电磁兼容测试标准与测试方法

电磁兼容测试标准与测试方法
电磁兼容测试标准与测试方法

2 产品自身所产生的电磁骚扰的测量方法

在GB4343、GB4824、GB9254和GB17743(分别对应于家用电器和电动工具、工科医射频设备、信息技术设备、电气照明设备)等产品族标准中都提到了做电磁骚扰发射的测量。尽管产品相差很远,但试验的项目和试验的方法还是有共通的地方,下面分别介绍之(对于GB13837标准所讲述的声音和广播电视接收设备,以及GB14023标准所讲述的车辆、机动船和由火花点火发动机驱动的装置,由于情况的特殊性,在测试内容和测试方法上较大差异,不予叙述)。

2.1 交流电源线的传导骚扰测量

(测试频率范围0.15至30MHz)

① 试验布置

·试验在屏蔽室内进行。

·接地平板用厚度0.5mm以上、面积为2m×2m以上的金属板。接地平板与大地要电气连接(或用长宽比小于5:1、厚度为0.5mm的薄铜条,通过屏蔽室与大地连接)。

·试品与屏蔽室墙壁至少相距800mm。

·试品与人工电源网络之间的距离为800mm;与测量仪器的距离应不小于800mm。人工电源网络与接地平板在射频范围内应具有良好的连接。

② 干扰测量仪

干扰测量仪是一台测量动态范围大、灵敏度高的专用测量接收机。由于测量的对象是微弱的连续波信号,或者是幅值很强的脉冲信号,因此要求测量接收机本身的噪声极小,灵敏度很高,检波器的动态范围大,前级过载能力强,而且在整个测量频段内的测量精度能满足±2dB的要求。干扰测量仪的输入阻抗为50Ω。

与普通的场强仪不同,场强仪主要用于测量广播、电视的信号场强及工科医射频设备的辐射场强。这些信号都是正弦波的电磁场。

与频谱仪也不同,频谱仪常采用峰值检波,比干扰测量仪有快得多的测量速度。

由于电磁骚扰测量的产品族标准都是从CISPR(国际无线电干扰特别委员会)标准转化过来的。其本意都是为了保护通信和广播的畅通,这一切都与人的主观听觉效果有关,所以平均值检波、峰值检波都不足以说明脉冲性质干扰对听觉造成的效果,而必须用到准峰值检波的概念,后者与干扰对听觉造成的效果相一致。

平均值检波:其最大特点是检波器的充放电时间常数相同,特别适用于连续波的测量。

峰值检波:特点是充电的时间常数很小,即使是很窄的脉冲也能很快地充到稳定的峰值。当中频信号消失后,由于电路的放电时间常数很大,检波的输出电压可在很长一段时间内保持在峰值上。

准峰值检波:它的充放电时间常数介于平均值和峰值

产品认证、电磁兼容测试标准与测试方法(二)

钱振宇

2008.03·

·

检波之间,检波器的输出既与干扰的幅度有关,又与干扰的重复频率有关。其输出与干扰对听觉造成的效果相一致。

干扰测量仪通常都拥有这三种检波功能。 三种检波方式的比较:

③ 人工电源网络

适用于耦合不对称电压的V型人工电源网络(单相)例:

人工电源网络又称电源线阻抗稳定网络(LISN),它能在射频范围内为受试设备端子与参考地之间提供一个稳定的阻抗。与此同时,又将来自电网的无用信号与测量电路隔离开来,仅将受试设备的干扰电压耦合到测量接收机上。上面线路称为50Ω/50μH的人工电源网络,用于0.15~30MHz频率范围的骚扰电压测量。

④ 人工模拟手

人工模拟手在前面的交流电源线传导骚扰的试验布置中没有提到,但是为了模拟测量传导骚扰电压过程中试验者握持试品(特别是像测试手持式电动工具)时的人手的影响,需要用到人工模拟手。

人工模拟手由一个200pF(±20%)的电容与一个500Ω(±10%)的电阻串联组成。RC元件的一端与试品上包裹的金属箔联接,另一端接测量系统的地。人工模拟手的RC元件可以装在人工电源网络的箱子内。

2.2 交流电源线断续骚扰测量

(测试频率范围0.15至30MHz)①试验布置 

试验在屏蔽室内进行。②测量原理简述

断续骚扰测试又称喀呖声骚扰测试,在家用电器的电磁兼容测试中有此要求。断续骚扰是由机械电子开关瞬时

动作而产生的。

与连续骚扰相比,断续骚扰在收音机及电视机的音频与视频输出端子上所引起的干扰在人们主观感觉上是不同的,因为它是以短脉冲形式出现的。基于这一原因,对断续骚扰的限值可适当放宽。放宽的程度与脉冲的幅度、宽度及频度有关。当频度用喀呖声率N表示时(N为一分钟内的喀呖声次数),则喀呖声的限值可在连续骚扰限值上分别增加44dB(N<0.2),或20lg(30/N)dB,或0dB

(N>30)。情况表明,当一分钟内的喀呖声次数大于30次时,喀呖声骚扰的限值将与连续骚扰相同;反之,当喀呖声的次数不大于5次时,其限值可放宽44dB(放宽至100倍以上)。

喀呖声骚扰要在规定频率范围内测试160kHz、500kHz、1.4MHz和30MHz四点,其细节规定不详述,可参阅有关标准。

③ 测试方法A. 示波器观察法

将示波器的Y轴输入端与干扰测量仪的中频输出端用同轴线连接,即可进行断续骚扰测量。但须由人工从示波器屏幕上读出脉冲的幅度、宽度和脉冲的间隔时间(脉冲的频度)。按标准要求,应测试四个规定频点。

示波器法的最大优点是设备简单和价廉。它的缺点是费时、费力,而且测试结果还和人的主观因素有关。

B. 干扰分析仪测量法

用干扰分析仪代替示波器来进行测量。由仪器自动辨别脉冲的幅度、宽度和频度,排除人为因素,使试验结果

比较客观。

国外也有专用的干扰分析仪,此时不须利用干扰测量仪的中频输出,而直接接至人工电源网络的测量端子。这种专用的干扰分析仪可一次测试四个规定频点上的喀呖声情况。

2.3 信号线、控制线、直流电源线传导骚扰测量

(测试频率范围0.15至30MHz)

① 试验布置 

以照明设备的独立式光控装置为例(见GB17743),试验在屏蔽室里进行。

图中试品(调光器)的左侧部分就是已经介绍过的交流电源线传导骚扰测试的配置。试品右侧及下方的连线分别代表试品到负载(灯泡)及调光控制部分的负载线及控制线。

对负载端子和控制线的传导骚扰电压测试,必须使用电压探头。

② 电压探头

电压探头由一个阻值至少为1.5kΩ的电阻和一个在测试频率范围内(0.15~30MHz)容抗值远小于电阻值的电容串联组成。

使用时,电压探头必须事先校准,以便对试验结果进行修正。

2.4 用吸收钳法测量试品本身的辐射

功率(测试频率范围30至300MHz)

此方法目前主要用在家用电器和电动工具的辐射骚扰测试上。其前提是试品外形比较小巧,在这种情况下,标准认为试品对外的辐射骚扰主要是通过电源线来进行的。

① 试验布置

·试验在屏蔽室进行。

·被测导线沿水平方向拉成直线,以便吸收钳能沿导线移动,找出测量频点上的最大指示值(在干扰测量仪的读数指示上)。

·最大测值的位置与被测频率的半波长有关,以30MHz为例,半波长为5m,考虑吸收钳及稳定线路阻抗用滤波装置的长度,该导线至少要7m长。

·随测试频率改变,要不断改变吸收钳的位置,以便始终保持干扰测量仪上的读数为最大。

·试品的辐射功率为

P0(dBpW)=V(dBμV)+α

式中:V为干扰测量仪的读数(电压),dBμV;α为吸收钳的校正系数,dB。

·此法简便易行,对环境要求不高,有较好的重复性和可比性。

② 功率吸收钳

吸收钳由宽带射频电流变换器;宽带射频功率吸收体和试品引线阻抗稳定器;及吸收套筒(铁氧体,吸收同轴电缆表面的射频电流)等三部分组成。吸收钳对试品导线呈现的阻抗为100~200Ω;吸收钳的输出阻抗为50Ω;在测定频率范围上相对输入信号源无明显谐振;对来自电网的干扰提供足够衰减;当试品有电流流过时,吸收钳磁路。

