锅炉汽包水位保护系统

锅炉汽包水位保护系统
锅炉汽包水位保护系统

●概述

锅炉汽包水位保护系统是防止锅炉满水和缺水的必要和有效的措施,是锅炉启动及正常运行的必要条件。目前锅炉水位保护系统存在较大的问题。最主要原因是锅炉汽包水位的测量不准确和保护的可靠性不够。目前国内亚临界机组锅炉汽包水位保护主要是以“电接点”的测量方式为主。但由于汽包内部温度大于测量筒内的温度,所以指示值与实际水位会存在较大偏差。锅炉汽包水位测量不准,保护功能就无法实现。因此国家电力公司下发[2001]795号文件《国家电力公司电站锅炉汽包水位测量系统配置、安装和使用若干规定(试行)》的通知。要求按《防止电力生产重大事故的二十五项重点要求》部分的有关要求规定来进行锅炉汽包水位测量及保护。

TH-SB2002型锅炉汽包水位测量及保护系统根据目前在锅炉汽包水位测量及保护方面所存在的问题和前国电公司精神,使用单室平衡容器加温度和压力补偿的水位测量方式及保护系统。并在原文件精神的基础上采用了专利技术进行改进和提高。使系统更完善、更准确。达到了锅炉汽包水位的全程测量及保护。

系统采用西门子PLC设备,具有高度的模块化和可扩展性。进口元件的应用保证了系统长期可靠性及数据处理的准确。

●构成

系统采用PLC加触摸屏的方式实施系统控制。

外部输入信号有:三路水位的压差信号、一路汽包压力信号、三路正压测参比水柱的温度信号及开关量信号。

输出信号有:水位高低报警及控制信号、补偿后汽包水位信号和汽包压力信号。

PLC

锅炉汽包水位保护系统示意图

特 点

1. 良好的人机界面,可以实现对各个输入信号和保护信号状况的监视和报警,主机和模板的故障监测报警。本系统可与DCS 系统进行通讯。

2. 对汽包水位从启炉到额定负荷的全过程进行温度、压力补偿,从而得到准确的汽包水位值,并进行全程保护。

3. 任一路的水位、温度、压力信号发生故障时,都进行报警,并切除此路信号。

4. 当机组甩负荷安全门动作时,系统能够测量当时的汽包水位。

位保护故障报警

水位低Ⅱ

水位低Ⅰ值

水位高Ⅲ

水位高Ⅱ

水位高Ⅰ值

补偿后的水位

触摸屏

锅炉汽包水位测量问题分析及技术措施

浙江省火电厂锅炉汽包水位测量问题分析及改进 孙长生1,蒋健1,刘卫国2,丁俊宏1,王蕙1 (1.浙江省电力试验研究院,杭州市,310014;2.国华浙能发电有限公司,浙江省宁波 市,315612) 摘要:汽包水位是表征锅炉安全运行的重要参数。由于配置、安装、运行及维护不当等因素,导致汽包水位测量系统存在测量值与实际值不符的情况,影响机组安全、经济、稳定运行。本文对浙江省火电厂汽包水位测量、水位保护投入状况进行现场调查,总结存在的问题,分析问题产生的原因,探讨并提出消除或减少这些问题的技术改进措施,供同行参考。 关键词:汽包水位测量;偏差分析;技术措施;锅炉;水位保护;水位计 doi:10.3969/j.issn.1000-7229.2010.10.000 Analysis of Running Status and Research of T echnical Proposal to the Drum Water Level Measurement Systems of Zhejiang Fired Power Plant SUN Chang-sheng1,JIANG Jian1,LIU Wei-guo2,WANG Huo (1.Zhejiang Provincial Electric Power Test and Research Institute,Hangzhou 310014,China;2.Zhejiang Guohua Zheneng Power Generation Co. Ltd.,Ningbo 315612,Zhejiang Province, China) ABSTRACT:Because of many reasons during installment, operation and maintenance, the drum water level measurement systems often have been found the difference between the observed value and the actual value, that seriously affectes unit's stable operation.This article has investigated many power plants in the Zhejiang Province closely, surveyed the situation of the drum water level measurement and the water level protection conditions of Zhejiang fired power plant, and has gived useful suggestion.of the reference water column. KEYWORDS:drum water level measurement;warp analysis;technical proposal;boiler;water level protection;water level meter 0 引言 汽包水位是表征锅炉安全运行的重要参数,其测量的准确性与其偏差问题(以下简称“水位测量问题”)的解决,是一直困扰火电机组热工测量与安全、经济运行的难题。针对水位测量问题,在浙江省内火电厂进行了专题调查,就存在的水位测量问题进行了深入的专题探讨,提出了提高汽包水位测量系统运行可靠性的改进意见,供同行参考。 1 存在的主要问题 1.1 模拟量测量信号系统存在的问题 目前浙江省蒸发量为400 t/h及以上的汽包炉共有57台,这些锅炉运行中模拟量测量信号系统存在的主要问题包括以下几方面: (1)测量显示偏差。不同测量变送器显示的示值不一致,两侧显示偏差高的超过100 mm,即使是同侧偏差,有时也高达几十mm,且随着机组负荷的变化而不同,难以找出其变化规律。 (2)逻辑故障判断功能不完善。一些机组不具备《防止电力生产重大事故的二十五项重点要求》(请核实是否修改正确)中的汽包水位信号故障后的逻辑判断自动转换功能、水位和补偿用的汽包压力信号坏信号判别功能。 (3)共用测量孔。由于汽包上给出的取样孔不足,因此存在共用取样孔和平衡容器情况,未能做到全程独立。

