新型SF_6密度传感器自动校验装置

新型SF_6密度传感器自动校验装置
新型SF_6密度传感器自动校验装置

液体密度传感器的工作原理和应用

液体密度传感器的工作原理和应用 液体密度传感器就是指可以感受得到液体密度的,并且可以把它转换成为可以利用的输出信号的传感器。 液体密度传感器可以分为六类:电容式、超声波式、音叉式、谐振式、射线式和振动管式液体密度传感器。 电容式液体密度传感器 它是根据在不相同的待测液体中,标准物体的浮力的不同,这样就会导致跟标准物体连接起来的电容的两个极板间的距离发生变化,然后引起电容发生变化。因为不同的液体密度传感器适用的场合不相同,所以在实际应用的时候,应该要视所要测量的液体的性质还有对测量精度的要求等等的情况而选择适合的传感器。 超声波密度传感器 它的超声波的频率是高于20kHz的机械波和超声波只可以以纵波的形式在液体介质中传播。它传播的相位、频率、速度还有衰减度都会受到介质性质的有关影响,所以呢,它可以根据超声波的某些传播性质与液体密度之间的相应关系来测量液体的密度。它主要的优点有:它可以实现非接触的测量,测量精度比较高,响应比较快;而且它没有运动的部件,所以测量的稳定性比较好;它没有放射性,对人体是没有害的。而它的缺点就是液体介质中存有杂质,例如,泡泡可以导致超声波信号衰减严重;在精度测量粘性的介质的时候,需要考虑介质粘度的有关影响;它会使某些测量导致不稳定。 音叉式液体密度传感器

它是根据在液体中,质量小的音叉振动时,它的固有的频率的变化,这样来测量液体的密度的。要得到高精度测量的结果,就需要检测谐振频率的时候,变化很微小,所以需要合理地设计振动单元,让振动单元可以得到一个比较高的机械品质因数。音叉通常用玻璃或者不锈钢制成。 谐振式液体密度传感器 谐振式测量原理是根据谐振子的振动的特性来工作的。在工作过程中,谐振子能够等效地作为一个单自由度的系统,随着系统的固有频率而振动,而系统的固有频率仅仅跟系统中的等效弹性系数和等效质量有关。谐振式液体密度传感器测量原理则是通过系统中的液体和弹性敏感元件相接触导致系统的等效质量的改变,造成系统的固有频率发生变化。根据测量系统的固定频率的变化就可以知道待测液体的密度。 射线式液体密度传感器 射线式液体密度传感器的主要缺点是:它的分辨力不是很高;它需要有一个比较长的时间得稳定性;它需要放射性射线源。 它的优点就是:传感器对液体的流动没有产生阻力,对流量的大小也是没有限制的,而且它可以测量多相液体的密度;它在测量时是不接触待测的液体的,所以它能够实现非接触测量。 振动管式液体密度传感器 振动管式液体密度传感器可以合理地安排驱动部件,能够让管在同一个平面里面振动,它所测得的密度就是在管内流动的液体的平均

《传感器原理及应用》课后答案

第1章传感器基础理论思考题与习题答案 1.1什么是传感器?(传感器定义) 解:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件、转换元件和调节转换电路组成。 1.2传感器特性在检测系统中起到什么作用? 解:传感器的特性是指传感器的输入量和输出量之间的对应关系,所以它在检测系统中的作用非常重要。通常把传感器的特性分为两种:静态特性和动态特性。静态特性是指输入不随时间而变化的特性,它表示传感器在被测量各个值处于稳定状态下输入输出的关系。动态特性是指输入随时间而变化的特性,它表示传感器对随时间变化的输入量的响应特性。 1.3传感器由哪几部分组成?说明各部分的作用。 解:传感器通常由敏感元件、转换元件和调节转换电路三部分组成。其中,敏感元件是指传感器中能直接感受或响应被测量的部分,转换元件是指传感器中能将敏感元件感受或响应的被测量转换成电信号的部分,调节转换电路是指将非适合电量进一步转换成适合电量的部分,如书中图1.1所示。 1.4传感器的性能参数反映了传感器的什么关系?静态参数有哪些?各种参数代表什么意 义?动态参数有那些?应如何选择? 解:在生产过程和科学实验中,要对各种各样的参数进行检测和控制,就要求传感器能感受被测非电量的变化并将其不失真地变换成相应的电量,这取决于传感器的基本特性,即输出—输入特性。衡量静态特性的重要指标是线性度、灵敏度,迟滞和重复性等。意义略(见书中)。动态参数有最大超调量、延迟时间、上升时间、响应时间等,应根据被测非电量的测量要求进行选择。 1.5某位移传感器,在输入量变化5mm时,输出电压变化为300mV,求其灵敏度。 解:其灵敏度 3 3 30010 60 510 U k X - - ?? === ?? 1.6某测量系统由传感器、放大器和记录仪组成,各环节的灵敏度为:S1=0.2mV/℃、

