红外图像处理

红外图像处理
红外图像处理

本篇论文选用一种基于DSP 的红外图像处理及传输系统,对一幅320×240 红外图像进行非均匀性校正和图像增强,最后将处理后的图像数据通过USB 接口传输到PC 机上进行显示。

论文中通过非均匀性的定义系统的研究了非均匀校正的算法分类和各种算法之间的比较。目前可以分为两类:基于红外参照源的校正算法和基于场景的校正算法。基于红外参照源的校正算法包括一点校正法,两点校正法和多点校正法。基于场景的校正算法包括十余高通滤波法,人工神经网络法等。这几种算法的比较可以参考论文。

这里重点研究了两点温度定标算法。这也是在实际中应用较广泛的一类算法。这个算法实际是由两个假设条件:每个探测单元的响应是线性的并且探测单元的响应必须具有时间稳定性。具体的两点温度定标算法理论此处省略。

此处详细介绍系统的结构:

FIFO 在CPLD 的时序控制下读入图像数据,然后将图像数据再送入DSP 中进行图像处理,处理完的图像保存到SDRAM 中,当产生中断时,通过USB 接口传输到PC 机上显示。

5509A 自带USB 模块,它是一个符合USB1.1 协议的从属USB 模块。利用usb模块实现数据的通信是次论文的亮点。Usb的引脚论文中给以了详细的说明,这里重点说明一下usb与dsp存储器之间的数据传输:在IN 事务中,SIE (串行接口引擎)从UBM 接收数据,转换成串行数据流后送给主机。在OUT 事务中,SIE 将主机的串行数据转换成UBM 的并行格式。UBM 在SIE 与缓冲器RAM 之间传输数据。在UBM 将数据传输到SIE 之前,CPU 或USB 的DMA控制器必须将数据放入缓冲器RAM 中。当CPU 或DMA 控制器已经准备好将数据移入DSP 的存储器时,必须等待UBM 把数据从SIE 移到缓冲器RAM。

图像的采集电路系统选用了Integrated Device Technology(IDT)公司生产的IDT72V263,它是一款可编程同步FIFO 芯片。FIFO 是一种具有存储功能的高速数字芯片,在高速数据采集时常被用作数据缓存,有同步FIFO、异步FIFO 和触发FIFO 三种。

论文中详细介绍了dsp与sdram和flash的连接,并且给出了usb接口电路,为了更好的控制系统电路还设计了时钟电路,电源电路,复位电路,ktag检测接口电路。

软件的设计:

文中给出了cpld的时序逻辑图,根据时序图可以设计图像数据写入fifo的流程。采用两点温度定标算法来进行非均匀性校正设计,设计的具体过程在论文中详细的给出。根据常见的图像增强算法,文中经过探索,给出了一种自适应分段线性变换来增强图像。红外图像的目标灰度往往集中在整个图像动态范围内较窄的区间,分段线性变换通过把较窄的目标分布区间展宽,以增强目标与背景的灰度对比度,进而从红外热图像中识别出所感兴趣的目标。

文中的一个难点就是USB 总线的软件设计,包括固件程序设计、驱动程序设计和应用程序设计三大部分。其中驱动程序的设计较为复杂,具体的软件设计可参考论文的解释。

红外图像增强算法研究

红外图像增强算法研究 安阳,胡耀祖 武汉理工大学信息学院,武汉 (430070) E-mail:alen1983@https://www.360docs.net/doc/b24105027.html, 摘要:本文根据红外图像的特点介绍了几种经典的图像增强算法,讨论算法的效果,提出对算法的一些改进,给出了一些改进后的效果。 关键词:红外图像,直方图,锐化 1.引言 红外技术是二战后兴起的一项红外信息转换与处理技术。它研究红外辐射的发射、传输和接收的规律及其应用原理,而红外成像技术是其应用最广泛的方面。随着科技的不断发展,红外热成像技术在军事、科研、工农业生产、医疗卫生等领域的应用越来越广泛,与此同时图像实时处理的研究也得到了迅速发展[1]。 随着红外成像技术的广泛应用,人们对红外图像成像质量的要求越来越高,要提高红外图像的质量可以有两种途径:一是不断研究更高性能的红外探测器;另一个就是要进行红外图像的预处理,从而改善图像质量。 目前随着材料技术的突破,美国,西欧等发达国家在红外成像阵列的研制取得了巨大的发展,高密度,高灵敏度,快响应的红外焦平面阵列在军事上已经得到了应用,非制冷焦平面阵列也得到了快速的发展。 但是由于材料器件的限制,仅仅依靠红外探测器的提高不能完全达到我们所期望的图像质量,而且高精度的探测器件的研制所花费的人力物力是十分巨大的。而解决这个问题的一个有效的手段就是对红外图像进行实时图像预处理。实时图像处理技术能在现有的条件下不仅能提高红外图像质量,而且在较短的时间内迅速改善和提高红外热像仪的各项性能指标。 2.红外图像对比度增强算法 2.1 红外图像的特点 红外成像的目标和背景的红外辐射需经过大气传输、光学成像、光电转换和电子处理等过程,才被转换成为红外图像。所以从红外图像的产生过程分析,红外图像主要有以下特点:1)空间相关性强,对比度低;2)表征对象的温度分布,是灰度图像,分辨率较低,图像比较模糊;3)噪声干扰较大,噪声比较复杂,信噪比低;4)存在器件性的非均匀性等。 我们可以看出红外图像存在很多缺陷,对人眼来说其最显著的特点就是对比度很低,图像很模糊,所以本文主要从对比度提升和图像锐化两个方面进行增强算法的研究。 2.2 红外图像的直方图均衡化及改进 红外图像直方图的特点是像素相对比较集中,灰度值变化不大,使得图像的对比度很低,视觉效果很差。直方图均衡的作用是改变图像中灰度概率分布,使其均匀化。使图像中灰度概率密度较大的像素向附近灰度级扩展,因而灰度层次拉开,而概率密度较小的像素的灰度级收缩,从而让出原来占有的部分灰度级,这样的处理使图像充分有效地利用各个灰度级,因而增强了图像对比度。

