医学图像处理期末复习

医学图像处理期末复习
医学图像处理期末复习

医学图像处理期末复习

----13级信工1班题型:

1.填空题 20题(1分/题)

2.计算题 2题(5分/题)

3.简答题 5题(6分/题)

4.程序填空 10题(1分/题)

5.程序题 3题(10分/题)

一、填空题

第一章

1.现代医学影像技术的发展源于德国科学家伦琴于1895年发现的【X 线】并由此产生的成像技术。

2.传统的X线成像得到的是组织或器官的【投影】像。

3.照片上某个像素的亮度反映穿过人体到达胶片的X线的强度,它与人体对X线的吸收量成【反】比。

4.超声成像依据的是【脉冲-回波】技术。

5.超声仪使用的成像物质波源是振动频率在人的听觉范围以外的【机械振动】波。

6.超声成像是用不可见也听不到的超声波能量实现的人体成像,对人

体【无】辐射伤害。

7.CT成像是通过检测人体对【X线】吸收量而获得的图像。

8.CT得到人体断层中的所有体素的X线【吸收】系数。

9.CT成像对软组织获得的图像的密度分辨率远【没有】MRI高。

10.核医学成像的特点是能反映人体内各组织器官【功能性(代谢)】的变化。

11.核医学领域广泛使用的影像技术是SPECT和【PET】,这两种成像技术又统称为发射型计算机体层成像(ECT)。

12.核医学成像技术是以【放射性核素】示踪法为基础的。

13.ECT的本质是由在体外测量发自体内的【γ射线】来确定在体内的放射性核素的活度。

14.磁共振成像其本质是一种能级间【跃迁】的量子效应。

15.MRI现象是由于人体中的【原子核】吸收了来自外界的电磁波后产生了共振现象。

16.MRI【无】电磁辐射损伤。

第二章

1.联合图像专家组的英文缩写是【JPEG】。

2.单色位图只有黑白两种颜色,一个像素仅占【1】bit。

3.矢量图是用一系列【绘图指令】来表示一幅图。

4.静态图像可分为【矢量】图和位图。

5.BMP也称【位图】格式。

6.真彩色是【RGB】颜色的另一种叫法。

7.【量化】就是把采样点上表示亮暗信息的连续量离散化后,用数值来表示的过程。

8.采样是指将空域上或时域上连续的图像(模拟图像)变换成【离散】采样点(像素)集合的一种操作。

9.非均匀量化是依据一幅图像具体的灰度值分布的【概率密度】函数,按总的量化误差最小的原则进行量化的方法。

10.【TIF】图像文件格式提供了存储各种信息的完备手段。

11.【灰度直方图】反映一幅图像的总体灰度分布。

12.标记图像文件格式的英文缩写是【TIF】。

13.灰度图像中,像素值通常用【8】bit表示。

14.索引颜色的图像最多只能显示【256】种颜色。

15.【JPEG】是由ISO和CCITT为静态图像所建立的第一个国际数字图像压缩标准。

16.图形交换文件格式的英文缩写是【GIF】。

17.【BMP】图像文件格式是最简单和典型的图像存储格式,是微软公司基于Windows系统环境开发的标准图像格式。

18.矢量图的图像质量与【分辨率】无关。

19.图像的【量化等级】反映了采样的质量。

20.位图是利用许多像素点表示一幅图像,每个像素具有【颜色】属性和位置属性。

21通过修正图像直方图进行图像增强是一种有效的方法,使变化后

的图像直方图【均衡化】便是常用的技术。

22.位图也称为【栅格】图像。

23均匀量化是简单的把采样值的【灰度范围】等间隔的分割并进行量化。

第三章

1.水平镜像是将图像的【左右】两部分对换。

2.直接放大法当缩放系数较大时,会产生【马赛克】现象。

3.图像相【减】常用于检测两幅或多幅图像之间的变化。

4.【指数】变换适合对像素灰度集中在高灰度区的图像进行处理。

5.图像的局部运算一般是通过图像的【卷积】运算获得的。

6.对数变换对图像的【低灰度】区有较大的扩展而对高灰度区压缩。

7.图像的灰度变换又称为图像的【点】运算或图像的对比度拉伸。

8.局部均值法就是用原始图像中某一局部区域像素点的【平均】像素值代替缩小后的图像中对应点的像素值。

9.把同一场景的多幅影像相【加】后求平均,可减少图像的随机噪声。

10.指数变换处理对图像的【高灰度】区给予较大的扩展。

11.直接缩小法就是根据缩放系数对原图像【采样】得到缩小图像。

12.如果输出图像在(x,y)点处的像素值与输入图像的所有像素值有关,这种运算称为图像的【全局】运算。

13.【垂直】镜像是将图像的上下两部分对换。

14.【对数】变换适合于对像素灰度集中在低灰度区的图像进行处理。

15.在医学图像处理中,最常见的部分线性灰度变换就是高精度医学图像的【开窗】显示。

16.医学图像的【几何】运算就是把图像像素点的空间位置或图像的空间尺寸按照某种映射关系进行映射。

17.医学图像的旋转是以图像的【中心】点为坐标原点。

第五章

1.直方图增强技术主要有两种:直方图【均衡】和直方图规定化。

2.当图像中各灰度级的分布呈【均匀】状态时,图像包含的信息量最大。

3.直方图均衡化又称直方图【平坦】化。

4.空间域滤波实在图像空间借助模板进行【邻域】操作完成的。

5.空间域方法是以对图像的【像素】直接处理为基础的。

6.图像【锐化】是为了增强被模糊的细节如图像的边缘等。

7.图像增强技术其目的是为了提高图像的【信噪】比,突出图像的某些特征如边缘等。

8.图像平滑的目的主要是消除图像中的【噪声】。

9.许多文献中采用的所谓图像预处理技术指的就是图像【增强】技术。

10.各种空域滤波器根据功能又主要分成【平滑】滤波器和锐化滤波器两类。

11.常用的修改直方图的方法主要有【灰度】变换和直方图增强。

12.图像中的边缘和噪声都对应着图像傅立叶变换中的【高频】部分。

第六章

1.阈值法都是基于一维灰度【直方】图统计特征的分割方法。

2.Kirsch算子同时检测【8】个方向的灰度变化,并取其中最大值。

3.阈值法基于如下前提与假设:对应于特定物体或背景的像素灰度呈现【峰状】分布特征并且基本集中于不通过的灰度区间内。

4.医学图像分割评价的实验方法大致可分为“【优度法】”和“偏差法”两类。

5.基于边缘的分割方法考虑像素【邻域】内的特征变换。

https://www.360docs.net/doc/b312476142.html,placian算子是根据阶跃型边缘点对应二阶【导数】的过零点设计出来的一种与方向无关的边缘检测算子。

