一种改进的快速支持向量机分类算法研究

一种改进的快速支持向量机分类算法研究
一种改进的快速支持向量机分类算法研究

数据包的分类

数据包的分类 刘杰 111220065 引言: 传统上,网络路由器通过同样的方式处理到来的数据包来提供最大努力地服务。随着新应用的出现,网络服务供应商希望路由器向不同的应用提供不同的服务质量(QoS)级别。为了满足这些服务质量(QoS)需求,路由器需要实现新的机制,例如许可控制,资源预约,每个数据流的排队,和均衡调度。然而,要实行这些机制的先决条件是路由器要能够对进入的数据流量进行甄别并分类成不同的数据流。我们称这些路由器为流量感知的路由器。一个流量感知的路由器与传统路由器的区别是,它能够持续地跟踪通过的流量并且针对不同的流量应用不同级别的服务。 所有的流量通过不同的规则来加以指定,每一条规则都是由一些通过用特定的值与分组字段进行比较的操作组成。我们称一个规则的集合为分类器。它的形成主要基于一些标准,而这些标准将要用来将不同的数据包分类到一个给定的网络应用。既然一个分类器要定义数据包的属性或者内容,那么数据包分类就是一个识别某个规则或者一个数据包符合或匹配的规则集合的过程。为了详细说明一个具有数据包分类能力的流量感知路由器所提供的各种各样的服务,我们运用了一个在表3.1中展示的示例分类器。假设在图3.1中显示的示例网络中,这个分类器被安装于路由器R中。

在示例分类器中只有四条规则,路由器X提供以下的服务: 数据包过滤:规则R1阻塞所有从外部进入网络A的远程登录连接,其中A可能是一个私有的用于研究的网络。 策略路由:在网络B到D的通过图3.1底部的ATM网络的应用层中,规则R2能够利用实时传输协议(RTP)让路由器传送所有的实时通信量。 流量监管:规则R3限制由C到B的所有传输协议(TCP)的流量速率不超过10Mbps。 有关规则、分类器和包分类的正式描述是在Lakshman 和Stiliadis的工作中给出

(完整版)支持向量机(SVM)原理及应用概述

支持向量机(SVM )原理及应用 一、SVM 的产生与发展 自1995年Vapnik (瓦普尼克)在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。),但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support Vector Machines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。例如,Suykens 提出的最小二乘支持向量机 (Least Square Support Vector Machine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。LIBSVM 是一个通用的SVM 软件包,可以解决分类、回归以及分布估计等问题。 二、支持向量机原理 SVM 方法是20世纪90年代初Vapnik 等人根据统计学习理论提出的一种新的机器学习方法,它以结构风险最小化原则为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机器的实际风险达到最小,保证了通过有限训练样本得到的小误差分类器,对独立测试集的测试误差仍然较小。 支持向量机的基本思想:首先,在线性可分情况下,在原空间寻找两类样本的最优分类超平面。在线性不可分的情况下,加入了松弛变量进行分析,通过使用非线性映射将低维输

平面向量常见题型与解题方法归纳学生版

平面向量常见题型与解题方法归纳 (1) 常见题型分类 题型一:向量的有关概念与运算 例1:已知a是以点A(3,-1)为起点,且与向量b = (-3,4)平行的单位向量,则向量a的终点坐标是. 例2:已知| a |=1,| b |=1,a与b的夹角为60°, x =2a-b,y=3b-a,则x与y的夹角的余弦是多少 题型二:向量共线与垂直条件的考查 r r r r 例1(1),a b r r为非零向量。“a b⊥r r”是“函数()()() f x xa b xb a =+?-

为一次函数”的 A 充分而不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要条件 (2)已知O ,N ,P 在ABC ?所在平面内,且 ,0OA OB OC NA NB NC ==++=,且PA PB PB PC PC PA ?=?=?,则点O ,N ,P 依次是ABC ?的 A.重心 外心 垂心 B.重心 外心 内心 C.外心 重心 垂心 D.外心 重心 内心 例2.已知平面向量a =(3,-1),b =(21, 2 3).(1) 若存在实数k 和t ,便得x =a +(t 2-3)b , y =-k a +t b ,且x ⊥y ,试求函数的关系式k =f(t);(2) 根据(1)的结论,确定k =f(t)的单调区间. 例3: 已知平面向量a ?=(3,-1),b ?=(2 1,23),若存在不为零的实数k 和角α,使向量c ?=a ?+(sin α -3)b ?, d ?=-k a ?+(sin α)b ?,且c ?⊥d ?,试求实数k 的