锅炉汽包水位智能系统设计【开题报告】

开题报告 电气工程及自动化 锅炉汽包水位智能系统设计 一、综述本课题国内外研究动态,说明选题的依据和意义 在没有工作人员直接参与的情况就是自动控制,它是用外加的装置、设备、让机器或者生产过程的某一个参数或者工作状态能够自动的按照先前设定的指标或者规则运行的系统设备。 20世纪40年代自从美国的科学家维纳创立控制理论以来。自动控制从最早的开环控制起步,然后经过反馈控制、最优控制、随即控制、自适应控制、自学习控制、自组织控制一直这样发展到智能控制这一最新阶段。 传统控制理论经过经典控制理论和现代控制理论两个具有里程碑意义的重要阶段。它们的共同特点就是都是基于被控对象的清晰数学模型,即干扰和控制对象都得用严格意义上的函数和数学方程表示,控制的目标和任务一般都比较直接和明确。外界的干扰和控制对象的不确定性只允许在很小的限度内发生。 对系统运动规律的数学描述就是一个系统的数学模型。传递函数、状态方程和微分方程是描述控制系统的三种最基本的数学模型,而作为两者的纽带是微分方程。经典控制理论的主要研究常系数单变量线性系统数学模型,经常使用传递函数为基础的频域分析方法。现在控制理论主要研究多输入-多输出线性系统的数学模型,经常使用状态方程和微分方程为基础的时域分析方法,传统的控制方法多是要去解决是不变,线性等相对简单的被控系统的控制问题。这类系统完全可以用常系数,集总参量以及线性的微分方程予以描述。 但另一个方面,许多实际的控制目标和工业对象并非常常如此理想的。特别是遇到系统的结构复杂、变量纵多、规模庞大、参数随即多变、系统存在大之后或参数间又存在强耦合等错综复杂的情况时。传统的控制理论的数学解析结构则很难表达和处理。由于实际系统和研究对象具有非线性,不确定性,不完全性,时变性,因而无法建立起表述他们的运动规律和特性的数学模型,于是就失去了传统数学模型的分析基础。也就无法设计出合理的经典控制器。而且,在建立数学模型时一般都得经过理想化的处理和假设,即使把分布参数化为集中参数,非线性化为线性,时变的化为定常

锅炉汽包水位控制系统设计-毕业论文

摘要 汽包水位是影响锅炉安全运行的一个重要参数,汽包水位过高或者过低的后果都非常严重,因此对汽包水位必须进行严格控制。PLC技术的快速发展使得PLC 广泛应用于过程控制领域并极提高了控制系统性能,PLC已经成为当今自动控制领域不可缺少的重要设备。 本文从分析影响汽包水位的各种因素出发,重点分析了锅炉汽包水位的“假水位现象”,提出了锅炉汽包水位控制系统的三冲量控制方案。按照工程整定的方法进行了PID参数整定,并进行了仿真研究。根据控制要求和所设计的控制方案进行硬件选型以及系统的硬件设计,利用PLC编程实现控制算法进行系统的软件设计,最终完成PLC在锅炉汽包水位控制系统中应用。 关键词:汽包水位、三冲量控制、PLC、PID控制

ABSTRACT The steam drum water level is a very important parameter for the boiler safe operation, both high and low steam drum water level may lead to extremely serious consequence; therefore it must be strictly to be controlled. With the rapid development of PLC technology, it can widely be applied to the process control domain and enhances the performance of control system enormously. PLC has already become the essential important equipment in automatic control domain. Based on the analysis of all kinds of factors which influence steam drum water level, “unreal water level phenomenon”is analyzed specially, and three impulses control plan for steam drum water level control system is proposed. PID parameters are regulated by engineering regulation method, and simulation study is done. According to the needs of control, the selection of control requirements hardware and system hardware design as well as system software design are carried out. Finally the application of PLC in boiler steam drum water control system is completed. Key words:Steam drum water level、Three impulses control、PLC、PID control

关于锅炉汽包水位监控保护安全问题及对策

关于锅炉汽包水位监控保护安全问题及对策 分析汽包水位测孔与一次测量装置问题对监控保安系统的影响,已成为系统完善与提高可靠性的主要障碍,在实施DCS改造时应同步解决之。提出针对性技改目标与要求。华能淮阴电厂应用‘水位多测孔接管’技术,解决了测孔过少、取位不当问题,以及使用‘电接点水位计高精度取样测量筒’解决汽包水位准确可靠测量的问题。1、汽包水位监控保护系统的安全分析汽包水位是锅炉最重要的安全参数。监控保安系统由水位仪表、自动调节、信号报警和停炉保护等几个子系统组成,保障锅炉设备及水位运行的安全。只要处于可靠的工作状态,汽包水位自动调节系统就可每分每秒、忠实地将水位准确地钳制在允许的范围内。水位参数正常就意味着安全。因此,水位自动调节也是一个安全系统。水位高2值联锁保护即:当水位升高至“高2值”时自动打开事故放水门,向排污扩容器放水,使水位降低至“高1值”以下时自动关闭事故放水门。水位低2值联锁保护即:当水位降低至“低2值”时自动关闭连续排污总门,当水位高于“低1值”时自动打开连续排污总门。这两种水位工况自动控制实际上是“二位式”自动调节保安系统。事故放水管口的口径较大,又是向排污扩容器放水,故放水流量很大。当水位升高至定值时,只要能可靠地自动打开事故放水门,就能使水位快速回降,避免汽包满水。由于放水管口位于“0水位”高度,水位只能回降至“0水位”,如放水门拒关,仅继续对排污扩容器放汽,不会造成缺水事故。因此该保护能较可靠地将水位钳制在“0水位”与

