焦炉煤气制氢气

焦炉煤气制氢气
焦炉煤气制氢气

50万吨/年焦油加氢装置与100万吨/年焦化装置工艺联产

虽然以甲醇为原料采用蒸汽转化法、用液氨为原料采用氨裂解也可以生产氢气,但生产运行成本较高,不适宜于大型制氢装置;由于电解水法制氢耗电大、生产成本高,只是在氢气用量较小、纯度要求高,生产高附加值产品的企业(如稀有金属制造)使用,因此对于需要大量耗氢的化工行业是不适合的;以煤或焦炭为原料的煤气化法目前大多用于化工原料(甲醇、合成氨)的生产过程中,近几年来也有直接用于制氢的实例,但因煤气化制氢的投资(加压气化如GE、shell等)较大,且流程长,“三废”处理复杂,因此一般不采用以煤或焦炭为原料的水煤气化法制取氢气。焦化厂可以充分利用其工艺优势,采用焦炉煤气为原料,经净化、转化后,再最大限度的提取氢气,是较经济合理、切实可行的。

煤焦油加氢轻质化市场广阔,是煤化工产业链的发展趋势,适合于在煤化工企业推广,实现煤炭资源综合利用和精细加工,产出高附加值的产品,(主要产品:1#轻质煤焦油(C5~180℃)硫、氮、烯烃含量及其它杂质均很低;2#轻质煤焦油(>180℃)安定性好、硫含量低,可作为优质化工产品,也可作为环保型燃料使用;煤沥青作为沥青调和组分出厂或调和重质燃料油)。

焦油加氢装置需要氢气量大(50万吨/a煤焦油加氢装置需要氢气量40000 Nm3/h),

传统焦炉煤气制氢工艺以100万吨/a焦化装置为例:煤气

发生量为50000 Nm3/h,其中约25000 Nm3/h作为回路燃料,可以富余焦炉煤气25000 Nm3/h,经变压吸附生产氢气量约15000 Nm3/h,且有大量的废气放空,污染环境。针对以上情况,将100万吨/年焦化装置副产的焦炉气经PSA提氢、甲烷蒸汽转化、变换等成熟的工艺科学合理的组合在一起,可从50000 Nm3/h的焦炉煤气中产出40110NM3/h纯度为99.9%的氢气,同时副产出热值为4276~4636kcal/Nm3的混合解吸气22508 Nm3/h返回焦化装置,满足焦炉燃料使用需求,氢气产量增加一倍。

一、优化方案简图:

二、工艺流程叙述

本制氢装置共分为六个主要工艺过程:预净化工序,精脱萘工序,PSA-1 (PSA-CO2/R)工序、PSA-2(PSA-CH4)工序、净化压缩工序、转化变换工序以及PSA-3(PSA-H2)工序。

(1)预净化工序

原料气在温度40℃时进入预净化工序,脱出焦炉煤气中绝大部分的焦油、萘、H2S、NH3、HCN等杂质,得到杂质较少的净化气。

(2)精脱萘工序

预净化工序后的净化气再通过精脱萘工序,进一步脱除其中的萘、烷烃、芳烃等,得到符合变压吸附原料气要求的净化气。

(3) PSA-1 (PSA-CO2/R)工序

经净化处理后的焦炉煤气,在压力0.80MPa,温度≤40℃条件下送入PSA-1装置中,经过吸附剂将大部分二氧化碳脱除,脱碳解吸气送焦化回炉燃烧利用,浓缩气送PSA-2(PSA-CH4) 工序。

(4) PSA-2(PSA-CH4) 工序

浓缩气在压力~0.70MPa,温度≤40℃条件下进入PSA-2

系统,在PSA-2系统中,经过吸附剂将大部分解吸气(富甲烷气)脱除,富氢气进入半产品气缓冲罐进行稳压,根据混和解吸气热值情况决定是否经调节阀分流,部分富氢气进入混和解吸气系统,剩余的气体经联合压缩机增压到~2.6MPa左右,利用其气体的压缩热在脱氧系统内进行脱氧和冷却。PSA-2系统内的解吸气(富甲烷气)经调节阀分流~10200Nm3/h的流量进入一段转化、变换系统,在其系统内进行甲烷气的净化、压缩、变换和蒸汽转化,变换后的气体经调节阀稳压至~2.6MPa,温度≤40℃条件下与脱氧后的净化气一并进入制氢原料气混和罐进行混和、稳压。进入PSA-3系统进行提氢。

(5) 净化压缩工序和转化变换工序

来自PSA的浓缩甲烷气压力约20kPa,温度≤40℃条件下进入浓缩气压缩机,压缩到~3.2MPa (G),净化、压缩后的浓缩气先经过变换炉,将浓缩气中的CO变为CO2,与来自废热锅炉汽包的水蒸汽按一定的水碳比混合,然后送转化炉进行蒸汽转化反应。经过变换、转化后的气体冷却、分离后,送(变压吸附分离提纯氢)PSA-3(PSA-H2)工序。

(6) PSA-3(PSA-H2)工序

在PSA-3装置中,将送入装置的氢气提纯后得到产品氢气,经调节阀稳压后送入焦油加氢工段。解吸气并入混合解吸气管网。

当本装置出现故障时,关闭原料气的进口阀,通过旁路阀和本装置区内的总解吸气管道,送入焦化燃料系统;当本装置中的转化、变换工段出现故障时,停运该工段。其余工段继续运行,为保证混和解吸气中的热值达到燃料系统的要求(流量22000~24000Nm3/h,热值~4200 kcal/Nm3),需通过解吸气总管上的热值仪和调节阀补充~6000Nm3/h氮气进入混和解吸气中进行调节,PSA-1工段的解吸气直接进入火炬管网。

经过以上工艺技改,实现了氢气产量翻倍,减少了废气排放,工艺调节灵活。

变压吸附技术在焦炉煤气制氢中的应用

变压吸附技术在焦炉煤气制氢中的应用 戴四新 (厦门市建坤实业发展公司,福建厦门 361012) 摘要:介绍了变压吸附(PSA)技术的基本原理及其应用于焦炉煤气提氢的Sysiv和Bergbau PSA制氢典型工艺。指出PSA技术是近年国内外发展最快、技术最成熟、成本最低的煤气制氢方法,在国内焦炉煤气制氢中最具发展前途,应大力推广应用。 关键词:变压吸附(PSA)技术;焦炉煤气;制氢技术 中图分类号:TQ028.1+5 文献标识码:B 文章编号:1004-4620(2002)02-0065-02 Application of the Pressure Shift Absorbing Technique in Hydrogen Making Process from COG DAI Si-xin (Xiamen Jiankun Industry Developing Corp.,Xiamen 361012,China) Abstract:The basic pinciple of the Pressure Shift Absorbing(PSA) Technique and the representative technics(Sysiv and Bergban)of it`s application for hydrogen making process from COG are discribing.It is pointed out that in recend past years the development of the PSA technique for the hydrogen-making process from COG is the most rapid and the technique is also the most perfect and economical way in the world,and it has the best developing foreground in hydrogen-making process from COG in China.It should be expanded and applied widely soon. Key words:pressure shift absorbing(PSA);coke oven gas(COG);hydrogen making technology