取值范围. 例4:已知向量)1,2(),2,1(-==b a ,若正数k 和t 使得向量 b t a k y b t a x 1)1(2 +-=++=与垂直,求k 的最小值. 题型三:向量的坐标运算与三角函数的考查 向量与三角函数结合,题目新颖而又精巧,既符合在知识的“交汇处”构题,又加强了对双基的考查. 例7.设函数f (x )=a · b ,其中向量a =(2cos x , 1), b =(cos x ,3sin2x ), x ∈R.(1)若f(x )=1-3且x ∈[-

支持向量机分类器

支持向量机分类器 1 支持向量机的提出与发展 支持向量机( SVM, support vector machine )是数据挖掘中的一项新技术,是借助于最优化方法来解决机器学习问题的新工具,最初由V.Vapnik 等人在1995年首先提出,近几年来在其理论研究和算法实现等方面都取得了很大的进展,开始成为克服“维数灾难”和过学习等困难的强有力的手段,它的理论基础和实现途径的基本框架都已形成。 根据Vapnik & Chervonenkis的统计学习理论 ,如果数据服从某个(固定但未知的)分布,要使机器的实际输出与理想输出之间的偏差尽可能小,则机器应当遵循结构风险最小化 ( SRM,structural risk minimization)原则,而不是经验风险最小化原则,通俗地说就是应当使错误概率的上界最小化。SVM正是这一理论的具体实现。与传统的人工神经网络相比, 它不仅结构简单,而且泛化( generalization)能力明显提高。 2 问题描述 2.1问题引入 假设有分布在Rd空间中的数据,我们希望能够在该空间上找出一个超平面(Hyper-pan),将这一数据分成两类。属于这一类的数据均在超平面的同侧,而属于另一类的数据均在超平面的另一侧。如下图。 比较上图,我们可以发现左图所找出的超平面(虚线),其两平行且与两类数据相切的超平面(实线)之间的距离较近,而右图则具有较大的间隔。而由于我们希望可以找出将两类数据分得较开的超平面,因此右图所找出的是比较好的超平面。 可以将问题简述如下: 设训练的样本输入为xi,i=1,…,l,对应的期望输出为yi∈{+1,-1},其中+1和-1分别代表两类的类别标识,假定分类面方程为ω﹒x+b=0。为使分类面对所有样本正确分类并且具备分类间隔,就要求它满足以下约束条件: 它追求的不仅仅是得到一个能将两类样本分开的分类面,而是要得到一个最优的分类面。 2.2 问题的数学抽象 将上述问题抽象为: 根据给定的训练集

机器学习常见算法分类汇总

机器学习常见算法分类汇总 ?作者:王萌 ?星期三, 六月25, 2014 ?Big Data, 大数据, 应用, 热点, 计算 ?10条评论 机器学习无疑是当前数据分析领域的一个热点内容。很多人在平时的工作中都或多或少会用到机器学习的算法。这里IT经理网为您总结一下常见的机器学习算法,以供您在工作和学习中参考。 机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来给大家介绍,第一个方面是学习的方式,第二个方面是算法的类似性。 学习方式 根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合适的算法来获得最好的结果。 监督式学习:

在监督式学习下,输入数据被称为“训练数据”,每组训练数据有一个明确的标识或结果,如对防垃圾邮件系统中“垃圾邮件”“非垃圾邮件”,对手写数字识别中的“1“,”2“,”3“,”4“等。在建立预测模型的时候,监督式学习建立一个学习过程,将预测结果与“训练数据”的实际结果进行比较,不断的调整预测模型,直到模型的预测结果达到一个预期的准确率。监督式学习的常见应用场景如分类问题和回归问题。常见算法有逻辑回归(Logistic Regression)和反向传递神经网络(Back Propagation Neural Network) 非监督式学习: 在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。常见的应用场景包括关联规则的学习以及聚类等。常见算法包括Apriori算法以及k-Means算法。 半监督式学习:

支持向量机算法

支持向量机算法 [摘要] 本文介绍统计学习理论中最年轻的分支——支持向量机的算法,主要有:以SVM-light为代表的块算法、分解算法和在线训练法,比较了各自的优缺点,并介绍了其它几种算法及多类分类算法。 [关键词] 块算法分解算法在线训练法 Colin Campbell对SVM的训练算法作了一个综述,主要介绍了以SVM为代表的分解算法、Platt的SMO和Kerrthi的近邻算法,但没有详细介绍各算法的特点,并且没有包括算法的最新进展。以下对各种算法的特点进行详细介绍,并介绍几种新的SVM算法,如张学工的CSVM,Scholkopf的v-SVM分类器,J. A. K. Suykens 提出的最小二乘法支持向量机LSSVM,Mint-H suan Yang提出的训练支持向量机的几何方法,SOR以及多类时的SVM算法。 块算法最早是由Boser等人提出来的,它的出发点是:删除矩阵中对应于Lagrange乘数为零的行和列不会对最终结果产生影响。对于给定的训练样本集,如果其中的支持向量是已知的,寻优算法就可以排除非支持向量,只需对支持向量计算权值(即Lagrange乘数)即可。但是,在训练过程结束以前支持向量是未知的,因此,块算法的目标就是通过某种迭代逐步排除非支持向时。具体的做法是,在算法的每一步中块算法解决一个包含下列样本的二次规划子问题:即上一步中剩下的具有非零Lagrange乘数的样本,以及M个不满足Kohn-Tucker条件的最差的样本;如果在某一步中,不满足Kohn-Tucker条件的样本数不足M 个,则这些样本全部加入到新的二次规划问题中。每个二次规划子问题都采用上一个二次规划子问题的结果作为初始值。在最后一步时,所有非零Lagrange乘数都被找到,因此,最后一步解决了初始的大型二次规划问题。块算法将矩阵的规模从训练样本数的平方减少到具有非零Lagrange乘数的样本数的平方,大减少了训练过程对存储的要求,对于一般的问题这种算法可以满足对训练速度的要求。对于训练样本数很大或支持向量数很大的问题,块算法仍然无法将矩阵放入内存中。 Osuna针对SVM训练速度慢及时间空间复杂度大的问题,提出了分解算法,并将之应用于人脸检测中,主要思想是将训练样本分为工作集B的非工作集N,B中的样本数为q个,q远小于总样本个数,每次只针对工作集B中的q个样本训练,而固定N中的训练样本,算法的要点有三:1)应用有约束条件下二次规划极值点存大的最优条件KTT条件,推出本问题的约束条件,这也是终止条件。2)工作集中训练样本的选择算法,应能保证分解算法能快速收敛,且计算费用最少。3)分解算法收敛的理论证明,Osuna等证明了一个定理:如果存在不满足Kohn-Tucker条件的样本,那么在把它加入到上一个子问题的集合中后,重新优化这个子问题,则可行点(Feasible Point)依然满足约束条件,且性能严格地改进。因此,如果每一步至少加入一个不满足Kohn-Tucker条件的样本,一系列铁二次子问题可保证最后单调收敛。Chang,C.-C.证明Osuna的证明不严密,并详尽地分析了分解算法的收敛过程及速度,该算法的关键在于选择一种最优的工

向量与三角形内心、外心、重心、垂心知识的交汇

向量与三角形内心、外心、重心、垂心知识的交汇 一、四心的概念介绍 (1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。 二、四心与向量的结合 (1)?=++0OC OB OA O 是ABC ?的重心. 证法1:设),(),,(),,(),,(332211y x C y x B y x A y x O ? =++0OC OB OA ?? ?=-+-+-=-+-+-0 )()()(0)()()(321321y y y y y y x x x x x x ??? ??? ?++=++=?3 3321321y y y y x x x x ?O 是ABC ?的重心. 证法2:如图 OC OB OA ++ 02=+=OD OA ∴OD AO 2= ∴D O A 、、三点共线,且O 分AD 为2:1 ∴O 是ABC ?的重心 (2)??=?=?OA OC OC OB OB OA O 为A B C ?的垂心. 证明:如图所示O 是三角形ABC 的垂心,BE 垂直AC ,AD 垂直BC , D 、E 是垂足. 0)(=?=-??=?CA OB OC OA OB OC OB OB OA AC OB ⊥? 同理BC OA ⊥,AB OC ⊥ ?O 为A B C ?的垂心 (3)设a ,b ,c 是三角形的三条边长,O 是?ABC 的内心 O OC c OB b OA a ?=++0为A B C ?的内心. 证明:b AC c AB 、 分别为AC AB 、方向上的单位向量, ∴ b AC c AB + 平分BAC ∠, (λ=∴AO b AC c AB +),令c b a b c ++= λ O A B C D E O A B C D E

快速流分类算法研究综述

快速流分类算法研究综述 李振强 (北京邮电大学信息网络中心,北京 100876) 摘要 本文对流分类算法进行了综述,包括流分类的定义,对流分类算法的要求,以及各种流分类算法的分析比较。文章的最后指出了在流分类方面还没有得到很好解决的问题,作为进一步研究的方向。 关键词 流分类;服务质量;IP 背景 当前的IP网络主要以先到先服务的方式提供尽力而为的服务。随着Internet的发展和各种新业务的出现,尽力而为的服务已经不能满足人们对Internet的要求,IP网络必须提供增强的服务,比如:SLA(Service Level Agreement)服务,VPN(Virtual Private Network)服务,各种不同级别的QoS (Quality of Service)服务,分布式防火墙,IP安全网关,流量计费等。所有这些增强服务的提供都依赖于流分类,即根据包头(packet header)中的一个或几个域(field)决定该包隶属的流(flow)。典型的,包头中可以用来分类的域包括:源IP地址(Source IP Address)、目的IP地址(Destination IP Address)、协议类型(Protocol Type)、源端口(Source Port)和目的端口(Destination Port)等。 流分类算法描述 首先定义两个名词:规则(rule)和分类器(classifier)。用来对IP包进行分类的由包头中若干域组成的集合称之为规则,而若干规则的集合就是分类器。构成规则的域(我们称之为组件component)的值可以是某个范围,例如目的端口大于1023。流分类就是要确定和每个包最匹配的规则。表1是由6条规则组成的一个分类器。我们说这是一个5域分类器,因为每条规则由5个组件构成。我们假定分类器中的规则是有优先级的,越靠前的规则优先级越高,即规则1的优先级最高,规则6的最低。