7.【K均值】聚类是最为常用的模式聚类方法。

8.Robert算子采用两【对角线】方向相邻像素之差近似梯度幅值来检测边缘。

9.医学图像分割评价方法一般可分为【分析法】和经验法。

10.常见的基于区域的分割方法有区域生长法和【分裂合并】法。

11.基于区域的分割其实质就是把具有某种【相似】性质的像素连通起来,从而构成最终的分割区域。

12.Ostu法当被分成的两组物体间【方差】最大时,得到最佳分割阈值。

13.矩量保持法其基本思想是使阈值分割前后图像的【矩】保持不变。

14.区域生长中要解决3个问题:选择【种子】像素点;选定生长的标准;制定停止生长的标准。

15.双峰法通过在双峰之间的【最低谷】处选择阈值即可实现图像分割。

16.区域生长法的基本思想是将具有【相似】性质的像素合起来构成区域。

17.在模式识别理论中,一个模式类是一组具有某些共同【特征】的模式集合。

18.P-分位数法基本思想是使医学图像中目标所占图像像素的比例等于其【先验概率】p来设定阈值。

19.基于阈值法进行图像分割考虑每个【像素】的灰度。

20.用于图像分割的模式识别方法可分为模式【分类】法和模式聚类法两大类。

21.【贝叶斯】分类器是常用的参数分类器。

22.图像分割的最常见的非参数分类器是【K近邻】方法。

23.膨胀是将图像中与目标物体接触的所有【背景】点合并到物体中的过程。

24.基于最大熵原则进行阈值选择从信息论角度来说就是使这样选择的阈值能获得的信息量【最大】。

25.非线性迭代系统对【初始】条件的敏感性即俗称的蝴蝶效应。

26.偏差法定量计算过程中的一个关键是【理想】图像分割结果的获

得。

二、计算题

1.对一副医学图像进行采样,横向采样密度为1200个像素,纵向采

样密度为800像素,然后对每一采样点进行量化,量化等级为256级。问该图像不压缩保存时,至少需要多少存储空间?

log256

=8bit=1Byte

log2

1200?800?1B=960000B=937.5KB

2.某一个医学图像设备进行连续采样,横向采样密度为1200个像素,

纵向采样密度为800像素,然后对每一采样点进行量化,量化等级为256级,每秒采集6帧图像,问该设备传输图像不压缩的情况下至少需要多少带宽?(带宽:bps=bit pre second)

1200?800?8?6=43.95Mbps

3.对一幅图像进行采样,横向采样密度为1200个像素,纵向采样密

度为800个像素,200万的采集装置能否获得?

1200?800=960000

960000<2000000

能获得

4.照片宽4inch,高3inch,ppi值为300,总共有多少像素?

4?300?3?300=1080000

5.对一幅图像进行采样,横向采样密度为1200个像素,纵向采样密

度为800个像素,共采集了6帧图像,共有多少像素?

1200?800?6=5760000

三、简答题

1.什么是医学图像处理?P1

医学图像处理是一门综合了数学、计算机科学、医学影像学等多个学科的交叉科学,是利用数学的方法和计算机这一现代化的信息处理工具,对由不同的医学影像设备产生的图像按照实际需要进行处理和加工的技术。

2.请简述图像处理的基本流程?P1

①首先,了解待处理的对象及其特点,并按照实际需要,利用数学的方法,针对特定的处理对象及其特点,并按照实际需要,利用数学的方法,针对特定的处理对象设计出一套切实可行的算法;

②其次,利用某种编程语言(C语言,MATLAB或其他计算机语言)将设计好的算法编制成医学图像处理软件,最终由计算机实现对医学图像的处理;

③最后,利用相关理论和方法对处理结果进行检验,以评价所设计处理方法的可靠性和实用性。

3.什么是图像?P17

图像是用各种观测系统以不同形式和手段观测客观世界而获得的,是对客观存在物体的一种相似性的生动模仿与描述。

4.什么是数字图像?P18

数字图像是指把图像分解成被称作像素的若干小离散点,并将各像素的颜色值用量化的离散值,即整数值来表示的图像。

5.请简述直方图的用途?P37

①评价成像条件:根据图像灰度直方图,分析图像在成像过程(或

数字化过程)中是否合理地使用了灰度动态范围。

②进行图像增强处理:根据图像的灰度直方图,设计一种灰度映

射函数,实现处理后图像的像素尽可能充分地使用灰度动态范围,或将灰度映射到色彩空间,以不同的颜色强化图像的灰度变化。

③进行图像分割:根据图像的灰度直方图,将像素分割成不同的

类别,实现不同景物的提取。

④进行图像压缩:利用灰度直方图的统计信息,设计一种编码方

案,让具有最多像素的灰度以最少的字长表示,从而用最少的数据量表达整幅图像,如Huffman编码算法。

6.请简述平滑滤波器的特点?P93

平滑滤波器:主要用来减弱或消除图像中的噪声成分,从而提高图像的信噪比,类似于频域中的低通滤波器,因为高频分量对应图像中的区域边缘与噪声等灰度值具有较大、较快变化的部分,滤波器将噪声减弱或消除的同时,也会减弱图像的边缘信息。

7.请简述锐化滤波器的特点?P93

锐化滤波器:主要用来通过增强图像的边缘信息,凸显图像中感兴趣区域的轮廓,类似于频域中的高通滤波器,由于图像中的边缘

信息与噪声都处在高频部分,锐化滤波器在将图像边缘锐化的同时,也会降低图像的信噪比。

8.P-分位数法的基本原理?P111

p-分位数法使医学图像中目标所占图像像素的比例等于其先验概率p来设定阈值,把大于阈值的像素作为目标,小于阈值的像素作为背景,最终实现医学图像的快速分割。

9.请简述双峰法的基本原理?P112

双峰法假设图像是由前景和背景组成,且灰度直方图呈现明显双峰结构:一个与目标相对应,另一个对应于背景。通过在双峰之间的最低谷出选择阈值即可实现图像分割。

10.请简述Robert算子的特点?P116

Robert算子可通过任意一对相互垂直方向上的差分来计算梯度的原理,采用两对角线方向相邻像素之差近似梯度幅值来检测边缘。它检测斜向边缘的效果好于水平和垂直边缘,具有计算简单、定位精度高、对噪声敏感等诸多特点。

11.请简述Laplacian算子的原理?P117

Laplacian算子是根据阶跃型边缘点对应二阶导数的过零点这一性质设计出来的一种与方向无关的边缘检测算子。应用Laplacian 算子对图像(,)

f i j滤波之后,在结果图像中,通过检测过零点判断边缘的存在,即如果某对相邻像素异号,那么他们之间就存在边缘。12.请简述区域生长法的基本思想?P119

区域生长法的基本思想是将具有相似性质的像素合起来构成区

域。

13.请简述开运算和闭运算的特点?P127

开运算通过去除边缘处细小的凹陷不平达到平滑边缘的目的,具有消除图像中的细小物体,并在物体影响纤细处分离物体和平滑较大物体边界的作用。

闭运算在去除边缘上细小的凸起达到平滑边缘的目的,具有填充物体影像内细小空间、连接临近物体和平滑边界的作用。

14.请简述图像配准与融合的关系?P150

医学图像配准和融合有着密切的关系,特别是对多模态图像而言,配准和融合是密不可分的。待融合的图像往往来自不同的成像设备,它们的成像方位、角度和分辨率等因子都是不同的,所以这些图像中相应组织的位置、大小等都有差异,若事先不对融合图像进行空间上的对准,那么融合后的图像毫无意义。因此,图像配准是图像融合的先决条件,必须先进行配准变换,才能实现准确的融合。