遥感数字图像处理教程复习分析

第一章. 遥感概念 遥感(Remote Sensing,简称RS),就是“遥远的感知”,遥感技术是利用一定的技术设备和系统,远距离获取目标物的电磁波信息,并根据电磁波的特征进行分析和应用的技术。 遥感技术的原理 地物在不断地吸收、发射(辐射)和反射电磁波,并且不同物体的电磁波特性不同。 遥感就是根据这个原理,利用一定的技术设备和装置,来探测地表物体对电磁波的反射和地物发射的电磁波,从而提取这些物体的信息,完成远距离识别物体。 图像 人对视觉感知的物质再现。图像可以由光学设备获取,如照相机、镜子、望远镜、显微镜等;也可以人为创作,如手工绘画。图像可以记录、保存在纸质媒介、胶片等等对光信号敏感的介质上。随着数字采集技术和信号处理理论的发展,越来越多的图像以数字形式存储。因而,有些情况下“图像”一词实际上是指数字图像。 物理图像:图像是人对视觉感知的物质再现 数字图像:图像以数字形式存储。 图像处理 运用光学、电子光学、数字处理方法,对图像进行复原、校正、增强、统计分析、分类和识别等的加工技术过程。 光学图像处理 应用光学器件或暗室技术对光学图像或模拟图像(胶片或图片)进行加工的方法技术 数字图像处理 是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。图像处理能做什么?(简答) 是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。数字图像处理主要目的:提高图像的视感质量,提取图像中所包含的某些特征或特殊信息,进行图像的重建,更好地进行图像分析,图像数据的变换、编码和压缩,更好图像的存储和传输。数字图像处理在很多领域都有应用。 遥感图像处理(processing of remote sensing image data )是对遥感图像进行辐射校正和几何纠正、图像整饰、投影变换、镶嵌、特征提取、分类以及各种专题处理的方法。常用的遥感图像处理方法有光学的和数字的两种。

红外图像的处理及其MATLAB实现

红外图像的处理及其MATLAB 函数实现 0.引言 随着红外技术日新月异的发展,红外技术在军事及人们日常生活中有着越来越广泛的应用。但由于红外探照灯及红外探测器件的限制,红外成像系统的成像效果仍然不够理想。在民用监测应用中,主要表现为夜视距离近,图像背景与被监测目标之间对比度模糊,被监测目标细节难以辨认,图像特征信息不明确等方面。为使图像更适于人眼观测、适用于图像后续目标识别及跟踪处理,有必要在红外图像采集和处理上做进一步的研究,来增强红外图像视觉效果。 1. 红外图像的获取及其特点 1.1 红外图像的获取 红外图像主要是由红外热像仪采集的。红外热像仪是一种二维热图像成像装置。热成像系统是一个光学一电子系统,可用于接收波长在m 100~75.0之间的电磁辐射,它的基本功能是将接收到的红外辐射转换成电信号,再将电信号的大小用灰度等级的形式表示,最后在显示器上显示出来。图1.1就是一张采集到的红外图像。 图1.1 输入的红外图像

1.2 红外图像的特点 红外图像反映了目标和背景不可见红外辐射的空间分布,其辐射亮度分布主要由被观测景物的温度和发射率决定,因此红外图像近似反映了景物温度差或辐射差。 根据其成像原理,总结红外图像特点如下: (1)红外热图像表征景物的温度分布,是灰度图像,没有彩色或阴影(立体感觉),故对人眼而言,分辨率低、分辨潜力差; (2)由于景物热平衡、光波波长、传输距离远、大气衰减等原因,造成红外图像空间相关性强、对比度低、视觉效果模糊; (3)热成像系统的探测能力和空间分辨率低于可见光CCD阵列,使得红外图像的清晰度低于可见光图像; (4)外界环境的随机干扰和热成像系统的不完善,给红外图像带来多种多样的噪声,比如热噪声、散粒噪声、f 1噪声、光子电子涨落噪声等等。噪声来源多样,噪声类型繁多,这些都造成红外热图像噪声的不可预测的分布复杂性。这些分布复杂的噪声使得红外图像的信噪比比普通电视图像低; (5)由于红外探测器各探测单元的响应特性不一致等原因,造成红外图像的非均匀性,体现为图像的固定图案噪声、串扰、畸变等。 由以上五点可知,红外图像一般较暗,且目标与背景对比度低,边缘模糊,视觉效果差。 通过以上比较分析,可以总结:可见光图像与红外图像的成像机理虽然不同(可见光图像是利用物体对光线的反射来获得的,而红外图像是靠物体自身的红外辐射获取的),但在低照度情况下,可见光图像与红外图像的视觉效果和直方图特征均相同,因此可以采用低照度可见光图像的处理方法来处理红外图像。 2. 红外图像的增强 2.1 图像增强 图像增强是指对图像的某些特征,如边缘、轮廓、对比度等进行强调或突显,以便于观察或做进一步的分析与处理。图像增强不意味着能增加原始的信息,有时甚至会损失一些信息,但图像增强的结果却能加强对特定信息的识别能力,便图像中感兴趣的特征得以加强,从而使这些特征的检测和识别变得更加容易。 图像增强方法的分类如图2.1所示:

红外热像无损检测图像处理研究现状与进展

红外热像无损检测图像处理研究现状与进展 来源:《红外技术》 引言 红外热像(infrared thermography)是目前运用非常广泛的一种快速高效的无损检测技术,通过外部施加的热或冷激励使被测物体内的异性结构以表面温度场变化的差异形式表现出来,从而达到缺陷部位的定性和定量分析。其成像原理是利用红外探测仪将接受到的被测物体的红外辐射映射成灰度值,再转化为可视温度分布图(红外热像图)。最早在二战末期应用于军事侦察领域,因其本身具有快速高效、无需停运、无需取样、可进行无污染、非接触、大面积检测、以及其直观成像等优点,而被作为复合材料的无损检测技术应用于工业领域,如航空航天、机械、油气、建筑等领域。 1 、红外热像技术的发展现状 自20世纪以来,红外热像技术得到快速发展。20世纪90年代,美国无损检测协会和材料试验协会针对红外热成像技术指定了相应标准,并在无损检测手册红外与热检测分册中描述了基于红外热像的无损检测技术在各个领域的运用。目前美国、俄罗斯、法国、德国、加拿大、澳大利亚等国已将红外热像技术广泛运用于航空航天复合材料构件内部缺陷及胶接质量的检测、蒙皮铆接质量检测等。近年来,红外热像技术与智能手机、无人机等设备充分结合,并在各个领域广泛使用,如美国的Fluke和FLIR、德国Testo、国内武汉高德、浙江大立等企业。 国内的红外热像检测技术比欧美、俄罗斯等发达国家起步较晚,但经过十几年的发展,目前也取得较为显著的成果。中国特种设备研究院和武汉工程大学将红外热像技术运用于压力设备缺陷检验,取得了一系列显著的成果。西南交通大学、昆明物理研究所、北京航空材料研究院、北京理工大学、西北工业大学等将红外热像技术运用于航空航天夹层结构件的缺陷检测,取得了有效进展。在石油化工领域,各位学者将红外热像技术用于高温高压容器和管道的缺陷、保温层破损、以及内部液体流动情况的检测,也取得了许多成果。 2 、红外图像预处理 红外技术应用的核心工作在于图像的处理及利用,不仅在无损检测领域,在军事监测、人脸识别等领域的应用更加重要。红外图像的处理主要分为图像预处理和图像识别,预处理是开展后续工作的基础,其主要分为图像的非均匀性校正和图像增强两个方面。 2.1 图像的非均匀性校正

图像处理在航天航空中的应用-结业论文

图像处理在航天航空中的应用-结业论文

论文题目:图像处理在航天和航空技术方面的运用 学院:机械电气工程学院 班级: 2012级机制3班 姓名:张娜 学号: 20125009077

摘要:图像处理技术的研究和应用越来越受到社会发展的影响,并以自身的技术特点反过来影响整个社会技术的进步。本文主要简单概括了数字图像处理技术的特点、优势,列举了数字图像处理技术的应用领域并详细介绍了其在航天航空领域中的发展。 关键字:图像处理简介技术的优点发展技术应用 一、引言 数字图像处理是通过计算机采用一定的算法对图像图形进行处理的技术,它已经在各个领域上都有了较广泛的应用。图像处理的信息量很大,对处理速度要求也很高。本文就简单的介绍图像处理技术及其在各个领域的应用,详细说明图像处理在航天航空技术方面的应用。 二、数字图像处理简介 (一)图像的概念 图像包含了它所表达的物体的描述信息。我们生活在一个信息时代,科学研究和统计表明,人类从外界获得的信息约有百分之七十来自视觉系统,也就是从图像中获得,即我们平常所熟知的照片,绘画,动画。视像等。 (二)数字图像处理技术 数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。图像处理技术着重强调在图像之间进行的变换,主要目标是要对图像进行各种加工以改善图像的视觉效果并为其后的目标自动识别打基础,或对图像进行压缩编码以减少图像存储所需要的空间或图像传输所需的时间。图像处理是比较低层的操作,它主要在图像像素级上进行处理,处理的数据量非常大。数字图像处理的早期应用是对宇宙飞船发回的图像所进行的

基于FPGA和双DSP的高速视频图像处理系统设计(精)

第39卷,增刊 V01.39Supplement 红外与激光工程 Infrared and Laser Engineering 2010年05月 Mav.2010 基于FPGA和双DSP的高速视频图像处理系统设计 苑爱博,鲁新平,李吉成,张志龙,杨卫平 (国防科学技术大学电子科学与工程学院ATR重点实验室,湖南长沙410073 摘要:介绍了基于XC5VSX95T和两片TMS320C6455的高速实时视频图像处理系统的设计原理.其中Ff,GA模块主要完成图像实时采集和传输的逻辑控制及图像预处理任务,双DSP模块承担特征提取、目标识别、跟踪等任务。工程应用表明,该系统实时性和稳定性均达到了设计要求,能够实现快速傅里叶变换、边缘检测、识别,跟踪等图像处理算法。 关键词:图像处JE;DSP; FPGA 中圈分类号l TP391. 文献标识码:A 文章编号:1007.2276(2010增(信息处理一0647.04 Design of high speed video image processor based on FPGA and dual DSPs YUAN Ai—bo,LU Xin—ping,LI Ji—cheng,ZHANG Zhi-long,YANG Wei-ping (KeyLaboratoryforATR.CollegeofElectronic Science andEngineering.NationalUmve 体ityofDefenseTechnology,ChangSha410073,China