2.5辐射骚扰的场强测量(测试频率范围30至1000MHz)

① 试验布置

试验在开阔场或半电波暗室中进行。场地应平坦,无

架空线,附近无反射物。场地要足够大,以便在规定距离

2008.03·

·

内安放天线和试品,并使天线、试品与反射物之间有足够间隔。

由于地面的反射,故接收天线是处在直射波和反射波构成的复合场中,复合场的大小与辐射功率、测量距离、骚扰源离地面的高度h1、接收天线离地面的高度h2、所测频率的波长、辐射波的极化、骚扰源的辐射方向性有关。为了获得最大的复合场强,必须调节接收天线的高度。当测量距离在等于或小于10m时,天线高度在1~4m间变化;在30m及以下时,天线高度在2~6m间变化。通常不采用小于3m和大于30m的测量距离。另外,骚扰源的最大辐射方向是未知的,在测量中通过旋转试品来获得最大场强。对电磁波传播中的极化现象,测试中通过旋转天线(只取水平及垂直两个极化方向)来获得最大场强。

被测场强(dB)

E=U+F+L

式中:U,测量仪读数,dB; F,天线系数,dB;② 天线

标准规定30~80MHz频段用等于80MHz谐振长度的天线;80~1000MHz频段用等于测量频率的谐振长度的天线。另外,要用适当的变换装置使天线与馈线匹配;用平衡/不平衡变换器实现与干扰测量仪的连接。

如果测量结果与平衡偶极子天线相差在±2dB以内,也可用其它的天线。

③ 转台

试品转台与接地平板处在同一平面,台面为金属平面,且与接地平板有良好的电气连接。当试品为非落地设备时,则要放在离转台高度为0.8m的非金属台子上。

2.6 辐射骚扰的磁场分量的测量

(测试频率范围9kHz至30MHz)

辐射骚扰的磁场分量测量目前只见于照明设备的电磁兼容测试中(GB17743)。

① 试验布置

试验在屏蔽室内进行。

辐射骚扰的磁场分量是通过磁场感应电流来测量的。大环天线提供了一个电流探头。电流探头、同轴开关和干扰测量仪之间用同轴电缆连接。同轴电缆上套铁氧体磁环,吸收同轴电缆表面的射频电流。大环天线的外径与邻近物体(如地板和墙壁等)间的距离至少为0.5m。测量的重复性应当在±2dB以内。

② 大环天线

用大环天线通过测量磁场感应电流的方法来测量试品所产生的辐射骚扰的磁场分量,是CISPR标准中较新的一种试验方法,有灵敏度较高,周围干扰对测试结果影响较小,测试结果的重复性和可比性都比较好的特点。

3 产品工作时在电网中产生的谐波电流的测量

3.1 谐波电流的产生

所有非线性负载都能产生谐波电流,尤其是开关电源、电子镇流器、调速装置、不间断电源和铁磁性设备

等。下图是开关电源例。

3.2 谐波电流的危害

谐波电流在低压电网上可能引发的常见问题有:

① 电压畸变

谐波电流在供电线路的阻抗上产生的压降将引起线路端子电压的畸变,特别是当线路阻抗含有电抗成分时,电压畸变将加剧。

畸变了的供电电压将可能使对谐波敏感的设备产生误动作;谐波电压将直接影响电视的图像质量。

解决的办法是敏感设备不能与产生谐波电流的设备共处在一条供电线路中,尤其不能处在谐波电流发生设备的后面,而应当在电源入口处并联供电。

② 过零噪声

有不少设备要求在电源电压过零时接通设备,以便不产生瞬变过电压,从而减少电磁干扰和对半导体器件的冲击。

当线路上含有高次谐波或瞬变过电压时,使电压过零处的变化率很高,甚至在半个周波里出现多个过零点,从而导致过零设备的误动作。

③ 中线过热

在三相星形接法的电路中,每相间的相位差为120°,当三相平衡时,中线的合成电流为零,即中线无电流通过。即使三相不平衡时,也只有不平衡电流进入中线。因此,中线的安装截面常比相线减少一半。

但当线路中含有谐波电流时,特别是三次谐波的奇数倍,它们在中线上却是相加的。英国有则报导,相电流为100安培时,中线电流竟达到150安培,亦即中线的电流密度是相线的3倍。因此有人建议中线的截面应当加粗到相线的1倍。

中线的过电流会造成中线过热和中线压降的增加。

④ 对变压器和感应电动机的影响

谐波电流要在变压器的绕组和铁芯上产生损耗。

对感应电动机来说,除了增大电动机的损耗外,谐波还会使感应电动机的转矩发生变化: 谐波次数/相序:

1/+;2/-;3/0;4/+;5/-;6/0;7/+;8/-;

9/0;10/+;11/-;12/0;……

0序不产生附加转矩;+序产生正向旋转磁场,使转矩加大;-序产生负向旋转磁场,使转矩减小。

+序和-序分量的共同作用可使电动机产生振动而降低电动机的使用寿命。为此,必要时应降低电动机的额定功率来保证电动机的使用寿命。

⑤ 断路器的误动作

剩余电流断路器(俗称漏电断路器)是根据测量相线和中线的电流之和来动作的,如果电流之和大于额定限值,断路器就将切断电源。当有谐波出现时,漏电断路器就不能准确检测到高频分量之和,从而造成误动作(通常是实际值比测量值来得大,结果是断路器该动作时不动作)。

⑥ 使校正功率因数的电容器过载

校正功率因数的电容器是用产生相位超前的电流来抵消感应电动机等感性负载所产生的相位滞后的电流。由于电容器对谐波电流呈现比较低的阻抗,使谐波电流有增加趋势,导致电容器过载。

⑦ 集肤效应

2008.03·

·

集肤效应在电网频率下的影响很小而被忽略,但在7次以上谐波时将使集肤效应趋于显著,产生附加损耗而过热。必要时应采用多芯电缆来克服这个问题。

3.3 GB17625.1标准简介

电气和电子产品在用电过程中对电网造成的污染问题在中国的强制性产品认证中受到了重视,在包括照明电器、电动工具、家用和类似用途设备、音视频设备、音视频设备—卫星电视广播接收机和信息技术设备的几大类有电磁兼容测试要求的产品中都有谐波电流限制的项目。

有关谐波电流限值和测量的国家标准见GB17625.1《低压电气与电子设备发出的谐波电流限值(设备每相输入电流≤16A)》(该标准等同于国际标准IEC61000-3-2)。

① 谐波电流的测量基础

谐波电流的测量基础是:任何周期性的非正弦波形都可以用富里叶级数表示。亦即,对任何周期性的非正弦波形的测量都可以用各次谐波的幅值和它们的相角测量来代替。

② 标准要点简述

根据用电设备的不同,GB17625.1标准把它们分成四个类型:

A类是三相平衡设备;家用电器(不包括列入D类的设备);电动工具(不包括便携式工具);白炽灯调光器;以及音频设备。

B类是便携式工具;以及非专用的电弧焊接设备。C类是照明设备(包括灯和灯具;主要功能是照明的多功能设备中的照明部分;放电灯的独立式镇流器和白炽灯的独立式变压器;紫外线或红外线的辐射装置;广告标识的照明;以及除白炽灯外的灯光调节器)。

D类是功率小于600W的个人计算机;计算机显示器;以及电视接收机。

标准对归在不同类别中的设备提出了不同的谐波电流限值,这里不一一列出,可参见标准所述。但限值中对C类设备的要求最严,这与灯具设备使用的普遍性不无关系。

③ 测量线路

测量设备可采用频域谐波分析仪,也可采用时域谐波分析仪,但从世界范围说,目前采用离散富里叶变唤的时域分析仪器已成为基准的测量设备。

单相设备的谐波电流测量线路见下图。

其中试验电源的试验电压为试品的额定电压。试验电压的变化范围应保持在额定电压的±2%以内;频率变化要保持在额定频率的±0.5%以内。对三相试验电源,还有一个相位精度问题,要求相间的相位精度在120°±1.5°以内。

