水力学复习资料重点讲义资料

水力学复习资料重点讲义资料
水力学复习资料重点讲义资料

水力学复习资料

第零章绪论

0.1水力学的任务与研究对象(了解)

水力学的任务是研究液体(只要是水)的平衡和机械运动的规律及其

实际应用. 水力学研究的基本规律有两大主要组成部分:一是关于液体平衡的规律.它研究液体处于静止或相对平衡状态时,作用于液体上各种力之间的关系,这一部分称为水静力学;二是关于液体运动的规律,它研究液体在运动状态时,作用于液体上的力与运动要素之间的关系,以及液体的运动特性与能量转换等,这部分称为水动力学.

0.2液体的粘滞性(理想液体与实际液体最大的差别)

粘滞性当液体处于运动状态时,若液体质点之间发生相对运动,则质点间会产生内摩擦力来阻碍其相对运动,液体的这种性质就称为粘滞性,产生的内摩擦力叫做粘滞力.

0.3牛顿内摩擦定律当液体做层流运动时,相邻液层之间在单位面积上作用的内摩擦力(或粘滞力)的大小与速度梯度成正比,同时和液体的性质有关.

.

0.4牛顿内摩擦定律的另一种表述(了解)P7

0.5运动粘度系数它是动力黏度系数与液体密度的比值,是表征液体粘滞性大小的物理量.其值是随温度的变化而变化的,即温度越高,)

液体的流动性是随温度的升高而增强的(其值越小

0.6牛顿内摩擦定律只适用于牛顿流体(符合牛顿内摩擦定律的液体,其特点是温度不变,动力黏度系数就不变P8图0.3)

0.7体积压缩率液体体积的相对缩小值与压强的增大值之比.(水的压缩性很小,一般不考虑)

0.8表面张力表面张力是指液体自由表面上液体分子由于两侧引力不平衡,使其受到及其微小的拉力(表面张力仅存在于液体表面,液体内部不存在,其值表示为自由面单位长度受到拉力的大小,并且随液体种类和温度的变化而变化,怎样变化)

0.9毛细现象在水力学实验中,经常使用盛有水或水银细玻璃管做测压计,由于表面张力的影响使玻璃管中液面和与之向连通容器中的液面不在同一水平面上.这就是物理学中所讲的毛细现象.

0.10由实验得知,管的内经越小,毛细管升高值越大,所以实验用的测压管内径不宜太小.P10图0.4,0,5

0.11连续介质在水力学中,把液体当作连续介质看待,即假设液体是一种连续充满其所占据空间毫无空隙的连续体.(水力学所研究的液体运动是连续介质的连续流动,但实际上,从微观角度来看,液体分子与分子之间是存在空隙的,但水力学研究的是液体的宏观运动,故将液体看作连续接介质)

0.12把液体看作连续介质的意义

如果我们把液体看作连续介质,则液流中的一切物理量都可以视为空间坐标和时间坐标的连续函数,这样,在研究液体的运动规律时,.

就可以运用连续函数的分析方法.

0.13理想液体所谓理想液体,就是把液体看作绝对不可压缩,不能膨胀,没有粘滞性,没有表面张力的连续介质.

0.14表面力和质量力

表面力表面力是作用于液体的表面,并于受作用的的表面面积成比例的力. 质量力质量力是指通过所研究液体的每一部分质量而作用与液体的,其大小和液体的质量成比例的力(质量力又称体积力)

课后习题0.2

第一章水静力学

1.1液体在平衡状态下.没有内摩擦力的存在,因此理想液体和实际液体都是一样的,故在静水中没有区分的必要.

1.2静水压力静止(或处于平衡状态)的液体作用在与之接触的表面上的水压力称为静水压力,常以表示.

1.3静水压强取微小面积,令作用在上的静水压力为,则面上单位面积上所受的平均静水压力为称为面上的平均静水压强,当无限趋近与一点时,比值的极限值定义为该点的静水压强.

1.4静水压强的两个重要特性

⑴静水压强的方向与受压面垂直并指向受压面(若不垂直,则必存在一个与液面平行的分力,这样必会破坏液体的平衡状态;静水压强若不指向受压面而是背向受压面,则必会受到拉力,同样不能保持平衡状态) ⑵作用在同一点上的静水压强相等(推导过程:在平衡液体内分割出一块无限小的四面体,倾斜面的方向任意选取,为简单起见,建立如并让

轴与重力方,让四面体的三个棱边与坐标轴平行,图所示的坐标系

向平行,各棱边长为,四面体四个表面上受有周围液体的静水压力,因四个作用面的方向各不相同,如果能够证明微小四面体无限缩小至一点时,四个作用面上的静水压强都相等即可.

令为作用在面上的静水压力, 令

面上的静水压力, 令为作用在面上的静水压力, 令为作用在为作用在面上的静水压力.又假定作用在四面体上单位,则总质量力在三个坐标方向的投影分别质量力在三个坐标方向的投影为

…因为液体处于平衡状态,由力的平衡条件

得:+

…将上式都除

以若…以分别表示四面体四个面的面积,

则,并且

有化简可得

,上式中分别表示面上的平均静水压强, ,如

,同理可果微小四面体无限缩小至一点时,均趋近于0,对上式取极限有证,故作用在同一点上的静水压强相等)

1.5等压面在平衡液体中可以找到这样一些点,他们具有相同的静水压力,这些点连成的面称为等压面(对于静止的液体其等压面是水平面,对于处于相对平衡的液体,其等压面与自由液面平行,例如称有)

其等压面就是抛物面,液体的圆柱形容器绕桶轴做等角速度旋转

1.6等压面的两个性质

⑴在平衡液体中等压面即为等势面.

⑵等压面与质量力正交.

1.7绝对压强和相对压强

绝对压强以设想没有大气存在的绝对真空状态作为零点计量的压强,称为绝对压强.

相对压强把当地大气压作为零点剂量的压强,称为相对压强.

1.8P29图1.11中各字母表示的含义

1.9真空及真空度

真空当液体中某点的绝对压强小于当地大气压强,即相对压强为负值时,就称该点存在真空.

真空度真空度是指该点绝对压强小于当地大气压强的数值.(例题1.4 1.5 .16)

1.10压强的液柱表示法

1.11水头与单位势能

1.12液体的平衡微分方程式(欧拉平衡微分方程式)的推导过程P20,以及重力作用下静水压强的基本公式的推导过程P24.

1.13压强的测量(各种压差计的计算) 计算中找等压面须注意:①若为连续液体,高度相等的面即为等压面.②若为不连续液体(如液体被阀门隔开或者一个水平面穿过了不同介质,则高度相等的面不是等压面③两种液体的接触面是等压面.

作用于矩形平面上的静水总压力1.14.

, 当压强为三角形分布时.(压力中心的位置:,为压强分布图面积压力中心离底部距离为当压强分布为梯形分布时,压力中心离底部距离为)

1.15作用于曲面上的静水总压力

分为水平方向和竖直方向计算,水平方向方法同作用于矩形平面上的静水总压力(将曲面投影在方向的图形即为矩形,则=

为形心点处的压强),竖直方向需画出压力体(压力体包括六个面:曲面本身,自由液面或者其延长面,曲面四个边延长至自由液面的四个面.这里注意自由液面必须是只受到大气压强作用的液面),则,其中为压力体的体积.

1.16几种质量力同时作用下的液体平衡

1.17作用于物体上的静水总压力,潜体与浮力的平衡及其稳定性

第二章液体运动的流束理论

2.1描述液体运动的两种方法(拉格朗日法和欧拉法)P63

2.2流线和迹线

迹线某一液体质点在运动过程中,不同时刻所流经的空间点所连成的线称为迹线,即迹线就是液体质点运动时所走过的轨迹线

流线它是某一瞬时在流场中绘出的一条曲线,在该曲线上所有点的速度向量都与该曲线相切,所以流线表示除了瞬间的流动方向.

流线的基本特性P67

恒定流与非恒定流2.3.

恒定流如果在流场中所有的运动要素都不随时间而改变,这种水流

称为恒定流(也就是说,在恒定流的情况下,任一空间点上,无论哪个液体质点通过,其运动要素都是不变的.运动要素仅仅是空间坐标的函数,而与时间无关)

非恒定流如果在流场中所有的运动要素都是随时间而改变的这种水流称为非恒定流.

注:本章只研究恒定流.