R语言常用包分类

1、聚类 ?常用的包:fpc,cluster,pvclust,mclust ?基于划分的方法: kmeans, pam, pamk, clara ?基于层次的方法: hclust, pvclust, agnes, diana ?基于模型的方法: mclust ?基于密度的方法: dbscan ?基于画图的方法: plotcluster, plot.hclust ?基于验证的方法: cluster.stats 2、分类 ?常用的包: rpart,party,randomForest,rpartOrdinal,tree,marginTree, maptree,survival ?决策树: rpart, ctree ?随机森林: cforest, randomForest ?回归, Logistic回归, Poisson回归: glm, predict, residuals ?生存分析: survfit, survdiff, coxph 3、关联规则与频繁项集 ?常用的包:

arules:支持挖掘频繁项集,最大频繁项集,频繁闭项目集和 关联规则 DRM:回归和分类数据的重复关联模型 ?APRIORI算法,广度RST算法:apriori, drm ?ECLAT算法:采用等价类,RST深度搜索和集合的交集:eclat 4、序列模式 ?常用的包:arulesSequences ?SPADE算法:cSPADE 5、时间序列 ?常用的包:timsac ?时间序列构建函数:ts ?成分分解: decomp, decompose, stl, tsr 6、统计 ?常用的包:Base R, nlme ?方差分析: aov, anova ?密度分析: density ?假设检验: t.test, prop.test, anova, aov ?线性混合模型:lme

向量证明重心(精选多篇)

经典合同 向量证明重心 姓名:XXX 日期:XX年X月X日

向量证明重心 向量证明重心 三角形abc中,重心为o,ad是bc边上的中线,用向量法证明ao=2od (1).ab=12b,ac=12c。ad是中线则ab+ac=2ad即12b+12c=2ad,ad=6b+6c;bd=6c-6b。od=xad=6xb+6xx。(2).e是ac中点。作df//be 则ef=ec/2=ac/4=3c。平行线分线段成比od/ad=ef/af即 (6xb+6xc)/(6b+6c)=3c/9c,x(6b+6c)/(6b+6c)=1/3,3x=1。 (3).od=2b+2c,ao=ad-od=4b+4c=2(2b+2c)=2od。 2 设bc中点为m∵pa+pb+pc=0∴pa+2pm=0∴pa=2mp∴p为三角形abc 的重心。上来步步可逆、∴p是三角形abc重心的充要条件是pa+pb+pc=0 3 如何用向量证明三角形的重心将中线分为2:1 设三角形abc的三条中线分别为ad、be、cf,求证ad、be、cf交于一点o,且ao:od=bo:oe=co:of=2:1 证明:用归一法 不妨设ad与be交于点o,向量ba=a,bc=b,则ca=ba-bc=a-b 因为be是中线,所以be=(a+b)/2,向量bo与向量be共线,故设bo=xbe=(x/2)(a+b) 同理设ao=yad=(y/2)(ab+ac)=y/2(-a+b-a)=-ya+(y/2)b 在三角形abo中,ao=bo-ba 所以-ya+(y/2)b=(x/2)(a+b)-a=(x/2-1)a+(x/2)b 因为向量a和b线性无关,所以 第 2 页共 17 页

三种包分类算法的实现 SX1116090

简单实现包分类算法 概要 包分类是VPNs、下一代路由器、防火墙等设备的关键技术。包分类算法研究具有十分重要的意义,是目前的热点之一。本文介绍了常用的包分类算法,分析了它们的优缺点,并简单实现线性、Hicuts 和Hypercut三种基本算法,对这三种算法进行性能对比。