试验电源的电压谐波含量不应超过以下各值:3次谐波为0.9%;5次谐波为0.4%;7次谐波为0.3%;9次谐波为0.2%;2~10次中的偶次谐波为0.2%;11~40次谐波为0.1%。

试验电源在过零后的87°至93°内达到峰值,峰值电压应为有效值的1.4~1.42倍。

应避免试验电源内的电感与受试设备中的电容间发生谐振。

此外,还要注意试验电源的内阻抗和测量设备的输入阻抗要足够小,不能由于它们的存在而明显影响试品的谐波电流。

总之,对整个试验线路来说,要求试验电源的输出电压要稳;输出电压的波形要纯;要有稳频功能;还要有足够的峰值电流输出能力。以及整个试验线路的内阻要小。

试验中,谐波电流的限值数据适用于对线电流的测量。但对单相试品,也允许用对中线电流的测试来代替线电流的测试。

④ 对标准的评述

·标准之所以要求用高品质的试验电源来代替市电电源,是为了排除市电电源本身可能存在的谐波电压和电流的影响。

·标准之所以选择谐波电流,而不是选择人们相对熟悉的电源端子的谐波电压测试,是考虑了各地各处的电网阻抗都不相同,即使是同样的谐波电流,在不同阻抗上产生的电压降也各不相同,很难用它来评价电气设备对电网供电质量的影响。反之,设备的阻抗通常都比电网阻抗大得多,因此在不同的电网中由设备引起的基波电流和谐波电流却差不多。这就是说用谐波电流比用电源端子上的谐波电压更能客

观和准确地评价设备对电网供电质量的影响。

表面残余应力测试方法

表面残余应力测试方法 由于X射线的穿透深度极浅,对于钛合金仅为5μm,所以X射线法是一种二维平面残余应力测试方法。现在暂定选择钛靶,它与钛合金的晶面匹配较好。(110)晶面 一、试样的表面处理 X射线法测定的是试件的表面应力,所以试件的表面状况对测量结果也有很大的影响。试件表面不应有油污、氧化皮或锈蚀等;测试点附近不应被碰、擦、刮伤等。 (1)一般可以使用有机溶剂(汽油)洗去表面的油泥和脏污。 (2)去除氧化皮可以使用稀盐酸等化学试剂(根据试样选择合适浓度,如Q235钢用10%的硝酸酒精溶液浸蚀5min)。 (3)然后依据测试目的和测试点表面实际情况,正确进行下一步的表面处理。如果测量的是切削、磨削、喷丸、光整、化铣、激光冲击等工艺之后的表面应力,以及其它表面处理后引起的表面残余应力,则绝不应破坏原有表面不能进行任何处理,因上述处理会引起应力分布的变化,达不到测量的目的。必须小心保护待测试样的原始表面,也不能进行任何磕碰、加工、电化学或化学腐蚀等影响表面应力的操作。对于粗糙的表面层,因凸出部分释放应力,影响应力的准确测量,故对表面粗糙的试样,应用砂纸磨平,再用电解抛光去除加工层,然后才能测定。 (5)若被测件的表面过于粗糙,将使测得的应力值偏低。为了提高试件的表面光洁度,又不产生附加产力,比较好的办法是电解抛光法。该法还可用于去除表面加工层或进行试件表层剥除。 (6)若单纯为了进行表层剥除,亦可以用更为简单的化学腐蚀法,较好的腐蚀剂是浓度为40%的(90%H202+10%HF)的水溶液。但化学腐蚀后的表面光洁度不如电解抛光。为此可在每次腐蚀前用金相砂纸打磨试件表面,但必须注意打磨的影响层在以后的腐蚀过程中应全部除去。 二、确定测量材料的物相,选定衍射晶面。 被测量的衍射线的选择从所研究的材料的衍射线谱中选择哪一条(hkl)面干涉线以及相应地使用什么波长的X射线是应力测定时首先要决定的。当然事先要知道现有仪器提供的前提条件:一是仪器配置了哪几种靶材的x射线管,它决定了有哪几个波长的辐射可以选用;二是测角仪的2θ范围。一般选用尽可能高的衍射角,使得⊿θ的增大可以准确测得。 在一定的应力状态下具有一定数值的晶格应变εφ,ψ对布拉格角θ0值越大的线条造成的衍射线角位移d(2θ)φ.ψ必也越大,因此测量的准确度越高。同时,在调整衍射仪时不可避免的机械调节误差对高角线条的角位置2θ的影响相对地也比较小。正因为如此X射线应力测定通常在2θ>90°的背反射区进行,并尽量选择多重性因子较高的衔射线。举例来说,对铁基材料常选用Cr靶的Ka线,α—Fe的(211)晶面的衍射线。 若已知X射线管阳极材料和Ka线波长,利用布拉格方程可计算出各条衍射线的2θ值,从中选择出高角线条。可以从《材料中残余应力的X射线衍射分析和作用》的附录中查得常用重要的金属材料和部分陶瓷材料在Cu,Co,Fe,Cr四种Kal线照射下的高角度衍射线。由于非立方晶系材料受波长较短的X射线照射时出现较多的衍射线,因此最好选择那些弧立的、不与其它线条有叠合的高角衍射线作为测量对象。

常见电磁兼容和电性能检测检测项目

常见电磁兼容和电性能检测检测项目 广电计量杜亚俊 电磁兼容和电性能检测综述 (1) 汽车整车及零部件 (1) 汽车整车 (2) 汽车电子部件 (2) 航空机载 (3) 轨道交通 (4) 国防军工 (5) 电磁 (7) 无线通信与通信基站干扰排查 (8) 无线通信产品 (9) 其他电子设备 (12) 多国认证 (14) 产品电磁兼容设计整改服务 (16) 研发设计服务 (16) 失效分析与整改调试服务 (16) 技术培训服务 (17)

电磁兼容和电性能检测综述 广电计量在广州、武汉、北京、无锡检测基地建有电磁兼容实验室,并与各 地电磁兼容检测机构和实验室达成战略合作,为各大企业解决电磁兼容与电 磁辐射影响的各类安全问题。下设技术研究院所属的电磁兼容研究所为客户 提供电磁兼容设计、标准建立以及科研项目验收等服务。 服务类型: ●汽车整车及零部件 ●航空机载 ●轨道交通 ●电力设备 ●医疗用电子设备 ●国防军工 ●电磁 ●无线通信及其他电子设备 ●船载电子设备 汽车整车及零部件 广电计量汽车电磁兼容检测能力获日产、神龙、江淮、吉利、宇通等整车厂认可,完全满足民品汽车整车及零部件电磁兼容检测领域有关国际、国家和行业标准,以及各车厂标准,汽车电子电磁兼容检测技术能力处于行业领先水平。 审核认可: 日产认可实验室 神龙认可实验室 江铃认可实验室 广汽认可实验室 一汽轿车认可实验室

E8/E9/E11认可实验室 北汽认可实验室 众泰认可实验室 …… 汽车整车 所有乘用车、商用车、货车及挂车 ■检测项目■检测标准 整车对外电磁辐射GB14023/CISPR 12 整车对内辐射GB18655/CISPR 25 整车辐射抗干扰ISO 11451-2 整车大电流(BCI)ISO 11451-4 整车静电放电(ESD)GB/T 19951/ISO 10605 汽车电子部件 汽车电子控制装置:包括动力总成控制、底盘和车身电子控制、舒适和防盗系统等。 车载汽车电子装置:包括汽车信息系统(车载电脑)、车灯、汽车胎压监测系统、导航系统、汽车视听娱乐系统、车载通信系统、车载网络、倒车影像后视系统、车载领航员后视摄像头等。 新能源高压部件:包括高压电池包、DC/DC转换器、充电机、高压空调等。 ■检测项目■检测标准 CE传导骚扰中国标准GB系列、QC/T系列 RE辐射骚扰国际标准ISO系列 低频磁场骚扰测试欧盟标准ECER10 BCI 大电流注入美国SAE J系列 RI电波暗室法辐射抗扰度NISSAN尼桑28401NDS02 瞬态抗扰度低频磁场抗扰度BMW宝马Gs95002

