氨基酸分析解决方案及原理

氨基酸分析解决方案及原理
氨基酸分析解决方案及原理

氨基酸分析解决方案

序列号:L009 作者:孔维超,顾春艳

摘要

氨基酸组成测定是蛋白质组学、食品质量检测以及药品质量检测中的重要分析项目。由于该分析项目涉及的化合物种类繁多,且需要柱前或柱后衍生技术,对分析方法和分析产品具有较高要求。迪马科技应用实验室分别以异硫氰酸苯酯、2,4-二硝基氟苯作为衍生剂对蛋白质水解液和游离氨基酸注射液进行衍生,然后使用Diamonsil AAA柱进行分离,能够满足19种天然氨基酸的分析,各组分分离度较高、定量结果准确而稳定。

引言

从化学角度讲,同时含有一个或多个氨基和羧基的脂肪酸均可称为氨基酸。自然界存在300多种氨基酸,但构成天然蛋白质的氨基酸只有20种,这20种氨基酸又称为天然氨基酸。氨基酸通过氨基和羧基形成肽键(酰胺键)相互联结成多肽和蛋白质。天然氨基酸上的氨基与羧基连在同一个C上,所以这些氨基酸均为α-氨基酸。

天然氨基酸分析是食品、饲料和药品分析的重要项目。目前氨基酸分析常常采用这样两种方式:离子交换色谱分离-柱后衍生和柱前衍生-反相色谱法分离。后者以操作灵活、费用低廉而被广泛应用。在柱前衍生-反相色谱法分离中,异硫氰酸苯酯(PITC)和2,4-二硝基氟苯(DNFB)均可与一级胺、二级胺反应,是理想的柱前衍生剂。尽管天然氨基酸多达20种,但由于蛋白质水解过程中天冬酰胺和谷氨酰胺分别转化为天冬氨酸和谷氨酸,半胱氨酸则以胱氨酸形式存在,因而对于含蛋白食品、饲料等样品的氨基酸分析时,只需分析Asp(天冬氨酸)、Glu(谷氨酸)、Ser(丝氨酸)、Gly(甘氨酸)、His(组氨酸)、Arg(精氨酸)、Thr(苏氨酸)、Ala(丙氨酸)、Pro(脯氨酸)、Tyr(酪氨酸)、Val(缬氨酸)、Met(甲硫氨酸)、Cys-Cys(胱氨酸)、Ile(异亮氨酸)、Leu(亮氨酸)、Phe(苯丙氨酸)、Trp(色氨酸)、Lys(赖氨酸)等18种氨基酸,PITC和DNFB均能与这些氨基酸生成稳定的衍生物。此外,DNFB还能对半胱氨酸进行衍生,对PITC 衍生法是一个重要的补充,能够满足氨基酸注射液中涉及的19种氨基酸分析。

1 分析原理

对于含蛋白样品(饲料、动物组织等),先对样品进行酸水解或碱水解处理,得到游离氨基酸溶液,然后用合适的衍生剂进行柱前衍生,赋予氨基酸以疏水结构和吸收基团,然后使用反相液相色谱-紫外检测器分离并检测。对于游离氨基酸分析,比如氨基酸注射液、生物样品中的游离氨基酸,不必进行水解,样品提取或稀释后直接进行衍生操作。异硫氰酸苯酯(PITC)衍生法:PITC与氨基酸在弱碱性条件(pH≈9.0)下反应生成噻唑啉酮苯胺衍生物,衍生物在

反相柱上具有较强保留并在254 nm 下具有明显吸收。

N

C

S +

H 2N

C R 1

COOH

2

N

NH

C

S

R 1

R 2

pH=9.0

2,4-二硝基氟苯(DNFB)衍生法:在弱碱性、避光、60 °C 条件下,氨基酸上的α-氨基与DNFB 发生Sanger 反应,生成2,4-二硝基苯氨基酸。2,4-二硝基氨基酸在反相柱上具有较强保留并在360 nm 下具有较强吸收。

O 2N

NO 2

F H 2N

COOH

2

R 1

2N

NO 2

H N

COOH R 1

2

+pH=9.0-10.0

+HF

Diamonsil AAA 氨基酸分析柱具有优越的选择性,能既能够分离氨基酸-异硫氰酸苯酯衍生物又能够分离2,4-二硝基氟氨基酸衍生物,当分析者采用PITC 柱前衍生法或DNFB 柱前衍生法分析氨基酸时,Diamonsil AAA 氨基酸分析柱将是最佳的分离工具。

2 材料与方法 2.1 仪器与器皿

岛津10A 二元高压液相色谱仪,配紫外检测器或DAD 检测器 Diamonsil AAA 氨基酸分析柱 20 ml 顶空瓶或20 ml 安瓿瓶 2 ml 塑料离心管 20 ml 玻璃具塞刻度试管 5 ml 玻璃具塞刻度试管 2.2 试剂

0.1%苯酚+6 mol/l HCl 水溶液:称取0.1 g 苯酚置于100 ml 容量瓶,加入50 ml 浓盐酸(36%-38%,摩尔浓度约为12 mol/l),然后加水定容至100 ml

0.1 mol/l HCl 水溶液:量取8.3 ml 浓盐酸,然后用纯水定容至1000 ml

氨基酸储备液:称取一定量氨基酸标准品,用0.1 mol/l HCl 水溶液溶解,胱氨酸为0.01 mol/l ,酪氨酸为0.02 mol/l ,其他氨基酸为0.05 mol/l

氨基酸使用液:将储备液用0.1 mol/l HCl 水溶液稀释,得到浓度为0.002 mol/l 的氨基酸单标和混标(胱氨酸浓度为0.001 mol/l)用于PITC 衍生法;将储备液用0.1 mol/l HCl 水溶液稀释,得到浓度为0.0005 mol/l 的氨基酸单标和混

标(胱氨酸浓度为0.00025 mol/l)用于DNFB衍生法

正亮氨酸内标液:以正亮氨酸作为内标物。称取一定量正亮氨酸,溶于0.1 mol/L HCl水溶液,得到0.02 mol/L的正亮氨酸内标液

异硫氰酸苯酯溶液:将250 μl异硫氰酸苯酯用乙腈定容至10 ml,得到0.2 mol/L异硫氰酸苯酯溶液

三乙胺溶液:将1.4 ml三乙胺用乙腈定容至10 ml,得到1.0 mol/L三乙胺溶液

1%DNFB乙腈溶液:0.5 ml 2,4-二硝基氟苯(DNFB)溶于50 ml乙腈,体积分数为1%,约等于0.08 mol/l;

0.1 mol/L Na2B4O7水溶液:称取1.91 g Na2B4O7·10 H2O,用50 ml纯水溶解,溶液pH约为9.50

3 方法

3.1 样品处理

蛋白质水解(酸水解法):蛋白质样品(饲料、奶粉、动物组织等):对于动物样品,干燥后粉碎成细小颗粒;对于饲料,粉碎成细小颗粒;奶粉不需预处理。将一定量样品*置于20 ml旋盖(内衬PTFE隔垫)细口瓶,加入10 ml0.1%苯酚+6 mol/l HCl水溶液,旋紧盖子,振荡混匀,110 °C下反应24 h。反应完毕,将反应液全部转移到100 ml蒸馏瓶中,75 °C下减压蒸馏至近干,以除去反应液中残余的HCl,然后用12 ml 0.1 mol/l HCl水溶液分三次溶解残渣,并转移到20 ml玻璃具塞刻度试管,再用纯水定容至20 ml,待衍生。

*当采用PITC衍生法时,样品中蛋白质量最好处于0.0100 g~0.0400 g之间;当采用DNFB衍生法时,样品中蛋白质量最好处于0.0050 g-0.0200 g之间。

注射液处理:当采用PITC衍生法时,用0.1 mol/l HCl水溶液将样品稀释至4 g/l;当采用DNFB衍生时,用0.1 mol/l HCl水溶液将样品稀释到2 g/l。

3.2 异硫氰酸苯酯衍生方法

3.2.1 样品溶液衍生

量取200 μl样品溶液(蛋白质水解液或游离氨基酸溶液),置于1.5 ml塑料离心管中,加入20 μl正亮氨酸内标溶液[1],混匀,再加入100 μl 1 mol/l三乙胺乙腈溶液和100 μl 0.2 mol/L异硫氰酸苯酯乙腈溶液,混匀,室温反应1小时,然后加入400μl正己烷,旋紧盖子后剧烈振荡5~10 s,静置分层,取200 μl下层溶液与800 μl水混合[2],0.22 μm针式过滤器过滤,待分析。