“高2值”之间。可见,该保护的拒动概率应不大于误动概率,在系统可靠性设计时必须予以注意。因为连续排污管口的口径较小、实际运行中的连续排污量与给水流量相比很小,所以低2值保护防止汽包缺水的能力有限。由于某种原因,水位高过“高2值”,且自动打开事故放水门保护拒动,水位将高至厂家认为可能危及锅炉安全的“高3值”时自动停炉,称“高水位停炉保护”,又称“满水停炉保护”。由于某种原因,水位降低至“低3值”时,为防止降水管严重带汽或水循环中断而锅炉烧坏时,自动停炉,称为“缺水停炉保护”。这两种保护属于“设备危机保护”,是电力锅炉最重要的主保护,运行中必不可少。其可靠性之高应居电站设备保护可靠性水平之最,既不能误动,更不能拒动。在锅炉水位事故统计中,缺水事故比率远比满水事故率多。其原因是,导致缺水事故的因素比满水事故多得多,例如:由众多设备串联而成的给水系统中,任何一个故障都可能中断锅炉给水;锅炉水冷壁、省煤器等炉水系统设备大面积爆管泄漏而不能维持汽包水位;高低2值工况保护效力的差异大等等。因此预防缺水事故又是重中之重。在锅炉运行中,运行人员看不见水位比看不见压力温度流量,危险得多。汽包水位表的安全地位不亚于安全门。它既是运行人员手动控制汽包水位的眼睛,又是赖以判断给水、自调与保护系统工作是否正常,不可缺少的最重要表计。在锅炉给水与炉水系统故障时,水位表是否正常,往往决定了运行人员紧急事故处理的正误。如果两个主要表计显示不一致,人员很难果断处理事故。近些年来,由于水位测量变送单

锅炉汽包水位控制系统设计

西安建筑科技大学课程设计(论文)任务书 专业班级: 自动化1002 学生姓名: 马千云 指导教师(签名): 一、课程设计(论文)题目 锅炉汽包液位控制 二、本次课程设计(论文)应达到的目的 本次课程设计是自动化专业学生在学习了《计算机控制技术与系统》和《过程控 制及仪表》两门专业必修课程及《单片机原理与应用》、《可编程控制器》等相关专业 选修课程之后进行的一次全面的综合训练,其主要目的是加深学生对计算机控制技术 相关理论和知识的理解,进一步熟悉计算机控制系统工程设计的基本理论、方法和技 能;掌握工程应用的基本内容和要求,整合各专业课程的理论知识和方法,做到理论 联系实际;培养学生分析问题、解决问题的能力和独立完成系统设计的能力,并按要 求编写相关的设计说明书、技术文档和总结报告等。 三、本次课程设计(论文)任务的主要内容和要求(包括原始数据、技术 参数、设计要求等) 锅炉汽包液位的阶跃响应曲线数据如下表所示,控制量阶跃变化5u ?=。试根据 实验数据设计一个超调量 25%p δ≤的无差控制系统。 具体要求如下: (1) 根据实验数据选择一定的辨识方法建立对象的数学模型; (2) 根据辨识结果设计符合要求的控制系统(控制系统原理图、控制规律选择等); (3) 根据设计方案选择相应的控制仪表;

对设计的控制系统进行仿真,整定运行参数。 (4)撰写课程设计报告一份,要求字数3000~5000字。 四、应收集的资料及主要参考文献: 1.王再英等.过程控制系统与仪表.机械工业出版社,2006 2.潘新民,王燕芳.微型计算机控制技术.高等教育出版社,2001 3.王锦标.计算机控制系统.清华大学出版社,2008 五、审核批准意见 教研室主任(签字) 摘要 锅炉是典型的复杂热工系统,目前,中国各种类型的锅炉有几十万台,由于设备分散、管理不善或技术原因,使多数锅炉难以处于良好工况,增加了锅炉的燃料消耗,降低了效率。锅炉的建模与控制问题一直是人们关注的焦点,而汽包水位是工锅炉安全、稳定运行的重要指标,保证水位控制在给定范围内,对于高蒸汽品质、减少设备损耗和运行损耗、确保整个网络安全运行具有要意义。 锅炉汽包水位高度,是确保安全生产和提供优质蒸汽的重要参数,对现代工业生产来说尤其是这样。因为现代锅炉的特点之一就是蒸发量显著提高,汽包容积相对变小,水位变化速度很快,稍不注意就容易造成汽包满水或者烧成干锅。在现代锅炉操作中,即使是缺水事故,也是非常危险的,这是因为水位过低,就会影响自然循环的正常进行,严重时会使个别上水管形成自由水面,产生流动停滞,致使金属管壁局部过热而爆管。无论满水或缺水都会造成事故,因此,必须严格

DRZT01-2004火力发电厂锅炉汽包水位测量系统技术规定

DRZT 01-2004 火力发电厂锅炉汽包水位测 量 系统技术规定 1适用范畴本标准规定了火力发电厂锅炉汽包水位测量系统的配置、补偿、安装和运行爱护的技术要求。 本标准适用于火力发电厂高压、超高压及亚临界压力的汽包锅炉。 2汽包水位测量系统的配置 2.1锅炉汽包水位测量系统的配置必须采纳两种或以上工作原理共存的配置方式。锅炉汽包至少应配置1 套就地水位计、3 套差压式水位测量装置和2 套电极式水位测量装置。 新建锅炉汽包应配置1 套就地水位计、3 套差压式水位测量装置和3 套电极式水位测量装置或1 套就地水位计、1套电极式水位测量装置和6套差压式水位测量装置。 2.2锅炉汽包水位操纵和爱护应分别设置独立的操纵器。在操纵室,除借助DCS 监视汽包水位外,至少还应当设置一个独立于DCS 及其电源的汽包水位后备显示外表(或装置)。 2.3锅炉汽包水位操纵应分别取自3 个独立的差压变送器进行逻辑判定后 的信号。3个独立的差压变送器信号应分别通过3个独立的输入/输出(I/O) 模件或3条独立的现场总线,引入分散操纵系统(DCS)的冗余操纵器。 2.4锅炉汽包水位爱护应分别取自3 个独立的电极式测量装置或差压式水位测量装置(当采纳6 套配置时)进行逻辑判定后的信号。当锅炉只配置2个电极式测量装置时,汽包水位爱护应取自2 个独立的电极式测量装置以及差压式水位测量装置进行逻辑判定后的信号。 3个独立的测量装置输出的信号应分别通过3 个独立的I/O 模件引入DCS 的冗余操纵器。 2.5每个汽包水位信号补偿用的汽包压力变送器应分别独立配置。 2.6水位测量的差压变送器信号间、电极式测量装置信号间,以及差压变送器和电