15.请简述传统的MRI与fMRI之间的主要区别?P204

传统的MRI与fMRI之间的主要区别是他们所测量的磁共振信号有所不同。MRI是利用组织水分子中的氢原子核处于磁场中发生的磁共振现象,对组织结构进行成像,而fMRI是通过血流的变化间接测量大脑在受到刺激或发生病变时功能的变化。

16.请简述PACS对医学图像的意义?P245

PACS实现了无胶片的电子化医学图像的管理,解决了迅速增加的医学影像的存储、传送、检索和使用问题。

①采用大容量磁盘和光盘存储技术,克服了胶片存档时间长、存

储空间大的问题;

②实现了高速检索,避免了胶片丢失

③可以实现统一患者相关医学图像的整理归档,简化了数据管理

④充分利用多模式显示、图像增强和计算机辅助诊断等技术,提

高图像诊断能力;

⑤电子通信网络支持多用户同时处理,利用计算机对图像进行处

理,提高了诊断能力,并可接入远程医疗系统实现远程会诊;

⑥分布式医学图像数据库便于实现医学数据共享,从而提高了医

院的工作效率和诊断水平。

四、程序填空

1.请将图像垂直镜像程序代码补充完整

2.请将图像水平镜像程序代码补充完整

3.请将图像平移程序代码补充完整

4.请将图像平移程序代码补充完整

医学图像处理实验报告

医学图像处理实验报告 班级专业姓名学号 实验名称:图像增强 一、实验目的 1:理解并掌握常用的图像的增强技术。 2:熟悉并掌握MA TLAB图像处理工具箱的使用。 3:实践几种常用数字图像增强的方法,增强自主动手能力。 二、实验任务 对于每张图像(共三张图片),实现3种图像增强方法。根据图像的特点,分别选用不用的图像增强算法。 三、实验内容(设计思路) 1、artery_vessel (1)直方图均衡化 直方图是图像的最基本的统计特征,它反映的是图像的灰度值的分布情况。直方图均衡化的目的是使图像在整个灰度值动态变化范围内的分布均匀化,改善图像的亮度分布状态,增强图像的视觉效果。灰度直方图是图像预处理中涉及最广泛的基本概念之一。 图像的直方图事实上就是图像的亮度分布的概率密度函数,是一幅图像的所有象素集合的最基本的统计规律。直方图反映了图像的明暗分布规律,可以通过图像变换进行直方图调整,获得较好的视觉效果。 直方图均衡化是指:采用累积分布函数(CDF)变化生成一幅图像,该图像的灰度级较为均衡化,且覆盖了整个范围[0,1],均衡化处理的结果是一幅扩展了动态范围的图像。直方图均衡化就是通过灰度变换将一幅图像转换为另一幅具有均衡直方图,即在每个灰度级上都具有相同的象素点数的过程。主要用途是:将一幅灰度分布集中在较窄区间,细节不够清晰的图像,修正后使图像的灰度间距增大或灰度分布均匀,令图像的细节清晰,达到图像增强的目的。 (2)中值滤波加直方图均衡化 中值滤波法是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值。 中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点。方法是用某种结构的二维滑动模板,

医学图像处理考试复习重点

C h a p t e r1 1.A n i m a g e m a y b e d e f i n e d a s a t w o-d i m e n s i o n a l f u n c t i o n,f(x,y),w h e r e x a n d y a r e s p a t i a l c o o r d i n a t e s,a n d t h e a m p l i t u d e o f f a t a n y p a i r o f c o o r d i n a t e s (x,y)i s c a l l e d t h e i n t e n s i t y o r g r a y l e v e l o f t h e i m a g e a t t h a t p o i n t. 2.I m a g e p r o c e s s i n g i n c l u d e s i m a g e a c q u i s i t i o n,i m a g e s t o r a g e,i m a g e t r a n s m i s s i o n a n d d i g i t a l i m a g e p r o c e s s i n g. 3.L o w l e v e l p r o c e s s i n v o l v e s p r i m i t i v e o p e r a t i o n s s u c h a s i m a g e p r e p r o c e s s i n g t o r e d u c e n o i s e,c o n t r a s t e n h a n c e m e n t,a n d i m a g e s h a r p e n i n g. 4.M i d-l e v e l p r o c e s s i n v o l v e s t a s k s s u c h a s s e g m e n t a t i o n,d e s c r i p t i o n,a n d c l a s s i f i c a t i o n (r e c o g n i t i o n)o f i n d i v i d u a l o b j e c t s. 5.A s f o r m i d-l e v e l p r o c e s s,i t s i n p u t s a r e i m a g e s,b u t i t s o u t p u t s a r e a t t r i b u t e s e x t r a c t e d f r o m t h o s e i m a g e s. 6.D i g i t a l i m a g e p r o c e s s i n g e n c o m p a s s e s p r o c e s s e s w h o s e i n p u t s a n d o u t p u t s a r e i m a g e s a n d,i n a d d i t i o n,e n c o m p a s s e s p r o c e s s e s t h a t e x t r a c t a t t r i b u t e s f r o m i m a g e s,u p t o a n d i n c l u d i n g t h e r e c o g n i t i o n o f i n d i v i d u a l o b j e c t s. 7.I m a g e r e s t o r a t i o n i s b a s e d o n m a t h e m a t i c a l o r p r o b a b i l i s t i c m o d e l s o f i m a g e d e g r a d a t i o n. 8.I m a g e c o m p r e s s i o n i s t o r e d u c e t h e s t o r a g e r e q u i r e d t o s a v e a n i m a g e,o r t h e b a n d w i d t h r e q u i r e d t o t r a n s m i t i t. 9.M o r p h o l o g i c a l p r o c e s s i n g i s t o e x t r a c t i m a g e c o m p o n e n t s t h a t a r e u s e f u l i n t h e

数字图像处理在医学上的应用

数字图像处理的应用 数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号,并通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。 数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二是数学的发展;三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的增长。 进行数字图像处理所需要的设备包括摄像机、数字图像采集器(包括同步控制器、模数转换器及帧存储器)、图像处理计算机和图像显示终端。 图像是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大。 接下来,就讨论一下数字图像处理在医学上的应用。 自发现X射线以来,在医学领域可以用图像的形式揭示更多有用的医学信息,医学的诊断方式也发生了巨大的变化。随着科学技术的不断发展,现代医学已越来越离不开医学图像的信息处理。 目前的医学图像包括CT图像、核磁共振图像、B超扫描图像、数字X 光机图像、X 射线透视图像、各种电子内窥镜图像、显微镜下病理切片图像等。由于人眼识别度等客观因素的影响,大部分的图像需要依靠计算机的帮助。随着数字图像处理技术的发展,对这些图像的分析以及处理,会变得更加快捷,分析的结果也会更加精准。