Abstract:This paper designed a high speed real?time system of video image processing based on two chips of TMS320C6455and Xilinx FPGA of XC5VSX95T.The system uses DSPs to process the image data and accomplishes logic control of data catching and transmission with FPGA.which combines merit such US rapidity,agility and currency.Application of engineering shows that hardware architecture is effective and feasible;the performance meets the requirement of real?time processing.The system can realize the algorithm of image processing such as Fast Fourier Transform(FFT,edge detection, recognizing,tracking and SO on. Key words:Image processing;DSP;FPGA 0引言 图像处理技术已经被广泛应用于视频图像处理的各个领域,可独立运行的高速实时数字图像处理平台己成为图像处理领域的一个发展趋势。然而由于图像处理和自动目标识别的算法复杂,运算量巨大,图像处理系统通常包括分割、检测、标记、识别、跟踪等复杂的过程12l,处理实时性要求高,同时系统的体积也有严格的限制,因此在设计系统时必须综合考虑这些特点,合理选用芯片并保留一定的余度。本文从硬件设计的角度出发研究高速实时图像处理系统。以双DSP+FPGA的结构组成满足实时性要求的图像处理系统,充分发挥FPGA加通用DSP结构的灵活性及实时处理能力∞1。 1核心芯片的功能和特点 主CPU采用TI公司的TMS320C6455定点DSP 芯片。该芯片采用90am工艺,先进的VelociTlTM VLIW架构,拥有8个独立的功能单元,其中有2个 收■日期?2010-04-08 作■■介?苑爱博(1985..男.黑龙江卉齐哈尔人,硕士.主要从事图像佰息处理方面的研究。

红外与近红外光谱常用数据处理算法

一、数据预处理 (1)中心化变换 (2)归一化处理 (3)正规化处理 (4)标准正态变量校正(标准化处理)(Standard Normal Variate,SNV)(5)数字平滑与滤波(Smooth) (6)导数处理(Derivative) (7)多元散射校正(Multiplicative Scatter Correction,MSC) (8)正交信号校正(OSC) 二、特征的提取与压缩 (1)主成分分析(PCA) (2)马氏距离 三、模式识别(定性分类) (1)基于fisher意义下的线性判别分析(LDA) (2)K-最邻近法(KNN) (3)模型分类方法(SIMCA) (4)支持向量机(SVM) (5)自适应boosting方法(Adaboost) 四、回归分析(定量分析) (1)主成分回归(PCR) (2)偏最小二乘法回归(PLS) (3)支持向量机回归(SVR)

一、数据预处理 (1) 中心化变换 中心化变换的目的是在于改变数据相对于坐标轴的位置。一般都是希望数据集的均值与坐标轴的原点重合。若x ik 表示第i 个样本的第k 个测量数据,很明显这个数据处在数据矩阵中的第i 行第k 列。中心化变换就是从数据矩阵中的每一个元素中减去该元素所在元素所在列的均值的运算: u ik k x x x =- ,其中k x 是n 个样本的均值。 (2) 归一化处理 归一化处理的目的是是数据集中各数据向量具有相同的长度,一般为单位长度。其公式为: 'ik x = 归一化处理能有效去除由于测量值大小不同所导致的数据集的方差,但是也可能会丢失重要的方差。 (3)正规化处理 正规化处理是数据点布满数据空间,常用的正规化处理为区间正规化处理。其处理方法是以原始数据集中的各元素减去所在列的最小值,再除以该列的极差。 min() 'max()min() ik ik k k x xk x x x -= - 该方法可以将量纲不同,范围不同的各种变量表达为值均在0~1范围内的数据。但这种方法对界外值很敏感,若存在界外值,则处理后的所有数据近乎相等。 (4) 标准化处理(SNV )也称标准正态变量校正 该处理能去除由单位不同所引起的不引人注意的权重,但这种方法对界外点不像区间正规化那样的敏感。标准化处理也称方差归一化。它是将原始数据集各个元素减去该元素所在列的元素的均值再除以该列元素的标准差。 ';ik k ik k k x x x S S -==

图像处理技术原理及其在生活中的应用探讨

图像处理技术原理及其在生活中的应用探讨 摘要在社会生活实践中,图像处理技术获得了广泛的应用。这种技术之所以可以得到广泛应用,与其极强的功能所分不开的。在计算机算法不断改善的过程中,图像处理技术的发展前景是非常广阔的。笔者对图像处理技术的原理进行了分析,并其对在生活中的应用进行了探究[1]。 关键词图像处理技术原理;生活;应用 1 图像处理技术的原理分析 所谓的图像处理技术,就是通过计算机技术以及相关的技术来对图像进行处理,从而使图像更好地为我们所利用的一种技术。在这个过程中,需要运用到几个技术要点。第一个就是使图像进行转换,从而得到计算机容易识别的矩阵,这种矩阵被称为是“数字矩阵”。这样得到的矩阵更容易被计算机所存储。第二就是通过多种算法来实现对计算机所存储的图像进行有关处理,其中用到的常用算法就有基于人眼视觉特性的阈值算法、具有去噪功能的图像增强算法等。第三就是在进行了一些技术性的处理,然后获取图像信息。通过中国知网、万方数据库等平台所查阅到的图像类型相关资料可知,图像的类型主要可以分为两大类,一类是数字化图像,另一类是模拟图像。前者不仅处理便捷,而且精度较高,能够适应现代社会的发展要求,后者在现实生活中的应用更为常见,比如在相机图片中的应用。模拟图像输出较为简单,灵活性和精度不太高,因此其使用的限制性较大[2]。 2 图像处理技术原理在生活中的应用探讨 2.1 图像处理技术原理在安全防范中的应用 在安全防范监控系统不断发展的过程中,系统从模拟向数字的方向发展,这跟人们要求图像的精准度越来越高有关。在安防领域,图像处理技术如果能够得到很好的利用,那么就可以实现对图像的去噪声处理,对失真的图像进行矫正处理。在公安部门破案的过程中,有时会根据犯罪现场的指纹特征来对视频采集参数进行调节,比如色彩补偿就是一种很好的调節方法,这样方便公安部门更快地破案。尽管现在的监控系统越来越完善,但是如果遇到暴风暴雨和雾霾或者光线较弱的天气,那么监控得到的视频图像往往还是比较模糊的,对于这些模糊的图像,可以通过图像增强技术进行一些处理,从而为后续的公安部门调查和取证提供便利,模糊图像处理技术这时就排上了用场[3]。 2.2 图像处理技术原理在娱乐休闲领域的应用 在娱乐休闲领域,图像处理技术原理主要的应用场合就是平时我们利用手机或数码相机摄影以及电影特效制作等场合。在数码相机出现以前,图像只能使用传统相机通过胶片的形式保存。在数码相机出现之后,人们就可以短时间内对相