2.4流管在水流中任意取一微分面积,通过该面积周界上的每一给点,均可以作一根直线,这样就构成了一个封闭的管状曲面,称为流管. 2.5微小流束充满以流管为边界的一束液流称为微小流束(按照流线不能相交的特性,微小流束内的液体不会穿过流管的管壁向外流动,流管外的液体也不会穿过流管的管壁向流束内流动,当水流为恒定流时,微小流束的形状和位置不会随时间而改变,在非恒定流中,微小流束的形状和位置将随时间而改变.微小流束的很横断面积是很小的,一般在其横断面上各点的流速或动水压强可看作是相等的)

2.6总流任何一个实际水流都具有一定规模的边界,这种有一定大小尺寸的实际水流称为总流(总流可以看作由无限多个微小流束所组成)

2.7过水断面与微小流束或总流的流线成正交的横断面称为过水断面.

流量2.8.

2.9均匀流与非均匀流

均匀流当水流的流线为相互平行的直线时,该水流称为均匀流(直径

不变的管道中的水流就是均匀流的典型例子)

非均匀流若水流的流线不是相互平行的直线时,该水流称为非均匀流.如果流线虽然相互平行但不是直线(如管径不变的弯管中的水流)或者流线虽直线但不相互平行(如管径沿程缓慢均匀扩散或收缩的渐变管中的水流)都属于非均匀流.

2.10均匀流的特性⑴均匀流的过水断面为平面,且过水断面的形状和尺寸沿程不变⑵均匀流中,同一流线上不同点的流速相等⑶均匀流过水断面上的动水压强分布规律与静水压分布规律相同

2.11均匀流过水断面上的动水压强分布规律与静水压分布规律相同的推导过程

2.12渐变流和急变流

渐变流当水流的流线虽然不是相互平行的直线,但几乎近于平行直线称为渐变流

急变流若水流的流线之间夹角很大或者流线的曲率半径很小,这话水流称为急变流.

2.13恒定总流连续性方程的推导P71

2.14理想液体恒定流微小流束能量方程的推导P72

2.15实际液体恒定总流的能量方程的推导P78

2.15恒定总流动量方程的推导P94

液流形态及水头损失第三章.

3.1沿程水头损失和局部水头损失

沿程水头损失在固体边界平直且无障碍物的水道中,单位重量的液

体自一断面流至另一断面所损失的机械能叫做沿程水头损失,常用表示.

局部水头损失当固体边界发生改变或液体遇到障碍物时,由于边界或障碍物的作用使液体质点相对运动加强,内摩擦增加,产生较大的能量损失,这种发生在局部范围之内的能量损失叫做局部水头损失,常用表示.(就液体内部的物理作用来说,水头损失不论其产生的外因如何,都是因为液体内部质点之间有相对运动,因粘滞性的作用产生切应力的结果)

当固体边界发生改变或液体遇到障碍物时,为什么会产生局部水头损失(了解)P120

3.2影响水头损失的液流边界条件

3.2.1横向条件(过水段面积,湿周和水力半径)

湿周液流过水断面与固体边界接触的周界线叫做湿周,常用表示.(当过水段面积相等时,周长不一定相等,水与固体边界的接触要长些,故湿周对水损会产生影响,同样,当湿周相等时, 过水段面积不一定相等,通过同样大小的流量水损也不一定相等,故用水力半径来表征过水断面的水力特征)

水力半径过水段面积与湿周的比值称为水力半径,即 .

P123

纵向条件3.2.2.

3.3均匀流时无局部水头损失,非均匀渐变流时局部水头损失可以忽略不计,非均匀急变流时两种水头损失均有(知道).

3.4均匀流沿程水头损失与切应力的关系,以及半径为r处的(圆管中)切应力计算公式的推导P132

3.5计算均匀流沿程水头损失的基本公式——达西公式

对圆管来说,水力半径,故达西公式也可以写做

达西公式的推导过程应该不会考

3.6层流和紊流

层流当留速较小时,各流层的液体质点是有条不紊的运动,互不混杂,这种形态的流动叫层流.

紊流当流速较大时,各流层的液体质点形成涡体,在流动过程中,相互混杂,这种形态的流动叫紊流.

3.7雷诺试验

雷诺试验数据图形(两点三段.两点即上临界流速—水流从层流刚刚进入到紊流状态的速度和下临界流速—水流从紊流刚刚进入到层流状

态的速度.三段即层流,过渡区,紊流所对应的曲线段.)P129

3.8根据雷诺实验的结果,层流时雷诺试验图形为一条直线,

即沿程水损v呈线性的一次方关系,但是由达西公式知与v是平方关系,试解释其原因.P132

3.9雷诺数的物理意义(为什么雷诺数可以判别液流形态)P131

3.10为什么采用下临界雷诺数而不采用上临界雷诺数来判断水流的型态.

这是因为经大量试验证明,圆管中下临界雷诺数是一个比较稳定的数值,其值一般维持在2000左右,但上临界雷诺数是一个不稳定数值(一

般在12000-2000),在个别情况下也有高达40000-50000.这要看液体的平静程度和来流有扰动而定,凡雷诺数大于下临界雷诺数的,即使液流原为层流,只要有任何微小的扰动就可以是层流变为紊流.在实际工程中扰动总是存在的,所以上下临界雷诺数之间的液流是极不稳定的,都可以看作紊流,因此判别液流型态以下临界雷诺数为标准:实际雷诺数大于下临界雷诺数的是紊流,小于下临界雷诺数的是层流.

3.11雷诺实验虽然都是以圆管液流为研究对象,但其结论对其他边界条件下的液流也是适用的.只是边界条件不同,下临界雷诺数的数值不同而已.例如明渠的雷诺数,其中R为水力半径(知道).

3.12紊流的特征P133(4点,后两个特点很重要)

3.13粘性底层在紊流中并不是整个液流都是紊流,在紧靠固体边界表面有一层极薄的层流存在该层流层叫粘性底层.

3.14沿程阻力系数的变化规律

⑵即液体处于从层流进入紊流的过渡区,只与雷诺数有关,而与

即液体处于层流状态,只与雷诺数有关,而与相对光滑度无关,

且相对光滑度无关.因其范围很窄,实际意义不大.

:

关系

①当较小时粘性底层较厚,可以淹没,抵消管壁粗糙度对水流的影响,从即液流进入紊流状态,这时决定于粘性底层厚度和绝对粗糙度的

而只与雷诺数有关,而与相对光滑度无关.

②继续增大, 粘性底层厚度相应减薄,一直不能完全淹没, 管壁粗糙度

对水流产生影响, 从而既与雷诺数有关,又与相对光滑度有关.

③当增大到一定程度时, 粘性底层厚度已经变得很薄,已经不能再抵消

管壁粗糙度对水流的影响,这时管壁粗糙度对起主要作用,从而只与相对光滑度有关,而与雷诺数无关.(因这时与v是平方关系,故该区又叫做阻力平方区)

3.15谢齐公式和曼宁公式

谢齐公式

曼宁公式

第四章有压管中的恒定流

4.1简单管道

简单管道管道直径不变且无分支的管道.

4.2自由出流和淹没出流

自由出流管道出口水流流入大气,水股四周都受大气压强的作用,称为自由出

流.

淹没出流管道出口如果淹没在水下,则称为淹没出流

4.3短管和长管

短管管道中若存在较大的局部水头损失,它在总水损中占的比重较

大,不能忽

略不计的管道称为短管. ,其中J为水力坡度,/l ,R水力半径. ,其中n为粗糙系数,简称糙率.

长管若管道较长,局部水损和流速水头可以忽略不计,这样的管道叫做长管.

4.4简单管道的水力计算(以下均属于连续性方程和能量方程的具体应用)

总原则首先确定按长管还是短管计算.若按短管计算,则沿程损失,局损和流速

水头都要计算;若按长管计算,

只需计算沿程损失, 局部水损和流速水头可以忽略不计;在没有把握估计局损

的影响程度时,均按短管计算.

(先按短管计算,求出具体的沿程损失和局损数值,比较后可确定到底如何计算,

若无法确定具体数值一般的,

给水管道按长管计算,虹吸管按短管计算,水泵吸水管按短管计算,压水管根据

.

情况而定

4.4.1自由出流和淹没出流的水力计算

自由出流上游存在行近流速,即有一个行近水头,列能量方程需计算

在内(但其

值一般很小,在计算结果以忽

略不计,即公式中的).