焦炉煤气提氢技术方案范本

焦炉煤气提氢技术 方案

一、总则 1、概述 有限公司为满足生产的需要,拟上一套5000Nm3/h焦炉煤气变压吸附制取氢气装置。本章所载内容必须满足买方的要求。卖方提供的合同设备(焦炉煤气氢气制取装置)应满足技术先进、安全可靠、运行稳定、维修方便的要求。卖方应对焦炉煤气氢气制取装置的整体技术性能向买方负责。焦炉煤气氢气制取装置应能够在安全、可靠、长周期条件下运行,高产低耗,满足改变工况及负荷调整的要求。 2、装置名称及规模 装置名称:焦炉煤气提氢变压吸附制氢装置。 装置规模:装置的氢气产量为5000Nm3/h。 4、分包范围(详见) 上一套5000Nm3/h焦炉煤气变压吸附制取氢气装置。此装置采用界区内部分承包形式包给卖方,卖方承包范围包含工程设计、设备购置(仅吸附剂、程控阀)、人员培训(外出培训费用买方自己承担)、设备制造(卖方提供设计参数图纸,买方采购)、工程安装指导、生产调试指导、装置开车指导,最后经过性能考核交给买方。 5、装置的工艺路线界定 本装置以焦炉煤气为原料,经过变压吸附分离提纯,生产纯

度为≥99.9%的产品氢气。 6、卖方技术人员的派遣 为了使合同设备顺利而有序的进行安装和调试,卖方负责派遣合格的技术人员到施工现场进行技术服务。卖方技术人员的实际参加人数、专业、预计到达和离开项目现场的日期,根据现场施工的实际进度,由买卖双方商定。卖方应根据其经验在供货文件中做出技术服务的详细安排,其费用包括在报价中。 7、卖方技术人员的服务范围及职责 卖方技术人员将代表卖方提供技术服务,在合同设备安装、试车、投料试生产、性能考核及验收、运行操作、维修等方面完成合同规定的卖方应履行的任务和职责。卖方技术人员将详细进行技术交底,详细讲解图纸、工艺流程、操作规程、设备性能及有关注意事项等,解答合同范围内买方提出的技术问题。 二、装置指标 1、技术指标 1.1装置性能

中国焦炉煤气利用现状及发展前景(1)