3.2.2 标准溶液衍生化

量取200 μl氨基酸混合使用液(胱氨酸浓度为1.0 mmol/l,其他氨基酸浓度为2.0 mmol/l),置于1.5 ml塑料离心管中,准确加入20 μl正亮氨酸内标溶液[1]、100 μl 1 mol/l三乙胺乙腈溶液和100 μl 0.2 mol/l异硫氰酸苯酯乙腈溶液,混匀,室温反应1小时,然后加入正己烷400 μl,旋紧盖子后剧烈振荡5~10 s,静置分层,取200 μl下层溶液与800 μl水混合[2],0.22 μm针式过滤器过滤,待分析。

注:

[1] 只有采用内标法分析时,才需要加入正亮氨酸作为内标物;

[2] 衍生得到的样品溶液中含有50%的乙腈,这与流动相溶剂体系存在较大差距,因而需要加水稀释,否则会引起峰前沿或分叉。

3.3 2,4-二硝基氟苯衍生方法

3.3.1 样品溶液衍生

将0.5 ml样品溶液(蛋白质水解液或游离氨基酸溶液)加入5 ml玻璃具塞刻度试管中,然后加入0.5 ml 0.1 mol/l Na2B4O7水溶液和1%DNFB乙腈溶液,具塞摇匀,然后于60 °C下避光反应1 h。反应完毕将试管置于冷水中冷却,然后用0.02 mol/l Na2HPO4 + 0.02 mol/l NaH2PO4水溶液定容至5 ml,混匀后待检测。

3.3.2 标准溶液衍生

将0.5 ml氨基酸混合使用液(胱氨酸浓度为0.25 mmol/l,其他氨基酸浓度为0.5 mmol/l)加入5 ml玻璃具塞刻度试管中,然后加入0.5 ml 0.1 mol/L Na2B4O7水溶液和1%DNFB乙腈溶液,具塞摇匀,然后于60 °C下避光反应1 h。反应完毕将试管置于冷水中冷却,然后用0.02 mol/l Na2HPO4 + 0.02 mol/l NaH2PO4水溶液定容至5 ml,混匀后待检测。

3.4 分析条件

3.4.1 氨基酸-PITC衍生物的分析条件

色谱柱: Diamonsil AAA氨基酸分析柱,250×4.6 mm,5 μm(CAT#: 99751)

保护柱:EasyGuard C18,10×4.0 mm,5 μm(CAT#: 6201)

流动相A: 0.05 mol/l乙酸钠水溶液(冰乙酸调节pH值为6.50 ± 0.05)

流动相B: 甲醇: 乙腈: 水=20 : 60 : 20(V : V : V)

流速: 1.0 ml/min

柱温: 35 ℃

进样体积: 10 μl

梯度程序

3.4.2 氨基酸-DNFB衍生物的分析条件

色谱柱: Diamonsil AAA 氨基酸分析柱,250×4.6 mm ,5 μm(CAT#: 99751) 流动相A: 0.02 mol/l Na 2HPO 4 + 0.02 mol/l NaH 2PO 4水溶液 流动相B: 甲醇 : 乙腈 =10 : 90 (V : V) 流速: 1.2 ml/min 柱温: 35 ℃ 进样体积: 10 μl

梯度程序

4 结果

4.1 异硫氰酸苯酯衍生法 4.1.1 标准溶液

图1为18种氨基酸-PITC 以及氨-PITC 的分离情况,各目标化合物间的分离度超过2.0,分离情况较好,定量更加准确。即使色谱柱柱效稍有下降,分离情况也不会受到影响。能够采用用PITC 柱前衍生-Diamonsil AAA 氨基酸柱分析的氨基酸包括Asp(天冬氨酸)、Glu(谷氨酸)、Ser(丝氨酸)、Gly(甘氨酸)、His(组氨酸)、Arg(精氨酸)、Thr(苏氨酸)、Ala(丙氨酸)、Pro(脯氨酸)、Tyr(酪氨酸)、Val(缬氨酸)、Met(甲硫氨酸)、Cys-Cys(胱氨酸)、Ile(异亮氨酸)、Leu(亮氨酸)、Phe(苯丙氨酸)、Trp(色氨酸)、Lys(赖氨酸)等18种氨基酸。

10

20

30

40

Time (min)

A s p G l u

S e r G l y H i s

A r g T h r A l a P r o

N H 3

T y r

V a l

M e t

C y s -C y s

I l e L e u N l e

P h e T r p

L y s

图1 18种天然氨基酸-PITC 以及氨-PITC 的液相色谱图

(图中的Nle 为内标物)

4.1.2 奶粉

图2为奶粉水解液经PITC 衍生、Diamonsil AAA 氨基酸柱分离后的液相色谱图,由图可知除色氨酸(Trp)外,其余17种氨基酸全部检出,并达到较好分离。表1中数据为定量结果,氨基酸总含量为17.49%,接近厂家标示的蛋白质含量(约18%)。除胱氨酸外,平行样品的氨基酸含量以及总含量的RSD 均小于3.0%,表明该方法具有较高的重现性。胱氨酸含量较低,因而数值偏差较大一些;色氨酸无法检出是因为酸水解过程中,色氨酸被破坏,色氨酸分析时建议采用碱水解法。

1020

30

40

Time (min)

A s p

G l u

S e r

G l y H i s

A r g T h r A l a

P r o A m m o n i a

T y r

V a l

M e t

C y s -C y s

I l e

L e u

P h e

L y s

图2 PITC 柱前衍生法分析奶粉水解液中氨基酸的液相色谱图

表1 某品牌奶粉中氨基酸含量(PITC 柱前衍生法)

4.1.3 饲料

图3为饲料水解液经PITC 衍生、Diamonsil AAA 氨基酸柱分离后的液相色谱图,由图可知除色氨酸(Trp)外,其余17种氨基酸全部检出,并达到较好分离。由表2中数据可知氨基酸总含量为43.48%,与厂家标示的蛋白质含量43%相当。平行样品的氨基酸含量以及蛋白质含量的RSD 均小于3.5%,表明该方法具有较高的重现性。色氨酸无法检出是因为酸水解过程中,色氨酸被破坏,色氨酸分析时建议采用碱水解法。

1020

30

40

Time (min)

A s p

G l u

S e r

G l y

H i s

A r g

T h r A l a P r o

A m m o n i a

T y r

V a l

M e t

C y s -C y s

I l e

L e u

N l e

P h e

L y s

图3 PITC 柱前衍生法分析饲料水解液中氨基酸的液相色谱图

(图中的Nle 为内标物)

表2 某品牌鱼饲料中氨基酸含量(PITC 柱前衍生法)

4.1.4 氨基酸注射液

图4和表3是某品牌18AA 注射液的分析结果。由数据可知,全部18种氨基酸均达到较好分离;从检出值来看,除胱氨酸外,其他17种氨基酸的检出值与配方值偏差不超过±3.5%。胱氨酸含量较低,因而分析偏差更大一些。

1020

30

40

Time (min)

A s p

G l u

S e r

G l y

H i s

A r g T h r A l a

P r o

T y r

V a l

M e t

C y s -C y s

I l e

L e u

P h e

T r p

L y s

图4 PITC 柱前衍生法分析18AA 氨基酸注射液的液相色谱图

表3 某品牌18AA 注射液的检出浓度(PITC 衍生法)

4.2 2,4-二硝基氟苯衍生法 4.2.1 标准溶液

图5是19种氨基酸-DNFB 衍生物以及氨-DNFB 衍生物的液相色谱图。通过DNFB 衍生、Diamnsil AAA 氨基酸分析柱分析,包括 Asp(天冬氨酸)、Glu(谷氨酸)、Ser(丝氨酸)、Gly(甘氨酸)、His(组氨酸)、Arg(精氨酸)、Thr(苏氨酸)、Ala(丙氨酸)、Pro(脯氨酸)、Tyr(酪氨酸)、Val(缬氨酸)、Met(甲硫氨酸)、Cys-Cys(胱氨酸)、Ile(异亮氨酸)、Leu(亮氨酸)、Phe(苯丙氨酸)、Trp(色氨酸)、Lys(赖氨酸)以及Cys(半胱氨酸)等19种氨基酸能够被准确定量。

1020

30

40

Time (min)

A s p

G l u

S e r

A r g G l y T h r

P r o

A l a

2-氨基丁酸

V a l M e t

C y s -C y s

N H 3

I l e L e u T r p H i s P h e D N F B

C y s

L y s

T y r

图5 19种天然氨基酸-DNFB 以及氨-DNFB 的液相色谱图

(2-氨基丁酸为内标物)