一、包分类算法背景 路由器的主要功能是将一个网络的IP数据报(包)Packet转发到另一个网络。传统路由器仅根据数据包的目的地址对数据包进行转发,提供未加区分的尽力服务(Best Effort Service),这是一维报文分类的典型形式:对所有的用户报文一视同仁的处理。但是,随着因特网规模的不断扩大和应用技术的进步,越来越多的业务需要对数据包进行快速有效的分类以便区别处理提供不同级别的服务,因此路由器还需要对数据包进行进一步的处理。最常见的是根据安全性需要,对包进行过滤,阻止有安全隐患的数据包通过。因此,研究高速包分类算法具有十分重要的意义。 因特网是由许许多多的主机及连接这些主机的网络组成,主机间通过TCP /IP协议交换数据包。数据包从一个主机穿过网络到达另一个主机,其中就需要路由器提供数据包转发服务。近年来,因特网己经从主要连接教育机构的低速网络迅速成为重要的商业基础设施。现在,因特网正呈现两方面的新变化:一方面,因特网上的用户正在呈现爆炸性增长,Web站点正在迅速增加,需要宽带网络的多媒体应用正在日益普及,因特网的通信量也正在呈现爆炸性增长,因特网正日益变得拥挤:另一方面,因特网上的用户正呈现许多不同的种类,从以浏览和下载资料为主的普通家庭用户到经营电子商务的大型企业等等,这些用户从安全、性能、可靠性方面对因特网的期望是不同的。人们希望路由器能够具有诸如数据包过滤、区分服务、QoS、多播、流量计费等额外功能。所有这些处理都需要路由器按某些规则将数据包进行分类,分类后的数据构成许多“流’’,再对每一个流分别进行处理。对于网络流量的不断增长问题,由于光纤技术和DWDM 技术的发展使得链路的速率不再成为瓶颈,已经满足了大流量传输的需求,这就使得路由器的处理速度成为网络整体速度的一个瓶颈。这主要由于路由器需要对每个输入包执行许多操作,包括十分复杂的分类操作。例如,它们需要对每个输入包执行最长前缀匹配以发现其下一跳地址:需要对每个输入包执行多维包分类以便在执行缓冲器管理、QoS调度、防火墙、网络地址翻译、多播服务、虚拟专用网、速率限制、流量计费等任务时区别对待不同的包。因此,为了满足服务快速性和服务多样性这两方面的需要,就必须研究相应的快速包分类算法应用到实际路由中。

支持向量机算法学习总结

题目:支持向量机的算法学习 姓名: 学号: 专业: 指导教师:、 日期:2012年6月20日

支持向量机的算法学习 1.理论背景 基于数据的机器学习是现代智能技术中的重要方面,研究从观测数据(样本)出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。迄今为止,关于机器学习还没有一种被共同接受的理论框架,关于其实现方法大致可以分为三种: 第一种是经典的(参数)统计估计方法。包括模式识别、神经网络等在内,现有机器学习方法共同的重要理论基础之一是统计学。参数方法正是基于传统统计学的,在这种方法中,参数的相关形式是已知的,训练样本用来估计参数的值。这种方法有很大的局限性,首先,它需要已知样本分布形式,这需要花费很大代价,还有,传统统计学研究的是样本数目趋于无穷大时的渐近理论,现有学习方法也多是基于此假设。但在实际问题中,样本数往往是有限的,因此一些理论上很优秀的学习方法实际中表现却可能不尽人意。 第二种方法是经验非线性方法,如人工神经网络(ANN)。这种方法利用已知样本建立非线性模型,克服了传统参数估计方法的困难。但是,这种方法缺乏一种统一的数学理论。 与传统统计学相比,统计学习理论(Statistical Learning Theory或SLT)是一种专门研究小样本情况下机器学习规律的理论。该理论针对小样本统计问题建立了一套新的理论体系,在这种体系下的统计推理规则不仅考虑了对渐近性能的要求,而且追求在现有有限信息的条件下得到最优结果。V. Vapnik 等人从六、七十年代开始致力于此方面研究[1],到九十年代中期,随着其理论的不断发展和成熟,也由于神经网络等学习方法在理论上缺乏实质性进展,统计学习理论开始受到越来越广泛的重视。 统计学习理论的一个核心概念就是 VC 维(VC Dimension)概念,它是描述函数集或学习机器的复杂性或者说是学习能力(Capacity of the machine)的一个重要指标,在此概念基础上发展出了一系列关于统计学习的一致性(Consistency)、收敛速度、推广性能(GeneralizationPerformance)等的重要结论。 支持向量机方法是建立在统计学习理论的 VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以

