第12章 气体动理论

第12章 气体动理论
第12章 气体动理论

第12章 气体动理论

§12.1 分子运动的基本概念

分子运动的基本观点

1. 宏观物体由大量粒子(分子、原子等)组成,分子之间存在一定的空隙

2. 分子在永不停息地作无序热运动 ——布朗运动

3. 分子间存在相互作用力 假定分子间的相互作用力有球对称性时,分子间的相互作用(分子力)可近似地表示为:

)

(t s r

r

f t

s

>-

=

μ

λ

式中r 表示两个分子中心的距离, λ 、 μ 、 s 、 t 都是正数,其值由实验确定。

由分子力与分子距离的关系,有f=0处:

r 0 ≈ 10-10 m ( 平衡位置 )

r>r 0分子力表现为引力 ; r

一切宏观物体都是由大量分子组成的,分子都在永不停息地作无序热运动,分子之间有相互作用的分子力。

§12.2 气体分子的热运动

气体分子运动的规律

1. 气体分子热运动可以看作是在惯性支配下的自由运动

(1) 气体分子间距离很大,而分子力的作用范围很小,除分子与分子、分子与器壁相互碰撞的瞬间外,气体分子间相互作用的分子力是极其微小的。

(2) 气体分子质量一般很小,重力对其作用一般可以忽略。 2. 气体分子间的相互碰撞是非常频繁的

一秒内一个分子和其它分子大约要碰撞几十亿次(109次/秒) 3. 气体分子热运动服从统计规律 统计的方法:

物理量M 的统计平均值

s

t r r -==1

0)

(λμ

N i 是M 的测量值为 M i 的次数,实验总次数为N

状态A 出现的概率 归一化条件

例如平衡态下气体分子速度分量的统计平均值为

气体处于平衡状态时,气体分子沿各个方向运动的概率相等,故有

又如平衡态下气体分子速度分量平方的统计平均值为

.....

++=++=

B A B B A A N N N N M N M N M N

M N M N M B B A A N )(lim ++=∞

→)

(lim N N W A N A ∞

→=1=∑i

i W N

N N N N N N N i

ix i i ix i x x x ∑?=+?++?+?+?++?+?=

v v v v v

212211N

N N N N N N N i

iy i i iy i y y y ∑?=+?++?+?+?++?+?=v v v v v

212211N

N N N N N N N i

iz i i iz i z z z ∑?=

+?++?+?+?++?+?=v v v v v 2122110

===z y x v v v N

N N

N N

N N

N v iz i

i iy i

i ix i

i i i

i 2

2

2

22

v v v v ∑∑∑∑?+

?+

?=

?=222

z

y

x

v

v v ++=

由于气体处于平衡状态时,气体分子沿各个方向运动的概率相等,故有

§12.3 统计规律的特征

伽耳顿板实验 若无小钉:必然事件 若有小钉:偶然事件 实验现象:

一个小球落在哪里有偶然性 少量小球的分布每次不同 大量小球的分布近似相同 结论

(1) 统计规律是大量偶然事件的总体所遵从的规律 (2) 统计规律和涨落现象是分不开的。

§12.4 理想气体的压强公式

一. 理想气体的微观模型

(1) 不考虑分子的内部结构并忽略其大小

(2) 分子力的作用距离很短,可以认为气体分子之间除了碰撞的一瞬间外,其相互作用力可忽略不计。 (3) 碰撞为完全弹性

z

y x v

v v ==2

2223

1v

v v v ===z

y

x

。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。

。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。

理想气体分子好像是一个个没有大小并且除碰撞瞬间外没有相互作用的弹性球。

二. 平衡态气体分子的统计性假设

1. 每个分子的运动速度各不相同,且通过碰撞不断发生变化

2. 分子按位置的均匀分布(重力不计)

在忽略重力情况下,分子在各处出现的概率相同, 容器内各处的分子数密度相同 3. 分子速度按方向的分布均匀

由于碰撞, 分子向各方向运动的概率相同,所以

三. 理想气体的压强公式

1. 从气体分子运动看气体压强的形成

气体的压强是由大量分子在和器壁碰撞中不断给器壁以力的作用所引起的。

2. 理想气体的压强公式

设体积为V 的容器, 内贮分子总数为 N ,分子质量 为μ,分子数密度 n 的平衡态理想气体。n=N/V

速度为 v i 的分子数为△N i , 分子数密度为△n i 。

在d t 时间内,速度为 v i 的分子与面元d A 碰撞的分子数为 (v ix > 0)

V

N

V N n =??=

===z y x v v v 2

2223

1v

v v v ===z

y

x

A t V

N ix i

d d v ?

每个分子传递给dA 的动量为2μv ix ,在d t 时间内,与面元d A 碰撞的所有分子所受的冲量d I 为:

由压强定义得

说明

(1) 压强 p 是一个统计平均量。它反映的是宏观量 p 和微观量ε 的关系。对大量分子,压强才有意义。 (2) 压强公式无法用实验直接验证

x

∑∑?-=?-=>i ix i ix i A

t V N A t V N dI ix d d d d 22

02v v v μμεμμμn v n p v

v n N N V N

dAdt dI p x x

i ix

i 3

2213231222

2

2

=??? ??===?=-=∑

v

v

书中例题12.1(p78)

体积V=10-3m 3的容器中,储有理想气体的总分子数N=1023,每个分子的质量为μ=5×10-26kg ,分子的方均根速率为400m/s 。 试求:该理想气体的压强,温度及气体分子的平均平动能。 解:

根据理想气体状态方程

§12.5 麦克斯韦速率分布定律

一. 分布的概念

气体系统是由大量分子组成, 而各分子的速率通过碰撞不断地改变, 不可能逐个加以描述, 只能给出分子数按速率的分布。 例如:学生人数按年龄的分布

)(1067.22

1034001051022132213253

2262322Pa v V N v n p ?=??????=?

??

??=??? ??=--μμ)

(4002400

1051021)(19331

.81010022.6101067.22

2623223

23

3500J v m N N E K NR pVN T RT N N RT M m pV K =???=??

? ??===?????====

--εμ

μ

例如:气体分子按速率的分布

二. 速率分布函数 f (v )

设某系统处于平衡态下, 总分子数为 N ,则在v ~v+ d v 区间内分子数的比率为

f (v ) 称为速率分布函数

意义:分布在速率v 附近单位速率间隔内的分子数与总分子数之比。

三. 气体速率分布的实验测定

1. 实验装置

2. 能通过细槽到达检测器 D 的分子所满足的条件

通过改变角速度ω的大小,选择速率v~v+△v

沉积在检测器上相应的金属层厚度必定正比相应速率下的分子数

dv v f N

N

)(d =v

v d d )(N N

f =

ω?

=v L L

?