4.2.2 奶粉

图2为奶粉水解液经DNFB 衍生、Diamonsil AAA 氨基酸柱分离后的液相色谱图,由图可知除色氨酸(Trp)外,其余17种氨基酸全部检出,并达到较好分离。对所有检出氨基酸定量,可知蛋白质总含量为17.89%,与厂家标示的蛋白质含量(约18%)基本一致,并且与PITC 衍生法测定的数值极为接近。平行样品的氨基酸含量以及蛋白质含量的RSD 均小于2%,表明该方法具有较高的重现性。色氨酸无法检出是因为酸水解过程中,色氨酸被破坏,色氨酸分析时建议采用碱水解法。

1020

3040

Time (min)

A s p

G l u

S e r

A r g G l y T h r

P r o

A l a

2-氨基丁酸

V a l

M e t

C y s -C y s N H 3I l e

L e u

H i s P h e D N F B

C y s

L y s

T y r

图6 DNFB 柱前衍生法分析奶粉中氨基酸的液相色谱图

(2-氨基丁酸为内标物)

表4 某品牌奶粉中氨基酸含量(DNFB 衍生法)

4.2.3 饲料

饲料水解液经DNFB 衍生后Diamonsil AAA 分离,由图7可知,除色氨酸外,其余17种氨基酸均被检出;对比表2和表5可以发现,在两种衍生法下,无论是单种氨基酸的含量还是氨基酸总量,数值非常接近,这也间接证明了两种方法的可靠性。

1020

3040

Time (min)

A s p

G l u

S e r

A r g G l y

T h r

P r o

A l a

2-氨基丁酸

V a l

M e t

C y s -C y s N H 3I l e L e u H i s P h e

D N F B

C y s

L y s

T y r

图7 DNFB 柱前衍生法分析饲料中氨基酸的液相色谱图(2-氨基丁酸为内标物)

表5 某品牌鱼饲料中氨基酸含量(DNFB 衍生法)

4.2.4 18AA 注射液

图7和表6是某品牌18AA 注射液的分析结果。由数据可知,全部18种氨基酸以及衍生副产物均达到较好分离;从检出值来看,除胱氨酸和酪氨酸外,其他16种氨基酸的检出值与配方值偏差不超过±4.0%。胱氨酸和酪氨酸偏差较大与其浓度较低有关。

1020

3040

Time (min)

A s p

G l u

S e r

A r g

G l y

T h r

P r o

A l a

2-氨基丁酸

V a l

M e t

C y s -C y s N H 3I l e

L e u

T r p H i s P h e D N F B

C y s

L y s

T y r

图7 DNFB 柱前衍生法分析18AA 氨基酸注射液的液相色谱图(2-氨基丁酸为内标物)

表6 某品牌18AA 注射液的检出浓度(DNFB 衍生法)

5 结论

迪马科技开发的氨基酸分析方法+Diamonsil AAA氨基酸分析柱应用于食品、饲料以及药品中氨基酸组成的分析具有分离效果好、分析结果可靠、重现性好等特点。

氨基酸测定方法

4.1 光度分析法[5] [6] β-氨基丙酸和茚三酮溶液在弱酸的条件下可以生成蓝紫色物质[7],其颜色深浅主要与β-氨基丙酸的浓度有关。因此可利用此显色反应采用比色法定量测量β-氨基丙酸。我在实验中发现很多因素如浓度、pH 值、反应温度、以及反应时间等对此显色反应有很大的影响。如忽视这些因素会使实验产生很大的误差。就此显色反应的最佳条件我做了初步的探究。 4.1.1试剂的配制: 缓冲液的配制:配制pH= 6.00的NaAc -HAc 缓冲溶液 β-氨基丙酸标准溶液的配制: 用电子天平准确称取1.020 g β-氨基丙酸(生化纯),溶于250ml pH=6.00缓冲溶液中,得到C = 4.080 g/L 标准溶液。 茚三酮试剂的配制:称取0.5g 茚三酮溶于100ml 蒸馏水中,得到5g/L 的茚三酮水溶液。 4.1.2标准曲线的确定 分别准确移取0.30ml 、0.40ml 、0.50ml 、0.60ml 、0.70ml 、0.80ml 、0.90ml 、1.00ml 标准液于8个比色管中,用pH=6.00的缓冲溶液稀释到5.00ml 再加入1ml 茚三酮水溶液充分摇匀,将其放在沸水浴中加热10min 。冷却到室温,用7230型分光光度计在569nm 下测其吸光度。以吸光度和浓度作一个标准曲线。 4.1.3样品的测定 稀释待测液于0.24mg/ml —0.73mg/ml,调pH 值到6.00,以相同的反应条件,测其吸光值并与上面的标准曲线对照查出稀释液的浓度,再乘以稀释倍数即为β-氨基丙酸的浓度。 4.1.4 标准曲线的测定结果 β-氨基丙酸浓度在0.24mg/ml —0.73mg/ml 范围内与茚三酮水溶液反应,颜色表现出由浅蓝到深蓝的递增变化。用茚三酮比色法测得的一组数据得到的标准曲线如图1: 0.20.30.40.50.60.70.80.9 1.0 1.1 0.4 0.6 0.8 1.0 1.2 1.4 吸光度加入标液体积(ml) B 图 1 标准曲线的测定 Fig 1 Determination of the standard curve 注:在沸水中加热10min ,β-氨基丙酸标准溶液5ml 、茚三酮水溶液1ml 、缓冲溶液pH=6.00 4.1.5样品的测定分析 将待测的一批稀释50倍,母液稀释的程度可以根据以与标准溶液在相同的

日立L-8900全自动氨基酸分析仪简易标准操作规程

日立L-8900全自动氨基酸分析仪标准操作规程 一. 目的 为规范日立L-8900全自动氨基酸分析仪的基本操作、维护保养、异常处理程序,防止人为操作失误,确保氨基酸分析仪正常运转,特制定本程序。 二.适用范围 本程序适用于日立L-8900全自动氨基酸分析仪。 三.责任 1. 本程序的实施者为氨基酸分析仪操作者,各实验室负责人对本程序的实施情况进行监 督。 2. 日常运行及维护、定期维护、定期点检及保养由氨基酸分析仪操作者负责。 四. 内容 1.联机 (1)打开电脑。 (2)打开L-8900主机电源。 (3)双击桌面的图标,进入1-1画面,双击图标,进入程序。 1-1 (4)在菜单栏中依次点击和,出现1-2画面,单击

联机。大约两分钟,初始化完毕。中Uninitialized 变成Idle,图1-2变成了图1-3,各个组件可以进行控制了。初始化完毕后,分离柱的温度逐渐上升,分离柱的温度会升到50℃。如果打开反应柱的柱温控制,则温度大约20分钟升到135℃。 1-2

1-3 2、手动各组件控制操作 (1)泵1和泵2 点击,出现2-1的画面。设置泵1,流量0.1ml/分钟,B6 100%。点击打开泵1。泵打开后,泵的背景颜色由灰色变为黄色。

2-1 点击,出现2-2的画面,设置泵2,流量0.1ml/分钟,R3 100%。点击打开泵2。泵打开后,泵的背景颜色由灰色变为黄色。 2-2 (2)自动进样器 点击,出现2-3的画面,设置Sampler Wash不少于3次。

2-3 (3)分离柱柱温箱 点击,出现2-4画面,设置柱温50℃,设置ON,打开柱温箱。柱温箱打开后,背景颜色由灰色变为黄色。 2-4 (4)反应柱柱温箱 点击,出现2-5画面,设置柱温135℃,设置ON,打开柱温箱。柱温箱打开后,背景颜色由灰色变为黄色。 2-5

氨基酸纸上层析实验报告

竭诚为您提供优质文档/双击可除氨基酸纸上层析实验报告 篇一:实验六氨基酸的纸层析法 氨基酸的纸层析法 一.目的 了解并掌握氨基酸纸层析的原理和方法。 二、原理 以滤纸为支持物的层析法,称为纸层析法。纸层析所用展层剂大多由水和有机溶剂组成。展层时,水为静止相,他与滤纸纤维亲和力强;有机溶剂为流动相,它与滤纸纤维亲和力弱。有机溶剂在滤纸上又下向上移动的,称为上行法;有上向下移动的,称为下行法。将样品在滤纸上确定的原点处展层,由于样品中各种氨基酸在两相中不断进行分配,且他们的分离系数各不相同,所以不同的氨基酸随流动相移动的速率也不相同,于是各种氨基酸在滤纸上就相互分离出来,形成距原点不等的层析点。 在一定条件下(室温、展层剂的组成、滤纸的质量、ph 值等不变),不同的氨基酸有固定的移动速率(Rf值)Rf=

