食用油的红外光谱测定.

食用油的红外光谱测定.
食用油的红外光谱测定.

第一章前言

我国是食用油的消费大国,食用油是人们膳食结构中不可缺少的组成部分,其品质的好坏对人体健康有着深远的影响。花生油、大豆油、菜籽油、葵花籽油等是我国人民食用的主要油类品种[1]。一些不法经营者将低价位的植物油掺入高价位植物油中从而牟取暴利,比如在菜籽油中掺入棕榈油、棉籽油;在芝麻油中掺入菜籽油、棉籽油、大豆油等;在茶籽油中掺入大豆油、菜籽油等。更有甚者在植物油中掺入米汤、矿物油、蓖麻油等非食用油,引起一系列的食用油中毒事件[2]。因此,食用油掺杂掺假鉴别及品质的在线检测势在必行。目前国内外检测食用油品质方法有高效液相色谱法、气相色谱法、筛析色谱法等常规化学分析方法, 这些分析方法具有较高的准确度以及较高的可靠性, 但需借助于昂贵的设备以及严格的实验室条件,对样品进行复杂的处理,并且分析速度很慢, 不能满足市场快速检测的需要[3]。因此需要建立一种比较方便快速的检测方法,以适应市场需求。

不同厂家同种类、不同厂家不同种类、同厂家不同种类、转基因与非转基因的植物油由于生产工艺、质量标准、原料产地、存放时间等不同,其检测时各项指标也不相同,本文以大豆油、花生油、葵花籽油、菜籽油为研究对象,通过比较他们红外光谱的特征吸收峰,二阶导数图,二维分布图,三维分布图来对它们进行鉴别区分[3]。

菜籽油中含花生酸、油酸、亚油酸、芥酸(芥酸是2 碳一烯酸)、亚麻酸等。国家标准中菜籽油的各组分含量都是一个范围,从前人的大量的试验中发现,纯菜油的组分:亚油酸和油酸组分比的大小都在一个较小的范围内相对稳定[4]。从营养价值方面看,人体对菜籽油消化吸收率很高,有利胆功能。在肝脏处于病理状态下,菜籽酮也能被人体正常代谢。菜籽油中缺少亚油酸等人体必需脂肪酸,且其中脂肪酸构成不平衡,所以营养价值比一般植物油低。另外,菜籽油中含有大量芥酸和芥子甙等物质,一般认为这些物质对人体的生长发育不利。如能在食用时与富含有亚油酸的优良食用油配合食用,其营养价值将得到提高。但菜籽油中的芥酸很难被人体消化吸收,摄入过多可能会引起中毒[5]-[6]。

葵花籽油中含有丰富的亚油酸、油酸、丰富的活性维生素E、丰富的胡萝卜素、丰富的维生素B3,同时还含有微量的植物醇和磷脂,一定量蛋白质,钾、磷、铁、镁等微量元素[7]-[8]。

大豆油中含花生酸、油酸、亚油酸、棕榈酸、硬脂酸、亚麻油酸等,同时还含有大量的维生素以及丰富的卵磷脂,大豆油的人体消化吸收率和菜籽油差不多,也是一种营养价值很高的优良食用油[9]-[10]。不同的制取工艺,对大豆油的营养成分会造成影响。

大豆油根据制取工艺的不同可以分为以下几类:

浸出大豆油,大豆经浸出工艺制取的油;压榨大豆油,大豆经直接压榨制取的油;大豆原油,没有经过任何处理的不能直接供人类食用的大豆油;转基因大豆油:用转基因大豆制取的油;成品大豆油,经处理符合国家标准成品油质量指标和卫生要求的直接供人类食用的大豆油[11]。

花生油的脂肪酸组成主要有棕榈酸、硬脂酸、亚油酸、花生酸、山萮酸、油酸、二十碳烯酸、二十四烷酸、已醛、γ-丁内酯、壬醛、苯甲醛、苯甲醇、2-甲氧基-3-异丙基吡嗪、1,2,3-三甲基环戊烷、1-乙基-3-甲基环戊烷、4-乙基-2-甲氧基苯酚、4-甲氧基苯酚、3-(1,1-二甲基乙基)苯酚、2,3,5-三甲基吡嗪、2-甲基-5-丙烯基吡嗪、糠酸甲酯、3,5-二乙基-2-甲基吡嗪、2-乙酰基吡咯、2,4-二甲基噻唑、2,5-二甲基噻唑、5-甲基-2-糠醛、2-已基呋喃、3-已基呋喃、2-乙酰基-5-甲基呋喃、2,3-二氢苯并呋喃。还含有维生素[6]-[9]。

根据食用油的价值不同,对食用油研究的人很多。近几年, 红外光谱在油脂识别等方面, 有人已在研究,比如:傅里叶变换拉曼光谱与中红外光谱结合并进行聚类分析来检测橄榄油中的榛子油含量;红外光谱技术对电动机用油和工业用油中所含的酯类进行了测定;中红外光谱结合微波提取技术测定了焙烤产品中的总脂肪与反式酸的含量[12]-[13]。这些研究表明红外光谱在测定植物油和矿物油方面具有理想的效果。

根据物质的吸光性,定性的鉴定化合物结构的方法有很多,比如紫外-可见分光光度法、原子吸收光谱法、核子共振谱法、红外吸收光谱法等等。红外光谱法是依据物质对红外光区电磁辐射的特征吸收,对化合物分子结构进行测定和物质化学组成进行分析的一种光谱分析方法。红外光谱是分子光谱的一种,产生红外光谱的红外光波长较长,光子的能量较低。几乎所有的化合物在红外光区都有吸收。在生物学、化学、食品和环境科学等领域发挥着很重要的作用。固体样品、液体样品、气体样品、纯物质、化合物、有机物还是无机物都可以进行红外光谱分析研究[14]。

傅里叶红外变换光谱法具有以下特点:

1、扫描速度快。

傅立叶变换红外光谱仪的扫描速度比色散型仪器快,在任何测量时间内都能获得辐射源的所有频率的所有信息。在相同的总测量时间、温度和相同的分辨率条件下,傅里叶变换红外光谱法的测量更快速,但由于速度过快,测量误差较大。

2、有很高的分辨率。

分辨率是红外光谱仪的性能指标之一,分辨率指光谱仪对两个靠得很近的谱线的辨别能力。

3、波数精度高。

波数是红外定性分析的参数,因此仪器的波数精度十分的重要。因为干涉仪的动镜可以很精确地驱动,所以干涉图的变化很准确,同时动镜的移动距离是He-Ne激光器的干涉纹测量的,从而保证了所测的光程差很准确。

4、极高的灵敏度。

傅立叶变换红外仪没有狭缝的限制,辐射通量只与干涉仪的平面镜大小有关,在同样的分辨率下,其辐射通量比色散型仪器大得很多,从而使检测器接受的信噪比增大,因此,具有很高的灵敏度,由于具有此优点,使傅立叶变换红外光谱仪特别适合测量弱信号光谱。

5、研究光谱范围宽。

傅立叶变换红外仪只要用计算机实现测量仪器的元器件的自动转换,就可以研究整个近红外、中红外和远红外区的光谱。

6、应用范围广。

红外光谱分析能测得所有的有机化合物,而且还可以用于研究某些无机物。因此在定性、定量及结构分析方面有广泛的应用。

7、特征性强。

每个官能团都有几种振动形式,产生的红外光谱比较复杂,特征性强。除及个别情况外,有机化合物都有其独特的红外光谱,因此红外光谱具有极好的鉴别意义。

8、提供的信息多。

红外光谱能够提供较多的结构信息,如化合物含有的官能团、化合物的立体结构、取代基的位置及数目等。

9、不受样品物态的限制。

红外光谱分析可以测定气体样品、液体样品及固体样品,不受样品物态的限制,扩

大了分析范围。

10、不破坏样品。

红外光谱分析时样品不被破坏[15]。

傅里叶变换红外光谱法是常用的有机化合物结构鉴定的一种分析方法, 已被广泛应用在各个研究领域。纯化合物的分子振动光谱,反映了分子内部存在的各种基团具有指纹特性的振动。对于一个混合物体系, 其分子振动光谱的峰形、峰位、峰强代表着体系中所含各种相应基团的谱峰的叠加。混合物组成的变化, 将直接导致分子振动光谱整体谱图的变化, 但仍能保持其谱图的宏观指纹性, 因此红外光谱法正越来越多的应用于药用动、植物,食品等领域的真伪优劣鉴别[12]。

傅里叶红外吸收光谱能够反映出不同油脂的分子结构信息, 可从本质上对油脂进行表述。红外光谱结合光谱数据处理, 可以显示出不同油脂结构微小的差异,借助这种手段, 在实际工作中可以识别不同的油脂, 也为建立食用油识别方法提供了技术支持。因此, 研究采用傅里叶变换红外光谱技术,来对品种各异的食用油进行判别分析具有重要意义。

第二章实验步骤

1、实验仪器及样品

1.1 实验仪器

日本FTIR prestige-21型傅立叶红外变换光谱仪,压片干机和压片模具,玛瑙研钵,擦镜纸,手套,红外干燥灯,不锈钢式样勺,镊子,干燥箱,玻璃棒,烧杯等。

1.2 实验试剂

溴化钾(光谱纯)