ω=v

四. 麦克斯韦速率分布定律

1. 麦克斯韦速率分布定律

理想气体在平衡态下分子的速率分布函数

( 麦克斯韦速率分布函数 )

式中μ为分子质量,T 为气体热力学温度, k 为玻耳兹曼常量 k = R/N 0=1.38×10-23 J / K

理想气体在平衡态下,气体中分子速率在v ~v+ d v 区间内的分子数与总分子数的比率为

这一规律称为麦克斯韦速率分布定律 说明

(1) 从统计的概念来看讲速率恰好等于某一值的分子数多少,是没有意义的。

(2) 麦克斯韦速率分布定律对处于平衡态下的混合气体的各组分分别适用。

(3) 在通常情况下实际气体分子的速率分布和麦克斯韦速率分布能很好的符合。

kT

e

kT

f 2/22

/32)π2(

4)(v v v μμ

π-=v v v v v d )π2(π4d )(d 2/22/32kT

e kT

f N N μμ-==

N

dN

v v =

d )(f ?∞

=0

1d )(v v f 2. 麦克斯韦速率分布曲线

● 由图可见,气体中速率很小、速率很大的分子数都很少。 ● 在d v 间隔内, 曲线下的面积表示速率分布在v ~v+ d v 中的分子数与总分子数的比率

● 曲线下面的总面积,等于分布在整个速率范围内所有各个速率间隔中的分子数与总分子数的比率的总和

(归一化条件) ● f (v ) 出现极大值时, 所对应的速率称为最概然速率v p

3. 不同气体, 不同温度速率分布曲线

对同一种气体,当温度升高时,分子热运动加剧,速率提高,分布曲线的极大值随温度升高而提高;由于曲线下的面积恒为1,所以随着温度的提高,曲线变得越来越平坦。

p

在同一温度下,气体分子质量越大,最概然速率越小,分布曲线向左移动。

1p 2

p

1p 2

p

M RT M RT kT

v kT

b

b b v b dv e v dv

e v b v kT

e

kT

f N

N

bv bv kT

596.1882b 121421

42b d )

π2(

π4dv

)(d 2

2

3

2

030

32

32/22

/30

02

2

2===

==?

?? ??==?

?

?

??==

===??

???∞

-∞

∞ππμμ

πππππμ

μ

μ代人得

将积分:令v

v v v v v v v 五. 分子速率的三种统计平均值

1. 平均速率

其中 k=R/N 0 2. 方均根速率

M

RT

kT

v μ

kT f 73.133)d (2

2

2

==

=

=?

μv v v v

3. 最概然速率 说明:

(1) 三种速率用途各不相同 讨论速率分布一般用 讨论分子的碰撞次数用 讨论分子的平均平动动能用

(2) 同一种气体分子的三种速率的大小关系:

书中例题12.2(p.83)

计算0℃时氢气、氧气、氮气的平均速率、方均根速率和最概然速率。

M (kg/mol ) 氧气: 0.032 460(m/s ) 426(m/s ) 375(m/s ) 氮气: 0.028

492(m/s ) 455(m/s ) 401(m/s )

氦气: 0.004 1302 (m/s ) 1204(m/s ) 1061(m/s ) 氢气: 0.002

1842(m/s ) 1704(m/s ) 1501(m/s )

M

RT

kT

f 41.12v 0

d (d p ==

==μp v v v v )

p

v v v >>2p v v 2

v M

RT

73.1=2v M

RT

1.6

v =M

RT p 41

.1=v

§12.6 温度的微观本质

一. 理想气体温度与分子平均平动动能的关系

理想气体分子的平均平动动能为

每个分子平均平动动能只与温度有关,与气体的种类无关。 说明

(1) 温度是大量分子热运动平均平动动能的度量.它反映了宏观量T 与微观量ε的统计平均值之间的关系。

(2) 温度是统计概念,是大量分子热运动的集体表现。对于单个或少数分子来说,温度的概念就失去了意义。

二. 理想气体定律的推证

1. 阿伏加德罗定律

即理想气体状态方程

● 从分子运动的基本概念出发,利用统计平均的方法导出了理想气体状态方程;反过来也证实了微观理论的正确性。 ● 在相同的温度和压强下,各种气体的分子数密度相等。 书中例题12.7(p.89)

计算标准状态下,任何气体在1cm 3体积中含有的分子数。 解:标准状态:p=1.013×105Pa ,T=273K

kT kT 2

3321212===μμμεv RT

RT N N pV T

N R V N nkT kT n n p νε======0

0233232)(10687.210013.13

2523

5-?=?==m p n

2. 道尔顿分压定律

设几种气体贮于一密闭容器中,并处于平衡态,其温度相同,则它们的分子平均平动能相等:

分子数密度分别为 n 1、n 2、n 3 … ,则混合气体的分子数密度为 Nn=n 1+n 2+n 3+…… 混合气体的压强为:

混合气体的压强等于各种气体的分压强之和。——道尔顿分压定律。 书中例题12.9(p.89)

一定量的理想气体,从同一初态开始,分别经过等温过程和绝热过程由体积V 1膨胀到V 2。试用分子运动的观点说明为什么绝热膨胀中压强的减小量大于等温过程中的减小量。

解:从分子运动的观点来看,压强决定于分子数密度和分子平均平动能,而分子的平均平动能只与气体的温度有关,等温过程分子的平均平动能不变,而绝热过程中温度降低,分子的平均平动能减小;两个过程中体积变化相同,故分子数密度的变化相同相同,所以,绝热膨胀过程压强减小量大于等温过程压强减小量。

作业:p123,12.13,12.15,12.17

ε

εεε====......321 (3)

2

3232......)(32

32321332211321+++=+++=+++==p p p n n n n n n n p εεεε

εε

n p 3

2

=

§12.7 能量按自由度均分原理

一. 气体分子自由度

实际上,双原子、多原子分子并不完全是刚性的,还有振动自由度。但在常温下将其分子作为刚性处理, 能给出与实验大致相符的结果,因此可以不考虑分子内部的振动,认为分子都是刚性的。

二. 能量按自由度均分定理

理想气体分子的平均平动动能为

由于气体分子运动的无规则性,各自由度没有哪一个是特殊的,因此,可以认为气体分子的平均平动动能是平均分配在每一个平动自由度上的。

在温度为T 的平衡状态下,分子的每个自由度的平均动能均为 ,

这样的能量分配原则称为能量按自由度均分定理

说明

(1) 能量按自由度均分是大量分子统计平均的结果,是分子间的频繁

kT 2

3212==

v μεkT z y x z y x 2

1212121212121212222222===++=v v v v v v v μμμμμμμkT 2

1

碰撞而致。

(2) 若某种气体分子具有t 个平动自由度和r 个转动自由度,s 个振

动自由度,则每个气体分子的平均总动能为: 每个气体分子的平均势能为 因此

每个气体分子的平均总能量为

对于刚性分子 s=0,气体分子的平均总动能等于气体分子的平均总能

量。即为

三. 理想气体的内能

内能;系统中与热现象有关的那部分能量

理想气体的内能:气体中所有分子各种形式动能和分子内原子间振动势能的总和

每个气体分子的平均总能量为 1mol 理想气体的内能为 νmol 理想气体的内能为 说明:

一定质量的理想气体内能完全取决于分子运动的自由度数和气体的温度,而与气体的体积和压强无关。对于给定气体,i 是确定的,所以其内能就只与温度有关,这与宏观的实验观测结果是一致的。

kT

s r t )(2

1

++kT s

2

kT i kT s r t 2)2(21=++kT r t )(21

+kT i 2

RT

i

kT i N E 2

20==RT

i

E 2

ν=

四. 理想气体的摩尔热容

理想气体的定体摩尔热容为: 理想气体的定压摩尔热容为: 1mol 理想气体的内能变化为

νmol 理想气体的内能变化为 例:

一容器内某理想气体的温度为273K ,密度为ρ= 1.25 g/m3, 压强为 p = 1.0×10-3 atm

求:(1) 气体的摩尔质量,是何种气体? (2) 气体分子的平均平动动能和平均转动动能? (3) 单位体积内气体分子的总平动动能? (4) 设该气体有0.3 mol ,气体的内能? 解:(1)由

由结果可知,这是N2 或CO 气体。 (2) 平均平动动能和平均转动动能为

(3) 单位体积内气体分子的总平动动能为

R i

T E C V 2

d d ==

T

C T R i

E V ?=?=?2R

i R C C v p 2)

2(+=+=i

i C C V p 2+=

=γT

C E V ?=?νmol kg p RT M RT

M

m

pV /028.010

013.11027331.81025.15

33=?????===--ρJ

1077.32731038.1J

1056.52731038.12

3

2321232123----?=??==?=???==kT kT r t εε

(4) 由气体的内能公式,有

§12.8 玻耳兹曼分布律

麦克斯韦速率分布律是关于无外力场时,气体分子的速率分布。

此时,分子在空间的分布是均匀的。若有外力场存在,分子按密度如何分布呢?