残余应力检测方法概述

第1 页 共 2页 残余应力检测方法概述 目前国际上普遍使用的残余应力检测方法种类十分繁多,为便于分类,人们往往根据测试过程中被测样品的破坏与否将测试方法分为:应力松弛法(样品将被破坏)和无损检测法(样品不被破坏)两类。以下我们简单归纳了现阶段较为常用的一些残余应力检测方法。 一、常见的残余应力检测方法: 1. 应力松弛法 (1) 盲孔法 该方法最早由Mather 于1934年提出,其基本原理就是通过孔附近的应变变化,用弹性力学来分析小孔位置的应力,孔的位置和尺寸会影响最终的应力数值。由于这类设备操作起来非常简单,近年来被广泛使用。 (2) 切条法 Ralakoutsky 在1888年提出了采用该方法测量材料的残余应力。在使用这种方法时需要沿特定方向将试件切出一条,然后通过测量试件切割位置的应变来计算残余应力。 (3) 剥层法 该方法是通过物理或化学的方法去除试件的 一层并测量其去除后的曲率,根据测定的试件表面曲率变化就能计算出残余应力。该方法常用于形状简单的试件,且测试过程快捷。 2. 无损检测方法 (1) X 射线衍射法 X 射线方法是根据测量试件的晶体面间距变化来确定试件的应变,进而通过弹性力学方程推导计算得到残余应力,目前最被广泛使用的是Machearauch 于1961提出的sin2ψ方法。日本最早研制成功了基于该方法的X 射线残余应力分析仪,为该方法的推广做出了巨大的贡献。 (2) 中子衍射法。 中子衍射方法的原理和X 射线方法本质上是一样的,都是根据材料的晶体面间距变化来求得应变,并根据弹性力学方程计算残余应力。但中子散射能量更高,可以穿透的深度更大,当然中子衍射的成本也是最昂贵的。 (3) 超声波法。 该方法的物理和实验依据是S.Oka 于1940年发现的声双折射现象,通过测定声折射所导致的声速和频谱变化反推出作用在试件上的应力。试件的晶体颗粒及取向会影响数据的准确度,尽管超声波方法也属无损检测方法,但其仍需进一步完善。 二、最新的残余应力检测方法 cos α方法早在1978年就由S.Taira 等人提出, 但真正应用于残余应力测试设备中还是近几年的事情。日本Pulstec 公司于2012年研制出了世界上首款基于cos α方法的X 射线残余应力分析仪,图1是设备图片(型号:μ-x360n )。

残余应力及如何测量

为什么会有残余应力 金属材料在产生应力的条件消失后,为什么有部分的应力会残留在物体内?为什么这些应力不会随外作用力一起消失? 金属材料在外力作用下发生塑性变形后会有残余应力出现!而只发生弹性变形时却不会产生残余应力. 原因:金属在外力作用下的变形是不均匀的,有的部位变形量大,而有的部位小,它们相互之间又是互相牵连在一起的整体,这样在变形量不同的各部位之间就出现了一定的弹性应力-----当外力去除后这部分力仍然存在,就是所谓的残余应力.根据它们存在的范围可分为:宏观应力\微观应力和晶格畸变应力.注意它们是在一定范围存在的弹性应力. 残余应力不只是金属有,非金属也存在,比如混凝土构件。残余应力的根源在于卸载后受力物体变形的不完全可逆性。 金属残留在物体内的应力是由分子间力的取向不同导致的。外力撤销后,外力所造成的残余变形导致了残余应力。通常用热处理、时效处理来消除残余应力。因为材料受外力作用后,金属的组织产生晶格变形,并不会随外力消失而恢复。所以会产生残余应力。组织产生晶格变形了,自身储存了一些能量但级别又克服不了别的晶格的能量。所以就回有残余应力。 我们真正关心的是零件加工后的质量。由于毛坯制造过程中会造成较大的残余应力,而这些零件毛坯中处于“平衡”状态的残余应力在加工之前不引起毛坯明显变形。当零件加工之后,原来毛坯中残余应力的“平衡状态”被打破,应力释放出来,会造成零件很快变形而失去应有的加工精度。减小毛坯中因制造而残留在毛坯内部残余应力对零件加工质量的影响,通常要进行消除应力的热处理,对要求精度高的零件要在粗加工后进行人工时效处理,加快残余应力的重新分布面引起的变形过程,然后再精加工。不仅对细长轴,而且包括所有要经过冷校直的零件(如型钢、导轨),应当注意残余应力对零件加工精度的影响。影响高精度零件质量的残余应力主要是在加工过程中产生的。在切削过程中的残余应力由机械应力和热应力两种外因引起。机械应力塑性变形是切削力使零件表层金属产生塑性变形,切削完成后又受到里层未变形金属牵制而残留拉应力(里层金属产生残余压应力)。第三变形区内后刀面与已加工表面的挤压与摩擦又使表面金属产生残余压应力(里层金属产生残余拉应力)。如果第一变形区内应力造成的残余应

电磁兼容标准与测试

电磁兼容作业 电磁兼容标准与测试 班级:电气工程及其自动化0703班 姓名:贾震 学号:070301091

电磁兼容标准及测试 一.概述 随着科学技术的发展,特别是微电子、信息、通讯等高科技的迅速进步与发展,对电磁骚扰的控制与防护提出了繁多而又复杂的问题。在世界各国,特别是欧洲的一些先进国家,经过几十年对电磁干扰和抗干扰等问题的研究和控制,已将这些技术研究形成了一门新兴的学科——电磁兼容(Electromagnetic Compatibility)。 电磁兼容就是研究在有限的空间、有限的时间、有限的频谱资源条件下,各种用电设备(分系统,系统、广义的还包括生物体),可以共存并不致引起降级的一门科学,国家标准GB/T 4365-1995《电磁兼容术语》对电磁兼容所下的定义为:“设备或系统在其电磁环境中能正常工作,且不对该环境中任何事物构成不能承受的电磁骚扰的能力”。就是说在规定的电磁环境中,任何设备、系统都不因受电磁干扰而降低工作性能,并且其本身所发射的电磁能量也不大于规定的极限值,以免影响其它设备或系统的正常工作,从而达到互不干扰而共存的目地。 国际无线电干扰特别委员会(法文缩写是CISPR)是国际电工委员会(IEC)的一个特别委员会,它成立于1934年,是最早开始系统地对电磁兼容进行研究的国际性的标准化组织。该委员会成立的初衷主要是保护广播、通讯不受电磁干扰的影响。围绕这方面的问题,对车辆、

家电、电动工具、工科医射频设备、高压架空线路等提出了一系列骚扰限值(包括射频辐射和传导两方面,工作频率多在9kHz~18GHz)和测试方法的标准。近几年来随着它的业务范围不断扩大,也开展了一些抗扰度标准的研究。它更主要的重点还是研究电磁骚扰限值及其测量方法。 二、电磁兼容标准 早在一九三四年国际电工委员会就成立了无线电干扰特别委员会简称CISPR,专门研究无线电干扰问题,制定有关标准,旨在保护广播接收效果。当初只有少数国家参加该委员会,如比利时、法国、荷兰和英国等。经过多年的发展人们对电磁兼容的认识发生了深刻的变化,1989年欧洲共同体委员会颁发了89/336/EEC指令,明确规定,自1996年1月1日起,所有电子、电器产品须经过EMC性能的认证,否则将禁止其在欧共体市场销售。此举在世界范围内引起较大反响,EMC已成影响国际贸易的一项重要指标。随着技术的发展CISPR工作范围也由当初保护广播接收业务扩展到涉及保护无线电接收的所有业务。国际电工委员会IEC有两个专们从事电磁兼容标准化工作的技术委员会:一个就是CISPR成立于1934年;另一个是电磁兼容委员会TC77,成立于1981年。CISPR最初关心的主要是广播接收频段的无线电骚扰问题,之后在EMC标准化工作方面进行了不懈的努力。 CISPR已基本上将工业和民用产品的EMC考虑在其标准中。CISPR 还起草了通用射频骚扰限额值国际标准草案,这样,对那些新开发的以及暂时还不能与现有CISPR产品标准相对应的产品,可以用射频骚扰