中国焦炉煤气利用现状及发展前景 范良忠 (新地能源工程技术有限公司石家庄能源化工技术分公司,河北石家庄050000) 众所周知,当今我国是世界上最大的焦炭生产国,近几年以来,我国的焦炭产量逐年增长。只是一零年,我国的焦炭产量就差不多约4.0亿吨,我国焦炭的产量大约有全世界的焦炭总产量的百分之六十左右,所以,焦炉煤气的回收利用有很大的前景。焦炉煤气主要是指焦炉炉煤在焦炉的炭化过程中干馏而产生的一种黄褐色的汽气混合物。它的组成比较复杂,它可以用作工业的能源用在钢铁企业中,或者其它的工业部门。 1我国焦炉煤气的利用现状简述 伴随着我国的钢铁企业的不断发展,近几年,由钢铁行业所产生的焦化行业也逐渐有了突飞猛进的发展。人们开始越来越关注对焦炉煤气进行综合的回收和利用。这种方式不仅符合我国当前的产业政策,而且可以建设节约型的社会,有利于我国打造一种循环经济从而实现我国工业的绿色发展。随着我国环保部门的要求不断提高,以及我国对资源综合利用的水平也在逐渐的提高。所以人们对焦炉煤气的回收利用这项工作的关注程度越来越大。在这种大趋势的发展和驱动之下,我国逐渐产生了一些新的对焦炉煤气进行利用的方法和途径。 1.1燃烧焦炉煤气,从而提供能量 焦炉煤气用作燃料的方面可以分为工业利用和民用方面。在工业利用方面,焦炉煤气主要利用在以下的几个方面:(1)焦炉煤气的生产企业在化学产品的回收和净化过程中,可以作为一种高效的加热燃料。(2)焦化企业可以利用剩余的那些焦炉煤气用来发电,为发电提供燃料。(3)焦炉煤气可以作为钢铁企业的炼钢,轧钢等工序的燃料。焦炉煤气在民用燃料利用方面主要体现在经过净化之后的焦炉煤气可以通入我国城市的供气管网,从而可以作为居民的生活用气来使用。因为工业生产的焦炉煤气具有热值相对较高,而且一氧化碳的含量相对较低等优点,所以是一种很适合作为民用燃气的一种气体。虽然我国的西气东输的发展已经为一些地区使用天然气提供了相当便利的条件。虽然焦炉煤气在和天然气相比的情况下,仍然存在着一些缺点,比如焦洁净度方面不如天然气。但是在天然气输送不到的地方,或者西气东输没有覆盖的城市,焦炉煤气依然可以作为一种主要的民用燃气来供给居民使用。 1.2可以利用焦炉煤气用来生产氮肥或者甲醇等化学产品 近年来,因为我国的焦化产业公司,主要都是注重焦炭的生产而忽视焦炭的综合利用。所以有很多的焦化生产企业都在利益的驱动下,忽视建设焦炉煤气的回收和利用装置,从而导致了大量的焦炉煤气直接排放到了大气中。有的焦炭生产企业甚至采取了燃烧等方式来处理焦炉煤气。造成了资源的极大浪费,而且同时对环境造成了很大的污染。焦炉煤气除了用于民用燃料和用于发电等用途之外,还可以利用焦炉煤气来生产很多种化工产品。比如利用焦炉煤气可以生产碳铵化肥和甲醇等,用焦炉煤气生产化肥和甲醇的工艺技术已经不断地发展而趋于成熟。这种技术已经在我国取得阶段性的成功。虽然我们用焦炉煤气来生产化肥和甲醇等化学产品的成本,相当于用无烟煤为原料生产化肥和甲醇的成本相比低,而且生产的产品性能相对比较稳定,具有一定的市场竞争能力。但是,由于焦炉煤气生产化肥和甲醇的工艺相对比较复杂,它对企业的技术和企业的管理水平都有较高的要求,而且市场也相对比较饱满,所以投资还应该相对谨慎。 1.3利用焦炉煤气制造氢燃料 众所周知,氢能是一种绝对清洁,而且没有任何污染的能源,它燃烧只会形成水,而且它的热能很大。氢能代表着世界未来能源的发展方向。其实利用焦炉煤气来制造氢能,在我国已经有了很多年的历史,它的生产技术也相对比较成熟,而且氢能也具有较高的经济性能,特别是和水电解法制造氢能相比,这种方法的经济效益比较显著。利用焦炉煤气来制造氢能,有很多优点。 1.4利用焦炉煤气可以生产还原铁 利用焦炉煤气可以直接还原铁。而且焦炉煤气是电炉炼钢的一种重要原料,它不仅可以代替原先的废钢,而且可以很大程度上的减小废钢中的有害杂质。所以利用焦炉煤气炼钢可以有利于冶炼优质钢。 1.5用焦炉煤气制天然气 焦炉煤气可以用于合成天然气。这种合成天然气的技术是焦炉煤气利用的一个新领域,合成天然气这项技术也相对比较成熟。如果用制造液化的天然气和焦炉煤气制甲醇等工艺来比较,焦炉煤气制造天然气的这项技术具有原料的利用效率高和工程工艺简单的特点。 2焦炉煤气利用的发展前景 我国是世界生产焦炭最多的国家,所以我国拥有很大数量的可焦炉煤气资源,如何充分的利用焦炉煤气资源对保护我国的环境和促进我国经济快速发展都具有重大的作用。 2.1在未来,我国将会走上以甲醇为原料的新型化工的发展之路 在未来,我国将会充分的利用甲醇作为化工原料来生产低碳烯烃。这种技术已经成为了发展新型煤化工产业的重要途径。在未来我国将会实现以煤代油的这种战略。 2.2焦炉煤气利用实现清洁化 伴随着人们的环保意识在不断地增强,国家也提出了可持续发展的伟大战略。所以我国将会对每年焦炉气的排空量作出严格的限制。今年来以来,随着雾霾席卷中华大地,国家更加会注重环境保护工作。现在的钢铁产业发展政策明确的规定,新上的焦炉必须配备配套的焦炉煤气回收装置,所以,焦化行业将会逐渐迈入清洁化的生产。这对环境保护,以及我国未来的发展都有很大的作用。2.3未来焦炉煤气利用将会实现多联产 因为相对于传统的焦炉煤气的利用工艺而言,最新发展出来的多联产系统,不仅可以实现焦炉煤气的科学化,合理化使用,而且同时可以大幅度的提高焦炉煤气资源的利用效率。所以,我们可以知道焦炉煤气的多联产系统发展将会成为我国能源领域中的热点系统,热点技术。 3结束语 我国的焦炉煤气资源相当丰富,所以焦炉煤气的综合利用问题,现在已经成为了炼焦企业生存和发展的关键。但是在焦炉煤气的回收和利用问题上,企业不能仅仅局限于某一个行业或者局限于某一个产品。我国的焦化企业应该充分的、大力的发掘焦炉煤气这种资源的潜能,争取实现因地制宜发展,从而让焦炉煤气的利用逐渐走向清洁化发展的道路。 参考文献 [1]张永发.中国焦化工业实现可持续发展的思考[J].山西能源与节 能,2005,2:13-17. [2]李琼玖.油头氨生产装置扩能改造成天然气制氨和甲醇装置的设 计方案[J].石油化工动态,2008,30(8):20-29. [3]焦化设计资料编写组.焦化设计手册[M].北京:冶金工业出版社,2009(2):22-44. 摘要:伴随着我国工业化的不断发展,焦炉煤气的回收利用的工作也在不断地发展当中。众所周知,焦炉煤气是工业发展使用的重要能源,同时焦炉煤气也是重要的化工原料。所以,为了实现资源的综合利用,同时为了积极响应国家的“节能减排”的号召,积极保护我国的生态环境。为了更好地利用工业焦炉煤气,文章就如何充分利用焦炉煤气所的现状及发展前景做出了一定的诠释,并且提出了见解。 关键词:中国;焦炉煤气;利用现状;发展前景 99--

焦炉煤气制液化天然气工艺简介

焦炉煤气制液化天然气工艺知识简介 一、常见燃料气体英文缩写: NG:是指天然气。 SNG :是指替代天然气。 CNG :是指压缩天然气。 LNG:是指液化天然气。 LPG :是指液化石油气。 COG :是指焦炉煤气。 BOG :是指闪蒸气 二、液化天然气LNG 的基本性质: LNG 是常压下气态的天然气通过冷却至-162℃,使之凝结成液体,其体积缩小到气态时的1/625,其熔点-182℃,闪点-188℃,沸点-161.5℃,相对密度0.43t/m 3,引燃温度538℃,爆炸极限5.3—15%。 三、焦炉煤气制合成天然气原理 由于焦炉煤气中CO 和CO 2的总含量约为10% (v/v),多碳烃的含量为2~3%, 以及约55% (v/v)的H 2,所以可以利用甲烷化反应生成甲烷,主反应见反应式 (1)和 (2): CO+3H2→CH4+H2O △H0=-206kJ/mol (1) CO2+4H2→CH4+2H2O △H0=-178kJ/mol (2) 焦炉煤气中还有少量O 2,可与氢气反应生成水,见反应式(3): 从反应式 (1)、(2)和 (3)可知,这三个反应都是很强的放热反应,在反应过程中反应热可使甲烷化炉的温度升高到650℃左右。这不仅使催化剂由于多碳烃裂解而结碳,还可能容易使不耐高温的甲烷化催化剂烧结而失活。 222O 2H 2H O H= -241.99kJ/mol (3)=?+

四、工艺流程简介 焦炉煤气先经过粗脱萘焦油器,脱除煤气中的焦油和萘,使煤气中萘含量降低到≤50mg/Nm3,焦油含量降低到≤5mg/Nm3。然后经焦炉煤气压缩机压缩后进入精脱萘、焦油、和苯变温吸附单元,进一步脱除焦炉煤气中的焦油、萘、苯等杂质,保证焦炉气中氨含量<10ppm,萘<10ppm,焦油<1ppm。 S≤精脱苯、萘、焦油的焦炉煤气进入粗脱硫罐,使焦炉煤气中的H 2 1mg/Nm3,然后进入预加氢反应器、一级加氢转化反应器、氧化锌精脱硫塔、二 等有级加氢转化反应器和氧化锌精脱硫,对焦炉气中的硫醇、硫醚、COS、CS 2 机硫及无机硫H S进行精脱硫,使焦炉煤气中的总硫含量小于0.1ppm。 2 净化后的焦炉煤气进入甲烷化反应器,一氧化碳和二氧化碳通过与氢气反应基本上全部转化为甲烷。甲烷化后的焦炉气含甲烷量在65%左右,称为富甲烷气。富甲烷气经过过滤器进脱水装置进行脱水,然后依次经过脱汞单位、过滤单元进换热器,出换热器后进精馏塔从塔顶脱除氮气和氢气,塔底获得的LNG产品再次经换热器过冷后送到LNG贮罐常压储存。其基本工艺线路如下: 管道天然气制液化天然气已是相当成熟的工艺,而焦炉煤气制LNG由于与管道天然气制LNG原料气成分具有一定的区别,在焦炉气制LNG工艺中最关键

