主蒸汽温度控制系统

主蒸汽温度控制系统

本机组的锅炉为单汽包、单炉膛、再热式自然循环锅炉。由汽包分离分离出的蒸汽依次流过顶棚、热回收包覆面、初级过热器、屏式过热器和未级过热器,最后达到一定的温度离开锅炉.

两级喷水减温器分别布置于初过出口、屏过入口处和屏过出口、未级过热器入口处,如图1所示。主蒸汽温度控制系统,通过这两级喷水减温,将未级过热器出口主蒸汽温度控制在某个定值上,并且保护整个过热器管路乃至主蒸汽管道及汽机金属不被高温损坏.

该系统分两级喷水控制,每级喷水又分左右两侧控制,如图1所示,同一级的两侧减温控制设计思想是相同的。一、二级减温水控制系统是相互独立的,现分别予以剖析。

1.1一级减温水控制

一级减温水的作用,简单地说是将一级减温器出口温度即屏过入口温度控制在某个定值上.图2为原理性框图。

这个温度定值通常是锅炉负荷(用汽机第一级压力P1代表),主汽压力P,主汽压偏差△P的函数(P1、P、△P).其中,定值与负荷的关系,如图2中的曲线所示,而与压力的关系待定。但在特殊工况下,这个定值还要受最小减温水量和最大减温水量的限制。

①最小一级减温水量限制

限制最小减温水量的目的是为了防止屏式过热器被高温烧坏,因屏过接受炉内高温火焰辐射,防止屏过内蒸汽温度过高尤为重要,因此最小一级减温水量限制又可理解成屏过出口最高蒸汽温度限制。图2中,A1为屏过出口所允许的最高汽温值.当屏过出口汽温高于这个最高值后,PID1将逐渐减小输出,最后在小值选择器之后,将取代通常的定值(P1、P,△P),

即去降低一级减温器出口温度定值,PID0将去增加一级减温水量,从而降低整个屏过段的蒸汽温度。

②最大一级减温水量限制

限制最大一级减温水量目的是为了防止屏过入口汽温过低以致低于此处当前压力下水蒸汽的饱和点,所以又可将最大一级减温水量限制理解成屏过入口最低温度限制。图2中,f(x)输出为相应压力下屏过入口蒸汽的饱和温度,在此基础上再加上A2(约11℃)的过热度,这个和值在大值选择器中与前级的小选输出进行比较,取大值输出。这样就可限制屏过入口蒸汽温度定值,使其不致低于饱和点,从而防止了屏过入口蒸汽带水。

如果不出现两种极端情况,即屏过出口汽温过高或屏过入口汽温过低,定值将是f(P1、P、△P).

实际屏过入口温度与其定值求偏差后,经PID0调节器运算,其输出去调节一级减温水量最终使屏过入口实际汽温与其定值相等。

由此可见,一级减温水控制回路只是一个单回路调节系统,虽然虽然在框图中有两个PID调节器“串联"在一起,但并不是串级控制系统。

1.2二级减温水控制

二级减温水的主要任务是将未级过热器出口蒸汽温度控制在某个定值上,原理框图见图3.这个温度定值是锅炉蒸汽负荷的函数,如图4.

该控制回路是一个典型的带导前信号的串级汽温控制回路.

调节器PID0的输出作为PID1的定值,与未级过热器入口汽温求偏差后,在PID1中进行运算,其输出则为二级减温水指令的一部分。在这里,未级过热器入口汽温实际上是一个导前信号,它能迅速地反映未级过热器全段蒸汽温度变化的趋势,因此,在系统中它能起到改善主汽温调节品质的作用.

图3中,二级减温水采用f(P1、P、△P)作为前馈指令,当锅炉负荷增加时,及主汽压力下降时,这一指令有所增加.加入前馈指令,对于减轻锅炉负荷变化对主汽温度的扰动和由于锅炉运行压力变化对汽温特性的影响有积极作用。

前馈指令与PID1的输出相加,成为二级减温水量指令.

1.3减温水调节阀的分裂式(split)设计

如图1所示,每级每侧减温水调节阀都分成低流量调节阀和高流量调节阀,低流量调节阀的容量为该级该侧最大设计减温水量的25%,其余75%由高流量调节阀承担,这种设计有利于减小减温水调节阀体积,提高阀门的线性度和调节精度。

2.系统运行

2.1关断阀的控制

当下列条件全部满足时,自动打开关断阀。

①锅炉蒸汽流量>10%MCR.

②无主燃料跳闸MFT。

③控制系统已要求低流量阀有一定的开度(约2%).

上述任一条件不满足(对于条件③是指开度指令小于约1%),以及当大、小调节阀都已关闭时,则关闭关断阀。

2.2调节阀的运行

当下列条件全部满足时,允许对调节阀进行控制。

①锅炉蒸汽流量>10%MCR。

②无主燃料跳闸MFT。

任一条件不成立,则关闭调节阀.