锅炉汽包水位系统

目录 第1章绪论 (2) 1.1概述 (2) 1.2锅炉的工作过程简介 (2) 第2章锅炉汽包水位动态特性分析 (4) 2.1汽包水位在给水流量W作用下的动态特性 (4) 2.2汽包水位在蒸汽流量D扰动下的动态特性 (5) 第3章锅炉汽包水位的控制方案 (7) 3.1单冲量控制方式 (7) 3.2双冲量控制方式 (7) 3.3三冲量控制方式 (8) 3.4我选择的控制方式 (9) 第4章仪器仪表的选择与参数的整定 (10) 4.1液位变送器的选择 (10) 4.2控制器的选择 (11) 4.3执行器的选择 (12) 4.4控制器的作用方式 (13) 4.5阀的开闭选择形式 (13) 4.6工程整定 (14) 参考文献: (15)

第1章绪论 1.1 概述 汽包水位是锅炉运行的重要指标,是一个非常重要的被控变量。维持水位在一定范围内是保障锅炉安全运行的首要条件,液位过高, 会使蒸汽带水过多, 汽水分离差, 使后续的过热器管壁结垢, 传热效率下降, 过热蒸汽温度下降, 严重时将引起蒸汽品质下降, 影响生产和安全; 水位过低又将破坏部分水冷壁的水循环, 引起水冷壁局部过热而损坏, 严重时会发生锅炉爆炸。因此, 在锅炉运行中, 保证汽包水位在正常范围是非本设计是锅炉汽包水位控制系统的设计,锅炉汽包水位的良好控制是保证系统输出蒸汽温度稳定的前提。经分析后采用三冲量的控制方式,。 1.2 锅炉的工作过程简介 锅炉是工业过程中不可缺少的动力设备,锅炉的任务是根据外界负荷的变化,输送一定质量(汽压、汽温)和相应数量的蒸汽。它所产生的蒸汽不仅能够为蒸馏、化学反应、干燥等过程提供热源,而且还可以作为风机、压缩机、泵类驱动透平的动力源。 锅炉是由“锅”和“炉”两部分组成的。“锅”就是锅炉的汽水系统,如图所示。由省煤器3、汽包4、下降管8、过热器5、上升管7、给水调节阀2、给水母管1及蒸汽母管6等组成。锅炉的给水用给水泵打入省煤器,在省煤器中,水吸收烟气的热量,使温度升高到本身压力下的沸点,成为饱和水然后引入汽包。汽包中的水经下降管进入锅炉底部的下联箱,又经炉膛四周的水冷壁进入上联箱,随即又回入汽包。水在水冷壁管中吸收炉内火焰直接辐射的热,在温度不变的情况下,一部分蒸发成蒸汽,成为汽水混合物。汽水混合物在汽包中分离成水和汽,水和给水一起再进入下降管参加循环,汽则由汽包顶部的管子引往过热器,蒸汽在过热器中吸热、升温达到规定温度,成为合格蒸汽送入蒸汽母管。“炉”就是锅炉的燃烧系统,由炉膜、烟道、喷燃器、空气预热器等组成。锅炉燃料燃烧所需的空气由送风机送入,通过空气预热器,在空气预热器中吸收烟气热量,成为热空气后,与燃料按一定的比例进入炉膛燃烧,生成的热量传递给

锅炉汽包水位测量误差分析

式中: h——汽包正常水位距水侧取样的距离,mm △h——水位计中的水位与汽包中水位的差值,mm Ps——饱和蒸汽密度,kg/m3 Pw——饱和水密度,kg/m3 Pa——水位计中水的平均密度,kg/m3 Ps'——水位计中蒸汽的密度,kg/m3 对就地水位计来说,汽包内的水温是对应压力下的饱和温度,饱和蒸汽通过汽侧取样孔进入水位计,水位计的环境温度远低于蒸汽温度,使蒸汽不断凝结成水,并迫使水位计中多余的水通过水侧取样管流回汽包。 从水和蒸汽的特性表可看出:在常温常压下,汽包和水位计中的水密度是相等的,从式(1)可见,水位计中的水位与汽包内的水位也是相同的,且与h值无关;随着汽压的升高,汽包中的水密度变小,蒸汽密度变大;而就地水位计因散热的影响,水位计中的水密度也变小,但变化幅度不如汽包内水的大;蒸汽密度虽也有增大,但变化幅度没汽包内的大,即Ps是不应等于Ps'的,但其影响只要保温处理的好,可忽略不计,下面的计算均是按Ps=Ps,来进行的;致使水位计中水位和汽包内水位的差值也随之增大,这一差值始终是就地水位计中水位低于汽包水位的主要因素;并且当h值改变时,水位差值也会改变。 为了给电厂提供参考,有的锅炉厂给出了就地水位计和汽包正常水位差值的参考数据见表1。 从表1所列数据,对于亚临界锅炉来说,在额定汽压下,就地水位计的水位比汽包内的水位要低100~150mm。下面以我厂(东方锅炉厂)在汽包额定压力18.2MPa下时汽包水位偏离正常水位的情况进行分析,根据式(1),取汽包水位为零时h=400mm,计算水位变化