浅析焦炉煤气的利用现状及发展前景

浅析焦炉煤气的利用现状及发展前景 冯路叶 摘要:焦化是我国煤炭化工转化的最主要方式,焦炉煤气是重要的能源和化工原料。本文重点分析了我国焦化行业及焦炉煤气的利用现状, 介绍焦炉煤气的综合利用途径, 提出了以焦炉煤气为基础发展化工、工业燃料、热电联产等项目的广阔前景。 关键词:焦炉煤气; 现状; 综合利用;发展前景 1 炼焦工业和焦炉煤气利用现状 1.1 炼焦工业概况 我国是世界上焦炭产量最大的国家,2010年焦炭产量约为3.8亿t,约占世界焦炭总产量的60%,全国约有焦化企业2000多家,其中1/3为钢铁联合企业,2/3为独立焦化企业,而独立焦化企业主要分布在山西、河南、山东、云南、内蒙等地,为焦炉煤气综合利用市场提供了良好发展环境。所产生的焦炉煤气量巨大,如何高效、合理地利用这些煤气,是关系环保、资源综合利用、节能减排的重大课题。 1.2焦炉煤气利用现状 焦化是我国煤炭化工转化的最主要方式。2010年我国新投产焦炉57座,新增产能约3371万吨。其中炭化室高6米及以上的顶装焦炉和炭化室高5.5米及以上的捣固焦炉48座、产能3020万吨,占新增总产能的89.59%。以2010年我国焦炭产量为例进行估算,按吨焦产420 m3焦炉煤气计算,2010年我国焦化产业产生的焦炉煤气产量约为1596亿m3,除去焦炉用于自身加热所消耗的40% (约638亿m3),剩余958亿m3,基本用作燃料进行各种加热或燃烧产生蒸汽发电或简单地进行化产回收处理。有许多非钢焦化企业所产的焦炉煤气无法利用被“点天灯”浪费(这些企业一般远离城市),约有300亿m3被白白排放掉。同时, 随着国家西气东输工程的实施, 城市民用焦炉煤气将被天然气取代, 这一部分焦炉煤气也将成为待利用的资源。 2 焦炉煤气的组成与净化 2.1焦炉煤气的组成 焦炉煤气的组成非常复杂,典型焦炉煤气各组分的体积分数见表1,从表中数据可以看出:焦炉煤气含H2量高, 还含有部分CH4, CO2 和N2等,其它组分还有( g/ m3): NH3 0.05, H2S 0.2~0.02,BTX 3.0 ,焦油0.05,萘0.3等等。 表1 焦炉煤气组成 2.2焦炉煤气的净化 一般的焦化企业在焦炉煤气净化流程中,只对H2S、NH3、萘、苯、焦油的含量有一定的要求。常规的净化流程是:焦炉煤气经过冷凝鼓风、电捕焦油、脱硫、脱氨、脱苯流程后,就作为产品向外输送。 3 目前焦炉煤气的利用途径 焦炉煤气的组成特性决定其利用途径主要有以下几个方面: 燃料气、化工原料、制氢、制甲醇、多晶硅和多联产技术。

煤制乙二醇产业发展状况

煤制乙二醇产业发展状况

————————————————————————————————作者:————————————————————————————————日期:

煤制乙二醇产业发展状况-企业管理论文 煤制乙二醇产业发展状况 引言 乙二醇又名甘醇、乙撑二醇,是简单和最重要的脂肪族二元醇,作为一种重要的有机化工原料,它主要用来生产聚酯纤维(PET)、塑料、橡胶、聚酯漆、胶粘剂、非离子表面活性剂、乙醇胺以及炸药。也大量用作溶剂、润滑剂、增塑剂和防冻剂等。 乙二醇是一种重要的大宗基本化工原料,是世界上消费量最大的多元醇。 1煤制乙二醇 煤制乙二醇“即以煤代替石油乙烯生产乙二醇,即CO气相催化合成草酸酯和草酸酯催化加氢合成乙二醇”(简称“煤制乙二醇”)。 我国乙二醇产品主要用于生产聚酯、防冻液、粘合剂、油漆溶剂、耐寒润滑油、表面活性剂和聚酯多元醇等[1]。聚酯系列产品耗用的乙二醇占世界产量的大部分。第二大用途是用于生产防冻液及化工中间产品的原料等,55%的乙二醇水溶液在-40℃时结冰。乙二醇的单甲醚或单乙醚是很好的溶剂,可溶解纤维、树脂、油漆和其他许多有机物。此外还可用于涂料、照相显影液、刹车液以及油墨等行业,用作过硼酸铵的溶剂和介质,用于生产特种溶剂乙二醇醚等。 2煤制乙二醇发展优势 2.1技术现状 目前国内以煤为原料制备乙二醇,主要有三条工艺路线: a、直接法:以煤气化制取合成气(CO+H2),再由合成气一步直接合成乙二醇。此技术的关键是催化剂的选择,在相当长的时期内难以实现工业化。

b、烯烃法:以煤为原料,通过气化、变换、净化后得到合成气,经甲醇合成,甲醇制烯烃(MTO)得到乙烯,再经乙烯环氧化、环氧乙烷水合及产品精致最终得到乙二醇。该过程将煤制烯烃与传统石油路线乙二醇相结合,技术较为成熟,但成本相对较高。 c、草酸酯法:以煤为原料,通过气化、变换、净化及分离提纯后分别得到CO 和H2,其中CO通过催化偶联合成及精制生产草酸酯,再经与H2进行加氢反应并通过精制后获得聚酯级乙二醇的过程。该工艺流程短,成本低,是目前国内受到关注最高的煤制乙二醇技术,通常所说的“煤制乙二醇”就是特指该工艺。 2.2成本现状 由表可得,当原油价格降至20美元/桶时,“煤制乙二醇”技术路线生产乙二醇的成本与石油路线相当。 当前世界石油制乙二醇的生产企业依然占主流。2011年~2012年期间,国内乙二醇各种生产工艺产能占比如下:石油制法为83%,生物质制法为12%,煤制法为5%,但在国际油价长期上升、煤价下跌的情况下,煤制乙二醇的远景更好。2013年~2015年,随着煤制乙二醇技术的逐渐成熟,企业将更加青睐这种制法。 2.3宏观经济政策现状