淹没出流上游存在行近流速,即有一个行近水头,列能量方程需计算在内(但其

值一般很小,在计算结果时可

以忽略不计,即公式中的). 下游也存在一个流速水头,但由于

管道的过水断面积很小,

而下游过水断面积很大,水流速度在下游已经变得很小,可以忽略,不需计入能量方程.

4.4.2几种基本类型

4.4.3虹吸管和水泵装置的水力计算

4.4.4串联管道

整个管道的水头损失等于各支管水损之和.

4.4.5并联管道

并联管道一般按长管计算,各支管的水损相等(各支管的水损相等,只表明通过

每一并联支管的单位重量液体

的机械能损失相等;但各支管的长度,直径及粗糙系数可能不同,因此其流量也

不同,股通过各并联支管的总机

械能损失是不相等的)

4.4.6分叉管道

在分叉处分为若干个串联管道进行计算.

4.5沿程均匀泄流的水力计算

本章的水力计算题均是围绕这能量方程来设计的,所以熟练掌握能量方程的应

用,加上对各个类型的管道

特点的了解,不用背繁琐的公式也可以解决本章的计算题,当然背下来更好

第五章明渠恒定均匀流

5.1明渠恒定均匀流(知道)

明渠恒定均匀流当明渠水流的运动要素不随时间而变化时,称为明渠恒定流.否

则称为明渠非恒定流.明渠

恒定流中,如果流线是一簇相互平行的直线,则水深,断面平均流速和流速分布沿

程不变,称为明渠恒定均流,

否则称为明渠恒定非均匀流.(明渠均匀流中,

摩阻力

与重力沿水流方向的分力

)

相平衡.

5.2矩形,梯形横断面水力要素的计算

梯形中,

5.3底坡

明渠渠底的纵向倾斜程度称为明渠的底坡, 以符号表示.且,其中为渠为梯形与水平面的夹角.

底线与水平面的夹角.

5.4顺坡,水平和逆坡明渠

当明渠渠底沿程降低时,称为顺坡明渠;沿程不变时称为水平明渠;沿程升高时

称为逆坡明渠.(在水平明渠中, 由于故在其流动过程中,只存在摩阻力;在逆坡明渠中,摩阻力

与重力沿水流方向的分力方向一致,因此这两种情况都不可能产生明渠均匀流;只有在顺坡渠

道中才可能产生明渠均匀

流)

5.5明渠恒定均匀流的特性及其产生条件

5.6明渠均匀流的计算公式(连续性方程和谢齐公式, 谢齐系数采用曼宁公式)

5.7矩形和梯形水力最佳断面的推导过程

5.8允许流速

不冲允许流速能够避免渠道遭受冲刷的流速.

.

能够保证水中悬浮的泥沙不淤积在渠槽的流速不於流速

5.9明渠均匀流的水力计算

第六章明渠恒定非均匀流

6.1明渠非均匀渐变流和明渠非均匀急变流(知道)

在明渠非均匀流中,若流线是接近于相互平行的直线,或流线间的夹角很小,流线的曲率半径很大,这种水流称为明渠非均匀渐变流.反之为明渠非均匀急变流.(本章着重研究明渠非均匀渐变流的基本特性及其水力要素沿程变化的规律)

6.2正常水深(知道)

因明渠非均匀流的水深沿流程是变化的,为了不致引起混乱,把明渠均匀流的水深称为正常水深.并以表示.

6.3明渠水流的三种形态

一般明渠水流有三种形态,即缓流,临界流和急流.

6.4明渠水流三种形态的判别方法(5种:微波波速法,比能曲线法,Fr法,临界水深法,临界底坡法)

6.4.1微波波速法微波波速的描述(了解)P216

当v<,水流为缓流,干扰波能向上游传播; v=,水流为临界流,干扰波恰不能向上游传播; v>,水流为急流,干扰波不能向上游传播.

要判别流态,必须首先确定微波传播的相对速度,相对速度的推导过程(了解)P217(如图6.3,对平静断面1-1和波峰所在断面2-2列连续性方程和能量方程.1-1断面流速为,2-2断面流速为,最后令即可得出这就是=,.

.矩形明渠静水中微波传播的相对速度公式.如果明渠为任意形状时,

则有

=

式中为断面平均水深,A为断面面积,B为水面宽度.在实际工程中水流都是流动的,设水流断面平均流速为v

,则微波传播的绝对速度应是静水中的相对波速与水流速度的代数和,

水方向)

6.4.2 Fr法

当Fr<1,水流为缓流;

Fr=1,水流为临界流;

Fr>1,水流为急流.

对临界流来说,断面平均流速恰好等于微波相对波速,

写为,其中称为弗劳德数,用符号Fr表示. ,该式可改,正号为顺水方向,负号为逆

弗劳德数的两个物理意义P218

6.4.3比能曲线法

断面比能把基准面选在渠底,所计算的单位液体所具有的能量称因一般坡底较小,在实际应用上,则.并以表示,为断面比能

水力学复习资料重点讲义资料

水力学复习资料 第零章绪论 0.1水力学的任务与研究对象(了解) 水力学的任务是研究液体(只要是水)的平衡和机械运动的规律及 其实际应用.水力学研究的基本规律有两大主要组成部分:一是关于液体平衡的规律?它研究液体处于静止或相对平衡状态时,作用于液体上各种力之间的关系,这一部分称为水静力学;二是关于液体运动的规律,它研究液体在运动状态时,作用于液体上的力与运动要素之间的关系,以及液体的运动特性与能量转换等,这部分称为水动力学. 0.2液体的粘滞性(理想液体与实际液体最大的差别) 粘滞性当液体处于运动状态时,若液体质点之间发生相对运动,则质点间会产生内摩擦力来阻碍其相对运动,液体的这种性质就称为粘滞性,产生的内摩擦力叫做粘滞力. 0.3牛顿内摩擦定律当液体做层流运动时,相邻液层之间在单位面积上作用的内摩擦力(或粘滞力)的大小与速度梯度成正比,同时和液体的性质有关. 即 0.4牛顿内摩擦定律的另一种表述(了解)P7 0.5运动粘度系数它是动力黏度系数与液体密度的比值,是表征液体粘滞性大小的物理量.其值是随温度的变化而变化的,即温度越高, 其值越小(液体的流动性是随温度的升高而增强的)

0.6牛顿内摩擦定律只适用于牛顿流体(符合牛顿内摩擦定律的液体,其特点是温度不变,动力黏度系数就不变P8图0.3) 0.7体积压缩率液体体积的相对缩小值与压强的增大值之比.(水的压缩性很小,一般不考虑) 0.8表面张力表面张力是指液体自由表面上液体分子由于两侧引力不平衡,使其受到及其微小的拉力(表面张力仅存在于液体表面,液体内部不存在,其值表示为自由面单位长度受到拉力的大小,并且随液体种类和温度的变化而变化,怎样变化) 0.9毛细现象在水力学实验中,经常使用盛有水或水银细玻璃管做测压计,由于表面张力的影响使玻璃管中液面和与之向连通容器中的液面不在同一水平面上.这就是物理学中所讲的毛细现象. 0.10由实验得知,管的内经越小,毛细管升高值越大,所以实验用的测压管内径不宜太小.P10图0.4,0,5 0.11连续介质在水力学中,把液体当作连续介质看待,即假设液体是一种连续充满其所占据空间毫无空隙的连续体.(水力学所研究的液体运动是连续介质的连续流动,但实际上,从微观角度来看,液体分子与分子之间是存在空隙的,但水力学研究的是液体的宏观运动,故将液体看作连续接介质) 0.12把液体看作连续介质的意义 如果我们把液体看作连续介质,则液流中的一切物理量都可以视为空间坐标和时间坐标的连续函数,这样,在研究液体的运动规律时,就可以运用连续函数的分析方法.