一. 重力场中粒子按高度的分布

平衡态下气体的温度处处相同,气体的压强为

3

2232

21J/m 1052.1273

1038.110

013.11056.5?=????

?=?

=?=--kT

p

n E t t t εεJ 1070.127331.82

53.023?=???=?=

RT i M m E (非均匀的稳定分布)

h

h +d h

p

p d +p

h

d gdh

n h g p μρ-=-=d d

h=0处的分子数密度为n 0

在重力场中,粒子数密度随高度增大而减小,μ 越大,n 减小越迅速;T 越高,n 减小越缓慢。

等温气压公式。式中 p 0 是高度为零处的压强。

例:实验测得常温下距海平面不太高处,每升高10 m ,大气压约降低133.3 Pa 。试用恒温气压公式验证此结果(海平面上大气压按1.013×105 Pa 计,温度取273K )。 解:由等温气压公式

kT

gh h n n e n n dh kT g n dn dh kT g n dn gdh n kTdn kTdn dp nkT p /000μμμμ-=-=-=-===??kT

gh

kT

gh

e

p kTe

n nkT p μμ--===00m p p Mg RT h dh RT

Mg p dp RT Mgdh e

p dp e p e p p RT

Mgh

RT Mgh kT gh 3.1010

013.13.133101097.2827331.85

30/0/0=?-????-=?-≈?-=??

?

??-?===----两边微分有:μ

第十二章 气体动理论-1

绍兴文理学院 学校 210 条目的4类题型式样及交稿 式样(理想气体的内能、能量按自由度均分定理) 1、选择题 题号:21011001 分值:3分 难度系数等级:1 1 mol 刚性双原子分子理想气体的内能为 (A ) kT 2 5 (B ) RT 2 5 (C ) kT 2 7 (D ) RT 27 [ ]

答案:( B ) 题号:21011002 分值:3分 难度系数等级:1 根据能量均分定理,分子的每一自由度所具有的平均能量为 (A ) kT 2 1 (B )kT (C ) kT 2 3 (D ) kT 25 [ ] 答案:( A ) 题号:21011003 分值:3分 难度系数等级:1 质量为M kg 的理想气体,其分子的自由度为 i ,摩尔质量为μ,当它处于温度为T 的平衡态时,该气体所具有的内能为 (A )RT (B ) RT i 2 (C ) RT M μ (D ) RT i M 2 μ [ ] 答案:( D ) 题号:21012004 分值:3分 难度系数等级:2 温度为27℃ 时,1 mol 氧气所具有的平动动能和转动动能分别为 (A )21 1021.6-?=平E J ,21 10 14.4-?=转E J (B )21 1014.4-?=平E J ,21 10 21.6-?=转E J (C )3 1049.2?=平E J , 3 1074.3?=转E J (D )3 1074.3?=平E J ,3 1049.2?=转E J [ ] 答案:( D )(氧气为双原子刚性分子)

题号:21012005 分值:3分 难度系数等级:2 1 mol 非刚性双原子分子理想气体的内能为 (A ) kT 2 5 (B ) RT 2 5 (C )kT 2 7 (D ) RT 2 7 [ ] 答案:( D ) 题号:21012006 分值:3分 难度系数等级:2 质量为M kg 的刚性三原子分子理想气体,其分子的摩尔质量为μ,当它处于温度为T 的平衡态时,该气体所具有的内能为 (A ) RT M μ 27 (B ) RT M μ 3 (C ) RT M μ 25 (D ) RT M μ 23 [ ] 答案:( B ) 题号:21012007 分值:3分 难度系数等级:2 若某种刚性双原子分子的理想气体处于温度为T 的平衡状态下,则该理想气体分子..的平均能量为 (A ) kT 2 3 (B ) kT 2 5 (C ) RT 2 3 (D ) RT 2 5 [ ] 答案:( B ) 题号:21013008 分值:3分 难度系数等级:3 理想气体处于平衡状态,设温度为T ,气体分子的自由度为i ,则下列表述正确的是

第二章气体动理论

第二章 气体动理论 1-2-1选择题: 1、处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,都处于平衡态。以下说法正确的是: (A )它们的温度、压强均不相同。 (B )它们的温度相同,但氦气压强大于氮气压强。 (C )它们的温度、压强都相同。 (D) 它们的温度相同,但氦气压强小于氮气压强。 2、三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,方均根速率之比4:2:1: : 2 2 2 C B A v v v , 则其压强之比C B A p p p ::为: (A) 1 : 2 : 4 (B) 1 : 4 : 8 (C) 1 : 4 : 16 (D) 4 : 2 : 1 3、一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m . 根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值为: (A) 2x v = m kT 3 (B) 2 x v = m kT 331 (C) 2 x v = m kT 3 (D) 2 x v = m kT 4、关于温度的意义,有下列几种说法: (1) 气体的温度是分子热运动平均平动动能的量度. (2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义. (3) 温度的高低反映物质内部分子热运动剧烈程度的不同. (4) 从微观上看,气体的温度表示每个气体分子的冷热程度. 上述说法中正确的是 (A ) (1)、(2)、(4) (B ) (1)、(2)、(3) (C ) (2)、(3)、(4) (D) (1)、(3)、(4)

5、两容器内分别盛有氢气和氦气,若它们的温度和质量分别相等,则: (A) 两种气体分子的平均平动动能相等. (B) 两种气体分子的平均动能相等. (C) 两种气体分子的方均根速率相等. (D) 两种气体的内能相等. 6、一容器内装有N 1个单原子理想气体分子和N 2个刚性双原子理想气体分子,当该系统处在温度为T 的平衡态时,其内能为 (A) ??? ??++kT kT N N 2523)(21 (B) ??? ??++kT kT N N 252 3 )(2121 (C) kT N kT N 252321+ (D) kT N kT N 2 3 2521+ 7、有一截面均匀的封闭圆筒,中间被一光滑的活塞分割成两边,如果其中的一边装有0.1kg 某一温度的氢气,为了使活塞停留在圆筒的正中央则另一边应装入同一温度的氧气质量为: (A ) kg 16 1 (B) 0.8 kg (C ) 1.6 kg (D) 3.2 kg 8、若室内生火炉以后,温度从15°C 升高到27°C ,而室内的气压不变,则此时室内的分子数减少了: (A) 0.5% (B) 4% (C) 9% (D) 21% 9、有容积不同的A 、B 两个容器,A 中装有单原子分子理想气体,B 中装有双原子分子理想气体。如果两种气体的压强相同,那么这两种气体的单位体积的内能A V E ??? ??和B V E ??? ??的关系为: (A )B A V E V E ??? ????? ??