与其他领域的应用相比较,医学影像等卫生领域信息更具独特性,医学图像较普通图像纹理更多,分辨率更高,相关性更大,存储空间要更大,并且为严格确保临床应用的可靠性,其压缩、分割等图像预处理、图像分析及图像理解等要求更高。 首先,对于一个病例,要进行图像采集,由于采集到的图像因试验测量系统和测量者个人因素存在较多噪声,所以要先通过预处理对图像进行去噪处理和灰度变换处理等使其变得较为清晰。预处理完成后再利用中心路径提取算法对所获取的图像进行进一步处理。 接下来要做的就是图像处理。 先对图像二值化,二值形态学的运算对象是集合给出一个图像集合和一个结构元素集合利用结构元素对图像进行操作。然后做中心线的提取等。 使用计算机进行图像的采集预处理以及二值化和计算排除了人为测 量的不精确性和误差提高了测量结果的可靠性。 随着信息技术的飞速发展和计算机应用水平的不断提高,利用计算机断层成像、正电子放射层析成像、单光子辐射断层摄像、磁共振成像、超声成像及其它医学影像设备所获得的图像被广泛应用于医疗诊断、组织容积定量分析、病变组织定位、解剖结构学习、治疗规划、功能成像数据的局部体效应校正、计算机指导手术和术后监测等各个环节。 医学图像处理借助于计算机图形、图像技术,使医学图像的质量和显示方法得到了极大的改善。这不仅可以基于现有的医学影像设备来极

数字图像处理在医学上的应用

数字图像处理在医学上的应用 1 引言 自伦琴1895年发现X射线以来,在医学领域可以用图像的形式揭示更多有用的医学信息,医学的诊断方式也发生了巨大的变化。随着科学技术的不断发展,现代医学已越来越离不开医学图像的信息处理, 医学图像在临床诊断、教学科研等方面有重要的作用。目前的医学图像主要包括CT (计算机断层扫描) 图像、MRI( 核磁共振)图像、B超扫描图像、数字X 光机图像、X 射线透视图像、各种电子内窥镜图像、显微镜下病理切片图像等。但是由于医学成像设备的成像机理、获取条件和显示设备等因素的限制, 使得人眼对某些图像很难直接做出准确的判断。计算机技术的应用可以改变这种状况,通过图像变换和增强技术来改善图像的清晰度, 突出重要的内容,抑制不重要的内容,以适应人眼的观察和机器的自动分析,这无疑大大提高了医生临床诊断的准确性和正确性。 数字图像处理的基本方法就是图像复原与图像增强。图像复原就是尽可能恢复原始图像的信息量,尽量保真。数字化的一个基本特征是它所固有的噪声。噪声可视为围绕真实值的随机波动, 是降低图像质量的主要因素。图像复原的一个基本问题就是消除噪声。图像增强就是通过利用人的视觉系统的生理特性更好地分辨图像细节。 与其他领域的应用相比较,医学影像等卫生领域信息更具独特性,医学图像较普通图像纹理更多,分辨率更高,相关性更大,存储空间要更大,并且为严格确保临床应用的可靠性,其压缩、分割等图像预处理、图像分析及图像理解等要求更高。医学图像处理跨计算机、数学、图形学、医学等多学科研究领域,医学图像处理技术包括图像变换、图像压缩、图像增强、图像平滑、边缘锐化、图像分割、图像识别、图像融合等等。在此联系数字图像处理的相关理论知识和步骤设计规划系统采集和处理的具体流程同时充分考虑到图像采集设备的拍摄效果以及最终处理结果的准确性,例举了基于图像处理技术的人体手指甲襞处微血管管袢直径的测量方法。 2人体微血管显微图像的采集 人体微血管显微图像的采集采用了如图1所示的显微光学系统和图像采集系统主要由透镜模组滤镜模组光源系统电荷耦合器件以及图像采集卡等构成。 图1显微光学系统与图像采集系统示意图

医学图像处理复习重点

医学图像处理复习重点 1、图像:事物的一种表示、写真或临摹,…..,一个生动的或图形化的描述,是对事物的一种表示。 2、图像的分类:(1)数学函数产生的图像(2)可见的图像(3)不可见的物理图像 3、图像表示:常见图像是连续的,用f(x,y)表示一幅图像,其中x,y表示空间坐标点的位置,f 表示图像在点(x,y)的某种性质的数值,如亮度等。f ,x,y可以是任意实数。 4、数字图像处理的定义(两方面):对一个物体的数字表示施加一系列的操作以达到某种预期的结果,它包括以下两方面内容:(1)将一幅图像变为另一幅经过加工的图像,是图像到图像的过程。(2)将一幅图像转化为一种非图像的表示,如一个决策等。 5、数字图象处理系统的基本组成结构:(1)图象数字化设备:扫描仪、数码相机、摄象机与图象采集卡等。(2)图象处理计算机:PC、工作站等,它可以实现通信(通信模块通过局域网等实现网络传输图像数据)、存储(存储模块采用磁盘、光盘)和图像的处理与分析(主要是运算,用算法的形式描述,用软件实现)。(3)图象输出设备:打印机等。 6、研究的内容:(1)图像增强技术(2)图像配准技术(3)图像分割技术(4)图像三维显示技术(5)医学图像数据库 7、黑白图像:是指图像的每个像素只能是黑或者白,没有中间的过渡,故又称为2值图像。2值图像的像素值为0、1。 8、灰度图像:每个象素的亮度用一个数值来表示,通常数值范围在0到255之间,即可用一个字节来表示,0表示黑、255表示白,而其它表示灰度。以上两种为非彩色图像。 9、彩色图像:彩色图象可以用红、绿、蓝三元组的二维矩阵来表示。通常,三元组的每个数值也是在0到255之间,0表示相应的基色在该象素中没有,而255则代表相应的基色在该象素中取得最大值,这种情况下每个象素可用三个字节来表示。 10、像素的性质:图像是由一些极小尺寸的矩形小块组合而成的。组成图像的这种最小基本元素称作象素(Pixel)。 例如,一幅MR图像在水平方向上有256个象素,垂直方向上也有256个象素。整幅图像共有256=65536 256个象素。这就是图像的大小(size),又称作图像的尺度。图像尺度的计算公式为 S=Nx*Ny 11、物理尺寸:象素本身也有自己的大小,即对应实际物体空间的大小。 12、强度:对于黑白图像来说,图像的强度是用灰度的等级(Gray level)表示的。灰度等级往往用2的整数次幂表示,例如8bit(256 个灰度等级)。 13、图像的运算(算术运算加减乘除较多、逻辑运算较少): 13.1算术运算 13.1.1加法运算的定义:C(x,y) = A(x,y) + B(x,y) 主要应用举例:(1)去除“叠加性”噪音(2)生成图象叠加效果 (1)去除“叠加性”噪音 对于原图象f(x,y),有一个噪音图象集{ gi(x,y) } i =1,2,...M其中:gi(x,y) = f(x,y) + h(x,y)iM 个图象的均值定义为:g(x,y) = 1/M (g0(x,y)+g1(x,y)+…+ gM(x,y))当:噪音h(x,y)i为互不相关,且均值为0时,上述图象均值将降低噪音的影响。 (2)生成图象叠加效果 对于两个图象f(x,y)和h(x,y)的均值有:g(x,y) = 1/2f(x,y) + 1/2h(x,y)会得到二次暴光的效果。推广这个公式为:g(x,y) = αf(x,y) + βh(x,y)其中α+β= 1我们可以得到各种图象合成的效果,也可以用于两张图片的衔接

医学图像处理单选题样题

| 姓 名~ 】) 牡丹江医学院医学影像学院 — ]