流行的遥感图像处理软件比较

遥感软件 PCI遥感图像处理软件简介 PCI GEOMATICA是PCI公司将其旗下的四个主要产品系列,也就是PCI EASI/PACE、(PCI SPANS,PAMAPS)、ACE、ORTHOENGINE,集成到一个具有同一界面、同一使用规则、同一代码库、同一开发环境的一个新产品系列,该产品系列被称之为 PCI GEOMATICA。对于20多年来一直致力于向地学界提供全方位解决方案的PCI公司来说,始终坚持领先一步的原则,地理咨讯永远在变迁,而地理咨讯软件更处于变迁的前沿。在今天,随着用户需求广度与深度的不断拓宽与加深,越来越多的人希望软件是一个可以满足用户所有需求的良好的工具。由于对这一点的正确把握,经过4年努力,PCI公司将原有的四个产品系列整合在一起,产生了一个使用简单、灵巧的工作平台----PCI GEOMAITCA。该系列产品在每一级深度层次上,尽可能多的满足该层次用户对遥感影像处理、摄影测量、GIS空间分析、专业制图功能的需要,而且使用户可以方便地在同一个应用界面下,完成他们的工作。在这之前,用户需用多个软件来实现,并且需要面对多个软件经销商、多个软件技术支持、多次的培训、对多个软件的维护,以及不得不投入相当大的精力来在多种数据格式间,进行数据转换。产品模块功能介绍 PCI Geomatica FreeView ( PCI地理咨讯通用视窗) FreeView是PCI公司为用户提供的一个免费的影像浏览工具,用户可以从PCI的网址上直接下载。用于浏览、显示各种数据,如矢量、位图、卫星影像(如LANDSAT, SPOT, RADARSAT, ERS-1/2, NOAA A VHRR等)、航片以及与GIS矢量数据叠加显示、进行属性查询等。FreeView 还具有影像增强,任意漫游、缩放、影像灰度值矩阵显示等功能 PCI Geomatica GeoGateway (PCI通用数据转换工具)PCI Geomatica GeoGateway包含PCI Geomatica FreeView的所有功能。 PCI Geomatica Fundamentals (PCI 地理咨讯基础版) PCI Geomatica Fundamentals包含PCI Geomatica GeoGateway的所有功能。主要包括以下部件: Focus 浏览环境 OrthoEngine FLY!(演示模式)软件许可管理器 PCI Geomatica Prime (PCI地理咨讯专业版) PCI Geomatica Prime包含PCI Geomatica Fundamentals(见上一节)的所有功能。此外,增加了PCI Modeler、EASI、FLY!、算法库等模块。 Geomatica Prime 是强大的、低成本解决方案,提供的工具可用于影像几何校正、数据可视化与分析以及专业标准地图生产。 PCI Productivity Tools (PCI地理咨讯生产工具)该软件是PCI公司为了提高PCI软件的生产能力和效率而专门设计的,其主要功能是为用户提供一系列自动或批处理操作的导向功能。该软件是PCI GEOMATICA PRIME或FUNDAMENTALS功能的扩展。主要提供影像自动镶嵌功能及针对ORTHOENGINE 系列产品的航片,光学卫星影像,雷达卫星的自动同名点收集功能。同时提供影像控制点库及库管理功能。 PCI AIRPHOTO MODEL (PCI地理咨讯系统航空正射影像处理器)是一个与PCI Geomatica Fundamentals或Geomatica Prime模块一起使用的功能强大的航空照片正射校正工具。该模块运用了特殊的算法模型将已经扫描的或由数字摄像机得到的照片制作成精确的正射影像图。所生成的图像可以转化为多种文件形式,作为许多GIS/CAD/MAP软件的数据源。同时用户可选择附加的DEM自动提取、3DVIEW 和三维特征提取模块(OrthoEngine Airphoto DEM)来构造自己的数字摄影测量软件包。该软件具有如下功能:项目工程文件建立(含

基于FPGA的高速图像处理系统的设计

基于FPGA的高速图像处理系统的设计 摘要: 在本文中,设计了一个高速图像处理系统,是为了解决这样的问题,如出现在车载计算机图像处理中的低系统集成,低速的处理过程。通过配置Nios II软核CPU和一些基于主要硬件FPGA的图像预处理,处理和显示的功能模块和设计的系统软件,使得该系统实现了图像的采集,记忆和重叠功能。由于采用可编程芯片和并行处理技术,该系统集成度高,好维修,图像处理速度快、实时性强。 关键词:图像处理,FPGA,Nios II CPU。 I.介绍 近年来,车载计算机中存在的主要问题集中在两个方面。首先,在使用低功率损耗的PowerPC CPU的状态下,对于图像的采集和显示,一个集成板是必需的。其次,随着视频图像和红外热像仪的广泛使用,还有电子一体化的发展,应该设计出一个高速的图像处理系统。 为了解决这两个主要的问题,作者设计了一个基于FPGA的高速图像处理系统用来识别重叠的多通道图像信息。功能模块,比如图像采集,处理和显示,都可以在一个单一的FPGA芯片上实现,它减少了外围电路,提高整个系统的性能。因为并行处理技术,处理速度和实时性都大大的提高。