电磁兼容性测试报告

泉海科技电磁兼容性(EMC)测试报告(电源电压:24V)机 型QH7101H2图 号 DZ93189781020状 态正常生产 失效模式等级的定义(依据ISO 7637-3附页A): A等级:在干扰照射期间和照射后,器件或系统所有功能符合设计要求。 B等级:在干扰照射期间,器件或系统所有功能符合设计要求,但部分指标超差,在照射移开后,超差的指标能自动恢复正常,记忆功能应保持A级。 C等级:在照射期间,器件或系统有一个功能不符合设计要求,但在照射移开后,能自动恢复正常操作。 D等级:在照射期间,器件或系统有一个功能不符合设计要求,在照射移开后,不能自动恢复正常操作,需通过简单的操作,器件或系统才能复位。 E等级:在照射期间和照射后,器件或系统有多个功能不能符合设计要求,需要修理或替换器件或系统才能恢复正常。 测试项目测试条件等级要求 测试结果备注 脉冲1Ua: 27 V Us: -600 V t1: 5 s t2: 200 ms t3: ≤100 μs td: 2ms tr: ≤(3+0/1.5)μs Ri: 50 Ω 脉冲数量: 5000 。 B级 符合要求B级 本报告由泉海公司实验室提供 脉冲2a Ua:27 V Us: +50 V t1: 5 s t2: 200 ms td: 0.05ms tr: ≤(3+0/1.5)μs Ri: 2 Ω 脉冲数量:5000个 B级 符合要求B级 脉冲2b Ua:27 V Us: +20 V td:0.2~2s tr: 1ms ±0.5ms Ri: 0.05Ω t12: 1ms ±0.5ms t6: 1ms ±0.5ms 脉冲数量:10个 B级符合要求B级 脉冲3a Ua:27 V Us: -200 V t1: 100 μs t4: 10 ms t5: 100 ms td: 0.1μs tr:≤5 ns±1.5ns Ri: 50 Ω 测试时间:1h。 A级 符合要求A级 脉冲3b Ua: 27 V Us:+200 V t1: 100 μs t4: 10 ms t5: 100 ms td: 0.1μs tr:≤5 ns±1.5ns Ri: 50 Ω 测试时间:1h A级 符合要求A级 脉冲4Ub: 27 V Us: -16V Ua: -5~12V V t7: 100 ms t8: ≤50 ms t9: 20s t10:10ms t11: 100 ms Ri: 0.02 Ω 脉冲数量:9000个(其中t8=100ms, 3000个t8=1s,3000个,t8=5s,3000个) B级符合要求B级 脉冲5a Ua: 27 V Us: +174 V td: 350 ms tr: 10 ms Ri: 2 Ω 周期:1min 脉冲数量:10个B级符合要求B级 测试员:何秀英 测试日期:2013.1.12 报告编号:qh-js-1201003

电磁兼容性分析

电磁兼容性(EMC,即Electromagnetic Compatibility)是指设备或系统在其电磁环境中符 合要求运行并不对其环境中的任何设备产生无法忍受的电磁骚扰的能力。因此,EMC包括两个方面的要求:一方面是指设备在正常运行过程中对所在环境产生的电磁骚扰(Electromagnetic Disturbance)不能超过一定的限值;另一方面是指设备对所在环境中存在的电磁骚扰具有一定程度的抗扰度,即电磁敏感性(Electromagnetic Susceptibility,即EMS)。 自从电子系统降噪技术在70年代中期出现以来,主要由于美国联邦通讯委员会在1990年和欧盟在1992提出了对商业数码产品的有关规章,这些规章要求各个公司确保它们的产品符合严格的磁化系数和发射准则。符合这些规章的产品称为具有电磁兼容性EMC(Electromagnetic Compatibility)。 电磁兼容性electromagnetic compatibility(EMC) 设备或系统在其电磁环境中能正常工作且不对该环境中的任何事物构成不能承受的电磁骚扰的能力。(GB/T 4365-1995中1.7节) 干扰的形成 1、折叠干扰源与受干扰源 无论何种情况下电磁相容的问题出现总是存在两个互补的方面: 一个是干扰发射源和一个为此干扰敏感的受干扰设备。 如果一个干扰源与受干扰设备都处在同一设备中称为系统内部的EMC 情况。 不同设备间所产生的干扰状况称为系统间的EMC 情况。 大多数的设备中都有类似天线的特性的零件如电缆线、PCB 布线、内部配线、机械结构等这些零件透过电路相耦合的电场、磁场或电磁场而将能量转移。 实际情况下设备间和设备内部的耦合受到了屏蔽与绝缘材料的限制而绝缘材料的吸收与导体相比的影响是微不足道的。 电缆线对电缆线的耦合既可以是电容性也可以是电感性并且取决于方位、长度及接近程度的影响。 2、折叠公共阻抗的耦合 公共阻抗耦合线路是干扰源与受干扰设备共用电路阻抗所引起的。 公共导线也因两个电流环之间的互感而引起或因两个电压节点之间的互容耦合而引起。 对于传导性的公共阻抗耦合的解决是将连接线分离使系统各自独立避免形成公共阻抗。 折叠发射 来自PCB 的发射:在大多数设备中主要的电流源是流入PCB 板上的电路中这些能量借由PCB 板所模拟成的天线而将干扰辐射出去。 来自电缆线的辐射:干扰电流以共模形式产生于在PCB 和设备内部其他位置形成的对地噪声并沿着导体或者屏蔽电缆的屏蔽层流动。 传导发射:干扰也可能从其他电缆以感性或容性方式偶合到电缆线上。 产生的干扰可能以差模(在火线与中线或在信号线之间)或共模(在火线/中线/信号线与接地

残余应力测试

2.测试方法 目前常用的残余应力测试方法主要有三种:一是盲孔法,二是X射线衍射法,三是磁弹性法。 盲孔法需在工件表面测量部位钻φ1.5~2mm深2mm的小孔(粘贴专用应变花),通过测读释放应变确定残余应力的大小,所测应力为孔深范围内的平均应力,同一测点无法重复测量比较; X射线衍射法可以做到无损测试,但由于X射线穿透力有限,一般只能测出几个微米范围内平均应力; 磁弹性法是近几年发展较快应用比较成熟的一种残余应力测试方法,具有方便、无损、快速、准确的特点。 对采用盲孔法和X射线衍射法检测残余应力,施工强度大,测量精度难以保证。尤其盲孔法不能对同一位置进行重复性测量,测量数据的符合性差。因此,三峡发电机组转子圆盘支架焊缝残余应力的测试采用了磁弹法技术。 残余应力的测量方法 残余应力的测量方法可以分为有损和无损两大类。 有损测试方法就是应力释放法,也可以称为机械的方法;无损方法就是物理的方法。 机械方法目前用得最多的是钻孔法(盲孔法),其次还有针对一定对象的环芯法。 物理方法中用得最多的是X射线衍射法,其他主要物理方法还有中子衍射法、磁性 法和超声法。 X射线衍射法依据X射线衍射原理,即布拉格定律。布拉格定律把宏观上可以准确测 定的衍射角同材料中的晶面间距建立确定的关系。材料中的应力所对应的弹性应变必然表征 为晶面间距的相对变化。当材料中有应力σ存在时,其晶面间距d 必然随晶面与应力相对 取向的不同而有所变化,按照布拉格定律,衍射角2θ也会相应改变。因此有可能通过测量 衍射角2θ随晶面取向不同而发生的变化来求得应力σ。从这里可以看出X射线衍射法测定 应力的原理是成熟的,经过半个多世纪的历程,在国内外,测量方法的研究深入而广泛,测 试技术和设备已经比较完善,不但可以在实验室进行研究,可且可以应用到各种实际工件, 包括大型工件的现场测量。