焦炉煤气制取氢气技术在工业中的应用

焦炉煤气制取氢气技术在工业中的应用 摘要:在煤炭炼焦工业生产过程中,会产生大量的焦炉煤气。往日工业技术不发达的时候,产生的焦炉煤气一般都是直接排放,这不仅是资源浪费现象,还造成了严重的生态环境污染。在对焦炉煤气的开发利用过程中,因其含有大量的氢气,而氢气作为清洁的能源以及在钢铁行业的广泛应用,所以对焦炉煤气制氢工艺的研究一直是焦炉煤气深度利用的重要技术之一。本文就焦炉煤气制氢工艺进行了简要介绍,并对其在工业中的应用进行了说明 关键词:焦炉煤气;氢气;工业应用 首先来说,氢气作为一种清洁能源,在日益注重环保的今天,其重要地位不得而知;其次,氢气作为还原气体,在钢铁行业中也有广泛的引用;另外,在双氧水项目中,氢气也是其主要的原料之一;最后,在焦化装置与焦油加氢工艺联产,能充分利用焦化装置的优势,通过一系列工艺程序制取氢气,为后续焦油加氢提供必备的原料。以上这些原因使得人们对氢气制取工艺的研究逐渐重视起来。对焦炉煤气的成分检测发现,焦炉煤气中含有大量的氢气,这就催生了一系列焦炉煤气制氢工艺的发展。常见的焦炉煤气制氢工艺主要有变压吸附法(PSA)、变温吸附法(TSA)、深度冷冻法、膜分离法等 一焦炉煤气制氢工艺简介 在实验室研究过程中,以甲烷为原料采用蒸汽转换法或者以液氨为原料采用氨裂解法等也能产生氢气,但这些方法的成本都太高,不值得推广应用。而焦炉煤气中的氢气含量丰富,焦化厂可以充分利用其工艺优势,将焦炉煤气净化、转化后提取氢气 1.焦炉煤气制氢原理 变压吸附(PSA)分离技术是一种非低温的分离技术,利用不同气体在吸附剂上吸附性能的差异,以及同种气体在吸附剂上的吸附性能随压力变化而变化的特性来实现混合气体中各种气体的分离。 2.工艺流程图 图1 焦炉煤气制氢工艺流程图 由图1可知,本制氢装置共分为6个主要工艺过程:预净化工序、精脱萘工序、PSA一1(PSA—c0:/R)工序、PSA一2(PSA—CH。)工序、净化压缩工序和转化变换工序以及PSA一3(PSA-H,)工序 二、焦炉煤气制氢技术应用

焦炉煤气制LNG项目发展背景

焦炉煤气制LNG项目发展背景 我国是世界上第一大焦炭生产国,焦炉煤气是炼焦工业的副产品,其主要成分为氢气(体积分数55-60%)和甲烷(23-27%)。生产1吨焦炭约副产200-250立方米焦炉气。按2011年4.28亿吨焦炭产量计算,我国每年可供综合利用的焦炉气高达800-1000亿方,发热量相当于西气东输两线总和,有较高的利用价值。目前我国只有不到10%的焦炉煤气被回收,主要用于城市煤气供应、发电、化工生产等,绝大多数排入大气,在污染环境的同时,造成稀缺资源的极大浪费。 由于焦炉煤气中的CH4、CO、CO2、C2+含量近40%,氢含量高,因此焦炉煤气通过甲烷化反应,可以使绝大部分CO、CO2等转化成CH4,得到主要含H2、CH4、N2的混合气体,然后采用深冷分离得到液化天然气(LNG)。因此,采用焦炉煤气制取LNG技术,焦炉煤气中的组分都可以得到有效利用,大大提高能量利用率,同时减少了环境的污染。 天然气是一种高效、优质的清洁燃料,数据显示,从2000到2009年,中国天然气消费量平均增长率近16%,单中国天然气资源短缺:2010年天然气缺口达300亿立方米,对外依存度升至13%左右;2015年将达到30%,2020年降到到50%左右。随着天然气需求量和进口量的不断增加,我国将面临天然气供应安全的挑战,而中国的近年来每年约1200亿Nm3焦炉气,一部分用来发电,一部分用来制取甲醇制氢,还有相当一部分直接排放,因此利用焦炉气生产天然气项目能够有效的回收利用资源,产生较高的经济效益,有助于形成良好的循

环产业链。利用剩余焦炉煤气生产LNG,既有效解决了焦炉尾气的排放问题,又具有十分可观的经济效益和社会效益。焦炉煤气制LNG 项目符合国家能源多元化战略,符合国民经济和社会发展规划、行业规划及产业政策。 在国内天然气气价高涨的情况下,焦炉煤气制LNG发展前景十分光明。我国焦炉煤气主要用于供热、发电、制尿素、制甲醇及炼钢,近几年一些企业开始投资焦炉气制液化天然气(LNG)。相比较而言,供热和发电投资小,但经济效益低,应用正逐渐减少;制尿素和甲醇效益较好,国内已实现商业化生产,但是面临产能过剩风险,且投资数额大;用于炼钢又受到客户和运输距离的限制,推广有难度;而焦炉气制LNG的经济效益良好,投资适中(和制甲醇差不多),不太受运输距离限制,且能够满足日益增长的能源需求,焦炉气制LNG空间很大。 2011年以来,随着西南化工研究院自主研发的甲烷化工艺具备产业化条件,加上国外先进的甲烷化工艺包(英国戴维、丹麦拓普索)被引进,长期以来困扰我国焦化企业的技术难题有望得以解决,我国2011年先后建立了几个大型的焦炉气制LNG项目,集中于2012年投产。 从行业发展趋势上看,大型能源企业中石油。中国海油、冀中能源等都将焦炉煤气生产液化天燃气作为今后的经济增长点。