水力学基本概念

目录 绪论:1 第一章:水静力学1 第二章:液体运动的流束理论3 第三章:液流形态及水头损失3 第四章:有压管中的恒定流5 第五章:明渠恒定均匀流5 第六章:明渠恒定非均匀流6 第七章:水跃7 第八章:堰流及闸空出流8 第九章:泄水建筑物下游的水流衔接与消能9第十一章:明渠非恒定流10 第十二章:液体运动的流场理论10 第十三章:边界层理论11 第十四章:恒定平面势流11 第十五章:渗流12 第十六章:河渠挟沙水流理论基础12 第十七章:高速水流12 绪论:

1 水力学定义:水力学是研究液体处于平衡状态和机械运动状态下的力学规律,并探讨利用这些规律解决工程实际问题的一门学科。b5E2RGbCAP 2 理想液体:易流动的,绝对不可压缩,不能膨胀,没有粘滞性,也没有表面张力特性的连续介质。 3 粘滞性:当液体处在运动状态时,若液体质点之间存在着相对运动,则质点见要产生内摩擦力抵抗其相对运动,这种性质称为液体的粘滞性。可视为液体抗剪切变形的特性。<没有考虑粘滞性是理想液体和实际液体的最主要差别)p1EanqFDPw 4 动力粘度:简称粘度,面积为1m2并相距1m的两层流体,以1m/s做相对运动所产生的内摩擦力。 5 连续介质:假设液体是一种连续充满其所占空间毫无空隙的连续体。 6 研究水力学的三种基本方法:理论分析,科学实验,数值计算。第一章:水静力学 要点:<1)静水压强、压强的量测及表示方法;<2)等压面的应用;<3)压力体及曲面上静水总压力的计算方法。DXDiTa9E3d 7 静水压强的两个特性:1)静水压强的方向与受压面垂直并指向受压面2)任一点静水压强的大小和受压面方向无关,或者说作用于同一点上各方向的静水压强大小相等。RTCrpUDGiT 8 等压面:1)在平衡液体中等压面即是等势面2)等压面与质量力正交3)等压面不能相交4)绝对静止等压面是水平面5)两种互不

上计算水力学课的心得

上计算水力学课的心得 水利水电学院水力学及河流动力学 胥慧1030201016 摘要:首先通过计算水力学这门课程的学习,联想到不规则的平面图形面积的求解;还简要说明了从中学到的内容,着重说明了离散的有关问题;最后阐述了自己对这门课程的几点意见。 关键词:面积,区域离散,控制方程离散,意见 1、不规则图形面积求解 上计算水力学这门课程时,我突然想起小时候学过对于一个边界形状不规则的平面图形面积问题的求解方法。当时是先把那个不规则的平面图形誊画在一个透明的玻璃板上,再把一张事先做好的1cm×1cm方格纸铺在玻璃板下边,先记录一下不规则图形里显示完整的小方格数目,对于不完整的小方格,正好满半个格算的两个算一个格,大于半个格计一个格,不满半个格的舍去,这样相加在一起就是这个不规则的几何图形的近似面积。同样的办法,再分别用0.5cm×0.5cm 的方格纸和0.1cm×0.1cm的方格纸对不规则图形面积进行计算。结果不言而喻,必然是用0.1cm×0.1cm的方格纸得到的近似解更接近真实解。通过缩短方格纸的边长,来实现接近真实解的方法。用类比的方法学习了计算水力学这门课。2、学到的内容 在以前的学习中我了解到,描述流体流动及传热等物理问题的基本方程为偏微分方程,想要得它们的解析解或者近似解析解,在绝大多数情况下都是非常困难的,甚至是不可能的,就拿我们熟知的Navier-Stokes方程来说,现在能得到的解析的特解也就70个左右。通过学习计算水力学这么课程,我知道对这些问题进行研究,可以借助于现在已经相当成熟的代数方程组求解方法,对于这种方法简单来说就是将连续的偏微分方程组及其定解条件按照某种方法遵循特定的规则在计算区域的离散网格上转化为代数方程组,以得到连续系统的离散数值逼

最新水力学常用计算公式文件.doc

1、明渠均匀流计算公式: Q=Aν=AC Ri 1 n y R (一般计算公式)C= 1 n R 1 6 C= (称曼宁公式)2、渡槽进口尺寸(明渠均匀流) Q=bh 2gZ 0 z:渡槽进口的水位降(进出口水位差) ε:渡槽进口侧向收缩系数,一般ε=0.8~0.9 b:渡槽的宽度(米) h:渡槽的过水深度(米) φ:流速系数φ=0.8~0.95 3、倒虹吸计算公式: Q=mA2gz (m 3/秒) 4、跌水计算公式:

跌水水力计算公式:Q=εmB 3/2 2gH , 式中:ε—侧收缩系数,矩形进口ε=0.85~0.95;, B—进口宽度(米);m—流量系数 5、流量计算公式: Q=Aν 式中Q——通过某一断面的流量,m 3/s; ν——通过该断面的流速,m/h 2 A——过水断面的面积,m 。 6、溢洪道计算 1)进口不设闸门的正流式开敞溢洪道 3 (1)淹没出流:Q=εσMBH2 3 =侧向收缩系数×淹没系数×流量系数×溢洪道堰顶泄流长度×溢洪水深2 3

(2)实用堰出流:Q=εMBH 2 1

3 =侧向收缩系数×流量系数×溢洪道堰顶泄流长度×溢洪水深2 2)进口装有闸门控制的溢洪道 (1)开敞式溢洪道。 3 Q=εσMBH2 3 =侧向收缩系数×淹没系数×流量系数×溢洪道堰顶泄流长度×溢洪水深2 (2)孔口自由出流计算公式为 Q=MωH =堰顶闸门自由式孔流的流量系数×闸孔过水断面面积×H 其中:ω=be 7、放水涵管(洞)出流计算 1)、无压管流 Q=μA2gH =流量系数×放水孔口断面面积×2gH 2)、有压管流

第三章第3章给水排水管网水力学基础

第3章给水排水管网水力学基础 3.1 基本概念 3.2 管渠水头损失计算 3.3 非满流管渠水力计算 3.4 管道的水力等效简化 3.1基本概念 3.1.1管道内水流特征 Re=ρvd/μ 3.1基本概念 3.1.2有压流与无压流 有压流:水体沿流程整个周界与固体壁面接触,而无自由液面(压力流、管流) 无压流:水体沿流程一部分周界与固体壁面接触,其余与空气接触,具有自由液面(重力流、明渠流) 3.1基本概念 3.1.3恒定流与非恒定流 恒定流:水体在运动过程中,其各点的流速与压力不随时间而变化,而与空间位置有关的流动称为恒定流非恒定流:水体在运动过程中,其流速与压力不与空间位

置有关,还随时间的而变化的流动称为非恒定流3.1基本概念 3.1.4均匀流与非均匀流 均匀流:水体在运动过程中,其各点的流速与方向沿流程不变的流动称为均匀流 非均匀流:水体在运动过程中,其各点的流速与方向沿流程变化的流动称为非均匀流 3.1基本概念 3.1.5水流的水头与水头损失 水头:指的是单位质量的流体所具有的能量除以重力加速度,一般用h或H表示,常用单位为米(m) 3.1基本概念 3.1.5水流的水头与水头损失 水头损失:流体克服阻力所消耗的机械能

3.2管渠水头损失计算 3.2.1沿程水头损失计算 管渠的沿程水头损失常用谢才公式计算 对于圆管满流,沿程水头损失可用达西公式计算 沿程阻力系数 λλ228 (m) 2C g g v D l h f == R 为过水断面的里半径,及过水断面面积除以湿周,圆管满 流时R=0.25D 流体在非圆形直管内流动时,其阻力损失也可按照上述公式计算,但应将D 以当量直径de 来代替 3.2管渠水头损失计算 (m) l R C v il h 22 f ==Ri C v =

(参考)水力学计算说明书

水力学实训设计计算书 指导老师:柴华 前言 水力学是一门重要的技术基础课,它以水为主要对象研究流体运动的规律以及流体与边界的相互作用,是高等学校许多理工科专业的必修课。 在自然界中,与流体运动关联的力学问题是很普遍的,所以水力学和流体力学在许多工程领域有着广泛的应用。水利工程、土建工程、机械工程、环境工程、热能工程、化学工程、港口、船舶与海洋工程等专业都将水力学或流体力学作为必修课之一。 水力学课程的理论性强,同时又有明确的工程应用背景。它是连接前期基础课程和后续专业课程的桥梁。课程教学的主要任务是使学生掌握水力学的基本概念、基本理论和解决水力学问题的基本方法,具备一定的实验技能,为后续课程的学习打好基础,培养分析和解决工程实际中有关水力学问题的能力。水是与我们关系最密切的物质,人类的繁衍生息、社会的进化发展都是与水“唇齿相依、休戚相关”的。综观所有人类文