传感器原理及应用

温度传感器的应用及原理 温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC的温度等等,下面介绍几种常用的温度传感器。 温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。 热敏电阻器 用来测量温度的传感器种类很多,热敏电阻器就是其中之一。许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。表1是一个典型的NTC热敏电阻器性能参数。 这些数据是对Vishay-Dale热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为 14.050KΩ。 图1是热敏电阻的温度曲线,可以看到电阻/温度曲线是非线性的。

虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下: 这里T指开氏绝对温度,A、B、C、D是常数,根据热敏电阻的特性而各有不同,这些参数由热敏电阻的制造商提供。 热敏电阻一般有一个误差范围,用来规定样品之间的一致性。根据使用的材料不同,误差值通常在1%至10%之间。有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合,例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏电阻比普通的精度要高很多,也要贵得多。 图2是利用热敏电阻测量温度的典型电路。电阻R1将热敏电阻的电压拉升到参考电压,一般它与ADC的参考电压一致,因此如果ADC的参考电压是5V,Vref 也将是5V。热敏电阻和电阻串联产生分压,其阻值变化使得节点处的电压也产生变化,该电路的精度取决于热敏电阻和电阻的误差以及参考电压的精度。

新型传感器的原理、应用与发展

新型传感器的原理、应用与发展 (南昌大学,南昌,330031) The principle and application of new sensors (Nanchang University, Nanchang 330031, China) 摘要:现代新型传感器由于具有测量精度高、动态响应快、稳定性好、抗干扰能力强、易于小型和微 型化、方便与微机进行接口等优点,在温度、压力、电压、转速等检测中有着广阔应用前景。本文简要的介绍了几种现代新型传感器的基本原理和它们在信号检测、汽车、船舶等方面的应用,以及新型传感器的发展前景。 关键词:新型传感器;原理;应用;发展前景 Abstract:Modern new sensor with high measurement precision has many advantages, such as fast dynamic response、good stability、strong anti-interference ability,、easy to small and miniaturization, and its` easy to connect with microcomputer.It has a broad application prospect in the ways of temperature、pressure、voltage and speed detection. This paper briefly introduces several basic principle of modern new sensors and their applications in signal detection, automotive, Marine applications,and the prospects of the development of new sensors. Key words:new type sensor;principle;application;prospects of the development 1前言 传感器是一种把物理量或化学量转变成便于利用的电信号的器件,其实质是一种功能块,

现代新型传感器简介

传感器简介 9.1 气体传感器 气体传感器又叫气敏传感器,主要用来监测气体中的特定成分,并将其变成相应的电信号输出。气体传感器的应用很广,在日常生活中,有检测饮酒者呼气中的酒精含量的传感器;测量汽车空燃比的氧气传感器;家庭和工厂用的煤气泄漏传感器;火灾之后检测建筑材料发出的有毒气体传感器;坑内沼气警报器等。 9.1.1 气体传感器的分类 气体传感器可分为半导体气体传感器、固体电解质气体传感器和组合电位型传感器等多种类型,其中最常见的是半导体气体传感器。 气体传感器的类型虽然很多,但对它们有以下几个基本要求: (1) 对被测气体要有高的灵敏度; (2) 选择性要好,即对和被测气体共存的其他气体不敏感; (3) 能够长期稳定地工作; (4) 检测和报警要迅速。 9.1.2 半导体气体传感器 对于半导体气体传感器,按照半导体与气体的相互作用是在其表面还是在其内部,可分为表面控制型和体控制型两种;按照半导体变化的物理性质,又可分为电阻型和非电阻型两种。电阻型半导体气体传感器是利用半导体接触气体时其阻值的改变来检测气体的成分或浓度;而非电阻型半导体气体传感器则是根据对气体的吸附和反应,使半导体的某些特性发生变化,对气体进行直接或间接检测。下面简单介绍电阻型半导体气体传感器的基本原理。 半导体气体传感器是利用气体在半导体表面的氧化还原反应导致敏感元件组织发生变化而制成的。 9.2 湿度传感器 湿度传感器是用于感受大气湿度并转换成适当电信号输出的传感器。 湿度传感器的分类 常见的湿度传感器主要有两大类,一类是水分子亲和力型湿度传感器;另一大类是非水分子亲和力型湿度传感器。具体分类见表9-1。 表9-1 湿度传感器分类 9.2.2 水分子亲和力型湿度传感器 9.2.2.1 氯化锂湿度传感器 氯化锂湿度传感器是电解质湿度传感器的代表。它是利用电阻值随环境相对湿度变化而变化的机理制成的。氯化锂湿度传感器的结构是在条状绝缘基片的两面,用化学沉积或真空蒸镀法做上电极,再浸渍一定比例配置的氯化锂-聚乙烯醇混合溶液,经老化处理,便制成了氯化锂湿度传感器,其结构如图9-1所示。