±1OOmm时水位计显示情况。Pw、Ps为定值,假设Pa也为定值,取平均温度为300℃时的值。h'=h—△h,为就地水位计中的水柱高度,计算结果如表2所示。 从表中计算结果来看,汽包水位变化±100mm时,就地水位计的显示值只变化±68m m,还是假定水位计中水的温度不变,即Pa是定值的情况下计算的。实际上,当汽包内水位变化时,水位计中水的平均温度和密度均会随着变化的,汽包水位升高时,由于水的散热面增加,平均温度会下降,密度增大,水位计的指示也比表中计算的要低;而当汽包水位降低时,水的散热面减小,其平均温度升高,密度减小,水位计的指示应比表中计算的要高。当汽包水位变化±100mm时,就地水位计的变化还达不到±68mm,只是±50mm左右,并且就地水位计的误差并非是恒定值,在不同条件下有所变化,同一锅炉,在不同工况下,在不同的季节里,误差的变化还相当显著。所以依靠就地水位计来监视汽包水位是不安全、不准确的。必须改变运行中认为就地水位计的指示是准确的,并要求其它水位计的指示要与其一致。就地水位计可作为额定压力下核对其它水位计正常水位值(零位)的参考。 2 电接点水位计 电接点水位计的工作原理与就地水位计的完全相同,属于连通管式,利用与受压容器相连通的测量筒上的电接点浸没在水中与裸露在蒸汽中的导电率的差异,通过显示仪表显示水位。一般只配有一套,安装在汽包的一端,通过信号线传到集控室监视,也有的将接点信号引入停炉保护系统。 电接点水位计的工作原理与就地水位计相同,所以就地水位计存在的问题,它同样存在,即电接点水位计显示的水位与汽包实际水位存在偏差,且不是固定的,汽包水位波动时其显示不能与之对应。电接点水位计与就地水位计因结构、材料、形状、安装、散热情况的不同,它们之间的显示值也必然存在偏差;电接点水位计还存在电接点因挂水而误发信号的问题。所以在亚临界的锅炉上采用电接点水位计测量水位是不安全的、不准确的,作为保护用信号是更不可取的。 3 差压式水位计 差压式水位计的工作原理是在汽包水位取样管上安装平衡容器,利用液体静力学原理使水位转换成差压,用引压管将差压信号送至差压计,由差压计显示汽包不位。经过发展现在采用智能式差压变送器来测量汽包水位,特别计算机控制技术的引入,从技术性能、安全性、可靠性都有了极大的提高,现在亚临界锅炉均采用差压式水位计作为汽包水位测量的主要手段,并作为汽包水位控制、保护信号用。

火力发电厂锅炉汽包水位测量系统技术规定

火力发电厂锅炉汽包水位测量系统技术规定 A 01 备案号:0401-2004 DRZ 电力行业热工自动化标准化技术委员会标准 DRZ/T 01-2004 火力发电厂锅炉汽包水位测量系统技术规定 Code for level Measuremet System of Boiler drum in Fossil Fuel Power Plant 2004-10-20发布2004-12-20实施 电力行业热工自动化标准化技术委员会发布 前言 本标准根据电力行业热工自动化标准化委员会的安排进行编制。 本标准为电力行业热工自动化标准化技术委员会颁发的新编标准。 本标准由电力行业热工自动化标准化技术委员会提出并归口。 本标准主要起草单位:电力行业热工自动化标准化技术委员会标准起草工作组。 本标准主要起草人:侯子良。 本标准由电力行业热工自动化标准化委员会解释。 目次 1 适用范围 2 汽包水位测量系统的配置 3 汽包水位测量信号的补偿 4 汽包水位测量装置的安装 5 汽包水位测量和保护的运行维护 编制说明

1 适用范围 本标准规定了火力发电厂锅炉汽包水位测量系统的配置、补偿、安装和运行维护的技术要求。 本标准适用于火力发电厂高压、超高压及亚临界压力的汽包锅炉。 2 汽包水位测量系统的配置 2.1 锅炉汽包水位测量系统的配置必须采用两种或以上工作原理共存的配置方式。 锅炉汽包至少应配置1套就地水位计、3套差压式水位测量装置和2套电极式水位测量装置。新建锅炉汽包应配置1套就地水位计、3套差压式水位测量装置和3套电极式水位测量装置或1套就地水位计、1套电极式水位测量装置和6套差压式水位测量装置。 2.2 锅炉汽包水位控制和保护应分别设置独立的控制器。在控制室,除借助DCS监视汽包水位外,至少还应设置一个独立于DCS及其电源的汽包水位后备显示仪表(或装置)。 2.3 锅炉汽包水位控制应分别取自3个独立的差压变送器进行逻辑判断后的信号。3个独立的差压变送器信号应分别通过3个独立的输入/输出(I/O)模件或3条独立的现场总线,引入分散控制系统(DCS)的冗余控制器。 2.4 锅炉汽包水位保护应分别取自3个独立的电极式测量装置或差压式水位测量装置(当采用6套配置时)进行逻辑判断后的信号。当锅炉只配置2个电极式测量装置时,汽包水位保护应取自2个独立的电极式测量装置以及差压式水位测量装置进行逻辑判断后的信号。3个独立的测量装置输出的信号应分别通过3个独立的I/O模件引入DCS的冗余控制器。 2.5 每个汽包水位信号补偿用的汽包压力变送器应分别独立配置。 2.6水位测量的差压变送器信号间、电极式测量装置信号间,以及差压变送器和电极式测量装置的信号间应在DCS中设置偏差报警。 2.7 对于进入DCS的汽包水位测量信号应设置包括量程范围、变化速率等坏信号检查手段。 2.8 本标准要求配置的电极式水位测量装置应是经实践证明安全可靠,能消除汽包压力影响,全程测量水位精确度高,能确保从锅炉点火起就能投入保护的产品,不允许将达不到上述要求或没有成功应用业绩的不成熟产品在锅炉上应用。汽包水位测量系统的其它产品和技术也应是先进的、且有成功应用业绩和成熟的。 3 汽包水位测量信号的补偿 3 .1 差压式水位测量系统中应设计汽包压力对水位-差压转换关系影响的补偿。应精心配置补偿函数以确保在尽可能大的范围内均能保证补偿精度。 3.2 差压式水位表应充分考虑平衡容器下取样管参比水柱温度对水位测量的影响。 应采用参比水柱温度稳定、接近设定温度的平衡容器,或采用经实践证明有成功应用经验的参比水柱温度接近饱和温度的平衡容器。