1.3 实验样品

本文选取了花生油、葵花籽油、菜籽油、大豆油为实验材料,利用傅里叶变换红外光谱仪测定了它们的红外吸收光谱。

表 2-1 食用油

食用油的品种生产厂家制取方法及级别

香满园大豆油嘉里粮油(防城港)有限公司压榨一级

罗平菜籽油罗平县宏发油菜籽加工厂压榨三级

香满园菜籽油嘉里粮油(防城港)有限公司压榨三级

香满园花生油嘉里粮油(防城港)有限公司压榨一级

高级小粒花生油砚山县丰林花生油厂压榨一级

多力葵花子油上海佳格食品有限公司压榨一级

金龙鱼葵花籽油新加坡郭兄弟粮油私人有限公司压榨一级

家庭产菜籽油腾冲县界头乡压榨

金龙鱼大豆油新加坡郭兄弟粮油私人有限公司精炼一级

2 、样品的处理及测定

2.1 溴化钾压片的制作

溴化钾压片技术是处理固体样品和液体样品以进行红外分析时常用的背景载体。进入实验室,打开红外干燥灯,把溴化钾固体颗粒放到红外干燥灯下进行干燥,取200 mg 左右的KBr( 充分烘干)于玛瑙研钵中, 研磨至KBr颗粒直径约2μm, 用擦镜纸把压片模具擦干净,带上手套,用不锈钢式样勺把溴化钾样品均匀的平铺在模具内,放好模具,把模具放到压片干机上加压到60KN,大约两分钟,取出,然后把做好的溴化钾压片用镊子小心的移出来,将压制作好的溴化钾压片放到支架上,压制好的纯溴化钾片放置于红外光谱固体挂件上用于背景扫描。注:溴化钾晶片必须无裂痕,局部无发白现象,像玻璃一般透明,否则就要重做。

2.2 样品的测定

植物油都是液体样品,测定时,先用溴化钾纯片做背景扫描,把植物油放到烧杯中,然后用玻璃棒把植物油直接滴到制作好的溴化钾压片上,迅速放到红外光谱仪样品室里进行测定,绘制出相应的红外光谱图。

3 、谱图处理

把测量得到的红外光谱图进行平滑处理,标上特征吸收峰,同时通过二阶求导的处理方法得到二阶导数光谱图,二阶导数光谱的半高宽只有原谱图半峰宽的三分之一左右,能清楚地分辨出强峰两侧的小肩峰,在正确测定峰位置及确定肩峰位置时很有用,能达到提高谱图分辨率的目的,对测定峰位及确认肩峰非常有效;绘制得到的谱图可以进行叠加,从而更方便的来比较它们之间的差异。也可用实验得出的数据来绘制二维图形、三维图形进行分析,从而更为直观的看出它们之间的区别。

第三章实验结果

根据食用油的红外光谱图、二阶导数光谱图、叠加图,数据处理得出的二维图形、三维图形进行分析。

分别对不同种类的植物油的红外光谱图、二阶导数光谱图、叠加图及二维图形进行分析比较;不同厂家同一种类的植物油的红外光谱图、叠加图及三维图形进行分析比较。

1、不同种类植物油的分析比较

图 3-1不同植物油的叠加图

表 3-1 不同种类植物油的特征吸收峰

实验样品 特征吸收峰(cm -1

)

金龙鱼葵花籽油

723.31、914.26、1099.43、1120.64、1163.08、1238.3、1377.17、1417.68、1456.26、1653、1747.51、2852.72、2924.09、3008.95

香满园大豆油

723.31、914.26、966.34、1099.43、1120.64、1163.08、1238.3、1377.17、1456.26、1653、1747.51、2852.72、2924.09、3008.95

罗平菜籽油

723.31、1099.43、1120.64、1163.08、1238.3、1377.17、1454.33、1651.07、1745.58、2852.72、2924.09、3008.95

砚山花生油

723.31、1099.43、1118.71、1163.08、1238.3、1377.17、1454.33、1463.97、1653、1747.51、23、2677.2、2852.72、2924.09、3007.02

500

750

100012501500175020002500300035004000

1/cm

-0.8

-0.6

-0.4

-0.2

-5.55112E-17

0.2

0.4

0.6

0.8

1

%T/(1/cm)^2

金龙鱼葵花籽油1

图 3-2金龙鱼葵花籽油二阶导数图

500

750

100012501500175020002500300035004000

1/cm

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

%T/(1/cm)^2

香满园大豆油7

图 3-3 香满园大豆油二阶导数图

500

750

100012501500175020002500300035004000

1/cm

-0.6

-0.4

-0.2

-5.55112E-17

0.2

0.4

0.6

0.8

%T/(1/cm)^2

罗平菜籽油1

图 3-4 罗平菜籽油二阶导数图

500750

100012501500175020002500300035004000

1/cm

-0.8

-0.6

-0.4

-0.2

-5.55112E-17

0.2

0.4

0.6

0.8

1

%T/(1/cm)^2

砚山花生油6

图 3-5砚山花生油二阶导数图

分析结果:

⑴不同食用油红外光谱的共同特性

图3-1和表3-1可以看出选取的4种食用油在4000~400cm -1范围内的红外吸收光谱基本相同,表现在3008cm -1有不饱和碳的C -H 伸缩振动峰,在2924cm -1、2852cm -1处有饱和碳的C -H 伸缩振动峰,在1747cm -1 处有C =O 伸缩振动峰,在1464cm -1、1377 cm -1处有亚甲基的弯曲振动峰,在1163cm -1 处有甘油三酯中C -O 伸缩振动峰,在723cm -1处有碳链骨架振动峰。菜籽油、大豆油、花生油、葵花籽油的红外光谱出现的特征波数、峰位和峰形基本相同,说明不同种类的食用油的主要组分是相同的。 ⑵不同食用油红外吸收光谱的差异

由图3-1、图3-2、图3-3、图3-4、图3-5可知,尽管各种食用油的红外吸收光谱基本相同,但它们的特征吸收峰的相对强度却是有所差异。3008 cm -1为不饱和碳的C -H

伸缩振动峰,菜籽油的相对强度最大,花生油和葵花籽油次之,大豆油最小,说明这些油中不饱和脂肪酸的含量依次减小。2924 cm-1和2852 cm-1为饱和碳的C-H 伸缩振动峰,菜籽油和花生油的较强,说明这 2 种油中饱和脂肪酸的含量较高。1456 cm-1和1377cm-1为亚甲基的弯曲振动峰,花生油和菜籽油较强,说明这2 种油亚甲基含量较高,即脂肪酸的碳链较长,大豆油的最弱。它们在723 cm-1碳链骨架振动峰相对较强也说明了这一点。1163cm-1处是甘油三酯中C-O 伸缩振动峰,花生油和菜籽油较强,说明这2 种油的甘油三酯含量较高。

虽然各种不同类型的食用油其红外吸收光谱存在差异,但是由于它们的共性比较明显,因此不利于区分。利用傅里叶变换红外光谱进行计算时,仪器所给出的计算结果有峰高( H )、峰面积( A )、校正峰高( H c )和校正峰面积( Ac )等,这些都可作为判别分析的参数,因而,本实验分别用峰高、峰面积、校正峰高、校正峰面积作为特征峰参数, 来进行判别分析,并对结果进行比较。经观察, 所测定4类样品的红外光谱在1000-1200cm-1处有明显差异,此信息为酯基中C-O-C 的对称伸缩振动吸收峰。并且在1747 cm-1和2852 cm-1处的特征性均较强。因而采集1099 cm-1、1163 cm-1、1747 cm-1和2852 cm-1处的吸收峰相关参数来作为模式识别的原始数据。

针对菜籽油、大豆油、花生油、葵花籽油的红外光谱数据,将1747 cm-1与2852 cm-1 波数处峰面积的比值A1747 cm-1 /A2852 cm-1为横坐标,1099 cm-1与1163 cm-1波数处峰面积的比值A1099 cm-1/A1163 cm-1为纵坐标, 采用Origin 8.0化学软件绘制二维分布图。

表 3-2 各食用油红外吸收光谱特征吸收峰的相对强度

金龙鱼葵花籽油香满园大豆油罗平菜籽油砚山花生油

A1747 cm-1/

0.8761 1.0034 0.8761 0.9240

A2852 cm-1

0.4427 0.4031 0.3579 0.4116

A1099 cm-1/

A1163 cm-1

图 3-6 不同食用油的二维分布图

从二维分布图中可以明显的看到四种不同类型的食用油分布各异,因此可以很好的利用此方法进行鉴定。

2 、不同厂家同一种类的植物油的分析比较

2.1 菜籽油的分析比较

图 3-7 菜籽油叠加图

表 3-3 菜籽油的特征吸收峰

实验样品特征吸收峰(cm-1)

家庭产菜籽油721.38、1099.43、1118.71、1163.08、1238.3、1377.17、1417.68、1463.97、1653、1747.51、2852.72、2924.09、3007.02、3464.55

罗平菜籽油723.31、1099.43、1120.64、1163.08、1238.3、1377.17、1454.33、1651.07、1745.58、2852.72、2924.09、3008.95