激光传感器的工作原理及其应用

激光传感器的工作原理 及其应用 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

激光传感器由激光器、激光检测器和测量电路组成。激光传感器是新型测量仪表,它的优点是能实现无接触远距离测量,速度快,精度高,量程大,抗光、电干扰能力强等。激光传感器工作时,先由激光发射二极管对准目标发射激光脉冲。经目标反射后激光向各方向散射。部分散射光返回到传感器接收器,被光学系统接收后成像到雪崩光电二极管上。雪崩光电二极管是一种内部具有放大功能的光学传感器,因此它能检测极其微弱的光信号,并将其转化为相应的电信号。常见的是激光测距传感器,它通过记录并处理从光脉冲发出到返回被接收所经历的时间,即可测定目标距离。激光传感器的应用 利用激光的高方向性、高单色性和高亮度等特点可实现无接触远距离测量。激光传感器常用于长度、距离、振动、速度、方位等物理量的测量,还可用于探伤和大气污染物的监测等。 激光测长 精密测量长度是精密机械制造工业和光学加工工业的关键技术之一。现代长度计量多是利用光波的干涉现象来进行的,其精度主要取决于光的单色性的好坏。激光是最理想的光源,它比以往最好的单色光源(氪-86灯)还纯10万倍。因此激光测长的量程大、精度高。 激光测距 它的原理与无线电雷达相同,将激光对准目标发射出去后,测量它的往返时间,再乘以光速即得到往返距离。由于激光具有高方向性、高单色性和高功率等优点,这些对于测远距离、判定目标方位、提高接收系统的信噪比、保证测量精度等都是很关键的,因此激光测距仪日益受到重视。在激光测距仪基础上发展起来的激光雷达不仅能测距,而且还可以测目标方位、运运速度和加速度等,已成功地用于人造卫星的测距和跟踪。 激光测振 它基于多普勒原理测量物体的振动速度。多普勒原理是指:若波源或接收波的观察者相对

传感器原理及其应用考试重点

传感器原理及其应用 第一章传感器的一般特性 1)信息技术包括计算机技术、通信技术和传感器技术,是现代信息产业的三大支柱。 2)传感器又称变换器、探测器或检测器,是获取信息的工具 广义:传感器是一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。 狭义:能把外界非电信息转换成电信号输出的器件。 国家标准(GB7665-87):定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。 3)传感器的组成: 敏感元件是直接感受被测量,并输出与被测量成确定关系的某一物理量的元件。 转换元件:将敏感元件输出的非电物理量转换成电路参数或电量。 基本转换电路:上述电路参数接入基本转换电路(简称转换电路),便可转换成电量输出。 4)传感器的静态性能指标 (1)灵敏度 定义: 传感器输出量的变化值与相应的被测量(输入量)的变化值之比, 传感器输出曲线的斜率就是其灵敏度。 ①纯线性传感器灵敏度为常数,与输入量大小无关;②非线性传感器灵敏度与x有关。(2)线性度 定义:传感器的输入-输出校准曲线与理论拟合直线之间的最大偏离与传感器满量程输出之比,称为传感器的“非线性误差”或“线性度”。 线性度又可分为: ①绝对线性度:为传感器的实际平均输出特性曲线与理论直线的最大偏差。 ②端基线性度:传感器实际平均输出特性曲线对端基直线的最大偏差。 端基直线定义:实际平均输出特性首、末两端点的连线。 ③零基线性度:传感器实际平均输出特性曲线对零基直线的最大偏差。 ④独立线性度:以最佳直线作为参考直线的线性度。 ⑤最小二乘线性度:用最小二乘法求得校准数据的理论直线。 (3)迟滞 定义:对某一输入量,传感器在正行程时的输出量不同于其在反行程时的输出量,这一现象称为迟滞。 即:传感器在正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞。 (4)重复性 定义:在相同工作条件下,在一段短的时间间隔内,同一输入量值多次测量所得的输

【CN109708995A】基于微波光子技术的液体密度传感器系统【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910123571.7 (22)申请日 2019.02.18 (71)申请人 南方科技大学 地址 518000 广东省深圳市南山区桃源街 道学苑大道1088号 (72)发明人 邵理阳 肖冬瑞 顾国强 宋章启  陈晓龙 潘权 张伟 刘言军  (74)专利代理机构 北京易捷胜知识产权代理事 务所(普通合伙) 11613 代理人 齐胜杰 (51)Int.Cl. G01N 9/24(2006.01) (54)发明名称基于微波光子技术的液体密度传感器系统(57)摘要本发明公开一种基于微波光子技术的液体密度传感器系统,该系统包括:激光器发出激光输入电光调制器,电光调制器接受射频信号源发出的微波信号对输入的激光进行调制,产生的调制光信号经滤波器后,得到调制滤波后的光信号通过光开关中导通的第一端口和第三端口进入第一级Sagnac环,经过第一级Sagnac环干涉后的光信号经过隔离器进入第二级Sagnac环,经过第二级Sagnac环干涉后的光信号由光电探测器转换为电信号发送至信号解调单元,信号解调单元根据射频信号源发出的同步射频信号对电信号进行解调并输出;其中,第二级Sagnac环的部分结构位于被检测对象中。上述系统的双环结构可产生游标效应,并能够精确的对被检测的液体密度进行检查, 提高检测精度。权利要求书2页 说明书8页 附图2页CN 109708995 A 2019.05.03 C N 109708995 A