II.图像处理算法分析 A.基于双线性插值的图像放大 基于像素的放大倍率的方法原理简单、快速,但它只是复制原始像素的邻域。随着放大系数增大,图像会出现明显的块锯齿,不能保留原始图像的边缘信息。这个问题是可以通过双线性插值来解决。双线性插值可以消除锯齿,保留原始图像的边缘信息和获得更好的视觉效果。 图1.原始图像(略) 图2.放大图像(略) 图1是原始图像,其中f ij,f i,j+1,f i+1,j,f i+1,j+1是相邻的像素块。图2是在水平方向上放大K倍,在垂直方向放大L倍的图像。f ij,f i,j+1,f i+1,j,f i+1,j+1在放大图像中只改变位置但像素值保持不变。因此,我们可以得到以下方程:

数字图像处理算法汇总

形态学运算:基本思想是具用一定结构形状的结构元素去度量和提取图像中的对应形状以达到对图像分析和识别的目的。 腐蚀运算:将结构元素中心遍历整个图像,当图像完全包含结构元素时的中心点的轨迹即为腐蚀后的图像,图像变细。腐蚀运算可用于滤波,选择适当大小和形状的结构元素,可以滤除掉所有不能完全包含结构元素的噪声点。当然利用腐蚀滤除噪声有一个缺点,即在去除噪声的同时,对图像中前景物体形状也会有影响,但当我们只关心物体的位置或者个数时,则影响不大。 膨胀运算:将结构元素中心遍历整个图像边缘,中心点的轨迹即为腐蚀后的图像,图像整体变粗。通常用于将图像原本断裂开来的同一物体桥接起来,对图像进行二值化之后,很容易是一个连通的物体断裂为两个部分,而这会给后续的图像分析造成干扰,此时就可借助膨胀桥接断裂的缝隙。 开运算:先腐蚀后膨胀,可以使图像的轮廓变得光滑,还能使狭窄的连接断开和消除细毛刺;但与腐蚀运算不同的是,图像大的轮廓并没有发生整体的收缩,物体位置也没有发生任何变化。可以去除比结构元素更小的明亮细节,同时保持所有灰度级和较大亮区特性相对不变,可用于补偿不均匀的背景亮度。与腐蚀运算相比,开运算在过滤噪声的同时,并没有对物体的形状轮廓造成明显的影响,但是如果我们只关心物体的位置或者个数时,物体形状的改变不会给我们带来困扰,此时腐蚀滤波具有处理速度上的优势。 闭运算:先膨胀后腐蚀,可以去除比结构元素更小的暗色细节。开闭运算经常组合起来平滑图像并去除噪声。可使轮廓变的平滑,它通常能弥合狭窄的间断,填补小的孔洞。腐蚀运算刚好和开运算相反,膨胀运算刚好和闭运算相反,开闭运算也是对偶的,然而与腐蚀、膨胀不同的是,对于某图像多次应用开或闭运算的效果相同。 击中击不中运算:先由结构元素腐蚀原图像,再将结构元素取反去腐蚀原图像的取反图,最后将两幅处理后的图像取交。主要用于图像中某些特定形状的精确定位。 顶帽变换:原图像减去开运算以后的图像。当图像的背景颜色不均匀时,使用阈值二值化会造成目标轮廓的边缘缺失,此时可用开运算(结构元素小于目标轮廓)对整个图像背景进行合理估计,再用原图像减去开运算以后的图像就会是整个图像的灰度均匀,二值化后的图像不会有缺失。 Sobel算子: Prewitt算子: LOG算子: Canny算子:力图在抗噪声干扰和精确定位之间尊求折中方案,主要步骤如下所示: 1、用高斯滤波器平滑图像; 2、用一阶偏导的有限差分来计算梯度的幅值和方向; 3、对梯度幅值进行非极大值抑制; 4、用双阈值算法检测和连接边缘。 Hough变换: 边缘检测:

一种红外图像增强算法研究

一种红外图像增强算法研究 针对传统红外图像存在的一些不足,提出一种融合多尺度Retinex和小波变换的红外图像增强算法。该算法综合了小波变换多尺度、多分辨率的优点,以及多尺度Retinex红外增强的特性,利用小波变换对图像信号进行分解,对低频系数进行多尺度Retinex算法处理,而对小波分解的高频细分量进行消除噪声并改善图像细节部分,并同时也改善了性噪比、对比度以及亮度均匀性等性能指标。通过仿真该算法可增强图像细节,优化图像整体视觉效果。 标签:红外图像;图像增强;小波变换;多尺度Retinex法 引言 随着现代科技发展及社会进步,红外成像技术已经被广泛应用于军事用途和民用领域。然而因为红外图像采集器件本身的结构和原理限制,及采集过程中复杂的环境因素影响,目前的红外成像效果无法完全满足人们的需求。所以在技术运用中需要对得到的红外图像进行必要的增强处理,以使之更利于视觉分辨,从而更好地确认目标,便于后续智能化分析与处理。 小波变换是一种多分辨率分析方法,其作为一种数学工具近年来得到广泛应用[1]。由于该方法可以将图像分解成不同分辨率的尺度,它具有代表信号在时域和频域的局部特征的能力,因而通过小波重建可使处理后的图像质量得到有效改善。Retinex理论的增强算法可经过原始图像与高斯函数的卷积获得最优亮度估计,改善图像的亮度均匀性[2]。图像能量信息主要在低频部分,通过Retinex 算法可以很好的完成低频子代图像的动态压缩,改善图像整体效果[3]。 文章对红外图像增强算法进行一些针对性研究,提出了一种红外图像增强算法,该算法融合了多尺度的Retinex和小波变换思想。该算法综合了小波变换多尺度、多分辨率的特点,以及Retinex红外增强的优势,实现红外图像增强,通过仿真实现增强效果较好。 1 小波变换基础理论 小波变换是由傅立叶分析发展而来的新兴学科,又称多分辨分析[2]。该方法应用领域十分广泛,理论意义极其重大,无论对古老的自然科学还是新兴的高新技术应用学科都产生强烈的冲击,是目前国际高度关注的前沿领域。 小波变换由于在实域和频域同时具有良好的局部化性质、多分辨率特性、低墒性、去相关性以及选基灵活的特点[4],使得小波变换方法成为了图像增强领域的研究热点。 二维离散小波变换在分析过程中可以通过一维离散小波变换为基础进行推导,而二维双正交小波变换可以分解为两个一维小波变换,即先进行X方向变