香满园菜籽油723.31、966.3、1026.13、1097.5、1118.71、1163.08、1238.3、1377.17、1463.26、1653、1747.51、2852.72、2924.09、3007.02、3464.55

2.2 葵花籽油的分析比较

图 3-8 葵花籽油叠加图

表3-4 葵花籽油的特征吸收峰

实验样品特征吸收峰(cm-1)

多力葵花籽油723.31、914.26、966.34、1099.43、1120.64、1163.08、1238.3、1377.17、1463.97、1653、1747.51、2852.72、2922.16、3008.95

金龙鱼葵花籽油723.31、914.26、1099.43、1120.64、1163.08、1238.3、1377.17、1417.68、1463.26、1653、1747.51、2852.72、2924.09、3008.95

2.3大豆油的分析比较

图3-9 大豆油的叠加图

表3-5大豆油的特征吸收峰

实验样品特征吸收峰(cm-1)

金龙鱼大豆油723.31、914.26、966.34、1099.43、1120.64、1163.08、1238.3、1377.17、1417.68、1463.97、1656.85、1747.51、2852.72、2924.09、3007.02

香满园大豆油723.31、914.26、966.34、1099.43、1120.64、1163.08、1238.3、1377.17、1463.26、1653、1747.51、2852.72、2924.09、3008.95

2.4 花生油的分析比较

图3-10 花生油的叠加图

表3-6 花生油的特征吸收峰

实验样品特征吸收峰(cm-1)

高级小粒花生油723.31、1099.43、1118.71、1163.08、1238.3、1377.17、1454.33、1463.97、1653、1747.51、23、2677.2、2852.72、2924.09、3007.02

香满园花生油723.31、914.26、966.34、1097.5、1118.71、1163.08、1238.3、1377.17、1417.68、1463.97、1651.07、1747.51、2852.72、2924.09、3007.02

根据谱图比较不同厂家生产的同类食用油的红外谱图差别不大,大豆油、菜籽油、葵花籽油、花生油的烯烃不饱和碳原子上的C- H 键伸缩振动频率在3 006-3 010 cm-1这个波段,无论是峰位置,峰形以还是峰强都很相似,各种食用油的亚甲基的C- H 键不对称和对称伸缩振动频率在2 852cm-1 -2 924 cm-1波段很相似,大豆油、菜籽油、葵花籽油、花生油的亚甲基C- H 键不对称和对称弯曲振动在1 463 cm-1和1 377 cm-1处吸收峰位置和峰强度几乎相同,绝大多数饱和的羧酸酯的C= O 键伸缩振动吸收都位于1 747 cm-1附近,而在1 000cm-1 -1200 cm-1之间出现了一强一弱的两个吸收带,由此可判断出可能是羧酸酯基中C- O- C 键的伸缩振动。只有家庭产菜籽油和罗平菜籽油、香满园菜籽油谱图差异较大。这是由于生产工艺过程不一样所引入的差异。

为了能够更直观、更便捷的对四类不同厂家的食用油进行区分,分别用峰高、峰面积、校正峰高、校正峰面积作为特征峰参数,来进行判别分析,并对结果进行比较,考察各参数的稳定性。

将1747 cm-1与2852 cm-1波数处特征参数的比值( P3/P4)为X 轴,1099 cm-1处与1163 cm-1附近特征峰参数的比值(P1 /P 2 ) 为Y 轴,以及4 类油各自C-O-C 对称伸缩振动所产生的吸收带所在的波数作为Z 轴,绘制三维分布图。

表 3-7 各食用油红外吸收光谱特征吸收峰的相对强度面积之比

①②③④⑤⑥⑦⑧⑨

1.034 0.7306 0.8761 0.8761 0.9724 0.9674 1.0034 0.9548 0.924 A1747cm-1/

A2852cm-1

0.2959 0.4112 0.3579 0.4427 0.3836 0.447 0.4031 0.3342 0.4116 A1099cm-1/

A1163cm-1

续表 3-7

波 数cm -1

1118

1120

1120

1120

1120

1120

1118

1118

1118

注:表中①代表家庭产菜籽,②代表香满园菜籽油,③代表罗平菜籽油,④代表金龙鱼葵花籽油,⑤代表多力葵花子油,⑥代表金龙鱼大豆油 ,⑦代表香满园大豆油,⑧代表香满园花生油,⑨代表砚山花生油。

图3- 11以峰面积比及波数为参数的分析图

注:图中 ●代表菜籽油 ▉代表葵花籽油 ▲代表大豆油 ★代表花生油

表 3-8 各食用油红外吸收光谱特征吸收峰的相对强度矫正面积之比

② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ A1747cm -1/ A2852cm -1

2.7957

3.1816 3.1263 3.7111 3.451

3.89 3.1486 2.6169 3.2162 A1099cm -1/ A1163cm -1 0.095 0.1314

0.1272

0.1527

0.7262 0.1406

0.1163

0.0778

0.3939

波 数cm -1

1118

1120 1120 1120 1120 1120 1118 1118 1118

注:表中①代表家庭产菜籽,②代表香满园菜籽油,③代表罗平菜籽油,④代表金龙鱼葵花籽油,⑤代表多力葵花子油,⑥代表金龙鱼大豆油 ,⑦代表香满园大豆油,⑧代表香满园花生油,⑨代表砚山花生油。

图3- 12以校正峰面积比及波数为参数的分析图

注:图中●代表菜籽油▉代表葵花籽油

▲代表大豆油★代表花生油

表 3-9 各食用油红外吸收光谱特征吸收峰的相对强度峰高之比

①②③④⑤⑥⑦⑧⑨

1.0403 0.9884 1.0033 1.0137 1.006 1.0065 1.0954 1.0043 1.005 H1747cm-1/

H2852cm-1

0.8023 0.8114 0.8483 0.855 0.8314 0.8754 0.8044 0.7422 0.8516 H1009cm-1/

H1163cm-1

波数cm-11118 1120 1120 1120 1120 1120 1118 1118 1118 注:表中①代表家庭产菜籽,②代表香满园菜籽油,③代表罗平菜籽油,④代表金龙鱼葵花籽油,⑤代表多力葵花子油,⑥代表金龙鱼大豆油,⑦代表香满园大豆油,⑧代表香满园花生油,⑨代表砚山花生油。

图3- 13以峰高比及波数为参数的分析图

注:图中●代表菜籽油▉代表葵花籽油

▲代表大豆油★代表花生油

表 3-10 各食用油红外吸收光谱特征吸收峰的相对强度矫正峰高之比

①②③④⑤⑥⑦⑧⑨

H1747cm-1/

2.5942

3.5673 3.3226 3.2346 3.5759 3.4223 2.858 2.7614 3.3061 H2852cm-1

0.4249 0.4751 0.5052 0.5826 0.6169 0.5997 0.486 0.3817 0.4392 H1009cm-1/

H1163cm-1

波数cm-11118 1120 1120 1120 1120 1120 1118 1118 1118 注:表中①代表家庭产菜籽,②代表香满园菜籽油,③代表罗平菜籽油,④代表金龙鱼葵花籽油,⑤代表多力葵花子油,⑥代表金龙鱼大豆油,⑦代表香满园大豆油,⑧代表香满园花生油,⑨代表砚山花生油。

图3- 14以校正峰高比及波数为参数的分析图

注:图中●代表菜籽油▉代表葵花籽油

▲代表大豆油★代表花生油

利用绘制出的三维分布图, 对四类食用油进行判别分析, 同时考察了不同选取参

数对判别结果的影响。结果表明花生油、菜籽油、葵花籽油和大豆油四者之间有明显的分布差别。且所选取的峰面积、峰高、校正峰面积、校正峰高均可作为参数来进行分析, 比较而言, 采用峰面积比作为参数时,各油脂信息点分布集中, 波动较小, 判别结果较好。

本实验所测定的食用油均为天然植物油脂,主要组分相同,不同的仅是各组分在混甘油三酰酯中的含量以及在甘油三酰酯上的排布。所测定的食用油分子结构中都含有酯基、甲基及亚甲基,这些基团在特征区域有其特征吸收峰。不同油脂中甘三酯分子结合的脂肪酸种类及排布有差异,油脂红外吸收峰的强弱及吸收峰的精确位置会随着这些差异而有所不同。另外,不同油脂中还含有不同种类及数量的甾醇、维生素以和类胡萝卜素等,这些微量组分也可能对油脂的红外光谱结构有所贡献。因而可以根据这些差异来对花生油、菜籽油、葵花籽油及大豆油的红外光谱进行信息处理,从而提取有用的特征信息,确定它们各自的特征信息。但总的来说一维红外光谱法在分析上显示出一定的局限性,借助于二阶导数图以及二维、三维图形的绘制增强了谱图的识别能力,本研究对不同食用油的鉴别提供了一种新的方法。研究结果表明该方法在食用油品种鉴别方面的应用具有一定的可行性。