权 利 要 求 书1/2页CN 109708995 A 1.一种基于微波光子技术的液体密度传感器系统,其特征在于,包括:激光器(1)、电光调制器(2)、射频信号源(3)、滤波器(4)、光开关(5)、信号解调单元(19)、第一级Sagnac环、第二级Sagnac环、隔离器(10)和光电探测器(18); 其中,所述激光器(1)发出激光输入所述电光调制器(2),所述电光调制器(2)接受所述射频信号源(3)发出的微波信号对输入的激光进行调制,产生的调制光信号经所述滤波器(4)后,得到调制滤波后的光信号通过光开关(5)中导通的第一端口(501)和第三端口(503)进入第一级Sagnac环,经过第一级Sagnac环干涉后的光信号经过所述隔离器(10)进入第二级Sagnac环,经过第二级Sagnac环干涉后的光信号由所述光电探测器(18)转换为电信号发送至信号解调单元(19),所述信号解调单元(19)根据所述射频信号源(3)发出的同步射频信号对所述电信号进行解调并输出; 其中,所述第二级Sagnac环的部分结构位于被检测对象中。 2.根据权利要求1所述的系统,其特征在于,还包括:第一耦合器(11); 所述光开关包括第二端口(502); 所述光开关(5)的第一端口(501)和第二端口(502)导通时,经过滤波器(4)后的调制滤波的光信号经过第一耦合器(11)后进入第二级Sagnac环; 其中,所述信号解调单元(19)用于控制所述光开关(5)的第一端口(501)与第二端口(502)或第三端口(503)的导通。 3.根据权利要求2所述的系统,其特征在于,所述第一级Sagnac环包括: 耦合器一(6)、偏振控制器一(7)、两段单模光纤一(8)和边孔光纤一(9); 其中,耦合器一(6)、偏振控制器一(7)、第一段单模光纤一(8)、边孔光纤一(9)和第二段单模光纤一(8)、耦合器一(6)依次连接,形成第一级Sagnac环; 所述调制滤波后的光信号从耦合器一(6)的输入端子(601)进入耦合器一(6),并从耦合器一(6)的输出端子一(603)和输出端子二(604)分别进入第一级Sagnac环,进入第一级Sagnac环的两束光信号分别经过所述偏振控制器一(7)、第一段单模光纤一(8)和边孔光纤一(9)、第二段单模光纤一(8)后,在耦合器一(6)处相遇发生干涉; 所述耦合器一(6)的输出端子一(603)连接所述第一级Sagnac环的偏振控制器一(7); 所述耦合器一(6)的输出端子二(604)连接所述第一级Sagnac环的第二段单模光纤一(8)。 4.根据权利要求3所述的系统,其特征在于,所述第二级Sagnac环包括: 耦合器二(13)、偏振控制器二(14)、掺铒光纤(15)、两段单模光纤二(16)和边孔光纤二(17); 其中,耦合器二(13)、偏振控制器二(14)、掺铒光纤(15)、第一段单模光纤二(16)和边孔光纤二(17)、第二段单模光纤二(16)依次连接,形成第二级Sagnac环; 经过隔离器(10)之后的光信号通过第一耦合器(11)的输入端子(1102)进入第一耦合器(11),由第一耦合器(11)的输出端子(1104)输出有效的光信号; 所述有效的光信号通过耦合器二(13)的输入端子(1301)进入耦合器二(13),耦合器二(13)的输出端子一(1303)和输出端子二(1304)分别进入第二级Sagnac环,进入第二级Sagnac环的两束光信号分别经过所述偏振控制器二(14)、掺铒光纤(15)、单模光纤二(16)和边孔光纤二(17)后,在耦合器二(13)处相遇发生干涉; 2

钻井液密度传感器

钻井液密度传感器概述 智能在线密度计(也称在线密度变送器)是一种用于连续在线测量液体浓度和密度的设备,可直接用于工业生产过程中。J 智能在线密度计采用差压式密度计的原理能根据介质在一定垂直距离上的差压值算 出密度值,并自动进行温度补偿,精度高,可靠性好,安装使用简单。 为二线制密度变送器,主要用于工业过程控制,在线密度计根据浓度与密度的大小产生相应的4-20mA信号,可通过数字通信进行远程校准与监测。

钻井液密度传感器特点 1、本在线密度计适用于流动或静止液体, 适合于管道和罐体安装。 2、采用一体化结构的两线制变送器,无活动部件,维护简单。 3、连续在线测量液体密度和温度,无过程中断.可直接用于生产过程控制。 4、四位半数字液晶显示。 5、温度和密度两参数可同时显示,便于进行行业标密换算。 6、密度计有几种不同的触液材质。 7、安装使用方便,插入液体即可显示读数。 8、简化维修,无需定期清洗。 9、在线密度计校准无需标准参考源、无需实验室校准、无过程中断。 10、本质安全型可用于危险现场. 卫生型可安装于食品生产现场。

钻井液密度传感器技术指标 1、输出:4-20mA电流输出,叠加数字信号(HART协议) 2、精度:0.001g/cm3 3、密度量程:0-2g/cm3 ;0-3g/cm3 4、仪表电源:16-30VDC供电,推荐使用24VDC 5、分辨率:0.001g/cm3 6、温度量程:0-100℃温度精度:0.2℃ 7、环境温度:-10~60℃ 8、湿度范围:0-90%