原点到层析点中心的距离/原点到溶剂前沿的距离。用混合氨基酸做样品时,如果只用一种溶剂展层,由于某些氨基酸的移动速率相同或相近,就不能将它们分开,为此,当用一种溶剂展层后,可将滤纸旋转90度,以第一次所的层析点为原点,在用另一溶剂展层,从而达到分离的目的。这种方法称为双向层析法。 本试验主要介绍的是单向层析法。其中混合氨基酸有精氨酸、酪氨酸、苯丙氨酸组成。 三、实验仪器 1、新华滤纸 2、层析缸 3、细线 4、点样管 5、橡皮筋 6、电吹风 7、喷雾器 四、实验试剂 1、混合氨基酸(精氨酸,酪氨酸,苯丙氨酸) 2、展层剂:正丁醇:12%氨水:95%乙醇:蒸馏水=13:3:3:1(v:v) 3、0.5%茚三酮—无水丙酮溶液:0.5g茚三酮溶于100ml 无水丙酮,贮于棕色瓶中

氨基酸测定

食物中氨基酸的测定方法 测定食物中的胱氨酸使用过甲酸氧化-氨基酸自动分析仪法,测定色氨酸使用荧光分光光度法,测定其它氨基酸使用氨基酸自动分析仪法。 一、氨基酸自动分析仪法 1.原理 食物蛋白质经盐酸水解成为游离氨基酸,经氨基酸分析仪的离子交换柱分离后,与茚三酮溶液产生颜色反应,再通过分光光度计比色测定氨基酸含量。一份水解液可同时测定天冬,苏,丝,谷,脯,甘,丙,缬,蛋,异亮,亮,酪,苯丙,组,赖和精氨酸等16种氨基酸,其最低检出限为10pmol。 2.适用范围 GB/T14965-1994食物中氨基酸的测定方法。 本法适用于食物中的16种氨基酸的测定。其最低检出限为10pmol。本方法不适用于蛋白质含量低的水果、蔬菜、饮料和淀粉类食物的测定 3.仪器和设备 3.1真空泵 3.2恒温干燥箱 3.3水解管:耐压螺盖玻璃管或硬质玻璃管,体积20~30ml。用去离子水冲洗干净并烘干。 3.4真空干燥器(温度可调节) 3.5氨基酸自动分析仪。 4.试剂 全部试剂除注明外均为分析纯,实验用水为去离子水。 4.1浓盐酸:优级纯 4.26mol/L盐酸:浓盐酸与水1:1混合而成。 4.3苯酚:需重蒸馏。 4.4混合氨基酸标准液(仪器制造公司出售):0.0025mol/L 4.5缓冲液: 4.5.1 pH2.2的柠檬酸钠缓冲液:称取19.6g柠檬酸钠(Na3C6H5O7.2H2O)和16.5ml浓盐酸加水稀释到1000ml,用浓盐酸或50%的氢氧化钠溶液调节pH至2.2 4.5.2 pH3.3的柠檬酸钠缓冲液:称取19.6g柠檬酸钠和12ml浓盐酸加水稀释到1000ml,用浓盐酸或50%的氢氧化钠溶液调节至pH至3.3。 4.5.3 pH4.0的柠檬酸钠缓冲液:称取19.6g柠檬酸钠和9ml浓盐酸加水稀释到1000ml,用浓盐酸或50%的氢氧化钠溶液调节pH至4.0。 4.5.4 pH6.4的柠檬酸钠缓冲液:称取19.6g柠檬酸钠和46.8g氯化钠(优级纯)加水稀释到1000ml,用浓盐酸或50%的氢氧化钠溶液调节pH至6.4。 4.6茚三酮溶液 4.6.1 pH 5.2的乙酸锂溶液:称取氢氧化锂(LiOH.H2O)168g,加入冰乙酸(优级纯)279ml,加水稀释到1000ml,用浓盐酸或50%的氢氧化钠调节pH至5.2。 4.6.2茚三酮溶液:取150ml二甲基亚砜(C2H6OS)和乙酸锂溶液(2.6.1)50ml

食物中氨基酸的测定方法

食物中氨基酸的测定方法 测定食物中的胱氨酸使用过甲酸氧化-氨基酸自动分析仪法,测定色氨酸使用荧光分光光度法,测定其它氨基酸使用氨基酸自动分析仪法。 一、氨基酸自动分析仪法 1.原理 食物蛋白质经盐酸水解成为游离氨基酸,经氨基酸分析仪的离子交换柱分离后,与茚三酮溶液产生颜色反应,再通过分光光度计比色测定氨基酸含量。一份水解液可同时测定天冬,苏,丝,谷,脯,甘,丙,缬,蛋,异亮,亮,酪,苯丙,组,赖和精氨酸等16种氨基酸,其最低检出限为10pmol。 2.适用范围 GB/T14965-1994食物中氨基酸的测定方法。 本法适用于食物中的16种氨基酸的测定。其最低检出限为10pmol。本方法不适用于蛋白质含量低的水果、蔬菜、饮料和淀粉类食物的测定 3.仪器和设备 3.1真空泵 3.2恒温干燥箱 3.3水解管:耐压螺盖玻璃管或硬质玻璃管,体积20~30ml。用去离子水冲洗干净并烘干。 3.4真空干燥器(温度可调节) 3.5氨基酸自动分析仪。 4.试剂 全部试剂除注明外均为分析纯,实验用水为去离子水。 4.1浓盐酸:优级纯 4.26mol/L盐酸:浓盐酸与水1:1混合而成。 4.3苯酚:需重蒸馏。 4.4混合氨基酸标准液(仪器制造公司出售):0.0025mol/L 4.5缓冲液: 4.5.1 pH2.2的柠檬酸钠缓冲液:称取19.6g柠檬酸钠(Na3C6H5O7.2H2O)和16.5ml浓盐酸加水稀释到1000ml,用浓盐酸或50%的氢氧化钠溶液调节pH至2.2

4.5.2 pH3.3的柠檬酸钠缓冲液:称取19.6g柠檬酸钠和12ml浓盐酸加水稀释到1000ml,用浓盐酸或50%的氢氧化钠溶液调节至pH至3.3。 4.5.3 pH4.0的柠檬酸钠缓冲液:称取19.6g柠檬酸钠和9ml浓盐酸加水稀释到1000ml,用浓盐酸或50%的氢氧化钠溶液调节pH至4.0。 4.5.4 pH6.4的柠檬酸钠缓冲液:称取19.6g柠檬酸钠和46.8g氯化钠(优级纯)加水稀释到1000ml,用浓盐酸或50%的氢氧化钠溶液调节pH至6.4。 4.6茚三酮溶液 4.6.1 pH 5.2的乙酸锂溶液:称取氢氧化锂(LiOH.H2O)168g,加入冰乙酸(优级纯)279ml,加水稀释到1000ml,用浓盐酸或50%的氢氧化钠调节pH至5.2。 4.6.2茚三酮溶液:取150ml二甲基亚砜(C2H6OS)和乙酸锂溶液(2.6.1)50ml加入4g 水合茚三酮(C9H4O3.H2O)和0.12g还原茚三酮(C18H10O6.2H2O)搅拌至完全溶解。 4.7高纯氮气:纯度99.99%。 4.8 冷冻剂:市售食盐与冰按1:3混合 5.操作步骤 5.1样品处理:样品采集后用匀浆机打成匀浆(或者将样品尽量粉碎)于低温冰箱中冷冻保存,分析用时将其解冻后使用。 5.2称样:准确称取一定量样品,精确到0.0001g。均匀性好的样品如奶粉等,使样品蛋白质含量在10~20mg范围内;均匀性差的样品如鲜肉等,为减少误差可适当增大称样量,测定前再稀释。将称好的样品防于水解管中。 5.3水解:在水解管内加6mol/L盐酸10~15ml(视样品蛋白质含量而定),含水量高的样品(如牛奶)可加入等体积的浓盐酸,加入新蒸馏的苯酚3~4滴,再将水解管放入冷冻剂中,冷冻3~5min,再接到真空泵的抽气管上,抽真空(接近0psi),然后充入高纯氮气;再抽真空充氮气,重复三次后,在充氮气状态下封口或拧紧螺丝盖将已封口的水解管放在110±1℃的恒温干燥箱内,水解22h后,取出冷却。 打开水解管,将水解液过滤后,用去离子水多次冲洗水解管,将水解液全部转移到50ml 容量瓶内,用去离子水定容。吸取滤液1ml于5ml容量瓶内,用真空干燥器在40~50℃干燥,残留物用1~2ml水溶解,再干燥,反复进行两次,最后蒸干,用1mlpH2.2的缓冲液溶解,供仪器测定用。 5.4测定:准确吸取0.200ml混合氨基酸标准,用pH2.2的缓冲液稀释到5ml,此标准稀释浓度为5.00nmol/50μL,作为上机测定用的氨基酸标准,用氨基酸自动分析仪以外标