第四章应用前景

随着人民生活水平的提高,“营养与健康”将成为未来食用油市场的热门话题,人们对食用油的质量与安全更加重视,重视食用油的脂肪酸组成;重视食用油的中的生理活性物质和微量元素的含量;重视脂肪酸的合理比配;重视特种油料的开发利用,利用其富含功能性成分的特点,生产营养健康的功能性油脂等等。为了保护消费者的健康与安全,世界各国将更加重视食用油的质量与安全。高安全、高质量的知名品牌将受到消费者的青睐[16]。因此,在油料生产加工过程中,必须严格按照操作规程进行,不断改进工艺和设备,由此看来,傅里叶变换光谱法将是一种比较方便快速的检测方法,可以适应市场需求。并在以后的研究过程中不断的完善。

红外反射光谱原理实验技术及应用

高级物理化学实验讲义 实验项目名称:红外反射光谱原理、实验技术及应用 编写人:苏文悦编写日期:2011-7-7 一、实验目的(宋体四号字) 1、了解并掌握FTIR-ATR、FTIR-DRS和FTIR-RAS等红外光谱表面分析技术的原理、实验技术及应用 2、比较分析FTIR-ATR、FTIR-DRS和FTIR-RAS等红外光谱技术各自适用的样品、同一样品不同红外光谱的谱带位置及形状。 二、实验原理 衰减全反射(ATR)、漫反射(DRS)和反射吸收(RAS)都是傅里叶变换红外反射光谱,是FTIR常用的表面分析技术。 图1 入射角(θ)及折射率(n1,n2)对光在界面上行为的影响 θc为临界角,sinθc=n2/n1 1全反射光谱原理、实验技术及应用 全反射:光由光密(即光在此介质中的折射率大的)媒质射到光疏(即光在此介质中折射率小的)媒质的界面时,全部被反射回原媒质内的现象。很多材料如交联聚合物、纤维、纺织品和涂层等,用一般透射法测量其红外光谱往往很困难,但使用FTIR及ATR技术却可以很方便地测绘其红外光谱。 (1)入射角与临界角 在通常情况下,光透射样品时是从光疏介质的空气射向光密介质样品的,当垂直入射(入射角θ为0°)时,则全部透过界面;当θ≠0°时,如果两者的折射率相差不大,则光是以原方向透射的,但如折射率差别较大,则会产生折射现象。 当n2与n1有足够的差值(0.5以上),且入射光从光密介质(n1)射向光疏介

质(n 2 ),入射角θ 大于一定数值时,光线会产生全反射现象。这个“一定数值”的角度称为临界角,也即当折射角φ 等于90°时的入射角θ称为临界角θc ,如图1,其中临界角θc 和折射率n 1和n 2有如下关系: sin θ=n 2/n 1 显然,临界角的数值取决于样品折射率与全反射晶体的折射率之比,对同一种全反射晶体,不同材质的样品会有不同的临界角值,表1所列数值可看出这一关系。 表1 在ATR 和MIR 方法中必须选用远大于临界角的入射角,即sin θ>n 2/n 1,以确保全反射的产生和所获光谱的质量,本实验运用单次衰减全反射ATR 附件,反射晶体是锗,入射角固定为45°,远大于临界角。 (2)衰减全反射 衰减全反射(Attenuated Total Reflectance)缩写为ATR 。当入射角大于临界角时,入射光在透入光疏介质(样品)一定深度后,会折回射入全反射晶体中。进入样品的光,在样品有吸收的频率范围内光线会被样品吸收而强度衰减,在样品无吸收的频率范围内光线被全部反射。因此对整个频率范围而言,由于样品的选择性吸收,使ATR 中的入射光能被部分衰减,除穿透深度dp 外,其衰减的程度与样品的吸收系数有关,还与多次内反射中的光接触样品的次数有关。这种衰减程度在全反射光谱上就是它的吸收强度。 全反射光谱的强度及分布 ATR 光谱的强度取决于穿透深度dp 、反射次数和样品与棱镜的紧密贴合情况以及样品本身吸收的大小。 内反射次数则是设计装置时的一个参数,入射角?越小,对同样尺寸的全反射晶体,全反射的次数就越多,谱峰越增强。 在全反射过程中光线穿透入样品的深度dp 的表示公式如下: 其中,dp :是光透入样品的垂直深度,称穿透深度 λl :是光在内反射晶体材料中的波长,与入射光波长λ成正比λ1=λ/n 1 ?:为入射角, n 21=n 2/n 1 :是样品与全反射晶体的折射率之比 21221 21)(sin 2n dp -=θπλ

仪器分析红外吸收光谱法习题及答案

红外吸收光谱法 一.填空题 1.一般将多原子分子的振动类型分为伸缩振动和变形振动,前者又可分为对称伸缩振动和反对称伸缩振动,后者可分为面内剪式振动(δ)、面内摇摆振动(ρ) 和面外摇摆振动(ω)、面外扭曲振动(τ) 。2.红外光区在可见光区和微波光区之间,习惯上又将其分为三个区: 远红外区,中红外区和近红外区 ,其中中红外区的应用最广。 3.红外光谱法主要研究振动中有偶极矩变化的化合物,因此,除了单原子和同核分子等外,几乎所有的化合物在红外光区均有吸收。 4.在红外光谱中,将基团在振动过程中有偶极矩变化的称为红外活性 ,相反则 称为红外非活性的。一般来说,前者在红外光谱图上出现吸收峰。5.红外分光光度计的光源主要有能斯特灯和硅碳棒。 6.基团一OH、一NH;==CH的一CH的伸缩振动频率范围分别出现在 3750—3000 cm-1, 3300—3000 cm-1, 3000—2700 cm-1。 7.基团一C≡C、一C≡N ;—C==O;一C=N,一C=C—的伸缩振动频率范围分别出现在 2400—2100 cm-1, 1900—1650 cm-1, 1650—1500 cm-1。 8.4000—1300 cm-1 区域的峰是由伸缩振动产生的,基团的特征吸收一般位于此范围,它是鉴最有价值的区域,称为官能团区;1300—600 cm-1 区域中,当分子结构稍有不同时,该区的吸收就有细微的不同,犹如人的指纹一样,故称为指纹区。 二、选择题 1.二氧化碳分子的平动、转动和振动自由度的数目分别(A) A. 3,2,4 B. 2,3,4 C. 3,4,2 D. 4,2,3 2.乙炔分子的平动、转动和振动自由度的数目分别为(C) A. 2,3,3 B. 3,2,8 C. 3,2,7 D. 2,3,7 4.下列数据中,哪一组数据所涉及的红外光谱区能够包括CH 3CH 2 COH的吸收 带?(D) A. 3000—2700cm-1,1675—1500cm-1,1475—1300cm一1。 B. 3300—3010cm-1,1675—1500cm-1, 1475—1300cm-1。 C. 3300—3010cm-1, 1900—1650cm-l,1000——650cm-1。 D. 3000—2700cm-1, 1900—1650cm-1, 1475——1300cm-1。 1900—1650cm-1为 C==O伸缩振动,3000—2700cm-1为饱和碳氢C—H伸缩振动(不饱和的其频率高于3000 cm-1),1475——1300cm-1为C—H变形振动(如—CH 3 约在1380—1460cm-1)。

红外光谱(FTIR)实验报告

红外光谱仪调查及实验报告 第一部分红外光谱仪调查 1.1 简介 傅里叶红外光谱仪: 全名为傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,FTIR Spectrometer),是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。傅里叶红外光谱仪不同于色散型红外分光的原理,可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。 滤光片型近红外光谱仪器: 滤光片型近红外光谱仪器以滤光片作为分光系统,即采用滤光片作为单色光器件。滤光片型近红外光谱仪器可分为固定式滤光片和可调式滤光片两种形式,其中固定滤光片型的仪器时近红外光谱仪最早的设计形式。仪器工作时,由光源发出的光通过滤光片后得到一宽带的单色光,与样品作用后到达检测器。 色散型近红外光谱仪器: 色散型近红外光谱仪器的分光元件可以是棱镜或光栅。为获得较高分辨率,现代色散型仪器中多采用全息光栅作为分光元件,扫描型仪器通过光栅的转动,使单色光按照波长的高低依次通过样品,进入检测器检测。根据样品的物态特性,可以选择不同的测样器件进行投射或反射分析。 傅里叶变换型近红外光谱仪器: 傅里叶变换近红外分光光度计简称为傅里叶变换光谱仪,它利用干涉图与光谱图之间的对应关系,通过测量干涉图并对干涉图进行傅里叶积分变换的方法来测定和研究近红外光谱。其基本组成包括五部分:①分析光发生系统,由光源、分束器、样品等组成,用以产生负载了样品信息的分析光;②以传统的麦克尔逊干涉仪为代表的干涉仪,以及以后的各类改进型干涉仪,其作用是使光源发出的光分为两束后,造成一定的光程差,用以产生空间(时间)域中表达的分析光,即干涉光;③检测器,用以检测干涉光;④采