% % & : > 、 1、医学图像处理是对 A:CRR B:DORI C:MRI D:USA 成像方法及图像处理方法的研究。 。 2、PET A:正电子发射型计算机断层 B:单光子发射型计算机断层 C:磁共振扫描断层 D:多普勒超声技术 3、医学图像前处理包括对 A:光学显微成像的处理 B:电子显微镜图片处理 C:内窥镜图像处理 D:CT的成像方法的研究 - 4、医学图像后处理包括对 A:MRI成像方法的研究 B:医学影像设备所成像的处理与研究 C:USI成像方法的研究 D:CT的成像方法的研究 5、以下医学影像设备正确的是 A:PECT B:SPECT C:MIR D:SUI ( 6、DSA A:数字剪影血管造影 B:磁共振功能成像 C:磁共振血管造影 D:数字放射摄影 7、fMRI A:数字剪影血管造影 B:磁共振功能成像 C:磁共振血管造影 D:数字放射摄影 - 8、医学超声成像的优点 A:对比度高 B:图形的重复性不依赖于操作人员 C:对人体无辐射损伤 D:可对全身所有器官进行检查

9、CT成像的特点 A:全方位成像 ` B:分辨率差 C:组织重叠 D:可实现断层解剖学成像 10、核医学 成像的特点 A:无放射危害 B:分辨率高 C:功能性成像 D:主要实现断层解剖学成像 11、MRI成像的特点 A:使用造影剂 | B:利用声音回波 C:无电离辐射 D:只能横断面断层 12、哪一个不是医学影像成像 A:PET B:SPECT C:fMRI D:DSAT 13、现代医学影像技术的发展方向 A:数字向模拟方向发展 ~ B:组织形态学成像向功能性成像发展 C:由立体像平面方向发展 D:由融合向单一成像技术发展 14、医学图像可以分为哪两类 A:结构图像与局部图像 B:结构图像与功能图像 C:功能性成像与立体成像 D:静态图像与动态图像 ! * 【 ~ ; 15、核医学成像主要是取决于 A:脏器或组织的血流与细胞功能 B:成像设备的磁场强度 C:成像设备的X射线强度 D:人体组织与器官的氢原子数含量 16、融合技术应用于医学成像的目的是 A:使两张图片更好的连接 B:同时显示功能性信息及解剖学位置 C:方便比较两张医学图片的对比度 ¥ D:实现断层解剖学成像的3D显示 17、分子影像学是 A:探测构成疾病基础的分子异常 B:详细观察体内分子的细微结构 C:研究人体内分子的发光特点 D:研究探针的运动轨迹 18、那种融合技术有应用价值

医学图像处理(名词解释广医)

1.单元数组:单元数组中的数据成员是用数字来标识的,是每一个元素为一个单元的数组 2.结构体:结构体的数据成员是用名称来标识的,组成成员为字段,结构体采用点号来调 用(访问)字段中的数据;7 3.灰度图像:灰度图像对应着一个数据矩阵(二维数组),数组元素的值表示图像在该位 置上的亮度值;23 4.二值图像:灰度级为2的图像就是二值图像,二值图像只有两个颜色,黑与白;23 5.RGB图像:RGB图像有三个颜色值,用mxnx3数组表示,分别表示红色值。绿色值、蓝 色值;23 6.HSV图像:HSV图像也是用mxnx3数组表示的,三个矩阵分别表示色彩值、饱和度、 亮度;24 7.索引图像:索引图像由数值矩阵和颜色映射数组组成,数值矩阵是每个像素的颜色索引 编号,通过这个编号到颜色数组中寻找颜色;24 8.JPEG图像JPEG标准时目前比较流行的连续色调静止画面标准,是一种很灵活的 格式,具有调节图像质量的功能,允许用不同的压缩比列对文件进行压缩,支持多种压缩级别;27 9.GIF图像:GIF文件的数据时一种基于LZW算法的、连续色调的无损压缩的格式, 分为静态GIF和动画GIF两种;27 10.MPEG图像:是国际标准化组织制定的标准,可以压缩视频、音频。动画数字形式; 29 11.基于图像的动画制作:动画效果是由一幅幅图形变化产生的,如果这些图形来自于图像, 那么就称改动画为基于图像的动画;31 12.最近邻插值方法:最近邻插值方法是imresize函数默认的插值方法,就是令变 换后像素的灰度值等于距它最近的输入像素的灰度值;39 13.双线性插值方法:双线性插值是由两个变量的插值函数的线性插值扩展,其核心 思想是在两个方向分别进行一次线性插值;41 14.双立方插值方法:“双”的意思就是在计算了横向插值影响的基础上,把上述运算 拓展到二维空间,再计算纵向插值影响的意思,双立方插值的每个插值是由它附近的(4 x 4)个邻近象素值推算出来的,双立方插值算法能够得到相对清晰的画面质量,不过计算量也变大;41 15.领域操作:是指在图像操作时,输入要处理的像素的某领域内各个像素值,输出 要处理的像素的新值;48 16.分离块操作:使用函数colfilt进行图像领域distinct操作56 17.图像增强:是对图像进行操作,得到视觉更好或者更有用的新图像;59 18.灰度调整:灰度调整方法是基于灰度直方图的一种图像增强方法,增加灰度图像 的明暗对比度,使图像变得更加清楚;60 19.图像滤波:滤波是一种应用广泛的图像处理技术,可以通过滤波来强调或删除图 像的某些特征,滤波是一种领域操作,即处理后的图像每个像素值是原来像素周围的颜色值经过某种计算得到的;69 20.图像矩阵的特征值:设 A 是n阶方阵,如果存在数m和非零n维列向量x,使得 Ax=mx 成立,则称m 是A的一个特征值。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量;84

医学影像系统实验报告

实验1 图像的特性及图像处理初步 1 实验目的 了解MatLab软件/语言学,会使用MatLab的图像处理工具箱(Image Processing Toolbox)。使学生初步具备使用该软件处理图像信息的能力,并能够利用该软件完成本课程规定的其他实验和作业。 了解图像的基本特性,以及对图像进行简单运算后其性质的变化,学习对图像进行基本处理并评价处理结果。 2 实验要求 学生应当基本掌握MatLab的操作,掌握MatLab图像处理工具箱中最常用的函数的用法,会用该软件调入/保存图像数据,会利用该软件对图像进行简单的计算,例如四则运算等,并观察运算的结果加深对于象素和数值之间的关系的理解。 原始图像 3 实验内容与步骤 (1) 学习MatLab的基本操作 (2) 调入并显示图像 lena.gif lane = imread('lena.gif'); figure; imshow(lane); (3) 在图像 lena.gif 和图像的数据上进行加减乘除一个常数观察计算结果 l1 = imadd(lane,100); figure; imshow(l1); title('加法') l2 = imsubtract(lane,50); figure; imshow(l2); title('减法') l3 = immultiply(lane,0.6);

figure imshow(l3) title('乘法') l4 = imdivide(lane,2); figure imshow(l4); title('除法'); 从图中可以看出,当加法处理时,图像灰度值增加而变亮,减法时图像灰度值 减小而变暗,由于乘法参数为0.6,相当于减小灰度值;而 (4) 利用 imcrop 函数对图像 lena.gif 的头部进行剪裁,然后显示剪裁的结果 l5 = imcrop(lane,[55,50,180,212]); figure imshow(l5) 加法