锅炉汽包水位控制系统的设计说明

过程控制系统实验报告 专业 xxxxxx 班级 xxxxxxxxx 学生 xxxxxx 学号 xxxxxxxx

锅炉汽包水位控制系统设计 一、控制要求 设计一个汽包水位控制系统,使汽包水位维持在90CM,稳态误差±0,5CM,以满足生产要求。 二、完成的主要任务 1.掌控锅炉生产蒸汽工及其工作流程 2.对被控对象进行特性分析,画出汽包水位控制系统方框图和流程图 3.选择被控参数和被控变量,说明其选择依据 4.设计控制系统方案,如何选择检测仪表,说明其选择原则和仪表性能指标 5.说明单回路控制系统4个环节的工作形式对控制过程 6.对控制进行PID控制说明其参数整定理论 7.对锅炉汽包水位进行simulink仿真,对参数进行整定,其仿真图要满足动态性能 指标 8.总结实验课程设计的经验和收获

过程控制系统实验报告............................... - 0 -第一章锅炉汽包水位控制系统的组成原理............ - 3 - 1.1概述............................................ - 3 - 1.2锅炉生产蒸汽工艺简述 ............................ - 3 - 1.3锅炉生产蒸汽工作流程 ............................ - 4 - ............... - 5 - 2.1 对被控对象进行特性分析 ............................ - 5 - 2.2汽包水位控制系统方框图和流程图..................... - 5 - 2.2.1液位控制系统的方框图.................................. - 5 - 2.2.2液位控制系统的方案图.................................. - 6 - 2.3选择被控参数和被控变量............................. - 6 - 2.4选择检测仪表,说明其选择原则和仪表性能指标 ......... - 7 - 2.4.1传感器、变送器选择 ..................................... - 7 - 2.4.2执行器的选择........................................... - 8 - 2.4.3关于给水调节阀的气开气关的选择。 ....................... - 8 - 2.4.4 关于给水调节阀型号的选择。............................. - 8 - 2.4.5 给水流量蒸汽流量..................................... - 8 - 2.5 四个环节的工作形式对控制过程............................... - 8 - ................................... - 10 - 3.1对控制进行PID控制.......................................... - 10 - ........................................... - 11 -

汽包水位测量系统应合理配置

高维信1,荆予华 2 (1.淮安维信仪器仪表有限公司,江苏淮安 223001; 2.焦 作电厂,河南焦作 454001) 摘要:分析汽包水位监控保护测量系统按2套就地水位表、3套差压水位计配置(简称“5套配置”)的缺陷及采用“5套配置”的客观原因。介绍“多测孔接管”技术不需在汽包上开孔而增加独立取样测孔,解决了汽包原有水位测孔过少影响合理配置的难题,以及新型电接点水位测量筒高精度取样、高可靠性传感,使电接点水位计可靠地用于监视主表和保护。简介汽包水位测量系统优化配置原则与效果,建议尽早修订有关“5套配置”的规定。 关键词:电厂锅炉;汽包水位;监控保护;测量系统;优化配置 中图分类号:TK316 文献标识码:B 文章编号:1004-9649(2004)04-0000-00 0 引言 大型锅炉汽包内各局部汽流、水流及汽水混合物的流速分布往往不均匀,导致水位高 低不平,水位测量易受各种干扰。这是准确、稳定测量水位的困难之处及要实施多点测 量的原因所在。 汽包水位监控的任务是:将水位准确控制在0线附近,使饱和蒸汽品质最佳;事故水 位时手动或自动停炉;特殊操作监控,如停炉后汽包满水快冷的上水操作和满水状态的 监视,缺水停炉后及时判断可否补水,尽快恢复运行等。 满足汽包水位安全监控和事故处理的需求是水位测量技术进步的动力。仪表行业采取 化难为易的策略,针对监视、自动调节、保护的不同功能系统要求,研制了各种水位计,其性能又各有长短,形成在用水位计多样化。显然,监控保护系统设计应针对水位计的 现状,扬长避短,按不同功能需求优选、冗余配置水位计[1]。 长期以来,水位计测量与配置问题导致运行人员误判断、误操作,水位预警失灵,停 炉保护拒动,造成锅炉多起重大水位事故,而保护误动事故更多。因此要求尽快解决水 位测量问题的呼声很高。借助于分散控制系统(DCS)技术,差压水位计在一定程度上提 高了性能,所以2001年《国家电力公司电站锅炉汽包水位测量系统配置、安装和使用若 干规定(试行)》正式出台。尽管这一规定中的“安装和使用”等条款对防止重大水位事 故有重要作用,但由于受到汽包水位测孔少、普通电接点水位计不足以用于监视主表(基 准表)和保护仪表等客观技术条件的限制,对于至关重要的测量系统配置问题,采取了 简化处理(按“5套配置”),遗留问题较多,难以收到预期效果。 汽包水位测量技术的进步必然促进监控保护测量系统配置的更新。先进的测量技术 与装置如多测孔接管技术和新一代电接点水位计的成功应用,使得原本认为相对合理的 配置有了新的认识。目前来看,“5套配置”及相应的原则性条款已限制了汽包水位测量 系统更合理的配置改进,影响监控保护系统设计进一步满足运行需求,这一问题已引起 电厂和热控专家的密切关注。 收稿日期:2003-09-19;修回日期:2004-02-05 作者简介:高维信(1942-),男,江苏睢宁人,高级工程师(教授级),从事火电厂热工自动化工作。 E-mail:webmaster@https://www.360docs.net/doc/b317288957.html,