红外吸附光谱法

红外吸附光谱法的学习 吸附研究方法多种多样,经典的方法有吸热法,比表面积,吸附等温线等。近代研究方法增加了红外光谱法,表面电压法,紫外光电子能谱等多个新研究方法技术。我主要对红外吸附光谱法进行了学习。 红外吸附法可提供吸附质及吸附剂—固体键的资料。通过吸附质在吸附前后红外吸收光谱地位移,考察表面吸附情况。不同的振动频率代表了吸附分子中不同的原子和表面成键。该方法有助于区别物理吸附和化学吸附。物理吸附靠范德华力,一般只能观察到谱带位移,不产生新谱带;而化学吸附形成新的化学键,能出现新谱带。该方法还能确定化学吸附分子的构型,如采用红外光谱测定CO在Pd上的吸附构型,表明覆盖率增加直线式结构增强。下面将具体介绍利用红外光谱仪测定CO在Pd/ Al 2O3 催化剂及载体上的吸附性能。 实验用催化剂系将一定浓度的含活性组分的混合溶液,浸渍于载体,然后经干燥、还原和活化而成。在红外测定前,将样品充分还原后,研磨成小颗粒,置于可用于吸附态测定的漫反射池中。采用 NaCl 做吸收池窗片。首先在高纯氮气吹扫下以 2 ℃ / mi n 的升温速率升至 180 ℃脱气,跟踪记录样品表面脱附情况 , 直至观测到的红外光谱图基本不变化。降至室温后切换为 CO 吸附气,并开始跟踪记录红外光谱图的变化。为防止催化剂表面吸附的物质对下次实验造成影响,每次实验均更换为新鲜催化剂。 首先是CO在载体Al2O3上吸附的红外光谱。众所周知 ,载体的作用不仅是稀释、支撑、分散金属活性组分 ,而且也具有明显的吸附剂特征。图 1 为 120 ℃时 CO 在载体Al2O3上吸附的红外-光谱图。从图 1 中可以看出 , CO 在Al2O3表面上有 HCOO-的形成 ( 1600 cm-1、 1383 cm-1) ,这是由于在Al2O3表面上存在不同的表面OH-可与-吸附在载体上的 CO 生成羧基等表面吸附态 , 即CO + O H-→ HCOO-。另外 , 在Al2O3上不可避免地会吸附少量的水 , 也可促进 HCOO-的生成。从图1还可发现 , 在Al2O3上有少量吸附态HCO3-的生成( 1465 cm-1,1254 cm-1)。 比较不同温度下 CO 在Al2O3上吸附的红外光谱 , 如图 2 所示 , 在室温时 , 可以发现少量的HCO3-吸收峰 ( 1656 cm-1、 1465 cm-1和1254cm-1 ,随着温度升高 , HCO3-吸收峰强度逐-渐减弱。温度至 100 ℃时 ,在 1600 cm-1处出现了一个新峰 , 且随温度的升高而逐渐增强。同时 ,1383 cm-1峰附近的 1349 cm-1处峰也随温度升-高逐渐增大 , 到100 ℃时强度已明显超出 1383cm-1处峰。 1600 cm-1和 1383 cm-1峰分别对应于HCOO-的不对称和对称伸缩振动 , 这说明HCO3-在升温过程中转变为 HCOO-, 至 120 ℃-时催化剂表面只有少量的HCO3-吸附态。 其次是CO 在催化剂Pd表面上吸附的红外光谱研究。图 3 为反应温度 120 ℃时 CO 在 Pd/ Al2O3催-化剂表面上吸附的红外光谱图。图 3 中的 2176cm-1、 2116 cm-1-处峰为

红外吸收光谱法试题和答案解析

红外吸收光谱法 一、选择题 1. CH 3—CH 3的哪种振动形式是非红外活性的(1) (1)υC-C (2)υC-H (3)δasCH (4)δsCH 2. 化合物中只有一个羰基.却在1773cm -1和1736 cm -1 处出现两个吸收峰.这是因 为(3) (1)诱导效应 (2)共轭效应 (3)费米共振 (4)空间位阻 3. 一种能作为色散型红外光谱仪的色散元件材料为(4) (1)玻璃 (2)石英 (3)红宝石 (4)卤化物晶体 4. 预测H 2S 分子的基频峰数为(2) (1)4 (2)3 (3)2 (4)1 5. 下列官能团在红外光谱中吸收峰频率最高的是(4) (1) (2)—C ≡C — (3) (4)—O —H 二、解答及解析题 1. 把质量相同的球相连接到两个不同的弹簧上。弹簧B 的力常数是弹簧A 的力常数的两倍.每个球从静止位置伸长1cm.哪一个体系有较大的势能。 答:M h hv E k 2π= = ;所以B 体系有较大的势能。 2. 红外吸收光谱分析的基本原理、仪器.同紫外可见分光光度法有哪些相似和不同之处 答: 红外 紫外 基本原理 当物质分子吸收一定波长的光能.能引起分子振动和转动的能及跃迁.产生的吸收光谱一般在中红外区.称为红外光谱 当物质分子吸收一定波长的光能.分子外层电子或分子轨道电子由基态跃迁到激发态.产生的吸收光谱一般在紫外-可见光区。 仪器 傅立叶变换红外光谱仪 紫外可见光分光光度计 相同:红外光谱和紫外光谱都是分子吸收光谱。 不同:紫外光谱是由外层电子跃迁引起的。电子能级间隔一般约为1~20eV; 而红外光谱是分子的振动能级跃迁引起的.同时伴随转动能级跃迁.一般振动能级间隔约为~1eV 。

仪器分析实验有机化合物的红外光谱分析解读

仪器分析实验有机化合物的红外光谱分析 2015年4月21日 有机化合物的红外光谱分析 开课实验室:环境资源楼312 【实验目的】 1、初步掌握两种基本样品制备技术及傅里叶变换光谱仪器的简单操作; 2、通过谱图解析及网上标准谱图的检索,了解由红外光谱鉴定未知物的一般过程; 3、掌握有机化合物红外光谱测定的制样方法,回顾基础有机化学光谱的相关知识。 【基本原理】 ? 原理概述:物质分子中的各种不同基团,在有选择地吸收不同频率的红外辐射后,发生振动能级之间的跃迁,形成各自独特的红外吸收光谱。据此,可对物质进行定性和定量分析。特别是对化合物结构的鉴定,应用更为广泛。 ? 红外吸收法: 类型:吸收光谱法; 原理:电子的跃迁:电子由于受到光、热、电等的激发,从一个能级转移到另一个能级的现象。这是因为分 子中的电子总是处在某一种运动状态中,每一种状态都具有一定的能量,属于一定的能级。当这些电子有选择地吸收了不同频率的红外辐射的能量,发生振动能级之间的跃迁,形成各自独特的红外吸收光谱。据此,可对化合物进行定性和定量分析; 条件:分子具有偶极矩。 【仪器与试剂】 1、仪器: 傅里叶变换红外光谱仪(德国Bruker公司,TENSOR 27型; 美国Thermo Fisher 公司, Nicolet 6700型);压片机; 玛瑙研钵; 红外灯。 2、试剂:NaCl窗片、KBr晶体,待分析试样液体及固体。 【实验步骤】 1、样品制备 (1)固体样品:KBr压片法 在玛瑙研钵将KBr晶体充分研磨后加入其量5%左右的待测固体样品,混合研磨直至均匀。在一个具有抛光面的金属模具上放一个圆形纸环,用刮勺将研磨好的

红外吸收光谱分析实验

红外吸收光谱分析实验 概述 红外吸收光谱法是以一定波长的红外光照射物质时,若该红外光的频率,能满足物质分子中某些基团振动能级的跃迁频率条件,则该分子就吸收这一波长红外光的辐射能量,引起偶极距变化,而由基态振动能级跃迁到较高能级的激发态振动能级。检测物质分子对不同波长红外光的吸收强度,就可以得到该物质的红外吸收光谱。 各种化合物分子结构不同,分子振动能级吸收的频率不同,其红外吸收光谱也不同,利用这一特性,可进行有机化合物的结构剖析、定性鉴定和定量分析。 绝大多数有机化合物的基团振动频率分布在中红外区(波长400-4000cm-1),研究和应用最多的也是中红外区的红外吸收光谱法,该法具有灵敏度高、分析速度快、试样用量少,而且分析不受试样物态限制,可用于物质的气态、液态和固态的分析,所以应用范围非常广泛。红外吸收光谱法是现代结构化学、有机化学和分析化学等领域中最强有力的测试手段之一。 实验部分聚乙烯和聚苯乙烯膜的红外吸收光谱的测绘—薄膜法制样 目的要求 (1)学习聚乙烯和聚苯乙烯膜的红外吸收光谱的测绘方法; (2)学习对该图谱的解释,掌握红外吸收光谱分析基本原理; (3)学习红外分光光度计的工作原理及其使用方法。 基本原理 在由乙烯聚合成聚乙烯的过程中,乙烯的双键被打开,聚合生成—(CH2-CH2)n长链,因而聚乙烯分子中原子基团是饱和的亚甲基(CH2-CH2),其红外吸收光谱如图所示。由图可知聚乙烯的基本振动形式有: A.νC-H(-CH2-)2926cm-1、2853cm-1; B.δC-H(-CH2-)1468cm-1 C.δC-H(-CH2-)n,n>4时720cm-1, 由于δC-H1306cm-1和δC-H1250cm-1为弱吸收峰,在红外吸收光谱上未出现,因此只能观察到四个吸收峰。 在聚苯乙烯 2 的结构中,除了亚甲基(-CH2-)和次甲基CH 外,还有苯环上不饱和碳氢基团(=CH-)和碳碳骨架(-C=C-),它们构成了聚苯乙烯分子中基团的基本振动形式。图2为聚苯乙烯的红外吸收光谱,由图可知,聚苯乙烯的基本振动形式有: A.ν=C-H(Ar上)3010cm-1;3030cm-1;3060cm-1;3080 cm-1 B.νC-H(-CH2-)2926cm-1;2853cm-1;和νC-H(CH)2955cm-1 C.δC-H1468 cm-1;1360 cm-1;1306 cm-1; D.νC=C(Ar上)1605cm-1;1550cm-1;1450cm-1; E.δC-H(Ar上单取代倍频峰)1944cm-1;1871cm-1;1800cm-1;