纸层析法分离氨基酸实验报告

纸层析法分离氨基酸 一、前言 纸层析法 纸层析法又称纸色谱法,是目前广泛应用的一种分离技术。本世纪初俄国植物学家M.Tswett发现并使用这一技术证明了植物的叶子中不仅有叶绿素还含有其它色素。现在层析法已成为生物化学、分子生物学及其它学科领域有效的分离分析工具之一。它是一种以纸为载体的色谱法。固定相一般为纸纤维上吸附的水分,流动相为不与水相溶的有机溶剂;也可使纸吸留其他物质作为固定相,如缓冲液,甲酰胺等。将试样点在纸条的一端,然后在密闭的槽中用适宜溶剂进行展开。当组分移动一定距离后,各组分移动距离不同,最后形成互相分离的斑点。将纸取出,待溶剂挥发后,用显色剂或其他适宜方法确定斑点位置。根据组分移动距离(Rf值)与已知样比较,进行定性。用斑点扫描仪或将组分点取下,以溶剂溶出组分,用适宜方法定量(如光度法、比色法等)。 纸层析法(paper chromatography)是生物化学上分离、鉴定氨基酸混合物的常用技术,可用于蛋白质的氨基酸成分的定性鉴定和定量测定;也是定性或定量测定多肽、核酸碱基、糖、有机酸、维生素、抗菌素等物质的一种分离分析工具。纸层析法是用滤纸作为惰性支持物的分配层析法,其中滤纸纤维素上吸附的水是固定相,展层用的有机溶溶剂是流动相。

在环境分析测试中,有时用纸层析法分离试样组分,它用于一些精度不高的分析,如3,4-苯并芘。但不如GC、HPLC应用普遍。 做叶绿体色素分离时用到,将叶片碾碎,浸出绿色液体,将液体与层析液(石油醚)混合,将滤纸一段进入混合液体,四种色素在层析液中的溶解度不同,在滤纸上留下4条色素带。由此观查出各种色素的相对含量和种类。 纸层析法一般用于叶绿体中色素的分离,叶绿体中色素主要包括胡萝卜素、叶黄素、叶绿素a、叶绿素b,它们在层析液中的溶解度不同,溶解度大的随层析液在滤纸上扩散地快,反之则慢;含量较多者色素带也较宽。最后在滤纸上留下4条色素带,所以利用纸层析法能清楚地将叶绿体中的色素分离。 氨基酸 氨基酸是构成蛋白质的基本单位,广泛用于食品、医药、添加剂及化妆品行业。随着生物工程技术产业的发展逐渐成为2l世纪全球的主要产业之一,氨基酸的需求量越来越大,品种变更越来越快,工艺改革越来越新。目前全世界氨基酸每年的产量为100万吨,而需求总量是800万吨。我国自20世纪60年代起,氨基酸的应用在食品工业占61,,在饮料工业占30,,医药、日用化工、农业、冶金、环保、轻工、生物工程技术等方面占用的比例逐年增加。 氨基酸在人类生活的很多方面都有着应用: (1)在食品行业的应用 (2)在医药工业的应用

氨基酸分析仪实验指导

氨基酸分析仪实验 测试中心吕雪娟 一、实验目的 了解氨基酸分析仪的主要结构及工作原理,掌握氨基酸分析的过程,前处理方法。 二、原理 氨基酸分析仪的分析原理是基于各种a一氨基酸的酸碱性、极性及分子大小的差异,用阳离子交换树脂在柱上进行层析分离,用几种不同pH值和离子强度的缓冲溶液依次将它们洗脱,从柱子上分离和洗脱下来的各种氨基酸在反应柱中与茚三酮进行加热反应,反应产物用可见光分光光度计进行检测,根据检测信号的大小计算出各种氨基酸的含量。 氨基酸和茚三酮反应

氨基酸分析仪结构示意图 二、操作步骤 1.准备工作 1.1缓冲液和茚三酮溶液的配制及正确放置 1.2氮气压力调整 1.2.1打开氮气钢瓶阀,调节其压力至50-100KPa(0.5-1.0Kgf/cm2)。 1.2.2顺时针轻轻旋转氮气调节器,使压力读数为34-40KPa(0.35-0.4Kgf /cm2)。 1.2.3脱气瓶中液体的更换 1.3放置自动进样器清洗瓶,向清洗瓶(C-1,1L)中盛上蒸馏水,放置于指定的位置并拧上盖子。 2.开稳压器 3.启动L-8800ASM应用程序 3.1系统初始化,OK 3.2打开Module Operation界面

3.3泵1流速设定----缓冲液的清洗,打开泵1的排液阀;清洗完毕,关闭泵1; 3.4泵2流速设定—一缓冲液的清洗,打开泵2的排液阀;清洗完毕关闭泵2; 3.5自动进样器流路和针头清洗,除气泡,重复此过程三次。 3.6泵的压力归零 4.分析程序 4.1选择应用程序 4.2选择分析方法 4.3输入待测样品的信息,编辑样品表,保存; 4.4打开数据采集监控画面 4.5选择样品表 4.6打开泵1和泵2 4.7按样品表顺序放置样品。 4.8单击监控屏幕下方的Start Series按钮,开始样品测试。 4.9开始结束后,关闭采集监控画面 4.10关闭L-8800ASM应用程序 4.11关电源 三、实验报告要求 1.实验原理及分析条件; 2.实验结果。

氨基酸自动分析仪

氨基酸自动分析仪 1.实验目的 ①了解氨基酸自动分析仪的分析原理; ②掌握氨基酸自动分析仪的操作技巧。 2.实验原理 测定原理是利用样品各种氨基酸组分的结构不同、酸碱性、极性及分子大小不同,在阳离子交换柱上将它们分离,采用不同pH值离子浓度的缓冲液将各氨基酸组分依次洗脱下来,再逐个以另一流路的茚酮试剂混合,然后共同流至螺旋反应管中,于一定温度下(通常为115~120℃)进行显色反应,形成在570nm有最大吸收的蓝紫色产物。其中的羟脯氨酸与茚三酮反应生成黄色产物,其最大吸收在440nm。这些有色产物对570nm、440nm光的吸收强度与洗脱出来的各氨基酸的浓度(或含量)之间的关系符合比耳定律,可与标准氨基酸比较作定性和定量测定。 3.实验仪器与耗材 实验仪器: 耗材: 4.实验步骤 ①样品处理: 测定样品中各种游离氨基酸含量,可以除去脂肪杂质后,直接上柱进行分析。 测定蛋白质的氨基酸组成时样品必须经酸水解,使蛋白质完全变成氨基酸后才上柱进行分析。 ②样品分析:经过处理后的样品上柱进行分析。上柱的样品量根据所用自动分析仪的灵 敏度来确定。一般为每种氨基酸0.1μmol 左右(水解样品干重为0.3mg 左右)。测定必须在pH5~5.5、100℃下进行,反应进行时间为10~15min,生成的紫色物质在570nm 波长下进行比色测定。而生成的黄色化合物在440nm 波长下进行比色测定。做一个氨基酸全分析

一般只需1h 左右,同时可将几十个样品一起装入仪器,自动按序分析,最后自动计算给出精确的数据。仪器精确度在±1~3%。用阳离子交换柱分离及测定氨基酸所的如下图 自动分析仪氨基酸分离图谱 5.结果计算 带有数据处理机的仪器,各种氨基酸的定量结果能自动打印出来,否则,可用尺子测量峰高或用峰高乘以半峰宽确定峰面积进而计算出氨基酸的精确含量。另外,根据峰出现的时间可以确定氨基酸的种类。 6.说明 ①显色反应用的茚三酮试剂,随着时间推移发色率会降低,故在较长时间测样过程中应随时采用已知浓度的氨基酸标准溶液上柱测定以检验其变化情况。 ②近年出现的采用反相色谱原理制造的氨基酸分析仪,可使蛋白质水解出的17 种氨基酸在12min 内完成分离,且具有灵敏度高(最小检出量可达1pmol)、重现性好以及一机多用等优点。