三角形重心、外心、垂心、内心的向量表示及其性质55674

向量的重心、垂心、内心、外心、旁心 三角形重心、内心、垂心、外心的概念及简单的三角形形状判断方法。 重心:ABC ?中、每条边上所对应的中线的交点; 垂心:ABC ?中、每条边上所对应的垂线上的交点; 内心:ABC ?中、每个角的角平分线的交点(内切圆的圆心); 外心:ABC ?中、每条边上所对应的中垂线的交点(外接圆的圆心)。 一、重心 1、O 是ABC ?的重心?0=++OC OB OA 若O 是ABC ?的重心,则ABC AOB AOC BOC ?=?=?=?3 1 故=++, )(3 1 PC PB PA PG ++=?G 为ABC ?的重心. 2、 P 是△ABC 所在平面内任一点.G 是△ABC 的重心?)(3 1 ++=. 证明: +=+=+=?)()(3+++++= ∵G 是△ABC 的重心 ∴0=++GC GB GA ?0=++CG BG AG ,即PC PB PA PG ++=3 由此可得)(3 1 ++=.(反之亦然(证略)) 3、已知O 是平面上一定点,A B C ,,是平面上不共线的三个点,动点P 满足 ()OP OA AB AC λ=++,(0)λ∈+∞,,则P 的轨迹一定通过ABC △的重心. 例1 若O 为ABC ?内一点,0OA OB OC ++= ,则O 是ABC ? 的( ) A .内心 B .外心 C .垂心 D .重心

1、O 是ABC ?的垂心??=?=? 若O 是ABC ?(非直角三角形)的垂心,则 故tan tan tan =++C B A 2、H 是面内任一点,?=?=??点H 是△ABC 的垂心. 由AC HB AC HB HA HC HB HC HB HB HA ⊥?=??=-???=?00)(, 同理⊥,⊥.故H 是ABC ?的垂心. (反之亦然(证略)) 3、P 是ABC △所在平面上一点,若PA PC PC PB PB PA ?=?=?,则P 是ABC △的垂心. 由PA PB PB PC ?=?,得()0P B P A P C ?-=,即0P B C A ?=,所以PB CA ⊥.同理可证PC AB ⊥,PA BC ⊥. ∴P 是ABC △的垂心.如图1. 4、已知O 是平面上一定点,A B C ,,是平面上不共线的三个点,动点P 满足 cos cos AB AC OP OA AB B AC C λ?? ?=++ ??? ,(0)λ∈+∞,,则动点P 的轨迹一定通过 ABC △的垂心. 例2 P 是△ABC 所在平面上一点,若?=?=?,则P 是△ABC 的() A .外心 B .内心 C .重心 D .垂心 图1 A

支持向量机数据分类预测

支持向量机数据分类预测 一、题目——意大利葡萄酒种类识别 Wine数据来源为UCI数据库,记录同一区域三种品种葡萄酒的化学成分,数据有178个样本,每个样本含有13个特征分量。50%做为训练集,50%做为测试集。 二、模型建立 模型的建立首先需要从原始数据里把训练集和测试集提取出来,然后进行一定的预处理,必要时进行特征提取,之后用训练集对SVM进行训练,再用得到的模型来预测试集的分类。 三、Matlab实现 3.1 选定训练集和测试集 在178个样本集中,将每个类分成两组,重新组合数据,一部分作为训练集,一部分作为测试集。 % 载入测试数据wine,其中包含的数据为classnumber = 3,wine:178*13的矩阵,wine_labes:178*1的列向量 load chapter12_wine.mat; % 选定训练集和测试集 % 将第一类的1-30,第二类的60-95,第三类的131-153做为训练集 train_wine = [wine(1:30,:);wine(60:95,:);wine(131:153,:)]; % 相应的训练集的标签也要分离出来 train_wine_labels = [wine_labels(1:30);wine_labels(60:95);wine_labels(131:153)]; % 将第一类的31-59,第二类的96-130,第三类的154-178做为测试集 test_wine = [wine(31:59,:);wine(96:130,:);wine(154:178,:)]; % 相应的测试集的标签也要分离出来 test_wine_labels = [wine_labels(31:59);wine_labels(96:130);wine_labels(154:178)]; 3.2数据预处理 对数据进行归一化: %% 数据预处理 % 数据预处理,将训练集和测试集归一化到[0,1]区间 [mtrain,ntrain] = size(train_wine); [mtest,ntest] = size(test_wine); dataset = [train_wine;test_wine]; % mapminmax为MATLAB自带的归一化函数 [dataset_scale,ps] = mapminmax(dataset',0,1); dataset_scale = dataset_scale';