医学图像处理实验

实验一 yq1 I=imread('');%读黑白图像 subplot(2,2,1);imshow(I) %显示图像 subplot(2,2,2);imhist(I) %显示直方图 J=imadjust(I,[ ],[0 1]);%对比度增强 subplot(2,2,3);imshow(J) subplot(2,2,4);imhist(J) I1=imresize(I,;imview(I1)%缩小 I2=imresize(I,;imview(I2)%放大 I3=imrotate(I,45,'bilinear','crop');imview(I3)%旋转45°%%原图、直方图对比度增强、直方图 %%缩小

%%放大 %%旋转45°

yq2 I=imread(''); imshow(I); I1=rgb2gray(I);%把彩色图像转换成灰度图像figure,imshow(I1); info= imfinfo('')%查询文件信息 imwrite(I1,'D:\yq\小小.png'); %写图像

info = Filename:'C:\MATLAB7\toolbox\images\i mdemos\' FileModDate: '03-May-2003 13:53:58' FileSize: 554554 Format: 'png' FormatVersion: [] Width: 732 Height: 486 BitDepth: 24 ColorType: 'truecolor' FormatSignature: [137 80 78 71 13 10 26 10] Colormap: [] Histogram: [] InterlaceType: 'none' Transparency: 'none' SimpleTransparencyData: [] BackgroundColor: [] RenderingIntent: [] Chromaticities: [] Gamma: []XResolution: [] YResolution: [] ResolutionUnit: [] XOffset: [] YOffset: [] OffsetUnit: [] SignificantBits: [] ImageModTime:'20 Feb 2003 20:53:33 +0000' Title: [] Author: [] Description: [] Copyright: 'Copyright Corel' CreationTime: [] Software: [] Disclaimer: [] Warning: [] Source: [] Comment: [] OtherText: [] yq3 [I,map]=imread(''); imshow(I,map)

医学图像处理综述

医学图像处理综述 墨南-初夏2010-07-24 23:51:56 医学图像处理的对象是各种不同成像机理的医学影像。广泛使用的医学成像模式主要分为X射线成像(X—CT) ,核磁共振成像(MRI),核医学成像(NMI)和超声波成像(UI) 这四类。 (1)x射线成像:传统x射线成像基于人体不同器官和组织密度不同。对x射线的吸收衰减不同形成x射线影像。(例如人体中骨组织密度最大,在图像上呈白影,肺是软组织并且含有气体,密度最低,在照片上的图像通常是黑影。)常用于对人体骨骼和内脏器官的疾病或损伤进行诊断和定位。现代的x射线断层成像(x—cT) 发明于20世纪70年代,是传统影像技术中最为成熟的成像模式之一,其速度已经快到可以对心脏实现动态成像。其缺点是医生要在病人接收剂量和片厚之间进行折衷选择,空间分辨率和对比度的还需进一步提高。 (2)核磁共振成像(MIR) 发展于20世纪70年代,到80年代才进入市场,这种成像设备具有在任意方向上的多切片成像、多参数和多核素成像、可实现整个空问的真三维数据采集、结构和功能成像,无放射性等优点。目前MRI的功能成像(fMRI) 是MIR设备应用的前沿领域,广泛应用于大脑功能性疾病的诊断,并为肿瘤等占位性病变提供功能信息。MRI 受到世人的广泛重视,其技术尚在迅速发展

过程中。 (3)核医学成像(NMI ) ,目前以单光子计算机断层成像(SPECT) 和正电子断层成像(PET) 为主,其基本原理是向人体注射放射性核素示踪剂,使带有放射性核素的示踪原子进入人体内要成像的脏器或组织通过测量其在人体内的分布来成像。NMI不仅可以提供静态图像,而且可提供动态图像。 (4)超声波成像(Ultrasonic Imaging ) ,属于非电离辐射的成像模态,以二维平面成像的功能为主,加上血液流动的彩色杜普勒超声成像功能在内,在市场上已经广泛使用。超声成像的缺点是图像对比度差、信噪比不好、图像的重复性依赖于操作人员。但是,它的动态实时成像能力是别的成像模式不可代替的 在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体.这往往需要借助医生的经验来判定。至于准确地确定病变体的空间位置、大小、几何形状及与周围 生物组织的空间关系,仅通过观察二维切片图象是很难实现的。因此,利用计算机图像处理技术对二维切片图象进行分析和处理。实现对人体器官,软组织和病变体的分割提取,三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分

ebnnuqc医学_图像处理技术

^ | You have to believe, there is a way. The ancients said:" the kingdom of heaven is trying to enter". Only when the reluctant step by step to go to it 's time, must be managed to get one step down, only have struggled to achieve it. -- Guo Ge Tech 医学图像处理技术 摘要:随着医学成像和计算机辅助技术的发展,从二维医学图像到三维可视化技术成为研究的热点,本文介绍了医学图像处理技术的发展动态,对图像分割、纹理分析、图像配准和图像融合技术的现状及其发展进行了综述。在比较各种技术在相关领域中应用的基础上,提出了医学图像处理技术发展所面临的相关问题及其发展方向。关键词:医学图像处理;图像分割;图像配准;图像融合;纹理分析 1.引言 近20 多年来,医学影像已成为医学技术中发展最快的领域之一,其结果使临床医生对 人体部病变部位的观察更直接、更清晰,确诊率也更高。20 世纪70 年代初,X-CT 的发明 曾引发了医学影像领域的一场革命,与此同时,核磁共振成像象(MRI :Magnetic Resonance Imaging)、超声成像、数字射线照相术、发射型计算机成像和核素成像等也逐步发展。计算机和医学图像处理技术作为这些成像技术的发展基础,带动着现代医学诊断正产生着深刻的变革。各种新的医学成像方法的临床应用,使医学诊断和治疗技术取得了很大的进展,同时将各种成像技术得到的信息进行互补,也为临床诊断及生物医学研究提供了有力的科学依据。 在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体,往往需要借助医生的经验来判定。至于准确的确定病变体的空间位置、大小、几何形状及与周围生物组织的空间关系,仅通过观察二维切片图象是很难实现的。因此,利用计算机图象处理技术对二维切片图象进行分析和处理,实现对人体器官、软组织和病变体的分割提取、三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分析,可以大大提高医疗诊断的 准确性和可靠性。此外,它在医疗教学、手术规划、手术仿真及各种医学研究中也能起重要的辅助作用。 本文对医学图像处理技术中的图像分割、纹理分析、图像配准和图像融合技术的现状及其发展进行了综述。 2.医学图像三维可视化技术 2.1三维可视化概述 医学图像的三维可视化的方法很多,但基本步骤大体相同,如图.。从#$ /&’(或超声等成像系统获得二维断层图像,然后需要将图像格式(如0(#1&)转化成计算机方便处理的格式。通过二维滤波,减少图像的噪声影响,提高信噪比和消除图像的尾迹。采取图像插值方法,对医学关键部位进行各向同性处理,获得体数据。经过三维滤波后,不同组织器官需要进行分割和归类,对同一部位的不同图像进行配准和融合,以利于进一步对某感兴趣部位的操作。根据不同的三维可视化要求和系统平台的能力,选择不同的方法进行三维体绘制,实现三维重构。