2.3手动/自动站的运行(共四只站)

2.3.1一级减温水控制站(两侧相似)

作用:控制一级减温水量。

显示:PV柱,显示本侧屏过入口汽温(测量故障时,指示为零)。(℃)。

SP柱,显示本侧屏过入口汽温定值℃).

下列任一条件出现,站切手动.

①本侧屏过出口温度或初过出口压力测量信号,或主汽压力、差压、流量信号测量质量不好,或传输到本系统后出现质量不好。

②本侧一级减温器出口温度测量系统发出“置手动"信号.

③本侧小流量调节阀开度已达6%,而关断阀仍处于关闭状态.

④主燃料跳闸MFT。

⑤主蒸汽流量小于10%MCR。

操作;

①无SP操作.

②手动方式时,可手操CO按扭,以改变减温水,但若由于MFT或主蒸汽流量小于10%MCR的原因而导致手动,站的输出将跟踪零,“TRACK”灯亮,此时不可手动改变控制输出.

2.3.2二级减温水控制站(两侧相似)

作用:控制二级减温水量。

显示:PV柱,显示未级过热器出口蒸汽温度(℃)。

SP柱,显示未级过热器出口温度定值(℃).

下列任一条件出现,站切手动。

①未级过热器出口蒸汽温度测量系统发出“置手动”信号。

②主蒸汽流量、一级压力、压力、差压信号测量系统发出“置手动”信号或者在传输到本系统后发现质量不好。

③本侧未过入口汽温信号质量不好.

④本侧小流量调节阀开度已达6%,而关断阀仍处于关闭状态.

⑤主燃料跳闸MFT.

⑥主蒸汽流量小于10%MCR。

操作:

①无SP操作.

②手动方式时,可手操CO按扭,以改变减温水,但若由于MFT或主蒸汽流量小于10%MCR的原因而导致手动,站的输出将跟踪零,“TRACK”灯亮,此时不可手动改变控制输出。

锅炉蒸汽温度控制系统

引言 随着科学技术的发展,自动控制在现代工业中起着主要的作用,目前已广泛应用于工农业生产及其他建设方面。生产过程自动化是保持生产稳定、降低成本、改善劳动成本、促进文明生产、保证生产安全和提高劳动生产率的重要手段,是20世纪科学与技术进步的特征,是工业现代化的标志之一。可以说,自动化水平是衡量一个国家的生产技术和科学水平先进与否的一项重要标志。电力工业中电厂热工生产过程自动化技术相对于其他民用工业部门有较长的历史和较高的自动化水平,电厂热工自动化水平的高低是衡量电厂生产技术的先进与否和企业现代化的重要标志。 本次毕业设计的主要是针对单元机组汽温控制系统的设计。锅炉汽温控制系统主要包括过热蒸汽和再热蒸汽温度的调节。主蒸汽温度与再热蒸汽温度的稳定对机组的安全经济运行是非常重要的。过热蒸汽温度控制的任务是维持过热器出口蒸汽温度在允许的范围之内,并保护过热器,使其管壁温度不超过允许的工作温度。过热蒸汽温度是锅炉汽水系统中的温度最高点,蒸汽温度过高会使过热器管壁金属强度下降,以至烧坏过热器的高温段,严重影响安全。一般规定过热器的温度与规定值的暂时偏差不超过±10℃,长期偏差不超过±5℃。 如果过热蒸汽温度偏低,则会降低电厂的工作效率,据估计,温度每降低5℃,热经济性将下降约1%;且汽温偏低会使汽轮机尾部蒸汽温度升高,甚至使之带水,严重影响汽轮机的安全运行。一般规定过热汽温下限不低于其额定值10℃。通常,高参数电厂都要求保持过热汽温在540℃的范围内。 由于汽温对象的复杂性,给汽温控制带来许多的困难,其主要难点表现在以下几个方面: (1)影响汽温变化的因素很多,例如,蒸汽负荷、减温水量、烟气侧的过剩空气系数和火焰中心位置、燃料成分等都可能引起汽温变化。 (2)汽温对象具有大延迟、大惯性的特点,尤其随着机组容量和参数的增加,蒸汽的过热受热面的比例加大,使其延迟和惯性更大,从而进一步加大了汽温控制的难度。 (3)汽温对象在各种扰动作用下(如负荷、工况变化等)反映出非线性、时变等特性,使其控制的难度加大。