钻井液密度传感器应用领域 1、奶制品业(炼乳、乳糖、乳酪、干乳酪、乳酸等) 2、采矿(煤、钾碱、盐水、磷酸盐、钙化合物、石灰石、铜、金等) 3、食品加工(番茄汁、葡萄汁、柠檬汁、番茄酱、糖蜜、植物油、果糖浆、果冻、果酱等) 4、纸浆与造纸业(黑浆、绿浆、纸浆清洗、蒸发器、苛性碱等) 5、饮料加工(啤酒、软饮料、果酒、速溶咖啡、麦芽等) 6、化工(烧碱、酸、尿素、清洁剂、聚合物密度、乙二醇、

传感器原理及应用习题及答案

第1章 传感器的一般特性 1.1 什么叫传感器?它由哪几部分组成?并说出各部分的作用及其相互间的关系。 1.2 简述传感器的作用和地位及其传感器技术的发展方向。 1.3 传感器的静态特性指什么?衡量它的性能指标主要有哪些? 1.4 传感器的动态特性指什么?常用的分析方法有哪几种? 1.5 传感器的标定有哪几种?为什么要对传感器进行标定? 1.6 某传感器给定精度为2%F·S ,满度值为50mV ,零位值为10mV ,求可能出现的最大误差δ(以mV 计)。当传感器使用在满量程的1/2和1/8时,计算可能产生的测量百分误差。由你的计算结果能得出什么结论? 解:满量程(F?S )为50﹣10=40(mV) 可能出现的最大误差为: δ=40?2%=0.8(mV) 当使用在1/2和1/8满量程时,其测量相对误差分别为: % 4%10021408.01=??=γ % 16%10081408 .02=??=γ 结论:测量值越接近传感器(仪表)的满量程,测量误差越小。 1.7 有两个传感器测量系统,其动态特性可以分别用下面两个微分方程描述,试求这两个系统的时间常数τ和静态灵敏度K 。 1) T y dt dy 5105.1330 -?=+ 式中, y ——输出电压,V ;T ——输入温度,℃。 2) x y dt dy 6.92.44 .1=+ 式中,y ——输出电压,μV ;x ——输入压力,Pa 。 解:根据题给传感器微分方程,得 (1) τ=30/3=10(s), K=1.5 10 5/3=0.5 10 5(V/℃); (2) τ=1.4/4.2=1/3(s), K=9.6/4.2=2.29(μV/Pa)。 1.8 已知一热电偶的时间常数τ=10s ,如果用它来测量一台炉子的温度,炉内温度在540℃至500℃之间接近正弦曲线波动,周期为80s ,静态灵敏度K=1。试求该热电偶输出的最大值和最小值。以及输入与输出之间的相位差和滞后时间。 解:依题意,炉内温度变化规律可表示为 x(t) =520+20sin(ωt)℃ 由周期T=80s ,则温度变化频率f =1/T ,其相应的圆频率 ω=2πf =2π/80=π/40; 温度传感器(热电偶)对炉内温度的响应y(t)为 y(t)=520+Bsin(ωt+?)℃ 热电偶为一阶传感器,其动态响应的幅频特性为 ()()786 010******** 2 2 .B A =??? ? ???π+= ωτ+== ω 因此,热电偶输出信号波动幅值为 B=20?A(ω)=20?0.786=15.7℃ 由此可得输出温度的最大值和最小值分别为 y(t)|m ax =520+B=520+15.7=535.7℃ y(t)|m in =520﹣B=520-15.7=504.3℃ 输出信号的相位差?为 ?(ω)= -arctan(ωτ)= -arctan(2π/80?10)= -38.2? 相应的时间滞后为

传感器原理及应用习题及答案

习题集及答案 第1章概述 1.1 什么是传感器?按照国标定义,“传感器”应该如何说明含义? 1.2 传感器由哪几部分组成?试述它们的作用及相互关系。 1.3传感器如何分类?按传感器检测的畴可分为哪几种? 答案 1.1答: 从广义的角度来说,感知信号检出器件和信号处理部分总称为传感器。我们对传感器定义是:一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。从狭义角度对传感器定义是:能把外界非电信息转换成电信号输出的器件。 我国国家标准(GB7665—87)对传感器(Sensor/transducer)的定义是:“能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置”。定义表明传感器有这样三层含义:它是由敏感元件和转换元件构成的一种检测装置;能按一定规律将被测量转换成电信号输出;传感器的输出与输入之间存在确定的关系。按使用的场合不同传感器又称为变换器、换能器、探测器。 1.2答: 组成——由敏感元件、转换元件、基本电路组成; 关系,作用——传感器处于研究对象与测试系统的接口位置,即检测与控制之首。传感器是感知、获取与检测信息的窗口,一切科学研究与自动化生产过程要获取的信息都要通过传感器获取并通过它转换成容易传输与处理的电信号,其作用与地位特别重要。 1.3答:(略)答: 按照我国制定的传感器分类体系表,传感器分为物理量传感器、化学量传感器以及生物量传感器三大类,含12个小类。按传感器的检测对象可分为:力学量、热学量、流体量、光学量、电量、磁学量、声学量、化学量、生物量、机器人等等。 第3章电阻应变式传感器 3.1 何为电阻应变效应?怎样利用这种效应制成应变片? 3.2 图3-31为一直流电桥,负载电阻R L趋于无穷。图中E=4V,R1=R2=R3=R4=120Ω,试 求:① R1为金属应变片,其余为外接电阻,当R1的增量为ΔR1=1.2Ω时,电桥输出电压U0=? ②R1、R2为金属应变片,感应应变大小变化相同,其余为外接电阻,电桥输出电压U0=? ③R1、R2为金属应变片,如果感应应变大小相反,且ΔR1=ΔR2 =1.2Ω,