明,几乎都是伴着河、海而生的

通过学习和实训,应用水力学知识,为以后的生活做下完美的铺垫。

任务二:分析溢洪道水平段和陡坡段的水面曲线形式,考虑高速水流掺气所增加的水深,算出陡坡段边墙高。边墙高按设计洪水流量校核;绘制陡坡纵剖面上的水面线。 任务三:绘制正常水位到汛前限制水位~相对开度~下泄流量的关系曲线;绘制汛前限制水位以上的水库水位~下泄流量的关系曲线。 任务四:溢洪道消力池深、池长计算:或挑距长度、冲刷坑深度和后坡校核计算 任务二:分析溢洪道水平段和陡坡段的水面曲线形式,考虑高速水流掺气所增加的水深,算出陡坡段边墙高。边墙高按设计洪水流量校核;绘制陡坡纵剖面上的水面线。 1.根据100年一遇洪水设计,已知驼峰堰上游水位25.20,堰顶高程18.70,堰底高程为17.45, 计算下游收缩断面水深h C, P=18.70-17.45=1.25m H=25.20-18.70=6.5m P/H=1.25÷6.5=0.19<0.8 为自由出流 m=0.32+0.171(P/H)^0.657 =0.442 设H =H,由资料可知溢洪道共两孔,每孔净宽10米,闸墩头为圆形,敦厚2米,边墩围半圆形,混凝土糙率为0.014.故查表可得: ζ 0=0.45 ζ k =0.7 ε=1-0.2(ζk+(n-1)ζ0)×H0/nb=0.92 H =(q/(εm(2g)^0.5))^2/3=6.77m E0=P+H0=6.77+1.25=8.02m 查表的:流速系数ψ=0.94

塔的水力学计算手册

塔的水力学计算手册

1.目的与适用范围 (1) 2.塔设备特性 (1) 3.名词术语和定义 (1) 4.浮阀/筛孔板式塔盘的设计 (1) 5.填料塔的设计 (1)

1.目的与适用范围 为提高工艺工程师的设计质量,推广计算机应用而编写本手册。 本手册是针对气液传质塔设备中的普遍性问题而编写。对于某些具体塔设备的数据(比如:某生产流程中针对某塔设备的板效率而采用的计算关联式,或者对于某吸收填料塔的传质单元高度或等板高度而采用的具体计算公式)则未予收入。本设计手册以应用为主,主要是指导性的计算方法和步骤,并配合相应的计算程序,具体公式及理论推阐可参考有关文献。 2.塔设备特性 作为气(汽)、液两相传质用的塔设备,首先必须能使气(汽)、液两相得到充分的接触,以得到较高的传质分离效率。 此外,塔设备还应具有以下一些特点: (1)当气(汽)、液处理量过大(超过设计值)时,仍不致于发生大量的雾 沫挟带或液泛等影响正常操作的现象。 (2)当操作波动(设计值的50%~120%)较大时,仍能维持在较高的传 质效率下稳定操作,并具有长期连续操作所必须具备的可靠性。 (3)塔压力降尽量小。 (4)结构简单、耗材少、制造和安装容易。 (5)耐腐蚀、不易堵塞。 (6)塔内的滞留液量要小。 3.名词术语和定义 3.1 塔径(tower diameter),D T 塔筒体内壁直径,见图3.1-(a)。 3.2 板间距(tray spacing),H T 塔内相邻两层塔盘间的距离,见图3.1-(a)。 3.3 降液管(downcomer),DC 各层塔盘之间专供液相流体通过的组件,单溢流型塔盘为侧降液管,双溢流型塔盘有侧降液管和中央降液管,三或多溢流型塔盘有侧降液管、偏侧降液管、偏中央降液管及中央降液管。 3.4 降液管顶部宽度(DC top width),Wd 弓形降液管面积的弦高。掠堰另有算法,见图3.1-(a),-(b)。 3.5 降液管底间隙(DC clearance),ho 降液管底部边缘至塔盘(或受液盘)之间的距离,见图3.1-(a)。 3.6 溢流堰高度(weir height),hw 降液管顶部边缘高出塔板的距离,见图3.1-(a)。 3.7 总的塔盘横截面积(total tower cross-section area),A T

水力学常用计算公式精选文档

水力学常用计算公式精 选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

1、明渠均匀流计算公式: Q=A ν=AC Ri C=n 1R y (一般计算公式)C=n 1 R 61 (称曼宁公式) 2、渡槽进口尺寸(明渠均匀流) z :渡槽进口的水位降(进出口水位差) ε:渡槽进口侧向收缩系数,一般ε=~ b :渡槽的宽度(米) h :渡槽的过水深度(米) φ:流速系数φ=~ 3、倒虹吸计算公式: Q=mA z g 2(m 3/秒) 4、跌水计算公式: 5、流量计算公式: Q=A ν 式中Q ——通过某一断面的流量,m 3/s ; ν——通过该断面的流速,m /h A ——过水断面的面积,m 2。 6、溢洪道计算 1)进口不设闸门的正流式开敞溢洪道 (1)淹没出流:Q =εσMBH 2 3 =侧向收缩系数×淹没系数×流量系数×溢洪道堰顶泄流长度×溢洪水深2 3 (2)实用堰出流:Q=εMBH 2 3 gZ 2bh Q =跌水水力计算公式:Q =εmB 2 /30g 2H , 式中:ε—侧收缩系数,矩形进口ε=0.85~0.95;, B —进口宽度(米);m —流量系数

=侧向收缩系数×流量系数×溢洪道堰顶泄流长度×溢洪水深2 3 2)进口装有闸门控制的溢洪道 (1)开敞式溢洪道。 Q =εσMBH 2 3 =侧向收缩系数×淹没系数×流量系数×溢洪道堰顶泄流长度×溢洪水深2 3 (2)孔口自由出流计算公式为 Q=M ωH =堰顶闸门自由式孔流的流量系数×闸孔过水断面面积×H 其中:ω=be 7、放水涵管(洞)出流计算 1)、无压管流 Q=μA 02gH =流量系数×放水孔口断面面积×02gH 2)、有压管流 Q =μA 02gH =流量系数×放水孔口断面面积×02gH 8、测流堰的流量计算——薄壁堰测流的计算 1)三角形薄壁测流堰,其中θ=90°,即 自由出流:Q =2 5或Q =(2-15) 淹没出流:Q =(25 )σ(2-16) 淹没系数:σ=2)13.0( 756.0--H h n +(2-17) 2)梯形薄壁测流堰,其中θ应满足tan θ=4 1 ,以及b >3H ,即 自由出流:Q =g 22 3=2 3(2-18)

工艺专业塔器水力学计算设计导则

1 塔器设计概述 1.1 石油化工装置中塔器占有很大的比重。几乎每种工艺流程都存在蒸馏或吸收等分离单元过程,因此塔器设计至关重要。往往塔器设计的优劣,决定着装置的先进性和经济性,必须给予重视。 1.2 塔器设计与工艺流程设计有着非常密切的关系,亦即塔器的选型和水力学计算与工艺流程的设计计算是结合在一起的。有时塔器设计影响着分离流程和操作条件的选择。例如减小蒸馏塔的回流比,能降低能耗,但塔板数增加,对塔器讲就是减小塔径和增加塔高,其中必有一个最经济条件的选择。又如真空塔或对釜温有要求的蒸馏塔均对压降要求较严,需要选择压降低的板式塔或填料塔,在塔器水力学计算后,压降数据要返回工艺作釜温核算。 1.3 一般工艺流程基本确定后,进行塔器的选型、设计等工作。塔器设计涉及到工艺、化学工程、设备、仪表、配管等专业。化学工程专业的任务及与各专业间关系另有说明。见化学工程专业工作手册H-P0101-96、H-P0301-96。 1.4 随着石油化工和科技的迅猛发展,蒸馏塔从一般的一股进料、二股产品的常规塔发展为多股进料、多侧线,有中间换热的复杂塔。要求塔的生产能力大、效率高、塔板数多,即大塔径、多程数、高效、低压降等,对塔器设计提出了更高的要求,并推动了塔器设计工作的发展。 1.5 近年来电子计算机的普及和发展,为工艺与塔器设计提供了有力的工具。我们可应用PROCESS或PRO/Ⅱ等工艺流程模拟软件进行计算,得到塔的最大和最小汽液负荷、密度等数据,以便进行分段的塔的水力学计算,使工艺和塔的水力学计算能同步进行,并作多方案比较,求得最佳设计。 1.6 设计中主要考虑的问题 1.6.1 确定工艺流程(尤其是分离流程) 通过工艺流程模拟电算,选定最佳切割方案,其中包括多股进料、侧线采出、进料状态和位置等方面的选择。 1.6.2 塔压的设定