以焦炉煤气制合成氨的主要工艺分析与选择

以焦炉煤气制合成氨的主要工艺分析与选择 景志林,张仲平(山西焦化股份有限公司,山西洪洞041606)2007-12-14 山西焦化股份有限公司现拥有80 kt/a合成氨,130 kt/a尿素的生产能力。公司拟建设15 Mt/a焦炉扩建项目(二期工程)。焦炉装置建成后,产生的焦炉煤气除自用外,可外供焦炉气32650 m3/h,这些焦炉气若不及时加以利用,不仅对当地大气环境造成不利的影响,还会造成能源的极大浪费。 对于富裕焦炉煤气利用问题,公司经过多方论证,考虑到多年氮肥生产的技术和管理优势,计划配套建设以焦炉煤气制180 kt/a合成氨,300 kt/a尿素的生产装置。本文介绍“18·30”项目合成氨制备中主要工艺技术路线的选择。 1 焦炉气配煤造气制合成氨的必要性 焦炉气生产合成氨类似天然气生产合成氨,焦炉煤气自身的特点是氢多碳少,C/H低,焦炉气成分如表1。单独用于合成氨生产时,原料气耗量大,弛放气排放量多,单位产品能耗高。必须补碳。 综合考虑,周边煤炭资源丰富,价格便宜,宜采用煤制气补碳,煤制气有效成分(H2+CO)高,可以把合成气调整合理,最大限度地利用原料气。 因此,要想取得好的经济效益,合理地利用原料资源,采用煤、焦、化一体化的联合流程,不仅将能源和环境保护结合起来,而且将传统的焦化工业与化学工业及化肥工业有机地结合起来,生产大宗支农产品——尿素,是新一代焦炉气综合利用的好途径。 2 工艺生产路线概述 将来自焦化厂净化后的剩余焦炉煤气,进入气柜进行混合、缓冲,然后通过罗茨鼓风机升压,湿法脱硫装置脱除焦炉气中的H2S,再加压至2.3 MPa,送干法脱硫装置,将气体中的总硫脱至7 mg/m3以下,利用深冷空分装置送来的富氧,混入蒸汽进行催化部分氧化转化,将气体中的甲烷及少量其他烃转化为CO和H2,转化后的高温气体经废锅回收热量降温后,补加蒸汽进入变换工序的中变炉,进行CO变换反应,调整CO含量至3%,然后进入ZnO 精脱硫槽,将气体中的总硫脱至(1~3)×10-6,再进入装有铜锌催化剂的低温变换炉,控制变换气中CO含量为0.3%。 灰熔聚粉煤气化炉生产的煤气,单独进行压缩、净化、中温变换,之后也进入ZnO 精脱硫槽,与转化后的中变气混合,一起进入低温变换炉,进行深度变换。变换后的低变气进入脱碳装置脱除CO2,控制脱碳气中CO2含量≤0.2%,再经甲烷化装置精制,使气体中的CO+CO2≤20×10-6,合格的氢氮气经合成气压缩机组,加压至31.4 MPa送往氨合成装置。氨合成采用31.4 MPa的高压合成工艺。流程示意如图1。 氨合成产生的放空气净氨后,作为转化装置预热炉的燃料气。

焦炉煤气的处理与应用

焦炉煤气的处理与利用 彭云飞学号11721465 (上海大学材料科学与工程学院,上海) 摘要:焦炉煤气是炼焦过程中得到的重要副产品,近些年对焦炉煤气的组成成分的研究已经相当成熟。焦炉煤气属于中热值然气,其中包含巨大的利用价值。而我国作为世界钢铁大国之一,产焦量也位于世界前列,但焦炉煤气的利用方面却远远不及发达国家,造成了巨大的能源浪费。本文介绍了有关焦炉煤气的基本知识,重点介绍了利用焦炉煤气民用供气、发电、作为工业原料、生产化工产品、高炉喷吹工艺以及这些利用方式的经济效益分析。 关键词:焦炉煤气、处理、利用 Abstract: The cole oven gas is the most secondary product during coking processing, the study about the composition of the coke oven gas has become more devoloped. The coke oven gas is calorific value of fuel gas, containing great use value. But China is one of the world steel superpower, the using of the coke oven gas has falt behind of the devoloped country, making a great waste of energy. This paper give us some things about the coke oven gas, and focusing on the using of coke oven gas on town gas, generate electricity, as industrial raw material, producing chemical products, blast furnace injection process and the economic benefit of this using mathods. Keys: Coke oven gas, handling, using

焦炉煤气制氢操作规程分解

储配分公司大青站 制氢工段焦炉煤气提氢装置操作规程 第一章工艺技术规程 1.1 装置概况 1.1.1 装置简介 本装置建成于2012年2月,焦炉煤气处理量≥4208.41Nm3/h( 干基)。产品氢气流量2100Nm3/h。本装置主要采用6-2-2/V程序变压吸附工艺技术从焦炉煤气中提取高纯氢。整个过程主要分为预净化工序、提纯氢气的PSA 工序、氢气脱氧和干燥工序、产品压缩和装车五个工序。 1.1.2 工艺原理 利用固体吸附剂对气体的吸附有选择性,以及气体在吸附剂上的吸附量随其分压的降低而减少的特性,实现气体混合物的分离和吸附剂的再生。 1.1.3工艺流程说明 焦炉煤气经过压缩机加压至0.76MPa后进入预净化工序,经过预处理器脱除萘、焦油等杂质后进入变压吸附工序。在吸附塔中氢气与其他杂质分离后进入脱氧干燥工序,纯度达99.99%的合格产品气经计量进入氢气压缩机压缩至20MPa 后装车。 1.1.4 工艺原则流程图:

焦炉煤气 1.2 工艺指标: 1. 2.1 原料气指标 原料气组成(干基) 组成 H 2 N 2 CO 2 CH 4 CO O 2 CnH m Σ V% 56.7 3.2 2.7 26.3 7.7 0.9 2.5 100 原料气中杂质含量(mg/Nm3) 组成 萘 焦油 H 2S NH 3 mg/Nm 3 冬≤50 夏≤100 ≤10 ≤20 ≤50 1.2.2 成品指标 组成 H 2 CO O 2 N 2 CO 2 CH 4 合计 V% 99.99 2 0.0005 0.0005 0.006 0.0001 0.001 100 1.2.3 公用工程指标 项目 压力及规格 温度 流量及容量 蒸汽 0.5MPa 饱和温度 夏天350kg/h 冬天430kg/h 仪表空气 0.4-0.6MPa 常温 100Nm3/h 循环水 给水0.4MPa 回水 给水28℃回水40℃ 47t/h 预净化工序 变压吸附单元 氢气加压单元 脱氧、干燥单元 产品装车单元