最新传感器分类(最全总结)

繁杂,分类方法也很多。现将常采用的分类方法归纳如下: 1、按输入量即测量对象的不同分: 如输入量分别为:温度、压力、位移、速度、湿度、光线、气体等非电量时,则相应的传感器称为温度传感器、压力传感器、称重传感器等。 这种分类方法明确地说明了传感器的用途,给使用者提供了方便,容易根据测量对象来选择所需要的传感器,缺点是这种分类方法是将原理互不相同的传感器归为一类,很难找出每种传感器在转换机理上有何共性和差异,因此,对掌握传感器的一些基本原理及分析方法是不利的。因为同一种型式的传感器,如压电式传感器,它可以用来测量机械振动中的加速度、速度和振幅等,也可以用来测量冲击和力,但其工作原理是一样的。 这种分类方法把种类最多的物理量分为:基本量和派生量两大类.例如力可视为基本物理量,从力可派生出压力、重量,应力、力矩等派生物理量.当我们需要测量上述物理量时,只要采用力传感器就可以了。所以了解基本物理量和派生物理量的关系,对于系统使用何种传感器是很有帮助的。 2、按工作(检测)原理分类 检测原理指传感器工作时所依据的物理效应、化学效应和生物效应等机理。有电阻式、电容式、电感式、压电式、电磁式、磁阻式、光电式、压阻式、热电式、核辐射式、半导体式传感器等。

如根据变电阻原理,相应的有电位器式、应变片式、压阻式等传感器;如根据电磁感应原理,相应的有电感式、差压变送器、电涡流式、电磁式、磁阻式等传感器;如根据半导体有关理论,则相应的有半导体力敏、热敏、光敏、气敏、磁敏等固态传感器。 这种分类方法的优点是便于传感器专业工作者从原理与设计上作归纳性的分析研究,避免了传感器的名目过于繁多,故最常采用。缺点是用户选用传感器时会感到不够方便。 有时也常把用途和原理结合起来命名,如电感式位移传感器,压电式力传感器等,以避免传感器名目过于繁多. 3、按照传感器的结构参数在信号变换过程中是否发生变化可分为: a、物性型传感器:在实现信号的变换过程中,结构参数基本不变,而是利用某些物质材料(敏感元件)本身的物理或化学性质的变化而实现信号变换的。 这种传感器一般没有可动结构部分,易小型化,故也被称作固态传感器,它是以半导体、电介质、铁电体等作为敏感材料的固态器件。如:热电偶、压电石英晶体、热电阻以及各种半导体传感器如力敏、热敏、湿敏、气敏、光敏元件等。 b、结构型传感器:依靠传感器机械结构的几何形状或尺寸(即结构参数)的变化而将外界被测参数转换成相应的电阻、电感、电容等物理量的变化,实现信号变换,从而检测出被测信号。 如:电容式、电感式、应变片式、电位差计式等。 4、根据敏感元件与被测对象之间的能量关系(或按是否需外加能源)来分:

传感器原理及应用

《传感器原理及应用》 实 验 指 导 书 测控技术实验室

实验一金属箔式应变片----单臂、半臂、全桥性能实验 一、实验目的:了解金属箔式应变片的应变效应,单臂、半臂、全电桥工 作原理和性能。 二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化, 这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R 为:ΔR/R电阻丝电阻相对变化, K为应变灵敏系数, ε=ΔL/L为电阻丝长度相对变化, 金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部件受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。对单臂电桥输出电压Uο1=Ek?/4。在半桥性能实验中,不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。当应变片阻值和应变量相同时,其桥路输出电压Uο2=Ek?/2。在全桥测量电路中,将受力性质相同的两应变片接入电桥对边,不同的接入邻边,当应变片初始阻力值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压Uο3=Ek?。其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。 三、实验设备:应变式传感器实验模板、应变式传感器、砝码、数显表、 ±15V、±4V直流电源、万用表。 四、实验方法和要求: 1、根据电子电路知识,实验前设计出实验电路连线图。 2、独力完成实验电路连线。 3、找出这三种电桥输出电压与加负载重量之间的关系,并作出V o=F(m) 的关系曲线。