图像处理技术及其应用

图像处理技术及其应用 姓名: (班级:学号:) 【摘要】图像处理技术的研究和应用越来越收到社会发展的影响,并以自身的技术特点反过来影响整个社会技术的进步。本文主要简单概括了数字图像处理技术近期的发展及应用现状,列举了数字图像处理技术的主要优点和制约其发展的因素,同时设想了图像处理技术在未来的应用和发展。 【关键字】图像处理;发展;技术应用 1 引言 计算机图像处理技术是在20世纪80年代后期,随着计算机技术的发展应运而生的一门综合技术。图像处理就是利用计算机、摄像机及其它有关数字技术,对图像施加某种运算和处理,使图像更加清晰,以提取某些特定的信息,从而达到特定目的的技术。随着多媒体技术和网络技术的快速发展,数字图像处理已经广泛应用到了人类社会生活的各个方面,如:遥感,工业检测,医学,气象,通信,侦查,智能机器人等。无论在哪个领域中,人们喜欢采用图像的方式来描述和表达事物的特性与逻辑关系,因此,数字图像处理技术的发展及对其的要求就越来显得重要。 2 图像处理技术发展现况 进入21世纪,随着计算机技术的迅猛发展和相关理论的不断完善,数字图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就。随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展。人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界,这被称为图像理解或计算机视觉。 从图像变换方面来讲,目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用;而图像增强和复原图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等,目前主要在指纹图像增强处理技术,医学影像学方面有显著的成果。这项技术使得各自图像的空间分辨率和对比度有了更大的提高,而最新的医学图像融合则是指对医学影像信息如CT、MRI、SPECT和PET所得的图像,利用计算机技术将它们综合在一起,实现多信息的同步可视化,对多种医学影像起到互补的作用。图像分割图像分割是数字图像处理中的关键技术之一。图像分割是将图像中有意义的特征部分提取出来,这是进一步进行图像识别、分析和理解的基础。虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一。 图像描述图像描述是图像识别和理解的必要前提。作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。对于特殊的纹理图像可采用二维纹理特征描述。随着图像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法;图像分类(识别)图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。近年来新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视。 3 图像处理技术应用现状 图像是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大。 3.1航天和航空技术方面的应用 数字图像处理技术在航天和航空技术方面的应用,许多国家每天派出很多侦察飞

ERDAS IMAGINE遥感图像处理教程.

《ERDAS IMAGINE遥感图像处理教程》根据作者多年遥感应用研究和ERDAS IMAGINE软件应用经验编著而成,系统地介绍了ERDAS IMAGINE 9.3的软件功能及遥感图像处理方法。全书分基础篇和扩展篇两部分,共25章。基础篇涵盖了视窗操作、数据转换、几何校正、图像拼接、图像增强、图像解译、图像分类、子像元分类、矢量功能、雷达图像、虚拟GIS、空间建模、命令工具、批处理工具、图像库管理、专题制图等ERDAS IMAGINE Professional级的所有功能,以及扩展模块Subpixel、Vector、OrthoRadar、VirtualGIS等;扩展篇则主要针对ERDAS IMAGINE 9.3的新增扩展模块进行介绍,包括图像大气校正(ATCOR)、图像自动配准(AutoSync)、高级图像镶嵌(MosaicPro)、数字摄影测量(LPS)、三维立体分析(Stereo Analyst)、自动地形提取(Automatic Terrain Extraction)、面向对象信息提取(Objective)、智能变化检测(DeltaCue)、智能矢量化(Easytrace)、二次开发(EML)等十个扩展模块的功能。 《ERDAS IMAGINE遥感图像处理教程》将遥感图像处理的理论和方法与ERDAS IMAGINE软件功能融为一体,可以作为ERDAS IMAGINE软件用户的使用教程,对其他从事遥感技术应用研究的科技人员和高校师生也有参考价值。 目录 基础篇 第1章概述2 1.1 遥感技术基础2

1.1.1 遥感的基本概念2 1.1.2 遥感的主要特点2 1.1.3 遥感的常用分类3 1.1.4 遥感的物理基础3 1.2 ERDAS IMAGINE软件系统6 1. 2.1 ERDAS IMAGINE概述6 1.2.2 ERDAS IMAGINE安装7 1.3 ERDAS IMAGINE图标面板11 1. 3.1 菜单命令及其功能11 1.3.2 工具图标及其功能14 1.4 ERDAS IMAGINE功能体系14 第2章视窗操作16 2.1 视窗功能概述16 2.1.1 视窗菜单功能17 2.1.2 视窗工具功能17 2.1.3 快捷菜单功能18 2.1.4 常用热键功能18 2.2 文件菜单操作19 2.2.1 图像显示操作20 2.2.2 图形显示操作22 2.3 实用菜单操作23