锅炉汽包水位调整总结

300MW机组锅炉汽包水位调整技术的探讨 【摘要】阐述了300MW机组锅炉汽包水位的变化机理和锅炉汽包水位调整技术,对锅炉运 行过程中汽包水位的一些关键问题从不同角度进行了探讨,为运行人员提供了科学的操作依据、实践经验和技术支持。【关键词】锅炉水位调整 1、前言锅炉的汽包水位由于调整不当,将造成两种水位事故。一种是汽包满水事故,指锅炉 汽包水位严重高于汽包正常运行水位的上限值,使锅炉蒸汽严重带水,蒸汽温度急剧下降,发生水冲击,损坏管道和汽轮机组。另一种是汽包缺水事故,指锅炉水位低于能够维持锅炉正常水循环的水位,蒸汽温度急剧上升,水冷壁管得不到充分的冷却而发生过热爆管。这种事故的发生轻者造成机组非计划停运,严重时可造成汽轮机和锅炉设备的严重损坏。在机组正常启停和运行中通过科学的判断分析和正确的高水平的调整汽包水位,才能很好的防止恶性事故的发生和间接地降低发电厂的生产成本。 2、汽包水位的变化机理 2.1 锅炉启动过程中的汽包水位变化投入炉底部加热后,辅汽在炉 水中凝结成为炉水,使汽包水位缓慢上升。锅炉点火初期,由于冷风带走的热量和燃油燃烧释放的热量相等,汽包水位无大的变化。当1.8t/h的油枪增投至两支及以上时,由于热量平衡的 破坏,使炉内温度上升,炉水吸热开始产生汽泡,汽水混合物的体积膨胀,汽包水位开始缓慢上升产生暂时的虚假水位,随炉水吸热量的增加,当水冷壁内水循环流速加快后,大量汽水混合物进入汽包后汽水分离,饱和蒸汽进入过热器,使汽包水位开始明显下降。随着汽包压力的升高,这种蒸发速度会降低,但在实践中观察该现象不太明显。当到达冲转参数(主蒸汽压力4.2Mpa,主蒸汽温度320℃)关闭35%旁路的过程中,蒸发量下降,单位工质吸收的热量增加,微观分析,分子运动速度加快,对汽包、水冷壁、过热器的撞击次数增多,宏观观察,汽包压力又进一步升高,送一方面使汽水混合物比容减小,另一方面饱和温度升高,很多已生成的蒸汽凝结为水,水中气泡数量减小汽水混合物的体积缩小,促使汽包水位迅速下降,造成暂时的虚假水位,这时在给水量未变的情况下由于锅炉耗水量下降汽包水位会迅速回升。在挂闸冲转后水位的变化相反。机组并网后负荷50Mw给水主副阀切换时,由于给水管路直径的变大使给水流量加大汽包水位上升很快。其它阶段只要给水量随负荷的上升及时增加汽包水位的变化不太明显。2.2 引风机、送风机、一次风机、磨煤机跳闸后汽包水位的变化锅炉的上述四大转机任意跳闸1台,相当于炉内燃烧减弱,水冷壁吸热量减少,炉水体积缩小,汽泡减少,使水位暂时下降。从实际事故中观察,跳1台引风机后的10s内,给水自动以2t/s的速度增加,其水位下降速率仍然高达6.2mm/s。同时气压也要下降,饱和温度相应降低,炉水中汽泡数量又将增加,水位又会上升,还由于负荷的下降,给水量不变,如果人工不干预,水位最终会上升。这就是平时所说的先低后高。2.3高加事故解列后汽包水位的变化高加事故解列,就是汽轮机的一二三段抽汽量 突然快速为零的过程。对于锅炉来说,发生了2个工况的变化,一个是蒸汽流量减少压力升高,另一个是给水温度降低100℃引起的炉水温度降低,水位将先低后高。2.4 突然掉大焦和一次风压突升后汽包水位的变化这种情况相当于燃烧加强的结果,水冷壁吸热量增加,炉水体积膨胀,汽泡增多,使水位暂时上升:同时气压也要升高,饱和温度相应升高,炉水中汽泡数量又将减少,水位又会下降;随后蒸发量增加,但给水未增加时,水位又进一步下降,即水位先高后低。从实际生产中观察,上升不明显,但下降较快,事故发生10s后,虽然给水以1t/s的速度增加,水位仍以1.7mm/s的速度下降。2.5 锅炉安全门动作和负荷突变后汽包水位的变化当锅炉安全门动作或负荷突增时,汽包压力将迅速下降,送时一方面汽水比容增大,另一方面使饱和温度降低,促使生成更多的蒸汽,汽水混合物体积膨胀,形成虚假高水位。但是由于负荷增大,炉水消耗增加,炉水中的汤泡逐渐逸出水面后,水位开始迅速下降,即先高后低。当安全门回座或负荷突降时,水位变化过程相反。3 锅炉启动过程中汽包水位的调整(1)经过高加水侧锅炉冷态启动上水正常后,投入底部加热之前给电子水位计测量筒进行灌水,使电子水位能正确显示,防止在启动过程中水位误差过大造成汽包水位无法投入和MFT误动事故。(2)锅炉底部