仪器分析红外光谱实验

仪器分析实验报告 实验名称:红外光谱分析(IR)实验学院:化学工程学院 专业:化学工程与工艺 班级:化工112 姓名:王文标学号11402010233 指导教师:张宗勇 日期:2014.4.29

一、 实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在0.75~1000μm 。通常又把这个波段分成三个区域,即近红外区:波长在0.75~2.5μm (波数在13300~4000cm -1),又称泛频区;中红外区:波长在 2.5~50μm (波数在4000~200cm -1),又称振动区;远红外区:波长在50~1000μm (波数在200~10cm -1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: )(10)(4 1 cm cm λσ=- 作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为“分子指纹”。它最广泛的应用还在于对物质的化学组成进行分析。用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。它也不受熔点、沸点和蒸气压的限制,样品用量少且可回收,是属于非破坏分析。而作为红外光谱的测定工具-红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪等)比较,构造简单,操作方便,价格便宜,最常用于工业及实验研究领域,如医药鉴别,人造皮革中异氰酸酯基确定等等。因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。 根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。因此,特征吸收谱带的数目、位置、形状及强度取决于分子中各基团(化学键)的振动形式和所处的化学环境。只要掌握了各种基团的振动频率(基团频率)及其位移规律,即可利用基团振动频率与分子结构的关系,来确定吸收谱带的归属,确定分子中所含的基团或键,并进而由其特征振动频率的位移、谱带强度和形状的改变,来推定分子结构。 红外光谱仪可分为色散型和干涉型。色散型红外光谱仪又有棱镜分光型和光栅分光型,干涉型为傅立叶变换红外光谱仪(FTIR ),最主要的区别是FTIR 没

实验3 红外吸收光谱

实验三红外吸收光谱 一、实验原理 1. 了解红外吸收光谱和相关的一起操作 2. 学会分析红外吸收光谱 二、实验原理 1. 红外光区的应用 红外光区位于0.8 ~1000 μm 波长范围间 近红外区:0.8~2.5μm中红外区:2.5~50μm 远红外区:50~1000μm 2. 基本原理 将一束不同波长的红外射线照射到物质的分子上,某些特定波长的红外射线被吸收,形成这一分子的红外吸收光谱。每种分子都有由其组成和结构决定的独有的红外吸收光谱,据此可以对分子进行结构分析和鉴定。 红外吸收光谱是由分子不停地作振动和转动运动而产生的,分子振动是指分子中各原子在平衡位置附近作相对运动,多原子分子可组成多种振动图形。当分子中各原子以同一频率、同一相位在平衡位置附近作简谐振动时,这种振动方式称简正振动(例如伸缩振动和变角振动)。分子振动的能量与红外射线的光量子能量正好对应,因此当分子的振动状态改变时,就可以发射红外光谱,也可以因红外辐射激发分子而振动而产生红外吸收光谱。分子的振动和转动的能量不是连续而是量子化的。但由于在分子的振动跃迁过程中也常常伴随转动跃迁,使振动光谱呈带状。所以分子的红外光谱属带状光谱。分子越大,红外谱带也越多。如下图:

3. 产生红外的基本条件 必须满足两个条件: (1)红外辐射光子的能量与分子振动能级跃迁所需能量相同。 (2)辐射与物质间有相互耦合作用(偶极距有变化) 4. 分子振动形式 对于双原子分子,其化学键的振动类似于连接两个小球的弹簧,其振动类似于简谐振动; 对于多原子分子,振动较为复杂(原子多、化学键多、空间结构复杂),但可将其分解为多个简正振动来研究:伸缩振动ν和变形振动δ 5. 官能团和指纹区 红外谱图中有两个非常重要的区域,分别是4000~1300nm-1的高波数段官能团去和1300nm-1以下的低波数短的指纹区。 ?X-H伸缩振动区:4000~2500nm-1 ?叁键及双键积累区,2500~1900nm-1

红外光谱实验报告

红外光谱实验报告 一、实验原理: 1、红外光谱法特点: 由于许多化合物在红外区域产生特征光谱,因此红外光谱法广 泛应用于这些物质的定性和定量分析,特别是对聚合物的定性 分析,用其他化学和物理方法较为困难,而红外光谱法简便易 行,特别适用于聚合物分析。 2、红外光谱的产生和表示 红外光谱定义:分子吸收红外光引起的振动能级跃迁和转动能级跃 迁而产生的吸收信号。 分子发生振动能级跃迁需要的能量对应光波的红外区域分类为: i.近红外区:10000-4000cm-1 ⅱ.中红外区:4000-400cm-1——最为常用,大多数化合物的化键振 动能级的跃迁发生在这一区域。 ⅲ.远红外区:400-10cm-1 产生红外吸收光谱的必要条件: 1)分子振动:只有在振动过程中产生偶极矩变化时才能吸收红外辐射。 ⅰ.双原子分子的振动:(一种振动方式)理想状态模型——把两个 原子看做由弹簧连接的两个质点,用此来 描述即伸缩振动;

图1 双原子分子的振动模型 ⅱ.多原子分子的振动:(简正振动,依据键长和键角变化分两大类) 伸缩振动:对称伸缩振动 反对称伸缩振动 弯曲振动:面内弯曲:剪切式振动 (变形振动)平面摇摆振动 面外弯曲振动:扭曲振动 非平面摇摆振动 ※同一种键型,不对称伸缩振动频率大于对称伸缩振动频率,伸缩振动频率大于弯曲振动频率。 ※当振动频率和入射光的频率一致时,入射光就被吸收,因而同一基团基本上总是相对稳定地在某一特定范围内出现吸收峰。ⅲ.分子振动频率: 基频吸收(强吸收峰):基态到第一激发态所产生分子振动 的振动频率。 倍频吸收(弱吸收峰):基态到第二激发态,比基频高一倍 处弱吸收,振动频率约为基频两倍。 组频吸收(复合频吸收):多分子振动间相互作用,2个或2

仪器分析之红外吸收光谱法试题及答案

红外吸收光谱法习题 一、填空题 1. 在分子的红外光谱实验中,并非每一种振动都能产生一种红外吸收带,常常是实际吸收带比预期的要少得多。其原因是(1)_______; (2)________; (3)_______; (4)______。 2.乳化剂OP-10的化学名称为:烷基酚聚氧乙烯醚, 化学式: IR谱图中标记峰的归属:a_____, b____, c______, d____。 3.化合物的红外光谱图的主要振动吸收带应为: (1)3500~3100 cm-1处,有 ___________________振动吸收峰 (2)3000~2700 cm-1处,有 ___________________振动吸收峰 (3)1900~1650 cm-1处,有 ___________________振动吸收峰 (4)1475~1300 cm-1处,有 ___________________振动吸收峰 4.在苯的红外吸收光谱图中 (1) 3300~3000cm-1处,由________________________振动引起的吸收峰 (2) 1675~1400cm-1处,由________________________振动引起的吸收峰 (3) 1000~650cm-1处,由________________________振动引起的吸收峰 二、选择题 分子在红外光谱图上基频吸收峰的数目为 ( ) 1. Cl 2 (1) 0 (2) 1 (3) 2 (4) 3 2.下列关于分子振动的红外活性的叙述中正确的是 ( ) (1)凡极性分子的各种振动都是红外活性的,非极性分子的各种振动都不是红外活性的 (2)极性键的伸缩和变形振动都是红外活性的 (3)分子的偶极矩在振动时周期地变化,即为红外活性振动 (4)分子的偶极矩的大小在振动时周期地变化,必为红外活性振动,反之则不是 4.用红外吸收光谱法测定有机物结构时,试样应该是 ( ) (1)单质 (2)纯物质 (3)混合物 (4)任何

红外光谱实验报告

一、实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在~1000μm。通常又把这个波段分成三个区域,即近红外区:波长在~μm(波数在13300~4000cm-1),又称泛频区;中红外区:波长在~50μm(波数在4000~200cm-1),又称振动区;远红外区:波长在50~1000μm(波数在200~10cm-1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 三、仪器和试剂 1、仪器:美国尼高立IR-6700 2、试剂:溴化钾,聚乙烯,苯甲酸 3、傅立叶红外光谱仪(FTIR)的构造及工作原理 四、实验步骤