大学水力学课件

大学水力学课件 大学水力学课件 水力学是研究以水为代表的液体的宏观机械运动规律,及其在工程技术中的应用。水力学包括水静力学和水动力学。 水力学课件 【开课单位】环境科学与工程学院【课程模块】学科基础【课程编号】【课程类别】必修 【学时数】48(理论48实践0)【学分数】3 一、课程描述 本课程大纲根据20**年本科人才培养方案进行修订。 (一)教学对象:环境工程专业本科生 (二)教学目标及修读要求 1、教学目标 掌握基本概念。包括:流体的主要物理性质及作用于流体的力,静水压强及其特性,压强的测量与表示方法,恒定一元流,理想液体,微小流束,均匀流与非均匀流,非均匀渐变流与急变流,水头损失,液体运动的两种型态,管道的基本概念,明渠的类型,明渠均匀流,水力最佳断面,允许流速,明渠水流的三种流态,断面比能与临界水深,临界底坡、缓坡与

陡坡,明渠恒定非均匀渐变流,水跃,共轭水深,堰流的类型,闸孔出流。 掌握基本理论。包括:静水压强的基本公式,几种质量力同时作用下的液体平衡,实际液体恒定总流的能量方程及应用,恒定总流的动量方程及应用,量纲分析与π定理,液流型态及水头损失液体运动的两种型态,谢才公式,棱柱体明渠中恒定非均匀渐变流水面曲线分析,棱柱体水平明渠的水跃方程,水跃的能量损失,堰流与闸孔出流。 掌握基本计算。一是建筑物所受的水力荷载,即所承受的静水压力、动水总作用力等的计算;二是建筑物的过水能力计算;三是水流的流动形态及水头损失计算;四是水流的能量消耗计算。 2、修读要求 水力学是力学的一个分支,通过课程学习和训练,使学生掌握水力学基本概念、基本原理、基本技能和方法;培养学生分析解决问题的能力和实验技能,并为学习专业课程和处理工程实际中的技术问题打下基础。通过课堂讲授和讨论、课后辅导、习题和练习、实验和实践教学等教学环节,运用多媒体或实验等直观教学手段,完成教学大纲要求的基本内容。由于水力学是一门技术基础课,应当理论联系实际,但应以分析水流现象,揭示水流运动规律,加强水力学的'基本概念和基本原

流体力学计算题

水银 题1图 高程为9.14m 时压力表G 的读数。 题型一:曲面上静水总压力的计算问题(注:千万注意方向,绘出压力体) 1、AB 曲面为一圆柱形的四分之一,半径R=0.2m ,宽度(垂直纸面)B=0.8m ,水深H=1.2m ,液体密度3 /850m kg =ρ,AB 曲面左侧受到液体压力。求作用在AB 曲面上的水平分力和铅直分力。(10分) 解:(1)水平分力: RB R H g A h P z c x ?- ==)2 (ργ…….(3分) N 1.14668.02.0)2 2 .02.1(8.9850=??- ??=,方向向右(2分)。 (2)铅直分力:绘如图所示的压力体,则 B R R R H g V P z ??? ? ????+-==4)(2πργ……….(3分) 1.15428.04 2.014.32.0)2.02.1(8.98502=???? ? ?????+?-??=,方向向下(2分) 。 l d Q h G B A 空 气 石 油 甘 油 7.623.66 1.52 9.14m 1 1

2.有一圆滚门,长度l=10m ,直径D=4.2m ,上游水深H1=4.2m ,下游水深H2=2.1m ,求作用于圆滚门上的水平和铅直分压力。 解题思路:(1)水平分力: l H H p p p x )(2 12 22121-=-=γ 方向水平向右。 (2)作压力体,如图,则 l D Al V p z 4 432 πγγγ? === 方向垂直向上。 3.如图示,一半球形闸门,已知球门的半径m R 1= ,上下游水位差m H 1= ,试求闸门受到的水平分力和竖直分力的 大小和方向。 解: (1)水平分力: ()2R R H A h P c πγγ?+===左,2R R A h P c πγγ?='=右 右左P P P x -= kN R H 79.30114.31807.92=???=?=πγ, 方向水平向右。 (2)垂直分力: V P z γ=,由于左、右两侧液体对曲面所形成的压力体均为半球面,且两侧方向相反,因而垂直方向总的压力为0。 4、密闭盛水容器,已知h 1=60cm,h 2=100cm ,水银测压计读值cm h 25=?。试求半径R=0.5m 的半球盖AB 所受总压力的水平分力和铅垂分力。

水力学中常用的基本计算方法-推荐下载

水力学中常用的基本计算方法 水力学中经常会遇到一些高次方程,微分方程的求解问题。多年来,求解复杂高次方程的基本方法便是试算法,或查图表法,对于简单的微分方程尚可以用积分求解,而边界条件较为复杂的微分方程的求解就存在着较大的困难,但随着计算数学的发展及计算机的广泛使用,一门新的水力学分支《计 算水力学》应运而生,但用计算机解决水力学问题,还需 要了解一些一般的计算方法。在水力学课程中常用的有以下 几种,现分述于后。 一、高次方程式的求解方法: (一)二分法 1、二分法的基本内容:在区间[X1,X2]上有一单调连续函 数F(x)=0,则可绘出F(x)~X关系曲线。如果在两端点处函数值异号即F(x1)·F(x2)<0,(见图(一)),则方 程F(x)=0,在区间[X1,X2]之间有实根存在,其根的范围 大致如下:取 22 1 3x x x + = 1°若F(x2)·F(x3)>0, 则解ξ∈[X1,X3] 2°若F(x2)·F(x3)<0, 则解ξ∈[X3,X2] 3°若F(x2)·F(x3)=0, 则解ξ=X3 对情况1°,可以令x2=x3,重复计算。 对情况2°,可以令x1=x3,重复计算。

当规定误差ε之后,只要|x 1-x 2|≤ε,则x 1(或x 2)就 是方程F(x)=0的根。 显然,二分法的理论依据就是高等数学中的连续函数介 值定理。 它的优点是思路清晰,计算简单,其收敛速度与公比为 的等比级数相同;它的局限性在于只能求实根,而不能求 2 1 重根。 2、二分法的程序框图(以求解明渠均匀流正常水深为 例) 最后必须说明,二分法要求x 2值必须足够大,要保证 F 1·F 2<0,否则计算得不到正确结果。为了避免x 2值不够大, 产生计算错误,在程序中加入了判别条件F 1·F 2>0。也可以给 定x J 及步长△x ,让计算机选择x 2(x 2=x 1+△x)。 (二)牛顿法, 1、牛顿法的基本内容:设有连续函数F(x)=0,则可以绘 出F(x)~x 关系曲线,选取初值x o ,过点(x o ·F(x o ))作一切 线,其斜率为辅F '(x o ),切线与x 轴的交点是x 1, 则有: ) ()('1o o o x F x F x x - =再过(x 1,F(x 1)作切线,如此类推得到牛顿法的一个迭代序列: x n+l =x n -F(x n )/F '(x n ),令x n =x n +1,重复计算,直至满足给定 的精度要求,即|x n+1-x n |≤,从而得到方程F(x)=0的根。 牛顿法具有平方收敛速度,比较快,但计算工作量大,每 次运算除计算函数值外,还要计算微商值。对于牛顿法来讲,

水力学常用计算公式

1、明渠均匀流计算公式: Q=Aν=AC Ri C=n 1Ry (一般计算公式)C=n 1 R 61 (称曼宁公式) 2、渡槽进口尺寸(明渠均匀流) gZ 2bh Q = z :渡槽进口的水位降(进出口水位差) ε:渡槽进口侧向收缩系数,一般ε=0。8~0。9 b:渡槽的宽度(米) h :渡槽的过水深度(米) φ:流速系数φ=0。8~0.95 3、倒虹吸计算公式: Q =mA z g 2(m 3/秒) 4、跌水计算公式: 跌水水力计算公式:Q =εmB 2 /30g 2H , 式中:ε—侧收缩系数,矩形进口ε=0.85~0.95;, B —进口宽度(米);m —流量系数 5、流量计算公式: Q=Aν 式中Q —-通过某一断面的流量,m 3/s; ν——通过该断面的流速,m/h A —-过水断面的面积,m2。 6、溢洪道计算 1)进口不设闸门的正流式开敞溢洪道 (1)淹没出流:Q=εσMBH 2 3 =侧向收缩系数×淹没系数×流量系数×溢洪道堰顶泄流长度×溢洪水深2 3 (2)实用堰出流:Q=εMBH 2 3

