ans = 1 0 0 0 0 0 0 1 (4) A==B

数值分析实验报告1

实验一 误差分析 实验(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对()中19x 的系数作一个小的扰动。我们希望比较()和()根的差别,从而分析方程()的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b =

的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve = ))20:1((ve poly roots + 上述简单的Matlab 程序便得到()的全部根,程序中的“ess ”即是()中的ε。 实验要求: (1)选择充分小的ess ,反复进行上述实验,记录结果的变化并分析它们。 如果扰动项的系数ε很小,我们自然感觉()和()的解应当相差很小。计算中你有什么出乎意料的发现表明有些解关于如此的扰动敏感性如何 (2)将方程()中的扰动项改成18x ε或其它形式,实验中又有怎样的现象 出现 (3)(选作部分)请从理论上分析产生这一问题的根源。注意我们可以将 方程()写成展开的形式, ) 3.1(0 ),(1920=+-= x x x p αα 同时将方程的解x 看成是系数α的函数,考察方程的某个解关于α的扰动是否敏感,与研究它关于α的导数的大小有何关系为什么你发现了什么现象,哪些根关于α的变化更敏感 思考题一:(上述实验的改进) 在上述实验中我们会发现用roots 函数求解多项式方程的精度不高,为此你可以考虑用符号函数solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。

(完整版)实验2基本数据类型与数组

民族学院实验报告 计算机科学系级班指导教师 报告人20 年月日成绩 课程 名称JAVA语言程序设计 实验名称实验二基本数据类型与数组实验 目的 1.掌握基本数据类型及其相互之间的转换 2.掌握JAVA中数组的使用 实验仪器 和器材 具有JDK环境的计算机一台 实验内容 和要求 一、输出希腊字母表 1.请按模板要求,将【代码】替换为Java程序代码,运行该程序时在命令窗 口中输出希腊字母表。其运行效果如图2.1所示。 图2.1 输出希腊字母表 GreekAlphabet.java public class GreekAlphabet { public static void main(String[] args) { int startPosition=0,endPosition=0; char cStart='α',cEnd='ω'; startPosition=(int)cStart; //cStart做int型数据转换,并将结果赋值给startPosition endPosition=(int)cEnd; //cEnd做int型数据转换,并将结果赋值给EndPosition System.out.println("希腊字母\'α\'在Unicode表中的顺序位置:"+(int)cStart); System.out.println("希腊字母表:"); for (int i=startPosition;i<=endPosition;i++){ char c='\0'; cStart=(char)i; //i做char型转换运算,并将结果赋值给c System.out.print(" "+c); if ((i-startPosition+1)%10==0) System.out.println(); } } } 2.实验后练习 (1)将一个double型数据直接赋值给float型变量,程序编译时提示怎样的 错误? 答:程序提示的内容为:“可能损失精度”。 (2)在应用程序的main方法中增加语句:

数值计算方法实验5

实验报告 学院(系)名称: 主程序部分列选主元部分

实验结果: 一.列主元消去法 输入各个数据,最终使用列选主元法,得到结果为:x1=x2=x3=1二.高斯-赛德尔迭代法 输入各个数据,输出每一步迭代数据,最终结果为:x1=0.285716,附录(源程序及运行结果) 一.列主元高斯消去法 #include #include void print(double a[3][3],int n,double b[3]){ printf("输出矩阵:\n"); for(int i=0;ifabs(d)){ d=a[i][k]; l=i; } i++; } printf("选出主元:%lf\n",d); if(d==0) printf("矩阵奇异!\n"); else if(l!=k){ for(int j=k;j

(完整版)数值计算方法上机实习题答案

1. 设?+=1 05dx x x I n n , (1) 由递推公式n I I n n 1 51+-=-,从0I 的几个近似值出发,计算20I ; 解:易得:0I =ln6-ln5=0.1823, 程序为: I=0.182; for n=1:20 I=(-5)*I+1/n; end I 输出结果为:20I = -3.0666e+010 (2) 粗糙估计20I ,用n I I n n 51 5111+- =--,计算0I ; 因为 0095.05 6 0079.01020 201 020 ≈<<≈??dx x I dx x 所以取0087.0)0095.00079.0(2 1 20=+= I 程序为:I=0.0087; for n=1:20 I=(-1/5)*I+1/(5*n); end I 0I = 0.0083 (3) 分析结果的可靠性及产生此现象的原因(重点分析原因)。 首先分析两种递推式的误差;设第一递推式中开始时的误差为000I I E '-=,递推过程的舍入误差不计。并记n n n I I E '-=,则有01)5(5E E E n n n -==-=-Λ。因为=20E 20020)5(I E >>-,所此递推式不可靠。而在第二种递推式中n n E E E )5 1(5110-==-=Λ,误差在缩小, 所以此递推式是可靠的。出现以上运行结果的主要原因是在构造递推式过程中,考虑误差是否得到控制, 即算法是否数值稳定。 2. 求方程0210=-+x e x 的近似根,要求4 1105-+?<-k k x x ,并比较计算量。 (1) 在[0,1]上用二分法; 程序:a=0;b=1.0; while abs(b-a)>5*1e-4 c=(b+a)/2;