氨基酸分析原理和色谱条件

分析原理和色谱条件 一、氨基酸分析的须知: (一)样品要求:样品应有代表性,固体样品必须过60目筛;液体样品需有一定的流动性; 办固体状的样品要保证能在称量纸上不流动。对不难采集并需要我们处理的样品,常规样品一般固体样品5克左右,液体样品15ml左右;对难以收集的样品(如:酶、肽等)液体样蛋白含量应大于300μg/ml,体积不少于4ml;固体重量应不少于500μg。 (二)自己处理样品的同学和老师,应根据自己的样品状态,严格按照本室要求样品的处理方法处理样品。并讲处理好的样品在星期二下午3点前送到测试中心氨基酸分析室,处理好的样品要同时送两份(两个盛有蒸干样品的25ml小烧杯),并提供样品的蛋白质含量、称样量、定容体积、加0.02NHCl体积等有关数据。(样品处理方法见本附件)。 (三)因氨基酸分析需要柱后(或柱前)衍生,分析时间长,所以对氨基酸分析的上机浓度要求严格。请各位老师和同学无论是自己处理样品还是需要氨基酸分析室处理样品都应准确知道自己所测样品的蛋白含量(或氨基态氮含量)。如果需要本实验室处理样品时,提供的蛋白质含量的误差应控制±5%。如20%的蛋白含量,提供的数据应为(18-22)%。 (四)氨基酸分析室仪为学校所有需要氨基酸分析的同学和老师服务,为了保证仪器能长期处于良好的运行状态除了我们机台的工作人员的努力外,还需要各位同学和老师的大力合作。样品的浓度过高极易造成分离柱的污染和反应盘管爆裂(每个反应盘管3000元左右)并且测定的数据也不准确;样品的浓度过低直接影响分析结果的准确性。对提供的原始数据不准确的样品,在上机分析时造成仪器损坏或氨基酸峰过低由送样人员负责。因提供原始数据不准确的样品需要重新上机的样品,则需另收上机费。 (五)氨基酸的分析需要柱前或柱后衍生,衍生化试剂对分析结果会有一定的影响,对需要做影响因素分析的样品,应妥善保管好不同时间采集样品,待样品收集全后,一起处理、一起做。这样更有利于对实验结果的分析。 (六)每做一个样品的氨基酸全分析(17种氨基酸),对仪器都是一次的严重的磨损。为了使仪器能更好地为大家服务,请各位老师和同学根据自己的科研、论文的实际需

氨基酸含量分析法

新增附录 附录XX 氨基酸分析法 氨基酸分析法是指用于测定蛋白质、肽及其他药物制剂的氨基酸组成或含量的方法。 根据氨基酸组成分析可以对蛋白质及肽进行鉴别,氨基酸分析法可用于确定蛋白质、肽及氨基酸的含量,及测定可能存在于蛋白质及肽中的非典型氨基酸。进行氨基酸分析前,必须将蛋白质及肽水解成单个氨基酸,具体水解方法由各品种项下规定。蛋白质及肽水解后,其氨基酸分析过程与用于其他药物制剂中游离氨基酸的分析过程相同。 本法包括四种柱前衍生法,分别为异硫氰酸苯酯(PITC)法、6-氨基喹啉-N-羟基琥珀酰亚氨基氨基甲酸酯(AQC)法、邻苯二醛(OPA)和9-芴甲基氯甲酸甲酯(FMOC)法、2,4-二硝基氟苯(DNFB)法,以及一种茚三酮柱后衍生法。不同的品种应针对自身所含的氨基酸种类及各氨基酸的含量选择适宜的氨基酸分析方法并做相应的方法学验证。 由于本法衍生过程中衍生溶液量较少,且容易挥发,外标法极易出现较大的误差,建议采用内标法进行测定,内标的确定由各品种项下规定。在本法中,由于半胱氨酸或胱氨酸的衍生产物不稳定,因此对于含半胱氨酸或胱氨酸的样品衍生后应尽快测定,或者在衍生前对半胱氨酸或胱氨酸进行适当的处理,使其转化为稳定地产物(如磺基丙氨酸或半胱氨酸-硫代丙酸)后再衍生测定,具体方法由各品种项下规定。在测定过程中,可根据所用的仪器、色谱柱品牌、色谱柱的长度及要分离的氨基酸种类,对流动相的有机溶剂和洗脱梯度作适当调整以获得较好的分离度。 第一法 PITC柱前衍生氨基酸分析法 本法系根据氨基酸与异硫氰酸苯酯(PITC)反应,生成有紫外响应的氨基酸衍生物苯氨基硫甲酰氨基酸(PTC-氨基酸),PTC-氨基酸经反相高效液相色谱分离后用紫外检测,在一定的范围内其吸光值与氨基酸浓度成正比。本方法的线性浓度范围为0.025~1.25μmol/ml。 试剂(1)流动相A 0.1mol/L醋酸钠溶液(取无水醋酸钠8.2g,加水900ml溶解,用冰醋酸调pH至6.5,然后加水至1000 ml)-乙腈(93:7)。(2)流动相B 乙腈-水(8:2)。 对照品溶液按各品种项下规定的方法制备。 供试品溶液按各品种项下规定的方法制备。 色谱条件与系统适用性试验用十八烷基硅烷键合硅胶为填充剂(4.6×250mm,5μm);流速为每分钟 1.0ml;柱温为40℃;检测波长为254nm。各氨基酸峰间的分离度均应大于1.0。洗脱梯度如下:

18种天然氨基酸分析

18种天然氨基酸分析 迪马科技摘要 氨基酸组成测定是蛋白质组学、食品质量检测以及药品质量检测中的重要分析项目。本文分别以异硫氰酸苯酯、2,4-二硝基氟苯作为衍生剂对蛋白质水解液和游离氨基酸注射液进行衍生,使用Diamonsil AAA柱250×4.6 mm,5 μm,梯度洗脱进行分离,能够满足19种天然氨基酸的分析,各组分分离度较高、定量结果准确而稳定。 Abstract The amino acid determination is an important analysis project in proteomics, food and drug quality testing.The method determination of 19 nature amino acid in protein hydrolyzed solution and free amino acid injection, the derived reagent is phenyl isothiocyanate (PITC) and 1-Fluoro-2,4-dinitrobenzene. The column is Diamonsil AAA (250 × 4.6 mm, 5 μm), gradient elution, the results are accurate and stable. 引言 从化学角度讲,同时含有一个或多个氨基和羧基的脂肪酸均可称为氨基酸。自然界存在300多种氨基酸,但构成天然蛋白质的氨基酸只有20种,这20种氨基酸又称为天然氨基酸。天然氨基酸分析是食品、饲料和药品分析的重要项目。目前氨基酸分析常常采用这样两种方式:离子交换色谱分离-柱后衍生和柱前衍生-反相色谱法分离。后者以操作灵活、费用低廉而被广泛应用。在柱前衍生-反相色谱法分离中,异硫氰酸苯酯(PITC)和2,4-二硝基氟苯(DNFB)均可与一级胺、二级胺反应,是理想的柱前衍生剂。尽管天然氨基酸多达20种,但由于蛋白质水解过程中天冬酰胺和谷氨酰胺分别转化为天冬氨酸和谷氨酸,半胱氨酸则以胱氨酸形式存在,因而对于含蛋白食品、饲料等样品的氨基酸分析时,只需分析Asp(天冬氨酸)、Glu(谷氨酸)、Ser(丝氨酸)、Gly(甘氨酸)、His(组氨酸)、Arg(精氨酸)、Thr(苏氨酸)、Ala(丙氨酸)、Pro(脯氨酸)、Tyr(酪氨酸)、Val(缬氨酸)、Met(甲硫氨酸)、Cys-Cys(胱氨酸)、Ile(异亮氨酸)、Leu(亮氨酸)、Phe(苯丙氨酸)、Trp(色氨酸)、Lys(赖氨酸)等18种氨基酸,PITC和DNFB均能与这些氨基酸生成稳定的衍生物。此外,DNFB还能对半胱氨酸进行衍生,对PITC衍生法是一个重要的补充,能够满足氨基酸注射液中涉及的19种氨基酸分析。 1 分析原理 对于含蛋白样品(饲料、动物组织等),先对样品进行酸水解或碱水解处理,得到游离氨基酸