医学数字图像处理期末考试重点汇编

1、模拟图像:空间坐标和明暗程度都是连续变化的、计算机无法直接处理的图像。 2、数字图像:空间坐标和灰度均不连续的、用离散的数字(一般整数)表示的图像(计算机能处理)。是图像的数字表示,像素是其最小的单位。 3、当一幅图像的 x和 y坐标及幅值 f都为连续量时,称该图像为连续图像。 为了把连续图像转换成计算机可以接受的数字形式,必须先对连续的图像进行空间v和幅值的离散化处理。 (1)图像的采样:对图像的连续空间坐标 x和 y的离散化。 (2)图像灰度级的量化:对图像函数的幅值 f的离散化。 4、均值平滑滤波器可用于能否锐化图像?为什么?不能,均值滤波法有力的抑制了噪声,同时也引起了模糊,模糊程度与邻域半径成正比。 5、均匀采样: 对一幅二维连续图像 f(x, y)的连续空间坐标 x和 y的均匀采样,实质上就是把二维图像平面在 x方向和 y方向分别进行等间距划分,从而把二维图像平面划分成 M × N个网格,并使各网格中心点的位置与用一对实整数表示的笛卡尔坐标(I, j)相对应。二维图像平面上所有网格中心点位置对应的有序实整数对的笛卡尔坐标的全体就构8成了该幅图像的采样结果。 6、*均匀量化: 对一幅二维连续图像 f(x, y)的幅值 f的均匀量化,实质上就是将图像的灰度取值范围[0, Lmax]划分成L个等级(L为正整数, Lmax=L-1),并将二维图像平面 上 M× N个网格的中心点的灰度值分别量化成与 L个等级中最接近的那个等级的值。 7、图像增强技术根据处理空间的不同,可以分为哪两种方法?空域方法和频域方法 8、**空间分辨率 ( 1 )空间分辨率是图像中可分辨的最小细节,主要由采样间隔值决定。 (2**)一种常用的空间分辨率的定义*是单位距离内可分辨的最少黑白线对数目(单 位是每毫米线对数),比如每毫米80线对。另外,当简单地把矩形数字化仪的尺寸看作是“单位距离”时,就可把一幅数字图像的阵列大小 M×N称为该幅数字图像的空间分辨率。 (3)对于一个同样大小的景物来说,对其进行采样的空间分辨率越高,采样间隔就越小,景物中的细节越能更好地在数字化后的图像中反映出来,也即反应该景物的图像的质量就越高。 (4)一幅数字图像的阵列大小(简称为图像大小)通常用 M×N表示。在景物大小不变的情况下,采样的空间分辨率越高,获得的图像阵列 M×N就越大;反之,采

图像处理期末考试整理

数字图像处理与计算机视觉复习Ace Nirvana整理 第一章绪论 1.1前言 人类传递信息的主要媒介是语音和图像。 听觉信息20%,视觉信息>60%,其他(如味觉、触觉、嗅觉) <20%,“百闻不如一见”。 医学领域:1895年X射线的发现。 1.2数字图像处理的起源 数字图像处理的历史可追溯至二十世纪二十年代。 最早应用之一是在报纸业,当时,引入巴特兰电缆图片传输系统,图像第一次通过海底电缆横跨大西洋从伦敦送往纽约传送一幅图片。 第一台能够进行图像处理的大型计算机出现在20世纪60年代。数字图像处理的起源可追溯至利用这些大型机开始的空间研究项目,可以说大型计算机与空间研究项目是数字图像处理发展的原动力。 计算机断层是一种处理方法,在这种处理中,一个检测器环围绕着一个物体(或病人),一个X射线源,带有检测器的同心圆绕着物体旋转,X射线通过物体并由位于环上对面的相应的检测器收集起来,然后用特定的重建算法重建通过物体的“切片”的图像,这些切片组成了物体内部的再现图像。 计算机断层技术获得了1979年诺贝尔医学奖。 从20世纪60年代至今,数字图像处理技术发展迅速,目前已成为工程学、计算机科学、信息科学、统计学、物理、化学、生物学、医学甚至社会科学等领域中各学科之间学习和研究的对象。 如今图像处理技术已给人类带来了巨大的经济和社会效益。不久地将来它不仅在理论上会有更深入的发展,在应用上亦是科学研究、社会生产乃至人类生活中不可缺少的强有力的工具。 1.3图像处理的应用意义 (1)图像是人们从客观世界获取信息的重要来源 人类是通过感觉器官从客观世界获取信息,即通过耳、目、口、鼻、手通过听、看、味、嗅和触摸的方式获取信息。在这些信息中,视觉信息占60%~70%。 视觉信息的特点是信息量大,传播速度快,作用距离远,有心理和生理作用,加上大脑的思维和联想,具有很强的判断能力。其次是人的视觉十分完善,人眼灵敏度高,鉴别能力强,不仅可以辨别景物,还能辨别人的情绪,由此可见,图像信息对人类来说是十分重要的。 (2)图像信息是人类视觉延续的重要手段 人的眼睛只能看到可见光部分,但就目前科技水平看,能够成像的并不仅仅是可见光,一般来说可见光的波长为0.38 um ~0.8um ,而迄今为止人类发现可成像的射线已有多种,如:gamma射线:0.003nm~0.03nm x射线:0.03nm~3 nm 紫外线:3nm~300 nm可见光:300nm~800nm红外线:0.8um~300um微波:0.3 cm~100 cm无线电波:100cm~。 (3)图像处理技术对国计民生有重要意义 图像处理技术发展到今天,许多技术已日趋成熟。在各个领域的应用取得了巨大的成功和显著的经济效益。如在工程领域、工业生产、军事、医学以及科学研究中的应用已十分普遍。 在工业生产中的设计自动化及产品质量检验中更是大有可为。在安全保障及监控方面图像处理技术更是不可缺少的基本技术;至于在通信及多媒体技术中图像处理更是重要的关键技术。因此,图像处理技术在国计民生中的重要意义是显而易见的。

confocal医学图像处理与分析-讲义1

医学图像处理与分析 北京大学医药卫生分析中心杨建茹 2010.3.15 第一节图像处理概述 1.图像(image)的定义 ?象,像 ?图像的定义 *图像是指景物在某种介质上的再现。 *图像是人们对客观世界的景象、事物的观察,以及对人们的思维、想像的一种描述与记录。*凡是能为人类视觉系统所感知的信息形式或人们心中的有形想像统称为图像。 *图像是对客观存在的物体的一种相似性的生动模仿或描述。是物体的一种不完全、不精确,但在某种意义上是适当的表示。 图像是用各种观测系统以不同形式和手段观测客观世界而获得的,可以直接或间接作用于人眼并进而产生视知觉的实体。 注:图像是人类从外界获得信息的主要来源。 各种观测系统的使用是人类视觉延续的原因。(显微镜、望远镜、CT等) 2.图像分类 总体而言分为:宏观、微观表面、内部 按色调不同分:无色调的黑白图像有色调的彩色图像 按亮度等级分:二值图像多值图像 按其内容的活动程度分:静态图像动态图像 按所占空间维数不同分:二维平面图像多维立体图像 按人眼观察的程度分:可见图像不可见图像 连续图像——离散图像 模拟图像——数字图像 3.模拟图像与数字图像 ①模拟图像 a. 定义:图像是用各种观测系统以不同形式和手段观测客观世界而获得的,可以直接或间接 作用于人眼并进而产生视知觉的实体。 b. 存在形式:常见的各种照片、图片、海报、广告画等均属模拟图像.医学中的图像包括组 织胚胎学、病理学、细胞学、遗传学、分子生物学、放射学、超声、X线、CT、磁共振、PET、电子显微术和热像等图像。如果把图形(如心电图、脑电图等)都包括进去,则几乎医学基础研究和临床诊断就离不开图像(形)了。 c.函数表示:f (x,y,λ,t) x,y ——表示图像在某点的坐标 f (x,y) ——表示图像在(x,y)点的强度(亮度) ②数字图像