(完整版)哈工大-数值分析上机实验报告

实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b)<0,且f(x)在[a,b]内仅有一个实根x*,取区间中点c,若,则c恰为其根,否则根据f(a)f(c)<0是否成立判断根在区间[a,c]和[c,b]中的哪一个,从而得出新区间,仍称为[a,b]。重复运行计算,直至满足精度为止。这就是二分法的计算思想。

Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式 产生逼近解x*的迭代数列{x k},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 其中r为要求的方程的根的重数,这就是改进的Newton法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x); y=-x*x-sin(x); 写成如上形式即可,下面给出主程序。 二分法源程序: clear %%%给定求解区间 b=1.5; a=0;

%%%误差 R=1; k=0;%迭代次数初值 while (R>5e-6) ; c=(a+b)/2; if f12(a)*f12(c)>0; a=c; else b=c; end R=b-a;%求出误差 k=k+1; end x=c%给出解 Newton法及改进的Newton法源程序:clear %%%% 输入函数 f=input('请输入需要求解函数>>','s') %%%求解f(x)的导数 df=diff(f);

数值分析实验报告总结

数值分析实验报告总结 随着电子计算机的普及与发展,科学计算已成为现代科 学的重要组成部分,因而数值计算方法的内容也愈来愈广泛和丰富。通过本学期的学习,主要掌握了一些数值方法的基本原理、具体算法,并通过编程在计算机上来实现这些算法。 算法算法是指由基本算术运算及运算顺序的规定构成的完 整的解题步骤。算法可以使用框图、算法语言、数学语言、自然语言来进行描述。具有的特征:正确性、有穷性、适用范围广、运算工作量少、使用资源少、逻辑结构简单、便于实现、计算结果可靠。 误差 计算机的计算结果通常是近似的,因此算法必有误差, 并且应能估计误差。误差是指近似值与真正值之差。绝对误差是指近似值与真正值之差或差的绝对值;相对误差:是指近似值与真正值之比或比的绝对值。误差来源见表 第三章泛函分析泛函分析概要 泛函分析是研究“函数的函数”、函数空间和它们之间 变换的一门较新的数学分支,隶属分析数学。它以各种学科

如果 a 是相容范数,且任何满足 为具体背景,在集合的基础上,把客观世界中的研究对象抽 范数 范数,是具有“长度”概念的函数。在线性代数、泛函 分析及相关的数学领域,泛函是一个函数,其为矢量空间内 的所有矢量赋予非零的正长度或大小。这里以 Cn 空间为例, Rn 空间类似。最常用的范数就是 P-范数。那么 当P 取1, 2 ,s 的时候分别是以下几种最简单的情形: 其中2-范数就是通常意义下的距离。 对于这些范数有以下不等式: 1 < n1/2 另外,若p 和q 是赫德尔共轭指标,即 1/p+1/q=1 么有赫德尔不等式: II = ||xH*y| 当p=q=2时就是柯西-许瓦兹不等式 般来讲矩阵范数除了正定性,齐次性和三角不等式之 矩阵范数通常也称为相容范数。 象为元素和空间。女口:距离空间,赋范线性空间, 内积空间。 1-范数: 1= x1 + x2 +?+ xn 2-范数: x 2=1/2 8 -范数: 8 =max oo ,那 外,还规定其必须满足相容性: 所以

数值分析实验报告1

实验一 误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对(1.1)中19x 的系数作一个小的扰动。我们希望比较(1.1)和(1.2)根的差别,从而分析方程(1.1)的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b = 的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve =

数值分析实验报告

实验五 解线性方程组的直接方法 实验5.1 (主元的选取与算法的稳定性) 问题提出:Gauss 消去法是我们在线性代数中已经熟悉的。但由于计算机的数值运算是在一个有限的浮点数集合上进行的,如何才能确保Gauss 消去法作为数值算法的稳定性呢?Gauss 消去法从理论算法到数值算法,其关键是主元的选择。主元的选择从数学理论上看起来平凡,它却是数值分析中十分典型的问题。 实验内容:考虑线性方程组 编制一个能自动选取主元,又能手动选取主元的求解线性方程组的Gauss 消去过程。 实验要求: (1)取矩阵?? ? ?? ?? ?????????=????????????????=1415157,6816816816 b A ,则方程有解T x )1,,1,1(* =。取n=10计算矩阵的 条件数。让程序自动选取主元,结果如何? (2)现选择程序中手动选取主元的功能。每步消去过程总选取按模最小或按模尽可能小的元素作为主元,观察并记录计算结果。若每步消去过程总选取按模最大的元素作为主元,结果又如何?分析实验的结果。 (3)取矩阵阶数n=20或者更大,重复上述实验过程,观察记录并分析不同的问题及消去过程中选择不同的主元时计算结果的差异,说明主元素的选取在消去过程中的作用。 (4)选取其他你感兴趣的问题或者随机生成矩阵,计算其条件数。重复上述实验,观察记录并分析实验结果。 思考题一:(Vadermonde 矩阵)设 ?? ??????????????????????=? ? ? ?????????????=∑∑∑∑====n i i n n i i n i i n i i n n n n n n n x x x x b x x x x x x x x x x x x A 0020 10022222121102001111 ,, 其中,n k k x k ,,1,0,1.01 =+=, (1)对n=2,5,8,计算A 的条件数;随n 增大,矩阵性态如何变化? (2)对n=5,解方程组Ax=b ;设A 的最后一个元素有扰动10-4,再求解Ax=b (3)计算(2)扰动相对误差与解的相对偏差,分析它们与条件数的关系。 (4)你能由此解释为什么不用插值函数存在定理直接求插值函数而要用拉格朗日或牛顿插值法的原因吗? 相关MATLAB 函数提示: zeros(m,n) 生成m 行,n 列的零矩阵 ones(m,n) 生成m 行,n 列的元素全为1的矩阵 eye(n) 生成n 阶单位矩阵 rand(m,n) 生成m 行,n 列(0,1)上均匀分布的随机矩阵 diag(x) 返回由向量x 的元素构成的对角矩阵 tril(A) 提取矩阵A 的下三角部分生成下三角矩阵

数值数组及向量化运算

第 3 章 数值数组及向量化运算 MATLAB 的核心内容:数值数组和数组运算 ● 二维数值数组的创建和寻访 ● 数组运算和向量化编程 ● 实现数组运算的基本函数 ● 常用标准数组生成函数和数组构作技法 ● 非数NaN 、“空”数组概念和应用 ● 关系和逻辑操作 3.1 数值计算的特点和地位 符号计算的局限性:有很多问题1)无法解,2)求解时间过长 数值计算:适用范围广,能处理各种复杂的函数关系,计算速度快,容量大。 【例3.1-1】已知t t t f cos )(2=,求dt t f x s x ?= 0 )()(。 (1)符号计算解法 syms t x ft=t^2*cos(t) sx=int(ft,t,0,x) ezplot(sx,0,5) hold on dt=0.05; t=0:dt:5; Ft=t.^2.*cos(t); Sx=dt*cumtrapz (Ft); % 小梯形面积的累加求Ft 曲线下的面积,由一个个宽度为dt 的小梯形面积累加得到的 t(end-4:end) % end 指示最后一个元素的位置 %Sx(end-4:end) %plot(t,Sx,'.k','MarkerSize',12) (2)数值计算解法 dt=0.05; t=0:dt:5; Ft=t.^2.*cos(t); Sx=dt*cumtrapz (Ft); % 小梯形面积的累加求Ft 曲线下的面积,由一个个宽度为dt 的小梯形面积累加得到的 t(end-4:end) % end 指示最后一个元素的位置 Sx(end-4:end) plot(t,Sx,'.k','MarkerSize',12) xlabel('x'),ylabel('Sx'),grid on ans = 4.8000 4.8500 4.9000 4.9500 5.0000 ans = -20.1144 -19.9833 -19.7907 -19.5345 -19.2131 图 3.1-1 在区间[0, 5]采样点上算得的定积分值 【例3.1-2】已知)sin()(t e t f -=,求?=4 0 )()(dt t f x s 。 (1)符号计算解法 syms t x ft=exp(-sin(t)) sx=int(ft,t,0,4) (2)数值计算解法 dt=0.05; t=0:dt:4; Ft=exp(-sin(t));