电磁兼容EMC设计及测试技巧

电磁兼容EMC设计及测试技巧 摘要:针对当前严峻的电磁环境,分析了电磁干扰的来源,通过产品开发流程的分解,融入电磁兼容设计,从原理图设计、PCB设计、元器件选型、系统布线、系统接地等方面逐步分析,总结概括电磁兼容设计要点,最后,介绍了电磁兼容测试的相关内容。 当前,日益恶化的电磁环境,使我们逐渐关注设备的工作环境,日益关注电磁环境对电子设备的影响,从设计开始,融入电磁兼容设计,使电子设备更可靠的工作。 电磁兼容设计主要包含浪涌(冲击)抗扰度、振铃波浪涌抗扰度、电快速瞬变脉冲群抗扰度、电压暂降、短时中断和电压变化抗扰度、工频电源谐波抗扰度、静电抗扰度、射频电磁场辐射抗扰度、工频磁场抗扰度、脉冲磁场抗扰度、传导骚扰、辐射骚扰、射频场感应的传导抗扰度等相关设计。 电磁干扰的主要形式 电磁干扰主要是通过传导和辐射方式进入系统,影响系统工作,其他的方式还有共阻抗耦合和感应耦合。 传导:传导耦合即通过导电媒质将一个电网络上的骚扰耦合到另一个电网络上,属频率较低的部分(低于 30MHz)。在我们的产品中传导耦合的途径通常包括电源线、信号线、互连线、接地导体等。 辐射:通过空间将一个电网络上的骚扰耦合到另一个电网络上,属频率较高的部分(高于30MHz)。辐射的途径通过空间传递,在我们电路中引入和产生的辐射干扰主要是各种导线形成的天线效应。 共阻抗耦合:当两个以上不同电路的电流流过公共阻抗时出现的相互干扰。在电源线和接地导体上传导的骚扰电流,多以这种方式引入到敏感电路。 感应耦合:通过互感原理,将在一条回路里传输的电信号,感应到另一条回路对其造成干扰。分为电感应和磁感应两种。 对这几种途径产生的干扰我们应采用的相应对策:传导采取滤波(如我们设计中每个IC的片头电容就是起滤波作用),辐射干扰采用减少天线效应(如信号贴近地线走)、屏蔽和接地等措施,就能够大大提高产品的抵抗电磁干扰的能力,也可以有效的降低对外界的电磁干扰。 电磁兼容设计 对于一个新项目的研发设计过程,电磁兼容设计需要贯穿整个过程,在设计中考虑到电磁兼容方面的设计,才不致于返工,避免重复研发,可以缩短整个产品的上市时间,提高企业的效益。 一个项目从研发到投向市场需要经过需求分析、项目立项、项目概要设计、项目详细设计、样品试制、功能测试、电磁兼容测试、项目投产、投向市场等几个阶段。 在需求分析阶段,要进行产品市场分析、现场调研,挖掘对项目有用信息,整合项目发展前景,详细整理项目产品工作环境,实地考察安装位置,是否对安装有所限制空间,工作环境是否特殊,是否有腐蚀、潮湿、高温等,周围设备的工作情况,是否有恶劣的电磁环境,是否受限与其他设备,产品的研制成功能否大大提高生产效率,或者能否给人们的生活或工作环境带来很大的方便,操作使用方式能否容易被人们所

汽车电子电磁兼容测试标准解读

汽车电子EMC测试,正在受到越来越多的关注。其中最重要的三个标准为,CISPR 25、ISO11452-2、ISO11452-4。本文给出了测试设备、所起到的作用和推荐方案,是汽车电子工程师的必备速查手册。 一、CISPR25标准 CISPR25目前用的是2007年第三版标准,与2002年的旧版,还是有很大差别。 1、CISPR25传导骚扰测试设备 CISPR25传导骚扰测试方法分为两种。一种是电压方法:电压测量只能用于单一导线的传导发射特性,故常用于测量电源线的发射,采用人工电源网络做隔离物;另外一种是电流探头方法:测量控制/信号线的发射。 CISPR25传导骚扰测试设备 2、CISPR25辐射骚扰测试方法 1)电波暗室(ALSE)方法:辐射场强测量应在ALSE 内进行,以消除来自电气设备以及广播台站产生的额外电磁骚扰的影响。 2)TEM小室方法:辐射场强度的测量应该在屏蔽室中进行,以消除来自电气设备和广播站的附加干扰。TEM 小室的工作如同屏蔽室一样。 3)带状线法方法:带状线是开方式的波导,由一个接地平板和一个主导电体(隔板)构成,有特征阻抗。一般采用的特征阻抗值是50Ω和90Ω。 目前关于零部件/模块的辐射骚扰测量的常见方法主要是:ALSE方法、TEM小室方法、带状线法。但目前由于TEM小室受电磁环境及场地限制较多,带状线法则还处于研究和实践中。所以基本上都是用ALSE方法来进行汽车电子的辐射骚扰测量。

CISPR25辐射骚扰测试设备 二、ISO11452-2标准 ISO11452介绍的是用各种不同的测试方法来对车载电子进行抗骚扰类的测试。所以我们将对最常用的两种测试方法进行介绍。分别是电波暗室法(ISO11452-2)和大电流注入法(ISO11452-4)。 辐射抗干扰测试方法: 校准法:使用校准夹具标定的标准电流值,系统记录下发射功率后,再将样品摆放上去开始试验,测试过程中的注入功率不变,但产生的电流可能出现变化。 闭环法:无需校准,直接测试,系统根据监测钳的数据实时改变输出功率,尽量使电流稳定在测试要求的数值。 注:这两种方法产生的结果很可能有较大差别。其效果和产品自身的阻抗特性有关。其中闭环法不常见,而基本都是用校准法进行测试。

电磁兼容(EMC)考试试卷

24】减小电力系统中的谐波,基本方法有两类:1.对系统设备和用电装置本身进行改造,使其不产生或者少量产生谐波2.装设谐波补偿装置来补偿谐波,包括 无源电力滤波器与有源电力滤波器的特点适用范围 1、无源电力滤波器——是一种传统的滤波方式,它利用电感、电容的串并谐振对某一频率或一定频率范围呈现较低的阻抗,将其与电网并联,可吸收电网中的谐振频率的谐波电流。具有结构简单、有功消耗低的优点,但体积庞大、滤波效果差。 2、有源电力滤波器——它由电力电子器件构成,是一种动态抑制谐波、补偿无功的电力电子装置,能对大小和频率变化的谐波以及变化的无功进行动态补偿。有源电力滤波器的谐波补偿效果显著,但成本较高、容量有限。 1、电磁干扰的危害主要体现在两个方面:a.电气、电子设备的相互影响;b.电磁污染对人体的影响 2、电磁兼容设计方法: a.问题解决法。问题解决法是先研制设备,然后针对调试中出现的电磁干扰的问题,采用各种电磁干扰抑制技术加以解决。 b.规范法。规范法是按颁布的电磁兼容性标准和规范进行设备或系统的设计制造。 c.系统法。系统法是利用计算机软件对某一特定系统的设计方案进行电磁兼容性分析和预测。 3、电磁干扰的三要素 1、形成电磁干扰的三个基本条件:骚扰源,对骚扰敏感的接收单元,把能量从骚扰源耦合到接收单元的传输通道,称为电磁干扰三要素。 骚扰源——耦合通道——敏感单元 2、电路受干扰的程度可用公式描述I WC S S 为电路受干扰的程度;W 为骚扰源的强度;C 为骚扰源通过某种路径到达被干扰处的耦合因素;I 为被干扰电路的抗干扰性能。 4、 屏蔽技术是利用屏蔽体阻断或减少电磁能量在空间传播的一种技术,是减少电磁发射和实现电磁骚扰防护的最基本,最重要的手段之一,采用屏蔽有两个目的,一是限制内部产生的辐射超出某一个区域,二是防止外来的辐射进入某一区域。 5、常用的电磁密封衬垫有1.金属丝网衬垫2.导电布衬垫3.导电橡胶4.指形簧片 6、电源线滤波器:作用主要是抑制设备的传导发射或提高对电网中骚扰的抗扰度,虽然同为抑制骚扰,但两者的方向不同,前者是防止骚扰从设备流入电网(称为电源EMI 滤波器),后者是防止电网中的骚扰进入设备(称为电源滤波器) 6、干扰控制接地:1.浮地2.单点接地3.多点接地4.混合接地 8、电磁兼容性GB 的定义:设备或系统在其电磁环境中能正常工作且不对该环境中任何事物构成不能承受的电磁骚扰的能力。 9、电磁骚扰:可能引起装置、设备或系统性能降低或对有生命、无生命物质产生损害作用的电磁现象。电磁骚扰可以是电磁噪声、无用信号或有用信号,也可