4、分析、计算三种不同桥路的系统灵敏度S=ΔU/ΔW(ΔU输出电压变化 量,ΔW重量变化量)和非线性误差:δf1=Δm/yF·s×100%式中Δm为 输出值(多次测量时为平均值)与拟合直线的最大偏差:yF·s满量程 输出平均值,此处为200g。 五、思考题 1、单臂电桥时,作为桥臂电阻应变片应选用:(1)正(受拉)应变片(2) 负(受压)应变片(3)正、负应变片均可以。 2、半桥测量时两片不同受力状态的电阻应变片接入电桥时,应放在:(1) 对边(2)邻边。 3、全桥测量中,当两组对边(R1、R3为对边)电阻值R相同时,即R1=R3, R2=R4,而R1≠R2时,是否可以组成全桥:(1)可以(2)不可以。

光电型脉搏传感器的原理及其应用

医学光电检测技术论文光电型脉搏传感器的原理及其应用The principle of type photoelectric pulse sensor and its application 学生姓名:张先绪 专业:生物医学工 学号:7 指导教师:庞春颖 学院:生命科学技术学院 二〇一四年十二月

摘要: 介绍了光电式脉搏传感器的原理和设计方案,采用集成光敏部件和放大器的光敏芯片代替传统的分立光敏器件实现对脉搏的测量。芯片的集成化能够有效减小器件间匹配引起的干扰,提高脉搏测量精度。在实验测试过程中,采用该光电式脉搏传感器对人体的脉搏进行实时测量,对脉搏信号测量可能引起的噪声来源做了分析,并做相应的抗干扰处理,得到比较理想的脉搏波形,为脉搏信息的提取和分析提供了良好的数据。 关键词:脉搏信号;光电容积法;脉搏传感器;噪声分析 Abstract: The PPG pulse sensor is attached to the finger base for monitoring beat to beat with the traditional design,the pulse sensoruses a new integrated chip,which is integrated the photosensitive unit and the signal design can efficiently remove the system noise and improve the precision of the experiment,using the newPPG pulse sensor can measure the pulse directly from the pulse in real the same time,making the noise analysis and dealing with the measure noise,and getting a good pulse wave. Keywords:pulse signal;photoplethymograph;pulse sensor;noise anylsis 第1章绪论 1.1课题研究背景及意义 随着人们生活水平的提高,地球环境遭到破坏,多种疾病威胁着人们的生命,

各种传感器介绍

1、一种高灵敏度电阻式应变式传感器 从图2—17中可以看出来,当施加拉力时传感器的最大应变就在弓形弹性元件的中部,且弹性元件的上下表面的应变值符号是相反的。钢轴受力的应变值与弓形弹性元件中部的应

变值相比小了很多。实际应用在弓形弹性元件的中部钻有小孔,则在孔的边缘有应力集中,所以应变片应该分上下贴在弓形弹性元件的中间小孔的边上,四片组成一个全桥,既可以感受到最大的应变值,又可以实现温度自补偿,从而达到提高灵敏度的目的。

上图:传感器标定装置 2、电阻应变片 电阻应变片工作原理是基于金属导体的应变效应,即金属导体在外力作用下发生机械变形时,其电阻值随着所受机械变形(伸长或缩短)的变化而发生变化的现象。 3、加速度传感器 类型一:压电式加速度传感器

某些电介质,当沿着一定方向对其施力而使它变形时,内部就产生极化现象,同时在它的两个表面产生符号相反的电荷;当外力去掉后,又重新恢复不带电的状态。这种现象称为压电效应。当作用力方向改变时,电荷极性也随着改变。压电加速度传感器基于材料的压电特性,当压电传感器中压电晶体承受被测机械应力作用时,在它的两个极面出现极性相反但电量相等的电荷。可以把压电传感器看成一个静电发生器,如图4.35(a)所示。也可以把它视为两级板上聚集异性电荷,中间为绝缘体的电容器,如图4.35(b) 类型二:力平衡式加速度传感器

力平衡加速度计的敏感元件是附加在可动质量上的可变电容器。可动质量通过两个对称的簧片与仪器支架相连,可动质量与簧片构成一个典型的弹簧—振子系统。可动质量上有一个双面开口环状电极(动片),动片的上下各有一个与其平行的、相同形状的固定极板(定片),这三个极板构成了传感器的敏感元件—可变电容。可动质量的下面连着一个施加平衡力的线圈,线圈正好落在一个环形磁隙中,磁隙的磁场由新型强磁材料钕铁硼永磁铁产生。当被测物体运动时,电容器的动片和定片之间产生相对位移,该相对位移经电路变成电压信号,放大后由反馈电路以电流形式送给可动质量上的线圈,通电线圈与永磁场的相互作用产生一个与被测加速度施加给可动质量的大小相等、方向相反的安培力,这就是“力平衡”原理。加速度计的输出电压与反馈电流成比例,自然就与被测加速度成比例。 4、振弦式传感器 谐振式传感器是基于正反馈原理,有激励器、检测器、机械谐振器和放大器构成的机

《传感器原理设计与应用》重点总结.