matlab数值数组及向量化运算

第2章 数值数组及向量化运算 数值数组(Numeric Array )和数组运算(Array Operations )始终是MATLAB 的核心内容。 本章教学内容:数组浮点算法的特点;一、二维数值数组的创建和寻访;常用标准数组生成函数和数组构作技法;数组运算和向量化编程;实现数组运算的基本函数;关系和逻辑操作。 2.1 数值计算的特点和地位 【例2.1-1】已知t t t f cos )(2 =,求dt t f x s x ? = )()(。 (1)符号计算解法 syms t x %定义符号变量 ft=t^2*cos(t) sx=int(ft,t,0,x) ft = t^2*cos(t) sx = x^2*sin(x)-2*sin(x)+2*x*cos(x) (2)数值计算解法 dt=0.05; t=0:dt:5; %取一些离散点 Ft=t.^2.*cos(t); Sx=dt*cumtrapz(Ft); %梯形法求定积分 t(end-4:end) %end 表示最后一个元素 Sx(end-4:end) %Sx 的最后5个元素 plot(t,Sx,'.k','MarkerSize',12) xlabel('x'),ylabel('Sx'),grid on ans = 4.8000 4.8500 4.9000 4.9500 5.0000 ans = -20.1144 -19.9833 -19.7907 -19.5345 -19.2131

图 2.1-1 在区间[0, 5]采样点上算得的定积分值 【例2.1-2】已知 ) sin( )(t e t f- =,求?=4 )( ) (dt t f x s。 本例演示:被积函数没有“封闭解析表达式”,符号计算无法解题!(1)符号计算解法 syms t x ft=exp(-sin(t)) sx=int(ft,t,0,4) ft = exp(-sin(t)) Warning: Explicit integral could not be found. > In sym.int at 58 sx = int(exp(-sin(t)),t = 0 .. 4) (2)数值计算解法 dt=0.05; t=0:dt:4; Ft=exp(-sin(t)); Sx=dt*cumtrapz(Ft); Sx(end) plot(t,Ft,'*r','MarkerSize',4) hold on plot(t,Sx,'.k','MarkerSize',15) hold off xlabel('x') legend('Ft','Sx') ans = 3.0632

数值分析实验报告-Sor法分析

数值分析实验报告 一、 实验目的 1、会使用Sor 法求解一个线性方程组 2、熟悉matlab 语言并结合原理编程求方程组 3、改变ω的值观察实验结果 4、会分析实验结果 二、实验题目 编制Sor 迭代格式程序进行求解一个线性方程组的迭代计算情况,运行中要选用不同的松弛因子ω进行尝试 三、 实验原理 Jacobi 迭代和seidel 迭代对具体的线性方程组来说,逼近*x 的速度是固定不变的,遇到收敛很慢的情况时就显得很不实用。 Sor 法是一seidel 迭代为基础,并在迭代中引入参数ω以增加迭代选择的灵活性,具体为: ! 用seidel 迭代算出的,)()1()()1(k k J k k J x x x x x -=?++相减得到差向量与再用参数ω乘之再加上 )1()()()1()1()()()1(++++-=?+=k J k k k k k k x x x x x x x x ωωω,即的下一步迭代作为,由seidel 迭代的公式可以得到Sor 法的迭代格式为 n i x a x a b a x x k j n i j ij k j i j ij i ii k i k i ,2,1),()1()(1)1(11)()1( =--+-=∑∑+=+-=+ω ω 式中ω称为松弛因子。 四、 实验内容 用matlab 编程得到Sor 法求线性方程组的算法为: function [x,n]=SOR(A,b,x0,w,eps,M) if nargin==4

eps= ; M = 200; elseif nargin<4 error return : elseif nargin ==5 M = 200; end if(w<=0 || w>=2) error; return; end D=diag(diag(A)); %求A的对角矩阵L=-tril(A,-1); %求A的下三角阵( U=-triu(A,1); %求A的上三角阵B=inv(D-L*w)*((1-w)*D+w*U); f=w*inv((D-L*w))*b; x=B*x0+f; n=1; %迭代次数 while norm(x-x0)>=eps x0=x; x =B*x0+f; n=n+1; if(n>=M) (

相关文档
最新文档