电子常识-GB-T17626-电磁兼容试验简介

标准-GB/T 17626 电磁兼容试验全标准 电磁兼容性测试(简称EMC,是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电 磁干扰的能力。EMC设计与EMC测试是相辅相成的。EMC设计的好坏是要通过EMC测试来衡量的。只有在产品的EMC设计和研制的全过程中,进行EMC的相容性预测和评估,才能及早发 现可能存在的电磁干扰,并采取必要的抑制和防护措施,从而确保系统的电磁兼容性。 GB/T 17626 电磁兼容试验和测量技术系列标准包括以下部分:GB/T 17626.1-2006 电磁兼容试验和测量技术抗扰度试 验总论 GB/T 17626.2-2006 电磁兼容试验和测量技术静电放电 抗干扰度试验 GB/T 17626.3-2006 电磁兼容试验和测量技术射频电磁 场辐射抗干扰度试验 GB/T 17626.4-2008 电磁兼容试验和测量技术电快速瞬 变脉冲群抗扰度试验 GB/T 17626.5-2008 电磁兼容试验和测量技术浪涌(冲击)抗扰度试验

应的传导骚扰抗扰度 GB/T 17626.7-2008 电磁兼容试验和测量技术供电系统 及所连设备谐波、谐间波的测量和测量仪器导则 GB/T 17626.8-2006 电磁兼容试验和测量技术工频磁场 抗扰度试验 GB/T 17626.9-1998 电磁兼容试验和测量技术脉冲磁场 抗扰度试验 GB/T 17626.10-1998 电磁兼容试验和测量技术阻尼振荡 磁场抗扰度试验 GB/T 17626.11-2008 电磁兼容试验和测量技术电压暂降、短时中断和电压变化的抗扰度试验 GB/T 17626.12-1998 电磁兼容试验和测量技术振荡波抗 扰度试验 GB/T 17626.13-2006 电磁兼容试验和测量技术交流电源 端口谐波、谐间波及电网信号的的低频抗扰度试验 GB/T 17626.14-2005 电磁兼容试验和测量技术电压波动 抗扰度试验 GB/T 17626.17-2005 电磁兼容试验和测量技术直流电源 输入端口纹波抗扰度试验 GB/T 17626.27-2006 电磁兼容试验和测量技术三相电压 不平衡抗扰度试验

电磁兼容国家标准分类和电磁兼容的通用标准

电磁兼容国家标准分类和电磁兼容的通用标准 (一)参照国际上的标准分类方法,电磁兼容国家标准分为四类,组成了中国的电磁兼容标准体系。 (1)基础标准 属于基础标准的有电磁兼容名词术语、电磁环境、电磁兼容测 量设备规范和测量方法等。这类标准的特点是不给出指令性限 值,也不给出产品性能的直接判据,但它是编制其他各类标准 的基础。如GB/T 4365--1995《电磁兼容术语》,GB/T 6113 系列标准《无线电骚扰和抗扰度测量设备规范和测量方法》, GB/T17626 系列标准《电磁兼容试验方法和测试技术》等等。(2)通用标准 通用标准是对给定环境中所有产品给出一系列最低的电磁兼容 性能要求。通用标准中的各项试验方法可以在相应的基础标准 中找到,通用标准可以成为编制产品族标准和专用产品标准的 导则。通用标准对那些暂时还没有相应标准的产品有极好的参 考价值,可用作进行电磁兼容摸底试验。 通用标准讲述住宅、商业、轻工业环境等两种不同环境,考虑 到电磁兼容有电磁骚扰发射和抗扰度两个不同方面。因此通过

不同组合,通用标准实际上有四个分标准。我国的电磁兼容通 用标准选自IEC61000-6 系列标准,对应的通用国家标准的系 列号为GB/T17799 。 (3)产品族标准 产品族标准针对特定的产品类别,规定他们的电磁兼容性能要 求及详细测量方法。产品族标准规定的限值应与通用标准相一 致,但不同的产品族产品有它的特殊性,必要时可增加试验项 目和提高试验限值。产品族标准是电磁兼容标准中所占份额最 多的标准。如GB9254-1998《信息技术设备的无线电骚扰限值 和测量方法》,GB4343-1995 《家用和类似用途电动、电热器具、电动工具以及类似电器无线电干扰特性测量方法和允许值》等。(4)专用产品标准 专用产品标准通常不单独形成电磁兼容标准,而以专门条款包 含在产品通用技术条件中,专用产品标准的电磁兼容要求与产 品族标准相一致(在考虑到产品的特殊性后,对其电磁兼容性 要求也可作某些更改),但产品标准对电磁兼容的要求更加明 确,还要增加产品性能和价格的判据。产品标准通常不给出具 体的试验方法,而给出相应的基础标准号,以备查考。 表1 部分电磁兼容国家标准与国际标准的对应关系

电磁兼容设计与整改对策及经典案例分析

《电磁兼容设计与整改对策及经典案例分析》 ●背--景 ---为什么产品要通过EMC,EMC到底包含哪些测试项目和性能指标? ---为什么产品辐射、传导、静电、EFT问题总是解决不了,而自己又没有好的解决思路? ---为什么我的产品也增加了磁珠、电容、电感,但还是没有改善,这些器件到底该怎么应用?为什么产品问题总是后期出现,在现有基础上到底有哪些方法和措施整改我的产品? ---为什么我的产品在设计时EMC也考虑了,但是还不能解决所有问题? ---为什么一些理论在实际应用中总是不能真正解决问题? 对于企业领导和研发工程师而言,诸如此类的问题可谓太多,明白EMC测试项目和测试原理,掌握一些EMC测试整改和设计技能,这些都成了我们迫切需要研究和解决的重大课题。目前很多企业工程师在这块缺乏实践经验,很多相关知识都是网络和书籍上面了解,但是,一方面在解决实际问题时光靠这些零散的理论是不足的,另一方面,这些“知识”也有可能对EMC的实质理解造成一些误解,为帮助企业以及研发人员解决在实际产品设计过程中遇到的问题与困惑,我们举办此次《电磁兼容设计与整改对策及经典案例分析》高级训练班,培训通过大量的实际产品EMC案例讲解,使得学员可以在较短时间内掌握解决EMC技术问题的技能并掌握EMC设计的基本思路!同时对企业缩短产品研发周期、降低产品研发与物料成本具有重要意义! ●特--色 ---系统性:课程着重系统地讲述产品EMC测试原理,产品出现各种EMC问题详细的整改思路与方法,课程以大量的案例来阐述产品EMC设计的思路与方法,以及不同