三角形重心外心垂心内心的向量表示及其性质

三角形“四心”向量形式的充要条件应 用 知识点总结 1.0是的重心; 若0是的重心,则故; 为的重心. 2.0是的垂心; 若0是(非直角三角形)的垂心,则 故 3.0是的外心(或) 若0是的外心则 故 4. 0是内心的充要条件是 引进单位向量,使条件变得更简洁。如果记的单位向量为,则刚才0是内心的充要条件可以写成,0是内心的充要条件也可以是。若0是的内心,则故; 是的内心; 向量所在直线过的内心(是的角平分线所在直线);

xx 例 (一)将平面向量与三角形内心结合考查 例1. O是平面上的一定点,A,B,C是平面上不共线的三个点,动点P满足,则P 点的轨迹一定通过的() (A)外心(B)内心(C)重心(D)垂心 解析:因为是向量的单位向量设与方向上的单位向量分别为,又,则原式可化为,由菱形的基本性质知AP平分,那么在xx,AP平分,贝卩知选B. (二)将平面向量与三角形垂心结合考查“垂心定理” 例2. H是厶ABC所在平面内任一点,点H是厶ABC的垂心. 由, 同理,.故H是厶ABC的垂心.(反之亦然(证略)) 例3.(xx)P 是厶ABC所在平面上一点,若,则P是厶ABCF(D ) A.外心 B.内心 C.重心 D.垂心 解析: 由. 即 贝S所以P为的垂心.故选D. (三)将平面向量与三角形重心结合考查“重心定理” 例4. G是厶ABC所在平面内一点,=0点G是厶ABC的重心. 证明作图如右,图中 连结BE和CE贝S CE=GB BE=GCBGCE平行四边形D是BC的中点,AD为BC边 上的中线. 将代入=0,

得=0,故G是厶ABC的重心.(反之亦然(证略)) 例5. P是厶ABC所在平面内任一点.G是厶ABC的重心. 证明 ??*是厶ABC的重心/? =0=0,即 由此可得. (反之亦然(证略)) 例6 若为内一点, ,则是的() A.内心 B.外心 C.垂心 D.重心 解析:由得,如图以OB OC为相邻两边构作平行四边形,贝卩,由平行四边形性质知,,同理可证其它两边上的这个性质,所以是重心,选D。 (四)将平面向量与三角形外心结合考查 例7 若为内一点,,贝是的() A.内心 B.外心 C.垂心 D.重心 解析:由向量模的定义知到的三顶点距离相等。故是的外心 ,选B。 (五)将平面向量与三角形四心结合考查 例8.已知向量,,满足条件++=0, ||=||=||=1 , 求证△ P1P2P3是正三角形.(《数学》第一册(下),复习参考题五B组第6 题) 证明由已知+=-,两边平方得?=,

用于分类的支持向量机

文章编号:100228743(2004)0320075204 用于分类的支持向量机 黄发良,钟 智Ξ (1.广西师范大学计算机系,广西桂林541000;  2.广西师范学院数学与计算机科学系,广西南宁530001) 摘 要:支持向量机是20世纪90年代中期发展起来的机器学习技术,建立在结构风险最小化原理之上的支持向量机以其独有的优点吸引着广大研究者,该文着重于用于分类的支持向量机,对其基本原理与主要的训练算法进行介绍,并对其用途作了一定的探索. 关键词:支持向量机;机器学习;分类 中图分类号:TP181 文献标识码:A 支持向量机S VM (Support Vector Machine )是AT&T Bell 实验室的V.Vapnik 提出的针对分类和回归问题的统计学习理论.由于S VM 方法具有许多引人注目的优点和有前途的实验性能,越来越受重视,该技术已成为机器学习研究领域中的热点,并取得很理想的效果,如人脸识别、手写体数字识别和网页分类等. S VM 的主要思想可以概括为两点:(1)它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能;(2)它基于结构风险最小化理论之上在特征空间中建构最优分割超平面,使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界. 1 基本原理 支持向量机理论最初来源于数据分类问题的处理,S VM 就是要寻找一个满足要求的分割平面,使训练集中的点距离该平面尽可能地远,即寻求一个分割平面使其两侧的margin 尽可能最大. 设输入模式集合{x i }∈R n 由两类点组成,如果x i 属于第1类,则y i =1,如果x i 属于第2类,则y i =-1,那么有训练样本集合{x i ,y i },i =1,2,3,…,n ,支持向量机的目标就是要根据结构风险最小化原理,构造一个目标函数将两类模式尽可能地区分开来,通常分为两类情况来讨论,(1)线性可分,(2)线性不可分. 1.1 线性可分情况 在线性可分的情况下,就会存在一个超平面使得训练样本完全分开,该超平面可描述为: w ?x +b =0(1) 其中,“?”是点积,w 是n 维向量,b 为偏移量. 最优超平面是使得每一类数据与超平面距离最近的向量与超平面之间的距离最大的这样的平面.最优超平面可以通过解下面的二次优化问题来获得: min <(w )= 12‖w ‖2(2) Ξ收稿日期:2004202206作者简介:黄发良(1975-),男,湖南永州人,硕士研究生;研究方向:数据挖掘、web 信息检索. 2004年9月 广西师范学院学报(自然科学版)Sep.2004 第21卷第3期 Journal of G u angxi T eachers Education U niversity(N atural Science Edition) V ol.21N o.3