第四章 气体动理论 总结

第四章 气体动理论 单个分子的运动具有无序性 布朗运动 大量分子的运动具有规律性 伽尔顿板 热平衡定律(热力学第零定律) 实验表明:若 A 与C 热平衡 B 与C 热平衡 则 A 与B 热平衡 意义:互为热平衡的物体必然存在一个相同的 特征--- 它们的温度相同 定义温度:处于同一热平衡态下的热力学系统所具有的共同的宏观性质,称为温度。 一切处于同一热平衡态的系统有相同的温度。 理想气体状态方程: 形式1: mol M PV =RT =νRT M 形式2: 2 2 2111T V p T V p =形式3: nkT P = n ----分子数密度(单位体积中的分子数) k = R/NA = 1.38*10 –23 J/K----玻耳兹曼常数 在通常的压强与温度下,各种实际气体都服从理想气体状态方程。 §4-2 气体动理论的压强公式 V N V N n ==d d 1)分子按位置的分布是均匀的 2)分子各方向运动概率均等、速度各种平均值相等 k j i iz iy ix i v v v v ++=分子运动速度 单个分子碰撞器壁的作用力是不连续的、偶然的、不均匀的。从总的效果上来看,一个持续的平均作用力。 2213 212()323 p nmv p n mv n ω === v----摩尔数 R--普适气体恒量 描述气体状态三个物理量: P,V T 压 强 公 式

12 2 ω=mv 理想气体的压强公式揭示了宏观量与微观量统计平均值之间的关系,说明压强具 有统计意义; 压强公式指出:有两个途径可以增加压强 1)增加分子数密度n 即增加碰壁的个数 2)增加分子运动的平均平动能 即增加每次碰壁的强度 思考题:对于一定量的气体来说,当温度不变时,气体的压强随体积的减小而增大(玻意耳定律);当体积不变时,压强随温度的升高而增大(查理定律)。从宏观来看,这两种变化同样使压强增大,从微观(分子运动)来看,它们有什么区 别? 对一定量的气体,在温度不变时,体积减小使单位体积内的分子数增多,则单位时间内与器壁碰撞的分子数增多,器壁所受的平均冲力增大,因而压强增大。而当体积不变时,单位体积内的分子数也不变,由于温度升高,使分子热运动加剧,热运动速度增大,一方面单位时间内,每个分子与器壁的平均碰撞次数增多; 另一方面,每一次碰撞时,施于器壁的冲力加大,结果压强增大。 §4-3 理想气体的温度公式 nkT p =23 p =n ω 1322 2 ω=mv =kT 1. 反映了宏观量 T 与微观量w 之间 的关系 ① T ∝ w 与气体性质无关;② 温度具有统计意义,是大量分子集 体行为 ,少数分子的温度无意义。2. 温度的实质:分子热运动剧烈程度的宏观表现。3. 温度平衡过程就是能量平衡过程。 二.气体分子运动的方均根速率 kT v m 2 32 1 2 = ?2 m ol 3kT 3R T v = =m M 在相同温度下,由两种不同分子组成的混合气体,它们的方均根速率与其质量的平方根成正比 当温度T=0时,气体的平均平动动能为零,这时气体分子的热运动将停止。然而事实上是绝对零度是不可到达的(热力学第三定律),因而分子的运动是永不停息 的。 μRT m kT v v x = ==22 31 分子平均平动动能 温度的微观本质:理想气体的温度是分子平均平动动能的量度 摩尔质量

第七章 气体动理论答案

一.选择题 1、(基础训练1)[ C ]温度、压强相同的氦气与氧气,它们分子的平均动能ε与平均平动动能w 有如下关系: (A) ε与w 都相等. (B) ε相等,而w 不相等. (C) w 相等,而ε不相等. (D) ε与w 都不相等. 【解】:分子的平均动能kT i 2 = ε,与分子的自由度及理想气体的温度有关,由于氦气为单原子分子,自由度为3;氧气为双原子分子,其自由度为5,所以温度、压强相同的氦气与氧气,它们分子的平均动能ε不相等;分子的平均平动动能kT w 2 3 = ,仅与温度有关,所以温度、压强相同的氦气与氧气,它们分子的平均平动动能w 相等。 2、(基础训练3)[ C ]三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同, 而方均根速率之比为( )()()2 /122 /122 /12::C B A v v v =1∶2∶4,则其压强之比A p ∶B p ∶ C p 为: (A) 1∶2∶4. (B) 1∶4∶8. (C) 1∶4∶16. (D) 4∶2∶1. 【解】:气体分子的方均根速率:M RT v 32 = ,同种理想气体,摩尔质量相同,因方均根速率之比为1∶2∶4,则温度之比应为:1:4:16,又因为理想气体压强nkT p =,分子数密度n 相同, 则其压强之比等于温度之比,即:1:4:16。 3、(基础训练8)[ C ]设某种气体的分子速率分布函数为f (v ),则速率分布在v 1~v 2区间内的分子的平均速率为 (A) ? 2 1d )(v v v v v f . (B) 2 1 ()d v v v vf v v ?. (C) ? 2 1 d )(v v v v v f /?2 1 d )(v v v v f . (D) ? 2 1 d )(v v v v v f /0()d f v v ∞ ? . 【解】:因为速率分布函数f (v )表示速率分布在v 附近单位速率间隔内的分子数占总分子数的百分率,所以 ? 2 1 d )(v v v v v f N 表示速率分布在v 1~v 2区间内的分子的速率总与,而 2 1 ()d v v Nf v v ? 表示速率分布在v 1~v 2区间内的分子数总与,因此?2 1 d )(v v v v v f /?2 1 d )(v v v v f 表 示速率分布在v 1~v 2区间内的分子的平均速率。 4、(基础训练10)[ B ]一固定容器内,储有一定量的理想气体,温度为T ,分子的平均碰撞次数为 1Z ,若温度升高为2T ,则分子的平均碰撞次数2Z 为 (A) 21Z . (B) 12Z . (C) 1Z . (D) 12 1Z . 【解】:分子平均碰撞频率n v d Z 2 2π,因就是固定容器内一定量的理想气体,分子数密 度n 不变,而平均速率: v = 温度升高为2T ,则平均速率变为v 2,所以2Z =12Z 5、(自测提高3)[ B ]若室内生起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了:(A)0、500. (B) 400. (C) 900. (D) 2100.