产品出现的各种问题EMC工作重点、工作方法、解决问题的技巧. ---针对性:主要针对产品各种EMC测试项目,及各种典型产品,在测试过程中出现的不同问题的时候解决的思路与方法,如何使产品经过合理的构架设计、电缆设计、滤波设计、PCB设计顺利通过EMC测试。 ---实战性:在整个培训课程中涉到多个案例,全面讲授产品问题整改和定位,设计的技巧。 ●收--益 本课程主要从EMC测试与案例分析出发,通过每个EMC案例的分析,向学员介绍有关EMC的实用设计与诊断技术,减少设计人员在产品的设计与EMC问题诊断中误区。同时通过案例说明EMC设计原理,让学员更好的理解EMC设计精髓.本课程的特点是案例多. 生动.直观.想象与原理精密结合。培训完成后一年内,可以通过邮件和电话免费解答企业EMC方面工程问题,作为培训内容完美补充。 【大—纲】(结合多个经典案例进行实战讲解) 1.电磁兼容基础 1.1 电磁兼容概述(30min)(9:00-9:30) 1.1.1 电磁兼容的定义 1.1.2 电磁兼容的研究领域 1.1.3 实施电磁兼容的目的 1.2 电磁兼容理论基础(45min)(9:30-10:15) 1.2.1 基本名词术语

盲孔法测残余应力

关于构件的残余应力检测(盲孔法检测) 一、前言 (1)应力概念 通常讲,一个物体,在没有外力和外力矩作用、温度达到平衡、相变已经终止的条件下,其内部仍然存在并自身保持平衡的应力叫做内应力。 按照德国学者马赫劳赫提出的分类方法,内应力分为三类: 第Ⅰ类内应力是存在于材料的较大区域(很多晶粒)内,并在整个物体各个截面保持平衡的内应力。当一个物体的第Ⅰ类内应力平衡和内力矩平衡被破坏时,物体会产生宏观的尺寸变化。 第Ⅱ类内应力是存在于较小范围(一个晶粒或晶粒内部的区域)的内应力。 第Ⅲ类内应力是存在于极小范围(几个原子间距)的内应力。 在工程上通常所说的残余应力就是第Ⅰ类内应力。到目前为止,第Ⅰ类内应力的测量技术最为完善,它们对材料性能和构件质量的影响也研究得最为透彻。除了这样的分类方法以外,工程界也习惯于按产生残余应力的工艺过程来归类和命名,例如铸造应力、焊接应力、热处理应力、磨削应力、喷丸应力等等,而且一般指的都是第Ⅰ类内应力。 (2)应力作用 机械零部件和大型机械构件中的残余应力对其疲劳强度、抗应力腐蚀能力、尺寸稳定性和使用寿命有着十分重要的影响。适当的、分布合理的残余压应力可能成为提高疲劳强度、提高抗应力腐蚀能力,从而延长零件和构件使用寿命的因素;而不适当的残余应力则会降低疲劳强度,产生应力腐蚀,失去尺寸精度,甚至导致变形、开裂等早期失效事故。 (3)应力的产生 在机械制造中,各种工艺过程往往都会产生残余应力。但是,如果从本质上讲,产生残余应力的原因可以归结为: 1.不均匀的塑性变形; 2.不均匀的温度变化; 3.不均匀的相变 (4)应力的调整 针对工件的具体服役条件,采取一定的工艺措施,消除或降低对其使用性能不利的残余拉应力,有时还可以引入有益的残余压应力分布,这就是残余应力的调整问题。 通常调整残余应力的方法有: ①自然时效 把构件置于室外,经气候、温度的反复变化,在反复温度应力作用下,使残余应力松弛、尺寸精度获得稳定。一般认为,经过一年自然时效的工件,残余应力仅下降2%~10%,但工件的松弛刚度得到了较大地提高,因而工件的尺寸稳定性很好。但由于时效时间过长,一般不采用。 ②热时效 热时效是传统的时效方法,利用热处理中的退火技术,将工件加热到500~650℃进行较长时间的保温后再缓慢冷却至室温。在热作用下通过原子扩散及塑性变形使内应力消除。从理论上讲采用热时效,只要退火温度和时间适宜,应力

韩国电磁兼容测试表

EMI/EMC Test List 1.The Korean Standard is below; A.The protection of electromagnetic wave i.The ESD test follows the standard of KN61000-4-2 ii.The radiation of electromagnetic wave endurance test follows the standard of KNKN61000-4-3 iii.The EFT(Electrical fast transient/burst immunity) test follows the standard of KN61000-4-4 iv.The surge test follows the standard of KN61000-4-5 v.The electromagnetic wave endurance test follows the standard of KN61000-4-6 vi.Magnetic frequency of power test follows the standard of KN61000-4-8 vii.About voltage falling and temperature power cut, presented test level and lasting time follows the standard of KN61000-4-11 B.The hindrance protection of electromagnetic wave i.The prevention test of hindrance of microwave follows the KN16-2(it’s based on CISPR 16) ii.The prevention of the error by microwave follows the KN14-1(it’s based on CISPR 14-1) 2.Testing and measurement techniques - V oltage dips, short interruptions and voltage variations immunity tests (KN61000-4-11) A.It follow to International Standard(Comparable with IEC 61000-4-11 and 61000- 4-1 and 61000-2-2) i.IEV 50(161) : 1990. International Electro-technical V ocabulary(IEV) – Chapter 161 : Electromagnetic compatibility ii.IEC 68-1 : 1988, Environment test – Part 1 : General and guidance iii.IEC 61000-2-1 : 1990, Electromagnetic compatibility(EMC) – Part 2 : Environment – Section 1 : Description of the environment – Electromagnetic environment for low-frequency conducted disturbances and signaling in public power supply systems iv.IEC 61000-2-2 : 1990, Electromagnetic compatibility(EMC) – Part 2 : Environment – Section 2 : Compatibility levels for low-frequency conducted disturbances and signaling in public low-voltage power supply systems

残余应力测定方法(精)

第二章残余应力测定方法 残余应力的测定方法大致可分为机械测量法和物理测量法两类。 物理测量法包括X射线法、磁性法、和超声波法等。它们分别利用晶体的X射线衍射现象.材料在应力作用下的磁性变化和超声效应来求得残余应力的量值。它们是无损的测量方法。其中X射线法使用较多,比较成熟,被认为是物理测量法中较为精确的一种测量方法。磁弹性法和超声波法均是新方法,尚不成熟,但普遍地认为是有发展前途的两种测试方法。物理法的测试设备复杂.昂贵.精度不高。特别是应用于现场实测时,都有一定的局限性和困难。 机械方法包括切割法、套环法和钻孔法(下面主要介绍)等,它是把被测点的应力给予释放,并采用电阻应变计测量技术测出释放应变而计算出原有残余应力。残余应力的释放方法是通过机械切割分离或钻一盲孔等方法,因此它是一种破坏性或半破坏性的测量方法,但它具有简单、准确等特点。 从两类方法的测试功能来说,机械方法以测试宏观残余应力为目的,而物理方法则测试宏观应力与微观应力的综合值。因此两种方法测试的结果一般来说是有区别的。 一、分离法测量残余应力 切割法和套环法都是将被测点与其邻近部分分开以释放残余应力,因此统称分离法。它是测量残余应力的一种最简单的方法,多用于测量表面残余应力或沿厚度方向应力变化较小的构件上的残余应力。 (一)、切割法:在欲测部位划线:划出20mm×20mm的方格将测点围在正中。在方格内一定方向上贴应变计和应变花,再将应变计与应变仪相连,通电调平。然后用铣床或手锯慢速切割方格线,使被测点与周围部分分离开。切割后,再测应变计得到的释放应变。它与构件原有应变量值相同、符号相反,因此计算应力时,应将所得值乘以负号。 释放后的残余应力计算方法如下: 1、如果已知构件的残余应力为单向应力状态,只要在主应力方向贴一个应变片(如图3.1)即可。分割后得释放应变ε,由虎克定律可知其残余应力为:σ=-Eε(1) 2、如果构件上残余应力方向已知,则在测点处沿主应力方向粘贴两个应变片1和2(如图3.2所示)。分割构件后测出ε1和ε2,计算残余主应力为: 3、如图被测点残余主应力方向未知,则需贴三向应变花(如图3.3所示)。连接应变仪调平后,沿虚线切割开,观察应变仪,直到切割处温度下降到常温时,测出再按(3)公式计算出主应力及其方向来。 (二)、套环法:在一些大型构件上,切割法有时难于进行,这时可采用套环法进行分离。其原理及贴片

相关文档
最新文档