红外图像中弱小目标检测算法概述

文章编号21005-5 30(Z 005 04-0083-04 红外图像中弱小目标检测算法概述 卓宁1 孙华燕1 张海江Z (1.装备指挥技术学院 北京10141 ; Z. Z 41部队 8分队 辽宁葫芦岛1Z 5001 摘要2在现代战争中 复杂背景下的红外弱目标检测技术是红外制导系统中一个亟待 解决的问题 也是提高武器系统性能的关键O 现基于小目标检测的现状和最新进展 从空间 滤波和时间滤波的角度对现有的小目标检测技术进行了简单的概述 并分析了今后的研究 方向O 关键词2复杂背景;小目标;空间滤波;时间滤波 中图分类号2TP 3 1.4文献标识码2A Algorithm surveys on small target detection in inf rared image ZHUO Nzng 1 SUN Hua -yan 1 ZH NG Haz -jzang Z (1.Institute of eguipment Command and Technology Beijing 10141 China ; Z.PLA Z 41Command and 8Unit ~uludao 1Z 5001 China Abstract 2In the modern War detection of the small target in the condition of complicated background is an urgent problem for infrared control and guide it is also the key of improving Weapon system capability .Part algorithms of infrared small target detection in the Way of spatial filter and time filter are introduced in this paper based on present and recent technology .Finally the direction of the study are analyzed . Key words 2complicated background ;small target ;spatial filter ;time filter 1引言 现代战争中 要求更早地~在更远的距离上发现和捕获敌方的来袭导弹~飞机等目标 以使防御武器有足够的反应时间O 这时目标的图像很小 只有一个或几个像素 缺乏结构信息 此外视场中可能还有云~地物等各种复杂的背景杂波 目标点极易被噪声所淹没O 因此 复杂背景下低信噪比红外弱小目标检测是武器系统中的关键技术之一 是运动目标探测中一个亟待研究与解决的课题O 为了从二维序列图像中检测到低信噪比红外弱小目标 自70年代以来 国内外学者和专家进行了广 泛而深入的研究 提出了许多有实际意义的检测算法O Bauch [1]等人提出 通过采用一组时间上的高阶差分 来抑制背景干扰 并得到目标运动轨迹O 并用动态规则和状态估计技术来增加目标的可检测性O 然而 这种方法在低信噪比的情况下可能呈现较差的性能O 此后 又有人提出了频域中的三维时空匹配滤波技术 并且把其简化为只在空域中进行的二维匹配滤波 其结果在时间序列中进行递推求和O Irani M [Z ]等人用 计算小邻域上灰度的加权平均再用梯度进行归一化 以此作为运动的度量O 还有由Liou S P 和J ian R C 提出的运动目标检测方法是基于时空空间中运动轨迹任一点上切线和法线的正交性 但是为了得到图像 第Z 7卷第4期 Z 005年8月光学仪器O PTICAL I N S T R U M e N T S V ol.Z 7 N o.4 August Z 005 收稿日期2Z 004-11-1 作者简介2卓宁(1 7 - 女 安徽蚌埠人 工程师 硕士生 主要从事图像信号处理方面的研究O

图像处理技术的应用论文

图像处理技术的应用先展示一下自己用Photoshop处理的图片(做的不好望见谅)

摘要:图像处理技术的研究和应用越来越收到社会发展的影响,并以自身的技术特点反过来影响整个社会技术的进步。本文主要简单概括了数字图像处理技术近期的发展及应用现状,列举了数字图像处理技术的主要优点和制约其发展的因素,同时设想了图像处理技术在未来的应用和发展。 关键字:图像处理发展技术应用 1.概述 1.1图像的概念 图像包含了它所表达的物体的描述信息。我们生活在一个信息时代,科学研究和统计表明,人类从外界获得的信息约有百分之七十来自视觉系统,也就是从图像中获得,即我们平常所熟知的照片,绘画,动画。视像等。 1.2图像处理技术 图像处理技术着重强调在图像之间进行的变换,主要目标是要对图像进行各种加工以改善图像的视觉效果并为其后的目标自动识别打基础,或对图像进行压缩编码以减少图像存储所需要的空间或图像传输所需的时间。图像处理是比较低层的操作,它主要在图像像素级上进行处理,处理的数据量非常大。 1.3优点分析 1.再现性好。数字图像处理与模拟图像处理的根本不同在于,它不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化。 2.处理精度高。按目前的技术,几乎可将一幅模拟图像数字化为任意大小的二维数组,这主要取决于图像数字化设备的能力。现代扫描仪可以把每个像素的灰度等级量化为16位甚至更高,这意味着图像的数字化精度可以达到满足任一应用需求。 3.适用面宽。图像可以来自多种信息源,它们可以是可见光图像,也可以是不可见的波谱图像(例如X射线图像、射线图像、超声波图像或红外图像等)。从图像反映的客观实体尺度看,可以小到电子显微镜图像,大到航空照片、遥感图像甚至天文望远镜图像。即只要针对不同的图像信息源,采取相应的图像信息采集措施,图像的数字处理方法适用于任何一种图像。 4.灵活性高。图像处理大体上可分为图像的像质改善、图像分析和图像重建三大部分,每一部分均包含丰富的内容。而数字图像处理不仅能完成线性运算,而且能实现非线性处理,即凡是可以用数学公式或逻辑关系来表达的一切运算均可用数字图像处理实现。 2.应用领域 2.1图像技术应用领域

相关文档
最新文档