锅炉汽包水位控制系统的设计

/ 过程控制系统实验报告( 专业 xxxxxx 班级 xxxxxxxxx 学生姓名 xxxxxx < 学号 xxxxxxxx

锅炉汽包水位控制系统设计 < 一、控制要求 设计一个汽包水位控制系统,使汽包水位维持在90CM,稳态误差±0,5CM,以满足生产要求。 二、完成的主要任务 1.掌控锅炉生产蒸汽工及其工作流程 2.对被控对象进行特性分析,画出汽包水位控制系统方框图和流程图 3.选择被控参数和被控变量,说明其选择依据 4.】 5.设计控制系统方案,如何选择检测仪表,说明其选择原则和仪表性能指标 6.说明单回路控制系统4个环节的工作形式对控制过程 7.对控制进行PID控制说明其参数整定理论 8.对锅炉汽包水位进行simulink仿真,对参数进行整定,其仿真图要满足动态性能 指标 9.总结实验课程设计的经验和收获 (

* 过程控制系统实验报告............................... - 0 -第一章锅炉汽包水位控制系统的组成原理............ - 3 -概述............................................ - 3 -! 锅炉生产蒸汽工艺简述 ............................ - 3 - 锅炉生产蒸汽工作流程 ............................ - 4 - ............... - 5 -对被控对象进行特性分析 ............................... - 5 -汽包水位控制系统方框图和流程图......................... - 5 -液位控制系统的方框图.................................. - 5 - 液位控制系统的方案图.................................. - 6 -选择被控参数和被控变量 ................................ - 6 -; 选择检测仪表,说明其选择原则和仪表性能指标............. - 7 -传感器、变送器选择........................................... - 7 -执行器的选择................................................. - 8 -关于给水调节阀的气开气关的选择。............................. - 8 - 关于给水调节阀型号的选择。.................................. - 8 -

锅炉汽包水位控制系统

1.汽包水位的动态特性描述 (1) 1.1.汽包在给水流量作用下的动态特性 (1) 1.2.汽包水位在蒸汽流量扰动下的动态特性 (2) 2.汽包水位控制方案的选择及其原理 (4) 2.1.三冲量控制原理及各部分的作用 (4) 2.1.1.控制原理 (4) 2.1.2.各部分的作用 (5) 3.前馈-串级控制系统的特点和调节器作用方式判断 (7) 3.1.控制系统的特点 (7) 3.1.1.前馈控制系统的特点 (7) 3.1.2.串级控制系统特点 (7) 3.2.调节器作用方式判断 (7) 3.2.1.判断副调节器的作用方式 (7) 3.2.2.判断主调节的作用方式 (7) 4.控制仪表及技术参数 (8) 4.1.控制仪表的选定 (8) 4.2.各元器件的型号及参数 (8) 5.总结与体会 (10) 参考文献 (11)

在锅炉运行中,水位是一个很重要的参数。若水位过高,则会影响汽水分离的效果,使用气设备发生故障;而水位过低,则会破坏汽水循环,严重时导致锅炉爆炸。同时高性能的锅炉发生的蒸汽流量很大,而汽包的体积相对来说较小,所以锅炉水位控制显得非常重要。锅炉水位自动控制的任务,就是控制给水流量,使其与蒸发量保持平衡,维持汽包内水位在允许的范围内变化。 锅炉汽包水位是一种非线性、时变大、强耦合的多变量系统,讨论了目前通常采用的控制方法,分析了水位对象模型的动静特性。首先从锅炉汽包内水的热平衡、物质平衡原理出发,推导出了用来描述锅炉水位对象的通用机理控制模型,通过对几种控制方案的分析、研究与比较,选三冲量系统作为最佳控制方案,并着力研究三冲量系统的特点。 关键词:锅炉汽包水位控制三冲量控制系统

锅炉汽包液位课程设计

锅炉汽包液位课程 设计

天津城建大学 课程设计任务书 - 第 2学期 控制与机械工程学院电气工程及其自动化专业班级电气12班姓名:学号: 课程设计名称:过程控制 设计题目:锅炉汽包液位控制 完成期限:自年 6 月 20 日至年 6 月 26 日共 1 周 设计依据、要求及主要内容: 一、设计任务 加热炉出口温度控制系统,测取温度对象的过程为:当系统稳定时,在温度调节阀上做3%变化,输出温度记录如下: 试根据实验数据设计一个超调量25% δ≤的无差控制系统。具体要 p 求如下: (1)根据实验数据选择一定的辨识方法建立对象的数学模型;(2)根据辨识结果设计符合要求的控制系统(控制系统原理图、控制规律选择等); (3)根据设计方案选择相应的控制仪表; (4)对设计的控制系统进行仿真,整定运行参数。

二、设计要求 采用MATLAB仿真;需要做出以下结果: (1)超调量 (2)峰值时间 (3)过渡过程时间 (4)余差 (5)第一个波峰值 (6)第二个波峰值 (7)衰减比 (8)衰减率 (9)振荡频率 (10)全部P、I、D的参数 (11)PID的模型 (12)设计思路 三、设计报告 课程设计报告要做到层次清晰,论述清楚,图表正确,书写工整;详见“课程设计报告写作要求”。 四、参考资料 [1] 何衍庆.工业生产过程控制(1版).北京:化学工业出版社, [2] 邵裕森.过程控制工程.北京:机械工业出版社

[3] 过程控制教材 指导教师(签字): 教研室主任(签字): 批准日期:年月日 摘要 锅炉是典型的复杂热工系统,当前,中国各种类型的锅炉有几十万台,由于设备分散、管理不善或技术原因,使多数锅炉难以处于良好工况,增加了锅炉的燃料消耗,降低了效率。锅炉的建模与控制问题一直是人们关注的焦点,而汽包水位是工锅炉安

相关文档
最新文档