第二章气体分子运动论的基本概念汇总

第二章?????气体分子运动论的基本概念2013-7-22崎山苑工作室1 2.1物质的微观模型分子运动论是从物质的微观结构出发来阐明热现象的规律的。 一、宏观物体是由大量微粒--分子(或原子)组成的宏观物体是由分子组成的,在分子之间存在着一定的空隙。例如气体很容易被压缩,又如水和酒精混合后的体积小于两者原有体积之和,这都说明分子间有空隙。用20000atm的压强压缩钢筒中的油,结果发现油可以透过筒壁渗出,这说明钢的分子间也有空隙。目前用高分辨率的扫描隧道显微镜已能观察晶体横截面内原子结构的图像,并且能够操纵原子和分子。2013-7-22崎山苑工作室2 2013-7-22崎山苑工作室

二、物体内的分子在不停地运动着,这种运动是无规则的,其剧烈程度与物体的温度有关扩散现象说明:一切物体(气体、液体、固体)的分子都在不停地运动着 在显微镜下观 察到悬浮在液 体中的小颗粒 都在不停地作 无规则运动,

该运动由布朗 最早发现,称 为布朗运动。 2013-7-22崎山苑工作室4 布朗运动的无规则性,实际上反映了液体内部分子运动的无规则性。 所谓“无规则”指的是: 1。由于分子间的相互碰撞,每个分子的运动方向和速率都在不断地改变; 2。任何时刻,在液体或气体内部,沿各个方向运动的分子都有,而且分子运动的速率有大有小。 实验结果:扩散的快慢和布朗运动的剧烈程度都与温度的高低有显著的关系。随着温度的升高,扩散过程加快,悬浮颗粒的运动加剧。 结论:分子无规则运动的剧烈程度与温度有关,温度越高,分子的无规则运动就越剧烈。通常把分子的这种运动称为热运动。 2013-7-22崎山苑工作室5 三、分子之间有相互作用力吸引力:由于固体与液体的分子之间存在着相互的吸引力使固体能够保持一定的形状与体积而液体能保持一定的体积。 右图演示实验说明分子之间存在着相互的吸引力 排斥力:固体和液体的很难压缩说明分子之间存在着斥力结论:一切宏观物体都是由大量分子(或原子)组成的;所有的分子都处在不停的、无规则热运动中;分子之间有相互作用力。 2013-7-22崎山苑工作室6 三、分子之间有相互作用力吸引力:由于固体与液体的分子之间存在着相互的吸引力使固体能够保持一定的形状与体积而液体能保持一定的体积。 右图演示实验说明分子之间存在着相互的吸引力

第四章 气体动理论

4-1 20个质点的速率分布如下 解:⑴07 1 65.31 v N v N v i i i == ∑= ⑵01 2 2 99.31v N v N v i N i i == ∑= ⑶03v v p = 4-2 容积为10L 的容器中由1mol CO 2气体,其方均根速率为1440Km/h ,求CO 2气体的压强。 解:分子总数为A N ,摩尔质量为M ,则分子数密度为 A N V ,分子质量为A M N ,因此由 气体压强公式得222 111333A A N M M p nmv v v V N V = == 代入数字求得5 2.3510p =?Pa 4-3 体积为3 10-m 3 ,压强为5 1.01310?Pa 的气体,所有分子的平均平动动能的总和是多少? 解:分子的平均平动动能为 21322 mv kT = 容器中分子数N nV =,又由压强公式P nkT =,可得容器中所有分子的平均平动动能 总和为 2133 152222 N mv nV kT PV ===J 4-4 求压强为5 1.01310?Pa 、质量为3 210-?Kg 、容积为3 1.5410-?m 3 的氧气的分子平均平动动能。 解:由23p nw = 可得31 2p w n = 而A mol A mol M N M MN n V M V == 所以 213 6.22102mol A M V p w MN -= =?J 4-6 一篮球充气后,其中有氮气8.5g ,温度为17℃,在空气中以65km/h 做高速飞行。求:

(1) 一个氮分子(设为刚性分子)的热运动平均平动动能、平均转动动能和平均总动能; (2) 球内氮气的内能; (3) 球内氮气的轨道动能。 4—6解:⑴J kT k 211000.623-?== ε 转ε= J kT 211000.42 2 -?= J kT 201000.12 5-?==总ε. ⑵J kT i M M E mol 31083.12 ?=?= . ⑶J mv E k 39.12 12 == . 4-7 质量为50.0g ,温度为18.0℃的氦气装在容积为10.0L 的封闭容器内,容器以200v =m/s 的速率做匀速直线运动,若容器突然停止,定向运动的动能全部转化为分子热运动的动能,试问平衡后氦气的温度和压强将增大多少?(王彬第二版206页8题) 解:322223 23 11141020013.310222 6.0210 A E mv v N μ--?===??=??J 23 23 2213.310 6.4233 1.3810E T k --???===??K 32 53 50108.2110 6.420.66 1.0131041010 MR p T V μ---????=?=?=????Pa 4—8解:⑴ kT 21 在平衡态下分子运动的能量平均分配给每一个自由度的能量为kT 2 1. ⑵在平衡态下,分子平均动能为kT 2 3 . ⑶在平衡态下,自由度为i 的分子平均总能量为kT i 2 . ⑷自由质量为M ,摩尔质量为mol M ,自由度为i 的分子组成的系统的内能为RT i M M mol 2 ? ⑸1摩尔自由度为i 的分子组成的系统的内能为 RT i 2. ⑹1摩尔自由度为3的分子组成的系统的内能为2 3 RT,或者说热力学系统内1摩尔分子的平 均平动动能之和为2 3 RT. 4-9 假定太阳是由氢原子组成的理想气体恒星,且密度是均匀的,压强为 141.3510p =?Pa ,已知氢原子质量271.6710m -=?kg ,太阳质量301.9910M =?kg ,太阳 半径为8 6.9610R =?m ,试估算太阳内部的温度。

第8章 气体动理论习题解答

习题 8-1 设想太阳是由氢原子组成的理想气体,其密度可当成是均匀的。若此理想气体的压强为1.35×1014 Pa 。试估计太阳的温度。(已知氢原子的质量m = 1.67×10-27 kg ,太阳半径R = 6.96×108 m ,太阳质量M = 1.99×1030 kg ) 解:m R M Vm M m n 3π)3/4(== = ρ K 1015.1)3/4(73?===Mk m R nk p T π 8-2 目前已可获得1.013×10-10 Pa 的高真空,在此压强下温度为27℃的1cm 3体积内有多少个气体分子? 解:3462310 /cm 1045.210300 1038.110013.1?=????===---V kT p nV N 8-3 容积V =1 m 3的容器内混有N 1=1.0×1023个氢气分子和N 2=4.0×1023个氧气分子,混合气体的温度为 400 K ,求: (1) 气体分子的平动动能总和;(2)混合气体的压强。 解:(1) J 1014.41054001038.12 3)(233232321?=?????=+=-∑N N kT t ε (2)Pa kT n p i 32323 1076.210540010 38.1?=????== -∑ 8-4 储有1mol 氧气、容积为1 m 3的容器以v =10 m/s 的速率运动。设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能。问气体的温度及压强各升高多少?(将氧气分子视为刚性分子) 解:1mol 氧气的质量kg 10323 -?=M ,5=i 由题意得 T R Mv ?=?ν2 5 %80212K 102.62-?=??T T R V p RT pV ?=???=νν