医学图像处理07-08(二)A卷

课程类别:必修[ ] 选修[√ ] 考试方式:开卷[ ]闭卷[ √ ]2007 –2008 学年第一学期 使用班级:计算机科学与技术(医学应用方向)04[1][2] 课程名称:医学图像处理考试时间:2007 年11 月 5 日 姓名:班级:学号: 一、选择题(共20分,每题2分) 1、在亮度变换中,下列那种映射最能够压缩输入部分的高值而更多的体现输入部分中的低亮度值的 细节部分( A )。 2、在二维图像的傅立叶变换中,频域原点处变换的值是( C )。 A.图像所有像素点的最大值B.图像所有像素点的最小值 C.图像所有像素点的平均值D.图像所有像素点的值的和 3、对下图采用右边的模板进行空间滤波,处理后的结果图应该是下列那一个 ( A )。 4、下列那种彩色空间常用于数字视频( B )。 A.NTSC B.YcbCr C.HSV D.CMY 5、在下列图像压缩方法中,那种是有损压缩( D )。 A、哈夫曼编码 B、算术编码 C、行程RLE编码 D、消除心理视觉冗余的量化压缩

6、在图像分割中需要进行边缘检测,下列哪个边缘检测器是由不连续的二阶导数得到的( D )。 7、为了将下图中间连接部分的断开,应该选择以下那种形态学操作( B )。 A.膨胀B.腐蚀C.闭操作D.击中或击不中变换 8、图像分割算法一般是基于亮度值的两个基本特征之一:不连续性和相似性,选择下列图像分割方 法中不是基于相似性的分割方法( D )。 A.区域生长 B.分水岭算法 C.聚合算法 D.利用Sobel算子进行边缘检测分割 9、下图黑色目标点部分存在几个8连通域( A )。 A.2 B.4 C.6 D.8 10、在计算机处理的对象识别中,主要可分为决策理论方法和结构方法,下列那个不属于理论决策方法的( D )。 A.最小距离分类器B.最优统计分类器C.神经网络 D.串匹配 二、简答题(共40分,每题5分) 1、如图所示,A和B的图形完全一样,其背景与目标的灰度值分别标注于图中, 请问哪一个目标人眼感觉更亮一些?为什么?

医学图像处理单选题样题概要

姓名牡丹江医学院医学影像学院

1、医学图像处理是对 A:CRR B:DORI C:MRI D:USA 成像方法及图像处理方法的研究。 2、PET A:正电子发射型计算机断层 B:单光子发射型计算机断层 C:磁共振扫描断层 D:多普勒超声技术 3、医学图像前处理包括对 A:光学显微成像的处理 B:电子显微镜图片处理 C:内窥镜图像处理 D: CT的成像方法的研究 4、医学图像后处理包括对 A: MRI成像方法的研究 B:医学影像设备所成像的处理与研究 C: USI成像方法的研究 D: CT的成像方法的研究 5、以下医学影像设备正确的是 A:PECT B:SPECT C:MIR D:SUI 6、DSA A:数字剪影血管造影 B:磁共振功能成像 C:磁共振血管造影 D:数字放射摄影 7、fMRI A:数字剪影血管造影 B:磁共振功能成像 C:磁共振血管造影 D:数字放射摄影 8、医学超声成像的优点 A:对比度高 B:图形的重复性不依赖于操作人员 C:对人体无辐射损伤 D:可对全身所有器官进行检查 9、 CT成像的特点 A:全方位成像 B:分辨率差 C:组织重叠 D:可实现断层解剖学成像 10、核医学成像的特点 A:无放射危害 B:分辨率高 C:功能性成像 D:主要实现断层解剖学成像 11、MRI成像的特点 A:使用造影剂 B:利用声音回波 C:无电离辐射 D:只能横断面断层 12、哪一个不是医学影像成像 A:PET B:SPECT C:fMRI D:DSAT 13、现代医学影像技术的发展方向 A:数字向模拟方向发展 B:组织形态学成像向功能性成像发展 C:由立体像平面方向发展 D:由融合向单一成像技术发展 14、医学图像可以分为哪两类 A:结构图像与局部图像 B:结构图像与功能图像 C:功能性成像与立体成像 D:静态图像与动态图像

医学图像处理及特点

数字医学图像及其特点 【摘要】数字医学是现代医学的重要发展方向,随着计算机技术的不断发展,数字医学图像在医学中的应用领域越来越广泛。本文主要针对数字图像在医学中的应用及其特点展开相关的综述。 【关键词】数字图像医学影像图像处理 引言 随着电子技术、计算机技术的不断推广和应用,计算机技术在医学领域的应用也日趋明显,尤其是在医学数字图像处理方面体现的尤为突出。数字医学影像通过无创伤的数据采集获得人体内部解剖学或生理功能信息,并以图像形式提取并显示出来【1】,因而数字图像在这种背景下应运而生。 1 数字医学图像的特点 现代医学影像包括四大部分:①以X-CT 为代表的X 射线影像;②磁共振成像MRI;③放射性核素显像如ECT;④超声波成像如超声CT 等。不管哪种医学图像,其影像灰度分布都是由人体组织特性参数的不同决定的。通常,这种差异(对比度)很小,导致影像上相邻灰度差别也就很小。而人眼对灰度的分辨率很低,只能清楚分辨从全黑到全白的十几个灰阶。所以,影像成像后必须经过数字后处理方具实用价值【2】。 2 数字图像处理 数字图像处理就是将图像转化为一个数字矩阵存放在计算机中,并采用一定的算法对其进行处理。数字图像处理的基础是数学,最主要任务就是各种算法的设计和实现。医学影像等卫生领域信息更具独特性,数字医学图像较普通图像纹理更多,分辨率更高,相关性更大,存储空间要更大,并且为严格确保临床应用的可靠性,其压缩、分割等图像预处理、图像分析及图像理解等要求更高【3】。数字医学图像处理跨计算机、数学、图形学、医学等多学科研究领域,数字医学图像处理技术包括图像变换、图像压缩、图像增强、图像平滑、边缘锐化、图像分割、图像识别【4】、图像融合等等。近年来,研发人员将众多领域方法引入应用于数字医学图像处理,经过不断的改进,处理算法的速度、处理效果得到不同程度的改善。随着信息技术的飞速发展和计算机应用水平的不断提高,利用计算机断层成像、正电子放射层析成像、单光子辐射断层摄像、磁共振成像、超声成像及其它医学影像设备所获得的图像被广泛应用于医疗诊断、组织容积定量分析、病变组织定位、解剖结构学习、治疗规划、功能成像数据的局部体效应校正、计算机指导手术和术后监测等各个环节【5】。 3 数字图像处理的优点

相关文档
最新文档