=侧向收缩系数×流量系数×溢洪道堰顶泄流长度×溢洪水深2 3 2)进口装有闸门控制的溢洪道 (1)开敞式溢洪道。 Q =εσMBH 2 3 =侧向收缩系数×淹没系数×流量系数×溢洪道堰顶泄流长度×溢洪水深2 3 (2)孔口自由出流计算公式为 Q=MωH =堰顶闸门自由式孔流的流量系数×闸孔过水断面面积×H 其中:ω=be 7、放水涵管(洞)出流计算 1)、无压管流 Q =μA02gH =流量系数×放水孔口断面面积×02gH 2)、有压管流 Q =μA 02gH =流量系数×放水孔口断面面积×02gH 8、测流堰的流量计算—-薄壁堰测流的计算 1)三角形薄壁测流堰,其中θ=90°,即 自由出流:Q =1。4H 2 5或Q=1.343H 2.47(2—15) 淹没出流:Q=(1。4H 25)σ(2-16) 淹没系数:σ=2)13.0( 756.0--H h n +0.145(2-17) 2)梯形薄壁测流堰,其中θ应满足t anθ= 4 1 ,以及b >3H,即 自由出流:Q =0.42b g 2H 2 3=1.86bH 2 3(2—18)

计算水力学基础

计算水力学基础 李占松编著 郑州大学水利与环境学院

内容简介 本讲义是编者根据多年的教学实践,并参考《微机计算水力学》(杨景芳编著,大连理工大学出版社出版,1991年5月第1版)等类似教材,取其精华,编写而成的。目的是使读者掌握通过计算机解水力学问题的方法,为解决更复杂的实际工程问题打下牢固的计算基础。书中内容包括:数值计算基础,偏微分方程式的差分解法,有限单元法;用这些方法解有压管流、明渠流、闸孔出流、堰流、消能、地下水的渗流及平面势流等计算问题。讲义中的用FORTRAN77算法语言编写的计算程序,几乎包括了全部水力学的主要计算问题。另外,结合讲授对象的实际情况,也提供了用VB算法语言编写的计算程序。 VB程序编程人员的话 为了更好地促进水利水电工程建筑专业的同学学好《微机计算水力学》这门学科,编程员借暑假休息的时间,利用我们专业目前所学的VB中的算法语言部分对水力学常见的计算题型编制成常用程序。希望大家能借此资料更好地学习《微机计算水力学》这门课程。本程序着重程序的可读性,不苛求程序的过分技巧。对水力学中常用的计算题型,用我们现在所学的VB语言编制而成。由于编程员能力有限,程序中缺点和错误在所难免,望老师和同学及时给予批评指正。 VB程序编程人员:黄渝桂曹命凯

前言 ----计算水力学的形成与发展 计算水力学作为一门新学科,形成于20世纪60年代中期。水力学问题中有比较复杂的紊流、分离、气穴、水击等流动现象,并存在各种界面形式,如自由水面、分层流、交界面等。 由各种流动现象而建立的数学模型(由微分方程表示的定解问题),例如连续方程、动量方程等组成的控制微分方程组,多具有非线性和非恒定性,只有少数特定条件下的问题,可根据求解问题的特性对方程和边界条件作相应简化,而得到其解析解。因此长期以来,水力学的发展只得主要藉助于物理模型试验。 随着电子计算机和现代计算技术的发展,数值计算已逐渐成为一个重要的研究手段,发展至今,已广泛应用与水利、航运、海洋、流体机械与流体工程等各种技术科学领域。 计算水力学的特点是适应性强、应用面广。首先流动问题的控制方程一般是非线性的,自变量多,计算域的几何形状任意,边界条件复杂,对这些无法求得解析解的问题,用数值解则能很好的满足工程需要;其次可利用计算机进行各种数值试验,例如,可选择不同的流动参数进行试验,可进行物理方程中各项的有效性和敏感性试验,以便进行各种近似处理等。它不受物理模型试验模型律的限制,比较省时省钱,有较多的灵活性。 但数值计算一是依赖于基本方程的可靠性,且最终结果不能提供任何形式的解析表达式,只是有限个离散点上的数值解,并有一定的计算误差;二是它不像物理模型试验一开始就能给出流动现象并定性地描述,却往往需要由原体观测或物理实验提供某些流动参数,并对建立的数学模型验证;三是程序的编制及资料的收集、整理与正确利用,在很大程度上依赖于经验与技巧。 所以计算水力学有自己的原理方法和特点,数值计算与理论分析观测和试验相互联系、促进又不能相互代替,已成为目前解决复杂水流问题的主要手段之一,尤其是在研究流动过程物理机制时,更需要三者有机结合而互相取长补短。 近三、四十年来,计算水力学有很大的发展,替代了经典水力学中的一些近似计算法和图解法。例如水面曲线计算;管网和渠系的过水或输沙(排污)能力的计算;有水轮机负荷改变时水力震荡系统的稳定性计算研究;流体机械过流部件的流道计算以及优化设计,还有洪水波、河口潮流计算,以及各种流动条件下,不同排放形式的污染物混合计算等。 上世纪70年代中期已从针对个别工程问题建立的单一数学模型,开始建立对整个流域洪泛区已建或规划中的水利水电工程进行系统模拟的系统模型。理论课题的研究中,对扩散问题、传热问题、边界层问题、漩涡运动、紊流等问题的研究也有了很大的发展,并已开始计算非恒定的三维紊流问题。 由于离散的基本原理不同,计算水力学可分为两个分支:一是有限差分法,在此基础上发展的有有限分析法;二是有限单元法,在此基础上提出了边界元法和混合元法,另外还有迎风有限元法等。

水力学画图与计算

五、作图题(在题图上绘出正确答案) 1.定性绘出图示棱柱形明渠的水面曲线,并注明曲线名称。(各渠段均充分长,各段糙率相同) (5分) 2、定性绘出图示管道(短管)的总水头线和测压管水头线。 3、定性绘出图示棱柱形明渠的水面曲线,并注明曲线名称。(各渠段均充分长,各段糙率相同,末端有一跌坎) (5分) 4、定性绘出图示曲面ABC上水平方向的分力 和铅垂方向压力体。(5分)

6AB 上水平分力的压强分布图和垂直分力的压力体图。 A B 7、定性绘出图示棱柱形明渠的水面曲线,并注明曲线名称。(各渠段均充分长,各段糙率相同) K K i < i 1 k i >i 2 k 六、根据题目要求解答下列各题 1、图示圆弧形闸门AB(1/4圆), A 点以上的水深H =1.2m ,闸门宽B =4m ,圆弧形闸门半径R =1m ,水面均为大气压强。确定圆弧形闸门AB 上作用的静水总压力及作用方向。 解:水平分力 P x =p c ×A x = 铅垂分力 P y =γ×V=, 静水总压力 P 2 = P x 2 + P y 2, P=, tan = P y /P x = ∴ =49° 合力作用线通过圆弧形闸门的圆心。 2、图示一跨河倒虹吸圆管,管径d =0.8m ,长 l =50 m ,两个 30。 折角、进口和出口的局部水头损失系数分别为 ζ1=,ζ2=,ζ3=,沿程水头损失系数λ=,上下游水位差 H =3m 。若上下游流速水头忽略不计,求通过倒虹吸管的流量Q 。 H R O B R 测压管水头 总水头线 v 0=0 v 0=0