第十二章气体动理论答案

一、选择题 1.下列对最概然速率p v 的表述中,不正确的是( ) (A )p v 是气体分子可能具有的最大速率; (B )就单位速率区间而言,分子速率取p v 的概率最大; (C )分子速率分布函数()f v 取极大值时所对应的速率就是p v ; (D )在相同速率间隔条件下分子处在p v 所在的那个间隔内的分子数最多。 答案:A 2.有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是( ) (A )氧气的温度比氢气的高; (B )氢气的温度比氧气的高; (C )两种气体的温度相同; (D )两种气体的压强相同。 答案:A 3.理想气体体积为 V ,压强为 p ,温度为 T . 一个分子 的质量为 m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为: (A )pV/m (B )pV/(kT) (C )pV/(RT) (D )pV/(mT) 答案:B 4.有A 、B 两种容积不同的容器,A 中装有单原子理想气体,B 中装有双原子理想气体,若两种气体的压强相同,则这两种气体的单位体积的热力学能(内能)A U V ?? ???和B U V ?? ???的关系为 ( ) (A )A B U U V V ????< ? ?????;(B )A B U U V V ????> ? ?????;(C )A B U U V V ????= ? ?????;(D )无法判断。 答案:A 5.一摩尔单原子分子理想气体的内能( )。 (A )32mol M RT M (B )2i RT (C )32RT (D )32 KT 答案:C

热学(李椿+章立源+钱尚武)习题解答_第二章 气体分子运动论的基本概念

第二章 气体分子运动论的基本概念 2-1 目前可获得的极限真空度为10-13 mmHg 的数量级,问在此真空度下每立方厘米内有多少空气分子,设空气的温度为27℃。 解: 由P=n K T 可知 n =P/KT=) 27327(1038.11033.1101023 213+?????-- =3.21×109(m –3 ) 注:1mmHg=1.33×102 N/m 2 2-2 钠黄光的波长为5893埃,即5.893×10-7 m ,设想一立方体长5.893×10-7 m , 试问在标准状态下,其中有多少个空气分子。 解:∵P=nKT ∴PV=NKT 其中T=273K P=1.013×105 N/m 2 ∴N=6 23375105.5273 1038.1)10893.5(10013.1?=?????=--KT PV 个 2-3 一容积为11.2L 的真空系统已被抽到1.0×10-5 mmHg 的真空。为了提高其真空度, 将它放在300℃的烘箱内烘烤,使器壁释放出吸附的气体。若烘烤后压强增为1.0×10-2 mmHg ,问器壁原来吸附了多少个气体分子。 解:设烘烤前容器内分子数为N 。,烘烤后的分子数为N 。根据上题导出的公式PV = NKT 则有: )(0 110011101T P T P K V KT V P KT V P N N N -=-= -=? 因为P 0与P 1相比差103 数量,而烘烤前后温度差与压强差相比可以忽略,因此 T P 与 1 1 T P 相比可以忽略 1823 2 23111088.1) 300273(1038.11033.1100.1102.11??+???????=?=?---T P K N N 个 2-4 容积为2500cm 3 的烧瓶内有1.0×1015 个氧分子,有4.0×1015 个氮分子和3.3×10-7 g

大学物理第四章《气体动理论》

第四章 气体动理论 一、基本要求 1.理解平衡态的概念。 2.了解气体分子热运动图像和理想气体分子的微观模型,能从宏观和统计意义上理解压强、温度、内能等概念。 3.初步掌握气体动理论的研究方法,了解系统的宏观性质是微观运动的统计表现。 4.理解麦克斯韦速率分布律、速率分布函数和速率分布曲线的物理意义,理解气体分子运动的最概然速率、平均速率、方均根速率的意义,了解玻尔兹曼能量分布律。 5.理解能量按自由度均分定理及内能的概念,会用能量均分定理计算理想气体的内能。 6.了解气体分子平均碰撞频率及平均自由程的意义及其简单的计算。 二、基本内容 1. 平衡态 在不受外界影响的条件下,一个系统的宏观性质不随时间改变的状态。 2. 理想气体状态方程 在平衡态下,理想气体各参量之间满足关系式 pV vRT = 或 n k T p = 式中v 为气体摩尔数,R 为摩尔气体常量 118.31R J mol K --=??,k 为玻尔兹曼常量 2311.3810k J K --=?? 3. 理想气体压强的微观公式 212 33 t p nm n ε==v 4. 温度及其微观统计意义 温度是决定一个系统能否与其它系统处于热平衡的宏观性质,在微观统计上

32 t kT ε= 5. 能量均分定理 在平衡态下,分子热运动的每个自由度的平均动能都相等,且等于2 kT 。以 i 表示分子热运动的总自由度,则一个分子的总平均动能为 2 t i kT ε= 6. 速率分布函数 ()dN f Nd = v v 麦克斯韦速率分布函数 23 2/22()4()2m kT m f e kT ππ-=v v v 7. 三种速率 最概然速率 p = ≈v 平均速率 = =≈v 方均根速率 = =≈8. 玻尔兹曼分布律 平衡态下某状态区间(粒子能量为ε)的粒子数正比于kT e /ε-。重力场中粒子数密度按高度的分布(温度均匀): kT m gh e n n /0-= 9. 范德瓦尔斯方程 采用相互作用的刚性球分子模型,对于1mol 气体 RT b V V a p m m =-+ ))((2 10. 气体分子的平均自由程 λ= =

第十二章气体动理论题库

第十二章气体动理论 第十二章气体动理论 (1) 12.1平衡态理想气体物态方程热力学第零定律 (3) 判断题 (3) 难题(1题)中题(1题)易题(1题) 选择题 (4) 难题(1题)中题(1题)易题(1题) 填空题 (5) 难题(1题)中题(1题)易题(2题) 计算题 (7) 难题(1题)中题(2题)易题(2题) 12.2物质的微观模型统计规律性 (13) 判断题 (13) 难题(0题)中题(0题)易题(0题) 选择题 (14) 难题(1题)中题(1题)易题(1题) 填空题 (16) 难题(0题)中题(1题)易题(1题) 计算题 (17) 难题(0题)中题(0题)易题(0题) 12.3理想气体的压强公式 (19) 判断题 (19) 难题(0题)中题(0题)易题(2题) 选择题 (20) 难题(3题)中题(4题)易题(1题) 填空题 (22) 难题(0题)中题(4题)易题(3题) 计算题 (24) 难题(1题)中题(3题)易题(2题) 12.4理想气体分子的平均平动动能与温度的关系 (28) 判断题 (28) 难题(0题)中题(0题)易题(3题) 选择题 (29) 难题(1题)中题(6题)易题(1题) 填空题 (31) 难题(5题)中题(6题)易题(3题) 计算题 (36)

难题(2题)中题(5题)易题(3题) 12.5能量均分定理理想气体内能 (42) 判断题 (42) 难题(0题)中题(0题)易题(3题) 选择题 (43) 难题(0题)中题(2题)易题(1题) 填空题 (44) 难题(0题)中题(0题)易题(3题) 计算题 (46) 难题(1题)中题(1题)易题(1题) 12.6麦克斯韦气体分子速率分布率 (49) 判断题 (49) 难题(0题)中题(1题)易题(2题) 选择题 (50) 难题(1题)中题(9题)易题(5题) 填空题 (56) 难题(2题)中题(5题)易题(7题) 计算题 (60) 难题(2题)中题(8题)易题(4题) 12.8分子平均碰撞次数和平均自由程 (68) 判断题 (68) 难题(0题)中题(1题)易题(1题) 选择题 (69) 难题(1题)中题(4题)易题(2题) 填空题 (71) 难题(0题)中题(3题)易题(0题) 计算题 (73) 难题(1题)中题(1题)易题(3题)