本文档根据老师最后一次课上课时所说的相关内容并根据我自己的个人情况简要整理,相对简洁,和大家分享一下。考虑到老师说的内容和考试内容相比,可能不够完整;而且个人水平有限,不可能把握的很准确,所以只是参考而已。。。建议大家根据自己的理解补充完善~ 第一章:传感器概论 1、传感器的定义:传感器(或敏感元件)基于一定的变换原理/规律将被测量(主要是非电量的测量,可采用非电量电测技术)转换成电量信号。变换原理/规律涉及到物理、化学、生物学、材料学等学科。 2、传感器的组成:传感器一般由敏感元件(将非电量变成某一中间量)、转换元件(将中间量转换成电量)、测量电路(将转换元件输出的电量变换成可直接利用的电信号)三部分组成,有的传感器还需加上辅助电源。 3、传感器的分类 按变换原理分类——>利用不同的效应构成物理型、化学型、生物型等传感器。

按构成原理分类: 结构型:依靠机械结构参数变化来实现变换。 物性型:利用材料本身的物理性质来实现变换。 按输入量的不同分类——>温度、压力、位移、流量、速度等传感器 按变换工作原理分类: 电路参数型:电阻型、电容型、电感型传感器 按参电量如:Q (电量)、I 、U 、E 等分类:磁电型、热电型、压电型、霍尔型、光电式传感器 4、传感器技术的发展动向: 教材表述:发现新现象、开发新材料、采用微细加工技术、研制多功能集成传感器、智能化传感器、新一代航天传感器、仿生传感器 老师表述:微型化、集成化、廉价。 第二章:传感器的一般特性 1、静态特性 检测系统的四种典型静态特性 线性度:传感器的输出与输入之间的线性程度。传感器的理想输出-输入特性是线性的。 灵敏度:系统在静态工作的条件下,其单位输入所产生的输出,实为拟合曲线上某点的斜率。 即S N=输入量的变化/输出量的变化=dy/dx

新型传感器技术及其发展趋势

新型传感器技术及其发展趋势 中文摘要 随着工业自动化的发展,传统的传感器越来越不能满足现代工业对信号检测与传输的需求,新型传感器应运而生。新型传感器包括采用新原理、新材料、新技术等开发出来的传感器,和传统的传感器相比精度更高、响应更快、可靠性更强、集成度更高、智能性更好。本文详细介绍了新型传感器的发展背景、分类、优势、发展前景及方向,还介绍了纳米传感器、智能传感器、生物传感器、微机电系统传感器等比较常见的新型传感器。 关键词:传感器、智能、集成度、精度 A new sensor technology and its development trend ABSTRACT With the development of industrial automation, the traditional sensor can't meet the signal detection and transmission requirements of modern industrial anymore.Then new sensors arises. The new sensors depends on new principles, new materials and new technology. compared with the traditional sensor, the new ones have higher precision, faster repercussion , better intelligent ,higher reliability and integration. This article introduces the background of the development of new sensors, the classification, the advantages ,the development prospect and direction. It introduces the nanometer sensor, intelligent sensor, biological sensors, mems sensor and some more common new sensors. Keywords: sensors, intelligence, integration, precision 前言 随着社会的发展,工业的进步,传感器在科学技术领域、工农业生产以及日常生活中,传感器发挥着越来越重要的作用。人类社会对传感器提出的越来越高的要求是传感器技术发展的强大动力,而现代们学技术突飞猛进则提供了坚强的后盾。随着科技的发展,传感器也在不断的更新发展。传统的传感器技术在精度、灵敏性、集成度、可靠性等方面已经逐渐不能满足要求。在这种工业背景下,新型传感器应运而生。 1 新型传感器的分类 所谓新型传感器,大致应包括:采用新原理、填补传感器空白、仿生传感器

传感器原理及应用

《传感器原理及应用》三级项目报告书 基于PLC的物料分拣系统设计 学院:机械工程学院 班级:13-1机械电子工程(卓越) 组员:响夏中岩轩赫 贡献率:响程序设计,优化 40% 夏中岩资料整理,编辑 30% 轩赫 PPT设计编写 30% 指导教师:边辉 完成日期:2016.05

目录 摘要.................................................................. - 2 - 1 物料分拣系统简述.................................................... - 3 - 2 物料分拣系统中的传感器.............................................. - 3 - 2.1 电机起停控制传感器............................................ - 3 - 2.2 物料计数用传感器.............................................. - 5 - 2.3 定位及速度控制传感器.......................................... - 5 - 2.3.1 增量编码器.............................................. - 5 - 2.3.2 固态继电器.............................................. - 6 - 2.4 物料分类用传感器.............................................. - 6 - 2.4.1色标传感器............................................... - 6 - 2.4.2 电涡流式传感器.......................................... - 7 - 2.4.3 磁簧管.................................................. - 7 - 3 控制系统设计....................................................... - 7 - 3.1 硬件连接..................................................... - 8 - 3.2 程序编译...................................................... - 8 - 4 传感器前景展望..................................................... - 12 - 4.1 传感器在科技发展中的重要性................................... - 12 - 4.2 先进传感器的发展趋势......................................... - 12 - 5 反思与收获......................................................... - 12 -参考文献............................................................. - 13 -

相关文档
最新文档