焦炉煤气中萘含量测定

煤气中萘含量测定方法(苦味酸法) 1 苦味酸法 1.1 原理 煤气中萘系物(含萘、甲基萘等),在通过苦味酸溶液时生成结合物沉淀,将过滤后的沉淀溶于丙酮中,用标准碱液滴定,但煤气中含有茚等某些不饱和烃也能部分地与苦味酸生成结合物沉淀,以一氯化碘溶液加以校正。在测定中控制一定温度,并在测定结果中加上相应校正值,以求得正确的粗萘含量。 1.2 试剂和材料 除非另有说明,在分析中仅有使用确认为分析纯的试剂和蒸馏水或去离子水或相当纯度的水。 a) 硫酸(H2SO4):密度为 1.84g/mL,含量95%~98%; b) 氢氧化钠(NaOH); c) 硫代硫酸钠(Na2S2O3·5H2O); d) 苦味酸(2、4、6三硝基酚)〔C6H2OH(NO2)3〕; e)乙酸铅〔Pb(CH3COO)2·3H2O〕化学纯; f)碘化钾(KI); g)丙酮(CH3COCH3); h)冰乙酸(CH3COOH); i)一氯化碘(ICl)化学纯; j)可溶性淀粉; k)溴百里香酚蓝(C27H28O5Br2S);

l) 硫酸溶液(5→100):量取5mL硫酸,缓缓注入约70mL水中,冷却,稀释至100mL; m) 乙酸铅溶液(50g/L):称取5g乙酸铅,溶于70mL水中,加1mL 冰乙酸,用水稀释至100mL; n) 一氯化碘溶液:称取25g一氯化碘液体,倒入1500mL冰乙酸中完全溶解,置于棕色瓶中,放置于干燥暗处; o) 碘化钾溶液(100g/L):称取100g碘化钾,溶于800mL水中,稀释至1000mL; p)氢氧化钠标准滴定溶液〔c(NaOH)=0.1mol/L〕:按GB/T 601-2002中4.1制备; q)硫代硫酸钠标准滴定溶液〔c(Na2s2o3)=0.05mol/L〕:按GB/T 601-2002中4.6稀释一倍制备; r) 苦味酸溶液:将1瓶25g的苦味酸溶解在2000mL蒸馏水中,煮沸,冷却,过滤,将其澄清液用氢氧化钠标准滴定溶液〔c(NaOH)=0.1mol/L〕滴定,配制成下列浓度: 1)洗涤液〔c(苦味酸)=0.02mol/L〕; 2)13℃~18℃的吸收液〔c(苦味酸)=0.042mol/L〕; 3)0℃的吸收液〔c(苦味酸)=0.033mol/L〕; 吸收过萘的苦味酸溶液可汇集后煮沸、浓缩、冷却、过滤,将其澄清液再配置成苦味酸溶液〔c(苦味酸)=0.033mol/L〕或〔c(苦味酸)=0.042mol/L〕,重新使用。 s)淀粉指示液(5g/L):称取1g可溶性淀粉,加入10mL水

焦炉煤气制氢新工艺

焦炉煤气变压吸附制氢新工艺的开发与应用焦炉煤气变压吸附(PSA)制氢工艺利用焦化公司富余放散的焦炉煤气,从杂质极多、难提纯的气体中长周期、稳定、连续地提取纯氢,不仅解决了焦化公司富余煤气放散燃烧对大气的污染问题;而且还减少了大量焦炭能源的耗用及废水、废气、废渣的排污问题;是一个综合利用、变废为宝的环保型项目;同时也是一个低投入、高产出、多方受益的科技创新项目。该装置首次采用先进可靠的新工艺,其经济效益、社会效益可观,对推进国内PSA技术进步也有重大意义。 1942年德国发表了第一篇无热吸附净化空气的文献、20世纪60年代初,美国联合碳化物(Union Carbide)公司首次实现了变压吸附四床工艺技术工业化,进入20世纪70年代后,变压吸附技术获得了迅速的发展。装置数量剧增,装置规模不断扩大,使用范围越来越广,主要应用于石油化工、冶金、轻工及环保等领域。本套大规模、低成木提纯氢气装罝,是用难以净化的焦炉煤气为原料,国内还没有同类型的装置,并且走在了世界同行业的前列。 1、焦炉煤气PSA制氢新工艺。 传统的焦炉煤气制氢工艺按照正常的净化分离步骤是: 焦炉煤气首先经过焦化系统的预处理,脱除大部分烃类物质;经初步净化后的原料气再经过湿法脱硫、干法脱萘、压缩机、精脱萘、精脱硫和变温吸附(TSA)系统,最后利用PSA制氢工艺提纯氢气,整个系统设备投资大、工业处理难度大、环境污染严重、操作不易控制、生产成本高、废物排放量大,因此用焦炉煤气PSA制氢在某种程度上受到一定的限制,所以没有被大规模的应用到工业生产当中。 本装置釆用的生产工艺是目前国内焦炉煤气PSA制氢工艺中较先进的生产工艺,它生产成本低、效率高,能解决焦炉煤气制氢过程中杂质难分离的问题,从而推动了焦炉煤气PSA制氢的发展。该工艺的特点是: 焦炉煤气压缩采用分步压缩法、冷冻净化及二段脱硫法等新工艺技术。 1.1工艺流程。 PSA制氢新工艺如图1所示。

焦炉煤气提氢技术方案

焦炉煤气提氢技术方案 Prepared on 22 November 2020

一、总则 1、概述 有限公司为满足生产的需要,拟上一套5000Nm 3/h 焦炉煤气变压吸附制取氢气装置。本章所载内容必须满足买方的要求。卖方提供的合同设备(焦炉煤 气氢气制取装置)应满足技术先进、安全可靠、运行稳定、维修方便的要求。 卖方应对焦炉煤气氢气制取装置的整体技术性能向买方负责。焦炉煤气氢气制取装置应能够在安全、可靠、长周期条件下运行,高产低耗,满足改变工况及负荷调整的要求。 2、装置名称及规模 装置名称:焦炉煤气提氢变压吸附制氢装置。 装置规模:装置的氢气产量为5000Nm 3/h 。 4、分包范围(详见) 上一套5000Nm 3/h 焦炉煤气变压吸附制取氢气装置。此装置采用界区内部分承包形式包给卖方,卖方承包范围包含工程设计、设备购置(仅吸附剂、程控阀)、人员培训(外出培训费用买方自己承担)、设备制造(卖方提供设计参数图纸,买方采购)、工程安装指导、生产调试指导、装置开车指导,最后通过性能考核交给买方。 5、装置的工艺路线界定 本装置以焦炉煤气为原料,通过变压吸附分离提纯,生产纯度为≥%的产品氢气。 6、卖方技术人员的派遣 为了使合同设备顺利而有序的进行安装和调试,卖方负责派遣合格的技术人员到施工现场进行技术服务。卖方技术人员的实际参加人数、专业、预计到达和离开项目现场的日期,根据现场施工的实际进度,由买卖双方商定。卖方应根据其经验在供货文件中做出技术服务的详细安排,其费用包括在报价中。 7、卖方技术人员的服务范围及职责 卖方技术人员将代表卖方提供技术服务,在合同设备安装、试车、投料试生产、性能考核及验收、运行操作、维修等方面完成合同规定的卖方应履行的任务和职责。卖方技术人员将详细进行技术交底,详细讲解图纸、工艺流程、操作规程、设备性能及有关注意事项等,解答合同范围内买方提出的技术问题。 二、装置指标 1、技术指标 装置性能 焦炉煤气提氢5000Nm 3 /h 装置 技术方案 买方: 卖方:四川亚联高科技股份有限公司