第四章气体动理论

第四章 气体动理论 2-4-1选择题: 1、处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,都处于平衡态。以下说法正确的是: (A )它们的温度、压强均不相同。 (B )它们的温度相同,但氦气压强大于氮气压强。 (C )它们的温度、压强都相同。 (D) 它们的温度相同,但氦气压强小于氮气压强。 2、三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,方均根速率之比 4:2:1::222=C B A v v v , 则其压强之比C B A p p p ::为: (A) 1 : 2 : 4 (B) 1 : 4 : 8 (C) 1 : 4 : 16 (D) 4 : 2 : 1 3、一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m . 根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值为: (A) 2 x v =m kT 3 (B) 2x v = m kT 331 (C) 2 x v = m kT 3 (D) 2x v = m kT 4、关于温度的意义,有下列几种说法: (1) 气体的温度是分子热运动平均平动动能的量度. (2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义. (3) 温度的高低反映物质内部分子热运动剧烈程度的不同. (4) 从微观上看,气体的温度表示每个气体分子的冷热程度. 上述说法中正确的是 (A ) (1)、(2)、(4) (B ) (1)、(2)、(3) (C ) (2)、(3)、(4) (D) (1)、(3)、(4) 5、两容器内分别盛有氢气和氦气,若它们的温度和质量分别相等,则: (A) 两种气体分子的平均平动动能相等. (B) 两种气体分子的平均动能相等. (C) 两种气体分子的方均根速率相等. (D) 两种气体的内能相等. 6、一容器内装有N 1个单原子理想气体分子和N 2个刚性双原子理想气体分子,当该系统处在温度为T 的平衡态时,其内能为 (A) ??? ??++kT kT N N 2523)(21 (B) ??? ??++kT kT N N 2523)(2121

第章气体动理论

第10章 气体动理论题目无答案 一、选择题 1. 一理想气体样品, 总质量为M , 体积为V , 压强为p , 绝对温度为T , 密度为?, 总分子数为N , k 为玻尔兹曼常数, R 为气体普适常数, 则其摩尔质量可表示为 [ ] (A) MRT pV (B) pV MkT (C) p kT ρ (D) p RT ρ 2. 如T10-1-2图所示,一个瓶内装有气体, 但有小孔与外界相通, 原来瓶内温度为300K .现在把瓶内的气体加热到400K (不计容积膨胀), 此时瓶内气体的质量为 原来质量的______倍. [ ] (A) 27/127 (B) 2/3 (C) 3/4 (D) 1/10 3. 相等质量的氢气和氧气被密封在一粗细均匀的细玻璃管内, 并由一 水银滴隔开, 当玻璃管平放时, 氢气柱和氧气柱的长度之比为 [ ] (A) 16:1 (B) 1:1 (C) 1:16 (D) 32:1 4. 一容器中装有一定质量的某种气体, 下列所述中是平衡态的为 [ ] (A) 气体各部分压强相等 (B) 气体各部分温度相等 (C) 气体各部分密度相等 (D) 气体各部分温度和密度都相等 5. 一容器中装有一定质量的某种气体, 下面叙述中正确的是 [ ] (A) 容器中各处压强相等, 则各处温度也一定相等 (B) 容器中各处压强相等, 则各处密度也一定相等 (C) 容器中各处压强相等, 且各处密度相等, 则各处温度也一定相等 (D) 容器中各处压强相等, 则各处的分子平均平动动能一定相等 6. 理想气体能达到平衡态的原因是 [ ] (A) 各处温度相同 (B) 各处压强相同 (C) 分子永恒运动并不断相互碰撞 (D) 各处分子的碰撞次数相同 7. 理想气体的压强公式 k 3 2 εn p = 可理解为 [ ] (A) 是一个力学规律 (B) 是一个统计规律 (C) 仅是计算压强的公式 (D) 仅由实验得出 8. 一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p 1和p 2,则两者的大小关系是: [ ] (A) p 1> p 2 (B) p 1< p 2 (C) p 1=p 2 (D)不确定的 9. 在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态.A 种气体的分子数密度为n 1,它产生的压强为p 1;B 种气体的分子数密度为2n 1;C 种气体的分子数密度为3 n 1.则混合气体的压强p 为 [ ] (A) 3 p 1 (B) 4 p 1 (C) 5 p 1 (D) 6 p 1 10. 若室内生起炉子后温度从15?C 升高到27?C, 而室内气压不变, 则此时室内的分子数减少了 [ ] (A) % (B) 4% (C) 9% (D) 21% 11. 无法用实验来直接验证理想气体的压强公式, 是因为 T10-1-2图 T 10-1-3图

气体动理论习题解答,DOC

习题 8-1设想太阳是由氢原子组成的理想气体,其密度可当成是均匀的。若此理想气体的压强为1.35×1014Pa 。 解:(1) J 1014.41054001038.12 3)(233232321?=?????=+=-∑N N kT t ε(2)Pa kT n p i 323231076.21054001038.1?=????==-∑

2 8-4储有1mol 氧气、容积为1 m 3的容器以v =10 m/s 的速率运动。设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能。问气体的温度及 体的温度需多高? 解:(1)J 1065.515.2731038.12 323212311--?=???==kT t ε (2)kT 23 J 101.6ev 1t 19-==?=ε

8-7一容积为10 cm 3的电子管,当温度为300K 时,用真空泵把管内空气抽成压强为5×10-4mmHg 的高真空,问此时(1)管内有多少空气分子?(2)这些空气 量。 解:RT i E ν2= ,mol 1=ν 若水蒸气温度是100℃时

4 8-9已知在273K 、1.0×10-2atm 时,容器内装有一理想气体,其密度为1.24×10-2 kg/m 3。求:(1)方均根速率;(2)气体的摩尔质量,并确定它是什么气体;(3) 分子间均匀等距排列) 解:(1)325/m 1044.2?==kT p n

(2)32kg/m 297.1333====RT P RT p v p μμρ (3)J 1021.62 3 21-?==kT t ε (4)m 1045.3193-?=?=d n d (2)K 3.36210 38.1104.51021035.12322=??????==-Nk pV T 8-13已知)(v f 是速率分布函数,说明以下各式的物理意义:

练习册-第十二章气体动理论

第十二章气体动理论 §12-1 平衡态气体状态方程 【基本内容】 热力学:以观察和实验为基础,研究热现象的宏观规律,总结形成热力学三大定律,对热现象的本质不作解释。 统计物理学:从物质微观结构出发,按每个粒子遵循的力学规律,用统计的方法求出系统的宏观热力学规律。 分子物理学:是研究物质热现象和热运动规律的学科,它应用的基本方法是统计方法。 一、平衡态状态参量 1、热力学系统:由大量分子组成的宏观客体(气体、液体、固体等),简称系统。 外界:与系统发生相互作用的系统以外其它物体(或环境)。 从系统与外界的关系来看,热力学系统分为孤立系统、封闭系统、开放系统。 2、平衡态与平衡过程 平衡态:在不受外界影响的条件下,系统的宏观热力学性质(如P、V、T)不随时间变化的状态。它是一种热动平衡,起因于物质分子的热运动。 热力学过程:系统从一初状态出发,经过一系列变化到另一状态的过程。 平衡过程:热力学过程中的每一中间状态都是平衡态的热力学过程。 3、状态参量 系统处于平衡态时,描述系统状态的宏观物理量,称为状态参量。它是表征大量微观粒子集体性质的物理量(如P、V、T、C等)。 微观量:表征个别微观粒子状况的物理量(如分子的大小、质量、速度等)。 二、理想气体状态方程 1、气体实验定律 (1)玻意耳定律: 一定质量的气体,当温度保持不变时,它的压强与体积的乘积等于恒量。即PV 恒量,亦即在一定温度下,对一定量的气体,它的体积与压强成反比。 (2)盖.吕萨克定律:

一定质量的气体,当压强保持不变时,它的体积与热力学温度成正比。即V T =恒量。 (3)查理定律: 一定质量的气体,当体积保持不变时,它的压强与热力学温度成正比,即 P T =恒量。 气体实验定律的适用范围:只有当气体的温度不太低(与室温相比),压强不太大(与大气压相比)时,方能遵守上述三条定律。 2、理想气体的状态方程 (1)理想气体的状态方程 在任一平衡态下,理想气体各宏观状态参量之间的函数关系;也称为克拉伯龙方程 M PV RT RT νμ = = (2)气体压强与温度的关系 P nkT = 玻尔兹曼常数23 / 1.3810A k R N -==?J/K ;气体普适常数8.31/.R J mol K = 阿伏加德罗常数23 6.02310/A N mol =? 质量密度与分子数密度的关系 nm ρ= 分子数密度/n N V =,ρ气体质量密度,m 气体分子质量。 三、理想气体的压强 1、理想气体微观模型的假设 (a )分子本身的大小比起它们之间的距离可忽略不计,可视为质点。 (b )除了分子碰撞瞬间外,分子之间的相互作用以忽略;因此在相邻两次碰撞之间,分子做匀速直线运动。。 (c )分子与分子之间或分子与器壁间的碰撞是完全弹性的。 理想气体可看作是由大量的、自由的、不断做无规则运动的,大小可忽略不计的弹性小球所组成。 大量分子构成的宏观系统的性质,满足统计规律。 统计假设:

5-练习册-第十二章 气体动理论

第十二章 气体动理论 §12-1 平衡态 气体状态方程 【基本内容】 热力学:以观察和实验为基础,研究热现象的宏观规律,总结形成热力学三大定律,对热现象的本质不作解释。 统计物理学:从物质微观结构出发,按每个粒子遵循的力学规律,用统计的方法求出系统的宏观热力学规律。 分子物理学:是研究物质热现象和热运动规律的学科,它应用的基本方法是统计方法。 一、平衡态 状态参量 1、热力学系统:由大量分子组成的宏观客体(气体、液体、固体等),简称系统。 外界:与系统发生相互作用的系统以外其它物体(或环境)。 从系统与外界的关系来看,热力学系统分为孤立系统、封闭系统、开放系统。 ' 2、平衡态与平衡过程 平衡态:在不受外界影响的条件下,系统的宏观热力学性质(如P 、V 、T )不随时间变化的状态。它是一种热动平衡,起因于物质分子的热运动。 热力学过程:系统从一初状态出发,经过一系列变化到另一状态的过程。 平衡过程:热力学过程中的每一中间状态都是平衡态的热力学过程。 3、状态参量 系统处于平衡态时,描述系统状态的宏观物理量,称为状态参量。它是表征大量微观粒子集体性质的物理量(如P 、V 、T 、C 等)。 微观量:表征个别微观粒子状况的物理量(如分子的大小、质量、速度等)。 二、理想气体状态方程 1、气体实验定律 (1)玻意耳定律: | 一定质量的气体,当温度保持不变时,它的压强与体积的乘积等于恒量。即PV =恒量,亦即在一定温度下,对一定量的气体,它的体积与压强成反比。 (2)盖.吕萨克定律: 一定质量的气体,当压强保持不变时,它的体积与热力学温度成正比。即V T =恒量。 (3)查理定律: 一定质量的气体,当体积保持不变时,它的压强与热力学温度成正比,即 P T =恒量。 气体实验定律的适用范围:只有当气体的温度不太低(与室温相比),压强不太大(与大气压相比)时,方能遵守上述三条定律。 2、理想气体的状态方程 (1)理想气体的状态方程 在任一平衡态下,理想气体各宏观状态参量之间的函数关系;也称为克拉伯龙方程 M PV RT RT νμ = = < (2)气体压强与温度的关系 P nkT = 玻尔兹曼常数23 / 1.3810A k R N -==?J/K ;气体普适常数8.31/.R J mol K =

第四章--气体动理论-总结

第四章 气体动理论 单个分子的运动具有无序性 布朗运动 大量分子的运动具有规律性 伽尔顿板 热平衡定律(热力学第零定律) 实验表明:若 A 与C 热平衡 B 与 C 热平衡 则 A 与B 热平衡 意义:互为热平衡的物体必然存在一个相同的 特征--- 它们的温度相同 定义温度:处于同一热平衡态下的热力学系统所具有的共同的宏观性质,称为温度。 一切处于同一热平衡态的系统有相同的温度。 理想气体状态方程: 形式形式 n ----分子数密度(单位体积中的分子数) k = R/NA = 1.38*10 –23 J/K----玻耳兹曼常数 在通常的压强与温度下,各种实际气体都服从理想气体状态方程。 §4-2 气体动理论的压强公式 1)分子按位置的分布是均匀的 2)分子各方向运动概率均等、速度各种平均值相等 k j i iz iy ix i v v v v ++=分子运动速度 单个分子碰撞器壁的作用力是不连续的、偶然的、不均匀的。从总的效果上来看,一个持续的平均作用力。 描述气体状态三个物理量: P,V T

12 2 ω=mv 有统计意义; 压强公式指出:有两个途径可以增加压强 1)增加分子数密度n 即增加碰壁的个数 2)增加分子运动的平均平动能 即增加每次碰壁的强度 思考题:对于一定量的气体来说,当温度不变时,气体的压强随体积的减小而增大(玻意耳定律);当体积不变时,压强随温度的升高而增大(查理定律)。从宏观来看,这两种变化同样使压强增大,从微观(分子运动)来看,它们有什么区 别? 对一定量的气体,在温度不变时,体积减小使单位体积内的分子数增多,则单位时间内与器壁碰撞的分子数增多,器壁所受的平均冲力增大,因而压强增大。而当体积不变时,单位体积内的分子数也不变,由于温度升高,使分子热运动加剧,热运动速度增大,一方面单位时间内,每个分子与器壁的平均碰撞次数增多; 另一方面,每一次碰撞时,施于器壁的冲力加大,结果压强增大。 §4-3 理想气体的温度公式 nkT p =23 p =n ω 1. 反映了宏观量 T 与微观量w 之间 的关系 ① T ∝ w 与气体性质无关;② 温度具有统计意义,是大量分子集 体行为 ,少数分子的温度无意义。2. 温度的实质:分子热运动剧烈程度的宏观表现。3. 温度平衡过程就是能量平衡过程。 二.气体分子运动的方均根速率 kT v m 2 32 1 2 =在相同温度下,由两种不同分子组成的混合气体,它们的方均根速率与其质量的平方根成正比 当温度T=0时,气体的平均平动动能为零,这时气体分子的热运动将停止。然而事实上是绝对零度是不可到达的(热力学第三定律),因而分子的运动是永不停息 的。 m k T v v x ===2231温度的微观本质:理想气体的温度是分子平均平动动能的量度

相关文档
最新文档