氨基酸测定方法

光度分析法[5] [6] β-氨基丙酸和茚三酮溶液在弱酸的条件下可以生成蓝紫色物质[7],其颜色深浅主要与β-氨基丙酸的浓度有关。因此可利用此显色反应采用比色法定量测量β-氨基丙酸。我在实验中发现很多因素如浓度、pH 值、反应温度、以及反应时间等对此显色反应有很大的影响。如忽视这些因素会使实验产生很大的误差。就此显色反应的最佳条件我做了初步的探究。 试剂的配制: 缓冲液的配制:配制pH= 的NaAc -HAc 缓冲溶液 β-氨基丙酸标准溶液的配制: 用电子天平准确称取 g β-氨基丙酸(生化纯),溶于250ml pH=缓冲溶液中,得到C = g/L 标准溶液。 茚三酮试剂的配制:称取茚三酮溶于100ml 蒸馏水中,得到5g/L 的茚三酮水溶液。 标准曲线的确定 分别准确移取、、、、、、、标准液于8个比色管中,用pH=的缓冲溶液稀释到再加入1ml 茚三酮水溶液充分摇匀,将其放在沸水浴中加热10min 。冷却到室温,用7230型分光光度计在569nm 下测其吸光度。以吸光度和浓度作一个标准曲线。 样品的测定 稀释待测液于ml —ml,调pH 值到,以相同的反应条件,测其吸光值并与上面的标准曲线对照查出稀释液的浓度,再乘以稀释倍数即为β-氨基丙酸的浓度。 标准曲线的测定结果 β-氨基丙酸浓度在ml —ml 范围内与茚三酮水溶液反应,颜色表现出由浅蓝到深蓝的递增变化。用茚三酮比色法测得的一组数据得到的标准曲线如图1: 吸光度加入标液体积(ml) 图 1 标准曲线的测定 Fig 1 Determination of the standard curve 注:在沸水中加热10min ,β-氨基丙酸标准溶液5ml 、茚三酮水溶液1ml 、缓冲溶液pH= 样品的测定分析 将待测的一批稀释50倍,母液稀释的程度可以根据以与标准溶液在相同的反应条件下反应,再观察样品的显色程度而确定。取稀释后的产物液1ml,用pH=

各种类型氨基酸分析仪性能比较一览表

各种类型氨基酸分析仪性能比较一览表 常规氨基酸分析是指20种蛋白水解氨基酸和40余种游离氨基酸的分析。氨基酸分析仪自1958年问世以来,不断借助现代化的硬件和软件更新换代,现已发展成为现代食品、饲料、生物技术、医药卫生和生命科学等行业氨基酸分析必不可少的自动化常规检测设备。 氨基酸分析仪按其分离和检测方法的不同可分为两大类型。第一类是基于阳离子交换柱分离、柱后茚三酮衍生光度法测定的经典方法(IEC)。此类方法于1972年获诺贝尔奖,是当今国际标准和国家标准以及仲裁和涉外的方法。第二类是所有基于反相色谱分离、柱前衍生、荧光或紫外检测的高效液相法(HPLC)以及阴离子交换分离直接安培法检测的离子色谱法(IC)。两类方法的特性比较见表1。 表1:氨基酸分析方法的分类和特性比较表[1]

说明:IEC离子交换色谱;PITC异硫氰酸苯酯;OPA邻苯二甲醛;FMOC 9-芴基甲氧羰酰氯;AQC 6-氨基-喹啉基-N-羟基琥贝酰亚胺-氨基甲酸酯;DABS-Cl 二甲基氨基偶氮苯磺酰氯 由表1可见,IEC标准方法优于HPLC非标准方法,且此类仪器为专用型自动氨基酸分析仪器。 国外氨基酸分析仪器中,基于I EC标准方法原理并按照国家计量法规规定迄今业已正式通过国家技术质量监督总局型式认证的,有日立公司的L-8800,安玛西亚公司的30系列和安米诺西斯公司的A200型三种氨基酸分析仪。尚待通过计量认证的有Sykam和Jeol。而提供HPLC型氨基酸分析仪器的外国厂家有沃特斯、安捷伦、岛津和戴安等。但此类仪器用做氨基酸分析仪器时,还须首先通过氨基酸分析的计量认证。上述三家IEC型仪器的性能和技术参数见表2。 表2:三种IEC型氨基酸分析仪主要性能和技术参数对比一览表[2]

氨基酸自动分析仪

氨基酸自动分析仪 氨基酸分析仪是进行氨基酸分离、衍生和检测的自动化分析系统,广泛用于制药、食品、饲料、农业、育种、医学研究、临床诊断和地质考察等领域。 仪器类别:仪器仪表 /成份分析仪器 /氨基酸分析仪 指标信息:分辨率:THR-Ser Ile-leu ≥98% 保留时间重现性:RSD≤0.5% (水解,所有峰) 峰面积重现性:RSD≤1% (水解,所有峰) 1.原理 测定原理是利用样品各种氨基酸组分的结构不同、酸碱性、极性及分子大小不同,在阳离子交换柱上将它们分离,采用不同pH值离子浓度的缓冲液将各氨基酸组分依次洗脱下来,再逐个以另一流路的茚酮试剂混合,然后共同流至螺旋反应管中,于一定温度下(通常为115~120℃)进行显色反应,形成在570nm 有最大吸收的蓝紫色产物。其中的羟脯氨酸与茚三酮反应生成黄色产物,其最大吸收在440nm。这些有色产物对570nm、440nm光的吸收强度与洗脱出来的各氨基酸的浓度(或含量)之间的关系符合比耳定律,可与标准氨基酸比较作定性和定量测定。

2.操作方法 ①样品处理: 测定样品中各种游离氨基酸含量,可以除去脂肪杂质后,直接上柱进行分析。 测定蛋白质的氨基酸组成时样品必须经酸水解,使蛋白质完全变成氨基酸后才上柱进行分析。 ②样品分析:经过处理后的样品上柱进行分析。上柱的样品量根据所用自动分析仪的灵 敏度来确定。一般为每种氨基酸0.1μmol 左右(水解样品干重为0.3mg 左右)。测定必须 在pH5~5.5、100℃下进行,反应进行时间为10~15min,生成的紫色物质在570nm 波长下 进行比色测定。而生成的黄色化合物在440nm 波长下进行比色测定。做一个氨基酸全分析 一般只需1h 左右,同时可将几十个样品一起装入仪器,自动按序分析,最后自动计算给出精确的数据。仪器精确度在±1~3%。用阳离子交换柱分离及测定氨基酸所的如下图 自动分析仪氨基酸分离图谱 3.结果计算 带有数据处理机的仪器,各种氨基酸的定量结果能自动打印出来,否则,可用尺子测量 峰高或用峰高乘以半峰宽确定峰面积进而计算出氨基酸的精确含量。另外,根据峰出现的时间可以确定氨基酸的种类。 4.说明 ①显色反应用的茚三酮试剂,随着时间推移发色率会降低,故在较长时间测样过程中应随时采用已知浓度的氨基酸标准溶液上柱测定以检验其变化情况。 ②近年出现的采用反相色谱原理制造的氨基酸分析仪,可使蛋白质水解出的17 种氨基酸在12min 内完成分离,且具有灵敏度高(最小检出量可达1pmol)、重现性好以及一机多用等优点。 5.应用举例

氨基酸测定方法

光度分析法 [5] [6] β-氨基丙酸和茚三酮溶液在弱酸的条件下可以生成蓝紫色物质[7],其颜色深浅主要与β-氨基丙酸的浓度有关。因此可利用此显色反应采用比色法定量测量β-氨基丙酸。我在实验中发现很多因素如浓度、pH 值、反应温度、以及反应时间等对此显色反应有很大的影响。如忽视这些因素会使实验产生很大的误差。就此显色反应的最佳条件我做了初步的探究。 试剂的配制: 缓冲液的配制:配制pH= 的NaAc -HAc 缓冲溶液 β-氨基丙酸标准溶液的配制: 用电子天平准确称取 g β-氨基丙酸(生化纯),溶于250ml pH=缓冲溶液中,得到C = g/L 标准溶液。 茚三酮试剂的配制:称取茚三酮溶于100ml 蒸馏水中,得到5g/L 的茚三酮水溶液。 标准曲线的确定 分别准确移取、、、、、、、标准液于8个比色管中,用pH=的缓冲溶液稀释到再加入1ml 茚三酮水溶液充分摇匀,将其放在沸水浴中加热10min 。冷却到室温,用7230型分光光度计在569nm 下测其吸光度。以吸光度和浓度作一个标准曲线。 样品的测定 稀释待测液于ml —ml,调pH 值到,以相同的反应条件,测其吸光值并与上面的标准曲线对照查出稀释液的浓度,再乘以稀释倍数即为β-氨基丙酸的浓度。 标准曲线的测定结果 β-氨基丙酸浓度在ml —ml 范围内与茚三酮水溶液反应,颜色表现出由浅蓝到深蓝的递增变化。用茚三酮比色法测得的一组数据得到的标准曲线如图1: 吸光度 加入标液体积(ml) 图 1 标准曲线的测定 Fig 1 Determination of the standard curve 注:在沸水中加热10min ,β-氨基丙酸标准溶液5ml 、茚三酮水溶液1ml 、缓冲溶液pH= 样品的测定分析 将待测的一批稀释50倍,母液稀释的程度可以根据以与标准溶液在相同的反应条件下反应,再观察样品的显色程度而确定。取稀释后的产物液1ml,用pH=的缓冲液稀释到5ml 再加入1ml 茚三酮水溶液,在沸水中加热10min,测得如下数据如表3: 表3 样品的测定 待测液序号 待测液所对应的反应时间 吸光度A 1 10h 2 20h 3 22h