内蒙古鄂托克旗建元煤化建设焦炉煤气综合利用项目

58四川化工第22卷2019年第3期;简讯 宁夏虽昆鹏清洁能源年产40万吨乙二醇项目开工 宁夏鲍鹏清洁能源有限公司年产40万吨乙二醇项目于2019年3月18日正式开工。项目总投资43亿元,采用丹化通辽金煤专利技术和工艺路线,由中国天辰工程公司设计、中国化学第六建设工程公司和中国化学第十六建设工程公司负责建设,主要建设气化装置、空分装置、低温甲醇洗装置、净化冷冻装置、变换及热回收装置、合成装置、精制装置及公用设施。该项目计划于2021年9月建成,达产达效后,每年将实现销售收入25.8亿元、利润总额7.8亿元、利税5.7亿元。该项目的建设有利于推动煤炭清洁高效利用、保障石化产业安全、促进石化原料多元化,对宁夏自治区和宁东基地产业转型升级、新旧动能转换具有重要引领和示范带动作用。 (汪家铭) 湖北美洋化肥建设年产15万吨硫酸钾缓控释专用肥等项目 湖北美洋化肥科技有限公司投资5.8亿元,拟在湖北省宜昌市宜都市化工园区建设年产15万吨硫酸钾缓控释专用肥和年产5万吨生物有机肥及微生物菌剂肥项目。项目现已进入土建施工阶段,建设内容包括新建年产15万吨硫酸钾缓控释专用肥生产线1条,配套专用厂房5000平方米,仓库20000平方米。同时新建年产5万吨生物有机肥及生菌剂肥生1,配套2400方米,发酵库房6000平方米,成品库7200平方米,原料库7200平方米。项目由湖北润天环保科技有限公司承担环评工作,日前发布了该项目的环境影响评价第一次公示$(汪家铭) 河南金大地化工建设年产18万吨三聚氟胺及尾气综合回收项目 河南金大地化工有限责任公司拟在河南省潔河市建设年产18万吨三聚氧胺及尾气综合回收项目,中南金尚环境工程有限公司承担了本项目的环境影响评价工作。建设地点位于舞阳县产业集聚区广发路以南、创业路以西,占地面积150亩,总建筑面积10万平方米。生产工艺以尿素为原料,采用加压循环法制取三聚氧胺。三胺尾气采用氨碳分离,副产二氧化碳和氨送本公司联碱装置制取60万吨小苏打和50万吨氯化鞍。主要生产设备有反应器3台、结晶器3台、三鞍捕集器6台、尿素洗涤塔3台、热气过滤器6台、热气冷却器6台、熔盐炉6台、载气冷气风机3台、载气循环风机3台。(汪家铭) 内蒙古鄂托克旗建元煤化建设焦炉煤气综合利用项目 内蒙古鄂托克旗建元煤化科技有限公司焦炉煤气综合利用项目位于鄂尔多斯市鄂托克旗棋盘井工业园内,项目以建元煤化科技公司420万吨焦化装置所产的焦炉气为原料,充分利用焦炉煤气富含甲烷气、氢气的特点,进行焦炉煤气变换、脱硫脱碳,深冷分离制取LNG$工艺流程为富氢气一部分经过液氮洗后合成液氨,富氢气另一部分送至PSA提氢装置提取纯氢气,送乙二醇装置使用。工艺生产装置分为焦炉煤气制LNG联产合成氨装置、煤制合成气装置、乙二醇装置、常压气化制取燃料气装置$主要产品包括年产LNG36万吨、液氨60万吨、尿素40万吨$(汪家铭)

焦炉煤气制氢操作手册模板

焦炉煤气制氢操作 手册

得一化工股份有限公司600Nm3/h焦炉气提氢变压吸附装置 操作运行说明书 得一化工有限公司 二00七年八月 山西介休

第一章前言 一、概述 本装置是采用变压吸附(简称PSA)法从焦炉煤气( 简称COG) 中提取氢气, 改变操作条件可生产不同纯度的氢气。 本装置采用气相吸附工艺, 因此, 原料气中不应含有任何液体和固体。在启动和运转这套装置之前, 要求操作人员透彻地阅读本操作运行说明书, 因为不适当的操作会导致运行性能低劣和吸附剂的损坏。 本说明书中涉及到的压力均为表压, 组成浓度均为体积百分数, 流量除专门标注外均为标准状态下的流量。 二、设计参数 1、原料气组成: 原料气压力: ≥3Kpa (表压); 原料气温度: ≤40℃。 2、产品气压力: ≥1.2MPa (表压); 产品气流量: 600Nm3/h; 产品气温度: ≤40℃; 产品氢气纯度: H2≥99.9 % CO+CO2≤10PPm O2≤10PPm H2O≤30PPm S≤2PPm 3、解吸气压力: ~0.02Mpa (表压); 解吸气流量: ~550Nm3/h;

解吸气温度: ≤40℃。 4、解吸气组成: 第二章工艺说明 一、提氢工艺流程基本构成 本装置采用变压吸附技术从焦炉煤气中提取氢气, 焦炉煤气中杂质较多, 组成十分复杂, 随原料煤不同有较大变化, 除有大量的CH4和一定量的N2、CO、CO2、O2外还有少量的高碳烃类、萘、苯、无机硫、焦油等, 后者都是些高沸点、大分子量的组份, 很难在常温下解吸, 对变压吸附采用的吸附剂而言, 吸附能力相当强, 这些杂质组分会逐渐积累在吸附剂中而导致吸附剂性能下降, 因此本装置采用两种不同的吸附工艺, 变温吸附工艺和变压吸附工艺。经过脱萘脱油后压缩的焦炉煤气首先经过变温吸附工艺除去C5以上的烃类和其它高沸点杂质组份, 达到预净化焦炉煤气的目的, 然后再经过变压吸附工艺除去除氮、甲烷、一氧化碳及二氧化碳等气体组份, 获得纯度约为99.5%的氢气, 最后再经过精脱硫、脱氧、干燥系统的净化得到99.9%的产品氢气。除油脱萘器和预处理器的再生气来自变压吸附工序中的解吸气, 使用后的再生气经冷却后可返回解吸气管网。

相关文档
最新文档