解: 按短管计算,取下游水面为基准面,对上下游渠道内的计算断面建立能量方程 g v R l h H w 2) 4(2 ∑+==ξλ 计算圆管道断面的水力半径和局部水头损失系数 9.10.15.022.0 , m 2.04/=++?==== ∑ξχ d A R 将参数代入上式计算,可以求解得到 /s m 091.2 , m /s 16.4 3===∴ vA Q v 即倒虹吸管内通过的流量为2.091m 3 /s 。 3、某水平管路直径d 1=7.5cm ,末端连接一渐缩喷嘴通大气(如题图),喷嘴出口直径d 2=2.0cm 。用压力表测得管路与喷嘴接头处的压强p =49kN m 2 ,管路内流速v 1=0.706m/s 。求水流对喷嘴的水平作用力F (可 取动量校正系数为1) 解:列喷嘴进口断面1—1和喷嘴出口断面2—2的连续方程: 得喷嘴流量和出口流速为: s m 00314.03 11==A v Q s m 9.92 2== A Q v 对于喷嘴建立x 方向的动量方程 )(1211x x v v Q R A p -=-ρβ 8.187)(3233=--=v v Q A p R ρN 水流对喷嘴冲击力:F 与R , 等值反向。 4、有一矩形断面混凝土渡槽,糙率n =,底宽b =1.5m ,槽长L =120m 。进口处槽底高程Z 1=52.16m , 出口槽底高程Z 2=52.04m ,当槽中均匀流水深h 0=1.7m 时,试求渡槽底坡i 和通过的流量Q 。 解: i=(Z 1-Z 2)/L = 55.2==bh A m 2 d 1 v 1 P x 2 2 1 1 R

水力学复习资料)

1、理想液体是() A.没有切应力又不变形的液体; B.没有切应力但可变形的一种假想液体; C.切应力与剪切变形率成直线关系的液体; D.有切应力而不变形的液体。 2、选择下列正确的等压面: A. A ? A B. B ? B C. C ? C D. D ? D 1、理想液体是() A.没有切应力又不变形的液体; B.没有切应力但可变形的一种假想液体; C.切应力与剪切变形率成直线关系的液体; D.有切应力而不变形的液体。 2、选择下列正确的等压面: A. A ? A B. B ? B C. C ? C D. D ? D 3、平衡液体中的等压面必为( ) A.水平面; B.斜平面; C. 旋转抛物面; D.与质量力相正交的面。 4、欧拉液体平衡微分方程( ) A. 只适用于静止液体; B. 只适用于相对平衡液体; C. 不适用于理想液体; D. 理想液体和实际液体均适用 5、恒定总流的能量方程z1 + p1/g + v12/2g = z2 +p2/g + v22/2g +h w1- 2 , 式中各项代表( ) A. 单位体积液体所具有的能量; B.单位质量液体所具有的能量; C.单位重量液体所具有的能量; D.以上答案都不对。 6、在明渠恒定均匀流过水断面上1、2两点安装两根测压管,如图所示,则两测压管高度h1与h2的关系为( ) A. h1>h2 B.h1<h2 C. h1 = h2 D.无法确定 7、图示水流通过渐缩管流出,若容器水位保持不变,则管内水流属( )

A. 恒定均匀流 B. 非恒定均匀流 C. 恒定非均匀流 D.非恒定非均匀流 8、均匀流的总水头线与测压管水头线的关系是() A. 互相平行的直线; B.互相平行的曲线; C. 互不平行的直线; D. 互不平行的曲线。 9、按普朗特动量传递理论,紊流的断面流速分布规律符合() A. 对数分布; B. 椭圆分布; C. 抛物线分布; D.直线分布。 10、圆管均匀层流与圆管均匀紊流的() A.断面流速分布规律相同; B.断面上切应力分布规律相同; C.断面上压强平均值相同; D.水力坡度相同。 11、图示的容器a 中盛有重度为ρ1的液体,容器b中盛有密度为ρ1和ρ2的两种液体,则两个容器中曲面AB 上压力体及压力应为( ) A. 压力体相同,且压力相等; B. 压力体相同,但压力不相等; C. 压力体不同,压力不相等; D.压力体不同,但压力相等。 12、对管径沿程变化的管道( ) A.测压管水头线可以上升也可以下降 B.测压管水头线总是与总水头线相平行 C.测压管水头线沿程永远不会上升 D.测压管水头线不可能低于管轴线 13、液体运动总是从( ) A.高处向低处流动; B.单位总机械能大处向单位机械能小处流动; C.压力大处向压力小处流动; D.流速大处向流速小处流动。 14、如图断面突然缩小管道通过粘性恒定流,管路装有U形管水银差计,判定压差计中水银液面为( ) A. A高于B; B. A低于B; C.A、B齐平; D. 不能确定高低。 15、谢才系数C 与沿程水头损失系数λ的关系为()

流体力学计算题..

水 水银 题1图 1 2 3 题型一:曲面上静水总压力的计算问题(注:千万注意方向,绘出压力体) 1、AB 曲面为一圆柱形的四分之一,半径R=0.2m ,宽度(垂直纸面)B=0.8m ,水深H=1.2m ,液体密度3 /850m kg =ρ,AB 曲面左侧受到液体压力。求作用在AB 曲面上的水平分力和铅直分力。(10分) 解:(1)水平分力: RB R H g A h P z c x ?-==)2 (ργ…….(3分) N 1.14668.02.0)2 2 .02.1(8.9850=??- ??=,方向向右(2分) 。 (2)铅直分力:绘如图所示的压力体,则 B R R R H g V P z ??? ? ????+-==4)(2πργ……….(3分) 1.1542 8.042.014.32.0)2.02.1(8.98502=???? ? ?????+?-??=,方向向下(2分)。 2.有一圆滚门,长度l=10m ,直径D=4.2m ,上游水深H1=4.2m ,下游水深H2=2.1m ,求作用于圆滚门上的水平和铅直分压力。

解题思路:(1)水平分力: l H H p p p x )(2 1 222121-= -=γ 方向水平向右。 (2)作压力体,如图,则 l D Al V p z 4 432 πγγγ? === 方向垂直向上。 3.如图示,一半球形闸门,已知球门的半径m R 1= ,上下游水位差m H 1= ,试求闸门受到的水平分力和竖直分力的 大小和方向。 解: (1)水平分力: ()2R R H A h P c πγγ?+===左,2R R A h P c πγγ?=' =右 右左P P P x -= kN R H 79.30114.31807.92=???=?=πγ, 方向水平向右。 (2)垂直分力: V P z γ=,由于左、右两侧液体对曲面所形成的压力体均为半球面,且两侧方向相反,因而垂直方向总的压力为0。 4、密闭盛水容器,已知h 1=60cm,h 2=100cm ,水银测压计读值cm h 25=?。试求半径R=0.5m 的半球盖AB 所受总压力的水平分力和铅垂分力。

《水力学b)》网考复习资料

《水力学(B)》网考复习资料 《水力学(B)》期末复习题一 一、单选题 1. _______是研究作用在液体上的力与运动要素之间的关系,以及液体运动的基本规律。() A 水静力学 B 水动力学 C 土动力学 D 土静力学 参考答案:B; 2. 静止液体中同一点各方向的压强()。 A 大小相等 B 大小不等 C 仅水平方向数值相等 D 铅直方向数值最大 参考答案:A; 3. 在均质、连通的液体中,水平面是等压面,这就是___原理。 A 连通器原理 B 动量原理 C 帕斯卡原理 D 阿基米德原理 参考答案:A; 4. 作用于淹没物体上的静水总压力只有一个铅垂向上的浮力,其大小等于该物体所排开的同体积的水重,这是著名的_____原理。

A 连通器原理 B 动量原理 C 帕斯卡原理 D 阿基米德原理 参考答案:D; 5. 理想液体的总水头线是一条()。 A 抛物线 B 水平线 C 曲线 D 斜直线 参考答案:B; 6. 总流的动量方程为,如果由动量方程求得的力为负值说明______() A 说明原假设的力的方向不对,反向即可。 B 说明方程中流速的取值出现错误。 C 说明方程中流量的取值出现错误。 D 说明方程中流速和流量的取值均出现错误。 参考答案:A; 7. 雷诺数Re是用来判别下列何种流动的重要无量纲系数 A 均匀流与非均匀流 B 层流与紊流 C 急流与缓流 D 明流与管流 参考答案:B;

8. 当水流的沿程水头损失系数λ只与边界粗糙度有关,可判断该水流属于 A 紊流粗糙区 B 紊流光滑区 C 紊流过渡区 D 层流区 参考答案:A; 9. 水泵的扬程是指() A 水泵提水高度 B 水泵提水高度+吸水管的水头损失 C 水泵提水高度+ 吸水管与压水管的水头损失 D 吸水管与压水管的水头损失 参考答案:C; 10. 在缓坡明渠中不可以发生的流动是 A 均匀缓流 B 均匀急流 C 非均匀缓流 D 非均匀急流 参考答案:B; 二、多选题 1. ______是压强单位 A N/m2 B Pa C kN/m

相关文档
最新文档