烟叶游离氨基酸的测定 氨基酸分析仪法

烟叶游离氨基酸的测定氨基酸分析仪法(YC/T 282—2009) 日期:2009/6/2 10:39:18 作者:来源: 烟叶游离氨基酸的测定氨基酸分析仪法(YC/T 282—2009)由国家烟草专卖局于2009年3月30日批准发布,自2009年5月1日起实施。 前言 本标准的附录A、附录B、附录C为资料性附录。 本标准由国家烟草专卖局提出。 本标准由全国烟草标准化技术委员会卷烟分技术委员会(TC144/SC1)归口。 本标准起草单位:湖北中烟工业有限责任公司、中国烟草总公司郑州烟草研究院。 本标准主要起草人:王娟、李丹、刘建锋、马舒翼、宋旭艳、郭国宁、刘克建。 烟叶游离氨基酸的测定氨基酸分析仪法 1 范围 本标准规定了烟叶中游离氨基酸的氨基酸分析仪测定方法。 本标准适用于烟叶中天冬氨酸(Asp)、苏氨酸(Thr)、丝氨酸(Ser)、天冬酰胺(Asn)、谷氨酸(Glu)、脯氨酸(Pro)、甘氨酸(Gly)、丙氨酸(Ala)、缬氨酸(Val)、胱氨酸(Cys)、异亮氨酸(Ile)、亮氨酸(Leu)、酪氨酸(Tyr)、苯丙氨酸(Phe)、β-丙氨酸(β-Ala)、β-氨基异丁酸(β-Aia)、γ-氨基丁酸(γ-Aba)、赖氨酸(Lys)、组氨酸(His)、色氨酸(Trp)、精氨酸(Arg)等21种游离氨基酸的测定。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 YC/T 31-1996 烟草及烟草制品试样的制备和水分测定烘箱法 3 术语和定义 下列术语和定义适用于本标准。 3.1 烟叶中游离氨基酸 dissociated amino acid(free amino acid)in tobacco leaf 烟叶的盐酸浸出物中,以游离状态存在、未结合在蛋白质分子中的氨基酸。 4 原理 氨基酸为两性电解质,在酸性环境下形成阳离子。烟叶中的游离氨基酸经酸溶液萃取后,经氨基酸分析仪的磺酸型锂离子交换柱分离,然后与茚三酮混合,通过加热反应,伯胺与之生成蓝紫色化合物,仲胺与之生成黄色化合物。两种衍生物使用波长分别为570 nm和440 nm的双通道紫外检测器同时进行定性定量分析测定(氨基酸分析仪管路图参见附录A)。 5 试剂 除特别要求以外,本标准所使用的试剂均为分析纯试剂,水为去离子水。 5.1盐酸溶液,0.005 mol/L。

氨基酸分析仪

1.简介 采用经典的阳离子交换色谱分离、茚三酮柱后衍生法,对蛋白质水解液及各种游离氨基酸的组分含量进行分析。仪器基本结构同普通HPLC相似,但针对氨基酸分析进行了细节优化(例如氮气保护、惰性管路、在线脱气、洗脱梯度及柱温梯度控制等等)2.系统 通常细分为两种系统:蛋白水解分析系统(钠盐系统)和游离氨基酸分析系统(锂盐系统),利用不同浓度和pH值的柠檬酸钠或柠檬酸锂进行梯度洗脱。其中钠盐系统一次最多分析约25 种氨基酸,速度较快,基线平直度好;锂盐系统一次最多分析约50种氨基酸,速度较慢,基线一般不如钠盐系统好。 3.效果 分析效果:从目前已知的氨基酸分析方法比较来看,除灵敏度(最低检测限)比HPLC柱前衍生方法稍低以外(HPLC:<0.5pmol;氨基酸分析仪:<10pmol),其他如分离度、重现性、操作简便性、运行成本等方面,都优于其他分析方法。 4.如何选择质量可靠的氨基酸分析仪 1、原理。基于阳离子交换柱分离、柱后茚三酮衍生、光度法测定的离子交换色谱法(IEC)。此类方法由Stein和Moore两人

1958年发明,并于1972年获诺贝尔奖,是当今国际标准和国家标准以及仲裁和涉外的方法。 2、重要指标。满足分析需要的技术指标如分离度、重复性等要求,而其中的分离度又是更为重要的指标,因为,色谱理论一般以分离度达到1.2作为两峰基本分离的判定前提,只有峰分开了,才有意义去讨论定性和定量的重复性。 3、指标的真实性。有些厂家只标出个别氨基酸的指标如Asp 或Arg,或只用平均数据替代全部数据等等,而仪器性能好,经营信誉较高的厂家就会标出全部氨基酸的指标供用户参考。 4、仪器的可靠性。如果仪器今天堵了、明天漏了,用户不仅要付出大量人力财力,分析结果的可信度也将大打折扣。 5、仪器的运行成本。例如是否可以使用国产试剂、柱子寿命(以多少次进样计算、而不以多少年计算)等。 6、仪器设计是否有利于氨基酸分析。例如是否有惰性气体保护(茚三酮极易被氧化)、是否提供在线脱气、是否提供溶液和样品的制冷控制等。 7、售后服务。分析过程中遇到困难是在所难免,厂家必须能够快速响应、尽快解决问题。另外,常用备件的价格也是一个重要因素,因为用户在购买前一般难以注意到售后的问题,而很多厂家也没有公示自己的常用备件价格,这就为将来的使用埋下了隐患,事实上,也的确有很多仪器在出现一些看似微小的故障之后,就因为维修费用太高而被“束之高阁”。

氨基酸测定

茚三酮显色法测定氨基酸的含量 一.原理: 凡含有自由氨基的化合物,如蛋白质、多肽、氨基酸的溶液与水合茚三酮共热时,能产生紫色化合物,可用比色法进行测定。氨基酸与茚三酮的反应分两个步骤。第一步是氨基酸被氧化形成CO2、NH3和醛、茚三酮被还原成还原型茚三酮;第二步是所形成的还原型茚三酮与另一个茚三酮分子和NH3缩合生成有色物质。 二.仪器: 721型分光光度计台天平减压蒸馏器干燥容量瓶移液枪烧杯试管架试管水浴锅。 三.药品: (1)标准氨基酸溶液:配制成0.3 mmol/L 溶液 (2)pH5.4,2mol/L 醋酸缓冲液:量取86mL 2mol/L 醋酸钠溶液,加入14mL 2mol/L 乙酸混合而成。用pH 检查校正。 (3)茚三酮显色液:称取170mg 茚三酮和30mg 还原茚三酮,用20mL 乙二醇甲醚溶解(4)60%乙醇。 (5)样品液:每毫升含0.5~50μg 氨基酸。 茚三酮若变为微红色,则需按下法重结晶:称取5g 茚三酮溶于15~25mL 热蒸馏水中,加入0.25g 活性炭,轻轻搅拌。加热30min 后趁热过滤,滤液放入冰箱过夜。次日析出黄白色结晶,抽滤,用1mL 冷水洗涤结晶,置干燥器干燥后,装入棕色玻璃瓶保存。 还原型茚三酮按下法制备:称取0.5g 茚三酮,用12.5mL 沸蒸馏水溶解,得黄色溶液。将0.5g 维生素C 用25mL 温蒸馏水溶解,一边搅拌一边将维生素C 溶液滴加到茚三酮溶液中,不断出现沉淀。滴定后继续搅拌15min,然后在冰箱内冷却到4℃,过滤、沉淀用冷水洗涤3 次,置五氧化二磷真空干燥器中干燥保存,备用。 乙二醇甲醚若放置太久,需用下法除去过氧化物:在500mL 乙二醇甲醚中加入5g 硫酸亚铁,振荡1~2h,过滤除去硫酸亚铁,再经蒸馏,收集沸点为121~125℃的馏分,为无色透明的乙二醇甲醚。 四、操作步骤 1.标准曲线的制作分别取0.3mmol/L 的标准氨基酸溶液0,0.2,0.4,0.6,0.8,1.0mL 于试管中,用水补足至1mL。各加入1mL pH5.4,2mol/L 醋酸缓冲液;再加入1mL 茚三酮显色液,充分混匀后,盖住试管口,在100℃水浴中加热15min,用自来水冷却。放置5min 后,加入3mL60%乙醇稀释,充分摇匀,用分光光度计测定OD570nm。(脯氨酸和羟脯氨酸与茚三酮反应呈黄色,应测定OD440nm)。以OD570nm 为纵坐标,氨基酸含量为横坐标,绘制标准曲线。 1 2 3 4 5

相关文档
最新文档