1、波数检验:将聚苯乙烯薄膜插入红外光谱仪的样品池处,从4000-650cm-1进行波数扫描,得到吸收光谱。 2、测绘苯甲酸的红外吸收光谱——溴化钾压片法 取1-2mg苯甲酸,加入在红外灯下烘干的100-200mg溴化钾粉末,在玛瑙研钵中充分磨细(颗粒约2μm),使之混合均匀。取出约80mg混合物均匀铺洒在干净的压模内,于压片机上制成直径透明薄片。将此片装于固体样品架上,样品架插入红外光谱仪的样品池处,从4000-400cm-1进行波数扫描,得到吸收光谱。 五、注意事项 1、实验室环境应该保持干燥; 2、确保样品与药品的纯度与干燥度; 3、在制备样品的时候要迅速以防止其吸收过多的水分,影响实验结果; 4、试样放入仪器的时候动作要迅速,避免当中的空气流动,影响实验的准确性。 5、溴化钾压片的过程中,粉末要在研钵中充分磨细,且于压片机上制得的透明薄片厚度要适当。 六、数据处理 该图中在波数700~800、1500~1600、2800~2975左右有峰形,证明了该物质中可能有烯烃的C-H变形振动,C-C间的伸缩振动,同时也拥有烷烃的C-H伸缩振动,推测为聚乙烯的红外谱图。 谱带位置/cm-1吸收基团的振动形式 )n—C— n≥4) (—C—(CH 2

红外光谱特征吸收峰

物质的红外光谱是其分子结构的反映,谱图中的吸收峰与分子中各基团的振动形式相对应。多原子分子的红外光谱与其结构的关系,一般是通过实验手段得到。这就是通过比较大量已知化合物的红外光谱,从中总结出各种基团的吸收规律。实验表明,组成分子的各种基团,如O-H、N-H、C-H、C=C、C=OH和C C 等,都有自己的特定的红外吸收区域,分子的其它部分对其吸收位置影响较小。通常把这种能代表及存在、并有较高强度的吸收谱带称为基团频率,其所在的位置一般又称为特征吸收峰。 一、基团频率区和指纹区 (一)基团频率区 中红外光谱区可分成4000 cm-1 ~1300 cm-1和1800cm-1 (1300 cm-1 )~ 600 cm-1两个区域。最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1 之 间,这一区域称为基团频率区、官能团区或特征区。区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。在1800 cm-1 (1300 cm-1 )~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。这种振动与整个分子的结构有关。当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。这种情况就像人的指纹一样,因此称为指纹区。指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。基团频率区可分为三个区域: (1)4000 ~2500 cm-1 X-H伸缩振动区,X可以是O、H、C或S等原子。 O-H基的伸缩振动出现在3650 ~3200 cm-1 范围内,它可以作为判断有无醇类、酚类和有机酸类的重要依据。当醇和酚溶于非极性溶剂(如CCl4),浓度于0.01mol. dm-3时,在3650 ~3580 cm-1处出现游离O-H基的伸缩振动吸收,峰形尖锐,且没有其它吸收峰干扰,易于识别。当试样浓度增加时,羟基化合物产生缔合现象,O-H基的伸缩振动吸收峰向低波数方向位移,在3400 ~3200 cm-1 出现一个宽而强的吸收峰。胺和酰胺的N-H伸缩振动也出现在3500~3100 cm-1 因此,可能会对O-H伸缩振动有干扰C-H的伸缩振动可分为饱和和不饱和的两种。饱和的C-H伸缩振动出现在3000 cm-1以下,约3000~2800 cm-1 ,取代基对它们影响很小。如-CH3 基的伸缩吸收出现在2960 cm-1和2876 cm-1附近;-

红外光谱法习题参考答案

第十二章 红外吸收光谱法 思考题和习题 8.如何利用红外吸收光谱区别烷烃、烯烃及炔烃? 烷烃主要特征峰为2 3 3 ,,,CH s CH as CH H C δδδν-,其中νC-H 峰位一般接近3000cm -1又低于3000cm -1 。 烯烃主要特征峰为H C C C H C -==-=γνν,,,其中ν=C-H 峰位一般接近3000cm -1又高于3000cm -1 。νC=C 峰位约在1650 cm -1。H C -=γ是烯烃最具特征的峰,其位置约为1000-650 cm -1。 炔烃主要特征峰为H C C C H C -≡≡-≡γνν,,,其中H C -≡ν峰位在3333-3267cm -1 。C C ≡ν峰位在 2260-2100cm -1,是炔烃的高度特征峰。 9.如何在谱图上区别异丙基及叔丁基? 当两个或三个甲基连接在同一个C 上时,则吸收峰s CH 3 δ分裂为双峰。如果是异丙基,双峰分别 位于1385 cm -1和1375 cm -1左右,其峰强基本相等。如果是叔丁基,双峰分别位于1365 cm -1 和1395 cm -1左右,且1365 cm -1峰的强度约为1395 cm -1的两倍。 10.如何利用红外吸收光谱确定芳香烃类化合物? 利用芳香烃类化合物的主要特征峰来确定: 芳氢伸缩振动( =C-H ),3100~3000cm -1 (通常有几个峰) 泛频峰2000~1667cm -1 苯环骨架振动( c=c ),1650-1430 cm -1,~1600cm -1及~1500cm -1 芳氢面内弯曲振动(β=C-H ),1250~1000 cm -1 芳氢面外弯曲振动( =C-H ),910~665cm -1 14.试用红外吸收光谱区别羧酸、酯、酸酐。 羧酸的特征吸收峰为v OH 、v C=O 及OH 峰。v OH (单体)~3550 cm -1 (尖锐),v OH (二聚体)3400~2500(宽而散),v C=O (单体)1760 cm -1 (S),v as C=O (二聚体)1710~1700 cm -1 (S)。羧酸的 OH 峰位在955~915 cm -1 范围内为一宽谱带,其形状较独特。 酯的特征吸收峰为v C=O 、v c-o-c 峰,具体峰位值是:v C=O ~1735cm -1 (S);v c-o-c 1300~1000cm -1 (S)。v as c-o-c

红外吸收光谱分析

第三章红外吸收光谱分析 3.1概述 3.1.1红外吸收光谱的基本原理 红外吸收光谱法又称为分子振动转动光谱,属于分子光谱的范畴,是有机物结构分析的重要方法之一。当一定频率的红外光照射分子时,若分子中某个基团的振动频率和红外辐射的频率一致,两者产生共振,光的能量通过分子偶极矩的变化传递给分子,该基团就吸收了这个频率的红外光,产生振动能级跃迁;如果红外辐射的频率和分子中各基团的振动能级不一致,该频率的红外光将不被吸收。如果用频率连续变化的红外光照射某试样,分子将吸收某些频率的辐射,引起对应区域辐射强度的减弱,用仪器以吸收曲线的形式记录下来,就得到该试样的红外吸收光谱,稀溶液谱带的吸光度遵守Lambert-Beer定律。 图3-1为正辛烷的红外吸收光谱。红外谱图中的纵坐标为吸收强度,通常用透过率或吸光度表示,横坐标以波数或波长表示,两者互为倒数。图中的各个吸收谱带表示相应基团的振动频率。各种化合物分子结构不同,分子中各个基团的振动频率不同。其红外吸收光谱也不同,利用这一特性,可进行有机化合物的结构分析、定性鉴定和定量分析。 图3-1 正辛烷的红外光谱图 几乎所有的有机和无机化合物在红外光谱区均有吸收。除光学异构体,某些高分子量的高聚物以及一些同系物外,结构不同的两个化合物,它们的红外光谱一定不会相同。吸收谱带出现的频率位置是由分子振动能级决定,可以用经典力学(牛顿力学)的简正振动理论来说明。吸收谱带的强度则主要取决于振动过程中偶极矩的变化和能级跃迁的概率。也就是说,红外光谱中,吸收谱带的位置、形状和强度反映了分子结构的特点,而吸收谱带的吸收强度和分子组成或官能团的含量有关。

红外光谱特征峰解析常识

红外光谱特征峰解析常识 编写李炎平 红外特征光谱峰存在一定特征规律,正确的记录了化学结构和特征,识记特征波谱峰有助于我们解析红外光谱。下面我将一些特征波谱峰简要罗列如下,如有疏漏之处还望批评指出。 , 羟基:特征峰范围(3650~3200)cmˉ1,一般在 3600cmˉ1处有较强峰。 , 羧基:特征峰范围(3500~2500)cmˉ1,一般峰波 数小于羟基。 , 饱和烷烃—C—H :特征峰小于3000cmˉ1,一般在 (2950~2850)cm处,如有峰在(1390~1360)cmˉ1 处,则说明有—CH,如有峰在1450cmˉ1处,则说3 明有——, CH2 , 不抱和烷烃:特征峰大于3000cmˉ1,对于烯烃 _C,C,H在3050 cmˉ1处和(1600~1330)cmˉ1 ,C,C,H处有峰,对于炔烃在(3360~3250)cmˉ1 处有峰,在(700~600)cmˉ1处有枪宽峰。 C,C, 对于:在(1700~1645)cmˉ1处有特征峰,不 过不太明显,只具有指示作用。 ,CHO,,COC,,,COOC,, 对于在(1900~1600)cm处有强峰。 ,C,O,,,C,O,C,,,C,N,,,C,O,C,, 指纹区:等,在 (1330~900)cmˉ1处有中强峰, , 对于:在(900~400)cmˉ1处有中强或弱峰。 (CH)2n