数据挖掘分类算法的研究与应用

首都师范大学 硕士学位论文 数据挖掘分类算法的研究与应用 姓名:刘振岩 申请学位级别:硕士 专业:计算机应用技术 指导教师:王万森 2003.4.1

首都师范入学硕.卜学位论Z数据挖掘分类算法的研究与应用 摘要 , f随着数据库技术的成熟应用和Internet的迅速发展,人类积累的数据量正在以指数速度增长。科于这些数据,人{}j已经不满足于传统的查询、统计分析手段,而需要发现更深层次的规律,对决策或科研工作提供更有效的决策支持。正是为了满足这种要求,从大量数据中提取出隐藏在其中的有用信息,将机器学习应用于大型数据库的数据挖掘(DataMining)技术得到了长足的发展。 所谓数据挖掘(DataMining,DM),也可以称为数据库中的知识发现(KnowledgeDiscoverDat曲鹅e,KDD),就是从大量的、不完全的、有噪声的、模糊的、随机的数据r},,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。发现了的知识可以被用于信息管理、查询优化、决策支持、过程控制等,还可以用于数据自身的维护。因此,数据挖掘是数据库研究中的一个很有应用价值的新领域,它又是一门广义的交叉学科,融合了数据库、人工智能、机器学习、统计学等多个领域的理论和技术。 分类在数据挖掘中是一项非常重要的任务,目前在商业上应用最多。分类的目的是学会一个分类函数或分类模型,该模型能把数据库中的数据项映射到给定类别中的某一个。{乍多分类的方法已被机器学习、专家系统、统计学和神经生物学方面的研究者提}H。本论文主要侧重数据挖掘中分类算法的研究,并将分类算法划分为急切分类和懒散分类,全部研究内容基本围绕着这种划分方法展开。.1本文的主要研究内容:, l,讨论了数掂挖掘中分类的基本技术,包括数据分类的过程,分类数据所需的数据预处理技术,以及分类方法的比较和评估标准;比较了几种典 型的分类算法,包括决策树、k.最近邻分类、神经网络算法:接着,引 出本文的研究重点,即将分类算法划分为急切分类和懒散分类,并基于 这种划分展歼对数据挖掘分类算法的研究。 2.结合对决簸树方法的研究,重点研究并实现了一个“懒散的基于模型的分类”思想的“懒散的决策树算法”。在决策树方法的研究中,阐述了决 策树的基本概念以及决策树的优缺点,决策树方法的应用状况,分析了 决策树算法的迸一步的研究重点。伪了更好地满足网络环境下的应用需 求,结合传统的决策树方法,基于Ⅶ懒散的基于模型的分类”的思想, 实现了一个网络环境下基于B/S模式的“懒散的决策树算法”。实践表明: 在WEB应fH程序叶i采用此算法取得了很好的效果。、 ≯ 3.选取神经H络分类算法作为急切分类算法的代表进行深入的研究。在神经网络中,重点分析研究了感知器基本模型,包括感知器基本模型的构 造及其学习算法,模型的几何意义及其局限性。并针对该模型只有在线 性可分的情况一F彳‘能用感知器的学习算法进行分类的这一固有局限性, 研究并推广了感知器模型。

支持向量机(SVM)算法推导及其分类的算法实现

支持向量机算法推导及其分类的算法实现 摘要:本文从线性分类问题开始逐步的叙述支持向量机思想的形成,并提供相应的推导过程。简述核函数的概念,以及kernel在SVM算法中的核心地位。介绍松弛变量引入的SVM算法原因,提出软间隔线性分类法。概括SVM分别在一对一和一对多分类问题中应用。基于SVM在一对多问题中的不足,提出SVM 的改进版本DAG SVM。 Abstract:This article begins with a linear classification problem, Gradually discuss formation of SVM, and their derivation. Description the concept of kernel function, and the core position in SVM algorithm. Describes the reasons for the introduction of slack variables, and propose soft-margin linear classification. Summary the application of SVM in one-to-one and one-to-many linear classification. Based on SVM shortage in one-to-many problems, an improved version which called DAG SVM was put forward. 关键字:SVM、线性分类、核函数、松弛变量、DAG SVM 1. SVM的简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力。 对于SVM的基本特点,小样本,并不是样本的绝对数量少,而是与问题的复杂度比起来,SVM算法要求的样本数是相对比较少的。非线性,是指SVM擅长处理样本数据线性不可分的情况,主要通过松弛变量和核函数实现,是SVM 的精髓。高维模式识别是指样本维数很高,通过SVM建立的分类器却很简洁,只包含落在边界上的支持向量。

相关文档
最新文档