, 对于醛类:特征范围为羰基峰+(2900~2700)cmˉ1。 , 对于:在(1300~900)cmˉ1处有两强峰(可,C,O,C, 能有一个弱峰)。 , 特征区范围(4400~1330)cmˉ1,指纹区范围(1330~400)cmˉ1。 , 通常将中红外光谱区域划分为四个部 分。 1)4000~2500cm-1,为含氢基团的伸 缩振动区,通常称为“氢键区”。 2)2500~2000cm-1叁键和累积双键区。 3)2000~1500cm-1,双键区。 4)小于1500cm-1,单键区。

油品的红外光谱实验数据分析

图1. 干涉法测液池厚度干涉图

图2.润滑油第一次分析所得图谱及峰数据

图3.润滑油第二次分析所得图谱及峰数据

讨论分析: 由公式l=n/(2*(δ1-δ2)) (1) 注:n为干涉图中波峰数目;【δ1 δ2】扫描波数范围大小 结合图1得出如下结果: n=33 δ1=2000cmˉ1δ2=600cmˉ1 l=0.117857mm 可以看出l的值足够小,能够满足实验的需要。 数据处理: 由图2及图3 的数据记录,结合公式(2)~(4)得到如下表格: C A%=10.32*A1610/l+0.23 (2) C P%=6.9*A720/l+28.38 (3) C N%=100-(C A%+C N%) (4) 表1.图2 数据处理表 峰 基点1 基点2 高度面积C A% C P% C N% 液池池程l 名 1 1620.58 1589.15 0.0384 1.29 3.592448 65.8257 2 30.5818 3 0.117857 2 760.16 691.54 0.6396 12.72

表2.图3数据处理表 峰 基点1 基点2 高度面积C A% C P% C N% 液池池程l 名 1 1683.81 1589.94 0.0426 2.71 3.960215 55.52171 40.51808 0.117857 2 736.84 704.4 3 0.4636 5.92 实验注意事项: 1.实验时液体样品池内两盐片的宽度应该始终保持一致。 2.液体样品用注射器注入液体池中,并且要求没有气泡。 3.在第二次重复操作时,应该将液体池和垫片上的溶剂用四氯化碳洗净吹干。 20091161034 文昊 2011年12月5日

红外吸收光谱分析及其应用

红外吸收光谱分析及其应用 20世纪50年代初期,红外光谱仪问世,揭开了有机物结构鉴定的新篇章。到了50年代末期,已经积累了大量的红外光谱数据,到70年代中期,红外光谱法成为了有机结构鉴定的重要方法。红外光谱测定的优点: 1、任何气态、液态、固态样品都可以进行红外光谱的测定,这是核磁、质谱、紫外等仪器所不及的。 2、每种化合物均有红外吸收,又有机化合物的红外光谱可以获得丰富的信息。 3、常规红外光谱仪价格低廉,易于购置。 4、样品用量小。 红外吸收光谱分析也叫红外分光光度法,十一研究物质分子对红外辐射的吸收特性二建立起来的一种定性(包括结构分析)、定量分析法。根据试样的红外吸收光谱进行定性、定量分析和确定分子结构等分析的方法,称为红外吸收光谱法。 原理:当分子中某个基团的振动频率和红外光的振动频率一致时,分子就吸收红外光的能量,从原来的基态振动能级跃迁到能量较高的振动能级。物质对红外光的吸收曲线称为红外吸收光谱(IR)。 分子吸收红外光必须满足如下两个条件: 1.红外光的能量应恰好能满足振动能级跃迁所需要的能量,当红外光的频率与分子中某基团的振动频率相同时,红外光的能量才恩能够被吸收。 2.分子必须有偶极矩的变化。 与UV(紫外光谱)相比,IR的特点:IR频率范围小、吸收峰数目多、吸收曲线复杂、吸收强度弱。IR峰出现的频率位置由振动能级差决定;吸收峰的个数与分组振动自由度的数目有关;吸收峰的强度则主要取决于振动过程中偶极矩变化的大小和能级跃迁的几率。 红外吸收光谱具有高度的特征性,除光学异构外,没有两种化合物的红外光谱是完全相同的。红外光谱中往往具体要几组相关峰可以互相佐证而增强了定性和结构分析的可靠性,因此在官能团定性方面,是紫外、核磁、质谱等结构分析方法所不及的。红外光谱法可测定链、位置、顺反、晶型等异构体,而质谱法对异构体的鉴别则无能为力;红外光谱测定的样品范围广,无机、有机、高分子等

分析实验报告-红外光谱测定苯甲酸---最终版

华南师范大学实验报告 学生姓名:杨秀琼学号:20082401129 专业:化学年级班级:08化二 实验类型:综合实验时间:2010/3/25 实验指导老师郭长娟老师实验评分: 红外光谱法测定苯甲酸 一、[ 实验目的] 1.了解苯甲酸的红外光谱特征,通过实践掌握有机化合物的红外光谱鉴定方法。 2.练习用KBr压片法制备样品的方法。 3.了解红外光谱仪的结构,熟悉红外光谱仪的使用方法。 二、[实验原理] 红外吸收光谱分析方法主要是依据分子内部原子间的相对振动和分子转动等信息进行测定。不同的化学键或官能团,其振动能级从基态跃迁到激发态所需的能量不同,因此要吸收不同的红外光,将在不同波长出现吸收峰,从而形成红外光谱。 三、[仪器与试剂] 仪器:傅里叶红外光谱仪 软件:IRSolution; 压片机、膜具和干燥器;玛瑙研钵、药匙、镜纸及红外灯。 试剂:苯甲酸粉末、光谱纯KBr粉末。 四、[实验步骤]

1.将所有的膜具用酒精擦拭干净,用电吹风先烘干,再在红外灯下烘烤; 2.用电子天平称量一定量的KBr粉末(每份约200mg),在红外灯下研钵中加入KBr进行研磨,直至KBr粉末颗粒足够小(注意KBr粉末的干燥); 3.将KBr装入膜具,在压片机上压片,压力上升至14Mpa左右,稳定30S; 4.打开傅里叶红外光谱仪,将压好的薄片装机,设置背景的各项参数之后,进行测试,得到背景的扫描谱图。 5. 取一定量的样品(样品:大约1.2-1.3g)放入研钵中研细,然后重复上述步骤得到试样的薄片; 6.将样品的薄片固定好,装入红外光谱仪,设置样品测试的各项参数后进行测试,得到苯甲酸的红外谱图; 7.然后删掉背景谱图,对样品谱图进行简单的编辑和修饰,并标注出吸收峰值,保存试样的红外谱图; 8.谱图分析:在测定的谱图中根据出现吸收带的位置、强度和形状,利用各种基团特征吸收的知识,确定吸收带的归属。若出现了某基团的吸收,应该查看该基团的相关峰是否也存在。应用谱图分析,结合其他分析数据,可以确定化合物的结构单元,在按照化学知识和解谱经验,提出可能的结构式。然后查找该化合物标准谱图来验证推定的化合物的结构式。 五、[结果与分析]

红外吸收光谱法

红外吸收光谱法 第六章红外吸收光谱法 一、选择题 1.在含羰基的分子中,增加羰基的极性会使分子中该键的红外吸收带 ( ) (1) 向高波数方向移动 (2) 向低波数方向移动 (3) 不移动 (4) 稍有振动 2. 红外吸收光谱的产生是由于 ( ) (1) 分子外层电子、振动、转动能级的跃迁 (2) 原子外层电子、振动、转动能级的跃迁 (3) 分子振动-转动能级的跃迁 (4) 分子外层电子的能级跃迁 3. 色散型红外分光光度计检测器多用 ( ) (1) 电子倍增器 (2) 光电倍增管 (3) 高真空热电偶 (4) 无线电线圈 4.一种能作为色散型红外光谱仪色散元件的材料为 ( ) (1) 玻璃 (2) 石英 (3) 卤化物晶体 (4) 有机玻璃 -15.一个含氧化合物的红外光谱图在3600,3200cm有吸收峰, 下列化合物最可能 的是 ( ) (1) CH,CHO (2) CH,CO-CH 333 (3) CH,CHOH-CH (4) CH,O-CH-CH 33 323 6. Cl分子在红外光谱图上基频吸收峰的数目为 ( ) 2

(1) 0 (2) 1 (3) 2 (4) 3 7. 下列关于分子振动的红外活性的叙述中正确的是 ( ) (1)凡极性分子的各种振动都是红外活性的, 非极性分子的各种振动都不是红外活性的 (2) 极性键的伸缩和变形振动都是红外活性的 (3) 分子的偶极矩在振动时周期地变化, 即为红外活性振动 (4) 分子的偶极矩的大小在振动时周期地变化, 必为红外活性振动, 反之则不是 8. 羰基化合物中, C=O伸缩振动频率最高者为 ( ) O RC) R(1 O C) R F(2 O C) R Cl(3 O C) R Br(4 9.用红外吸收光谱法测定有机物结构时, 试样应该是 ( ) (1) 单质 (2) 纯物质 (3) 混合物 (4) 任何试样 10 以下四种气体不吸收红外光的是 ( ) (1)HO (2)CO (3)HCl (4)N 222 11. 红外光谱法, 试样状态可以是 ( ) (1) 气体状态 (2) 固体状态

相关文档
最新文档