利用DCS的过热汽温系统控制系统设计

利用DCS的过热汽温系统控制系统设计 一、集散控制系统分析 集散控制系统是以微处理器为基础的集中分散控制系统。自70年代中期第一套集散控制系统问世以来,集散控制系统己经在工业控制领域得到广泛的应用,越来越多的仪表和控制工程师已经认识到集散控制系统必将成为过程工业自动控制的主流。集散控制系统的主要特性是它的集中管理和分散控制,而且,随着计算机技术的发展,网络技术己经使集散控制系统不仅主要用于分散控制,而且向着集成管理的方向发展。系统的开放不仅使不同制造厂商的集散控制系统产品可以互相连接,而且使得它们可以方便地进行数据交换。 DCS集散式温度控制系统图 二、DCS系统主要技术指标调研 (1)操作员站及工程师站: CPU PⅢ850以上 内存128M以上 硬盘40G以上 软驱 1.44M 以太网卡INTEL 100M×2块 加密锁组态王加密锁 鼠标轨迹球 键盘工业薄膜键盘 显示器21寸 显示器分辨率1280×1024 过程控制站: CPU PⅢ850以上 内存128M以上 硬盘40G以上 电子盘8M以上 软驱 1.44M 以太网卡INTEL 100M×1块 串行通讯卡485卡×1块(可选) (2)I/O站技术指标 1)EF4000网络 EF-4000网络是多主站、双冗余高速网络,通信波特率为312.5K和1.25M可编程;EF4000网络配合EF4000系列测控站(前端),可以完成工业现场各类信号的采集、处理和各类现场对象的控制任务。 EF4000网络的主要技术指标如下: 挂网主站数≤31 挂网模块数≤100(不带网络中继器),最多240 通讯速率 1.25MBPS和312.5KBPS可编程 基本传输距离 1.2MBPS时≥500m,312.5KBPS时≥1600m 允许中继级数≤4级 双网冗余具备两个通信口互为冗余的功能 网络通讯方式半双工同步 传输介质聚乙稀双绞线 网络隔离度≥500Vrms

锅炉过热蒸汽温度控制系统

锅炉过热蒸汽温度控制系统 在燃煤锅炉运行中,过热蒸汽温度是一个很重要的控制参数。过热蒸汽温度是锅炉运行质量的重要指标之一,过热蒸汽温度较高,可能造成过热器蒸汽管道损坏;过热蒸汽温度过低,会降低内功率。所以在锅炉运行中,必须保持过热蒸汽温度稳定在规定值附近。 本文介绍模糊控制在中小型燃煤锅炉过热蒸汽温度中的应用,采用模糊控制系统的思路,并用此方法控制燃煤锅炉的过热蒸汽温度,使得锅炉过热蒸汽温度即使在扰动幅度较大的情况下仍能保持平稳。模糊控制的控制算法不依赖于对象的数学模型,算法简单,易于实现,且对干扰和对象模型时变具有较强的适应性,它能根据输出偏差的大小进行自动调节,使输出达到给定值。能提高国内锅炉的燃烧效率、燃料适应性、负荷调节性能、污染、灰渣等众多独特优点而受到越来越广泛的重视,在电力、供热、工厂蒸汽生产中得到越来越广泛的应用。 以某600MW汽轮发电机组的汽包锅炉为例,其过热蒸汽生产流程简图和流程图如下图所示: 过热蒸汽流程图

1. 1 过热蒸汽温度控制的任务 过热蒸汽温度控制的主要任务是维持过热器出口温度在允许的范围之内,并保护过热器,使其管壁温度不超过允许的工作温度。过热蒸汽温度是锅炉汽水系统中的温度最高点,蒸汽温度过高会使过热器管壁金属强度下降,以至烧坏过热器的高温段,严重影响安全;过热蒸汽温度偏低,则会降低发电机组能量转换效率。据分析,气温每降低5℃,热经济性将下降 1 %;且汽温偏低会使汽轮机尾部蒸汽湿度增大,甚至使之带水,严重影响汽轮机的安全运行。该机组要求控制过热蒸汽温在5 3 8~ 5 4 8℃的范围内。 2 .2 影响过热蒸汽温度的主要因素 2 .2. 1 燃料、给水比(煤水比) 只要燃料、给水比的值不变,过热汽温就不变。只要保持适当的煤水比,在任何负荷和工况下,直流锅炉都能维持一定的过热汽温。 2.2. 2 给水温度 正常情况下,给水温度一般不会有大的变动;但当高压加热器因故障退出运行时,给水温度就会降低。对于直流锅炉,若燃料不变,由于给水温度降低时,加热段会加长、过热段缩短,因而过热汽温会随之降低,负荷也会降低。 2.2. 3 过剩空气系数 过剩空气系数的变化直接影响锅炉的排烟损失。影响对流受热面与辐射受热面的吸热比例。当过剩空气系数增大时,除排烟损失增加、锅炉效率降低外炉膛水冷壁吸热减少,造成过热器进口温度降低、屏式过热器出口温度降低;虽然对流过热器吸热量有所增加,但在煤水比不变的情况下,末级过热器出口汽温会有所下降。过剩空气系数减小时的结果与增加时的相反。若要保持过热汽温不变,则需重新调整煤水比。 2.2. 4 火焰中心高度 火焰中心高度变化造成的影响与过剩空气系数变化的影响相似。在煤水比不变的情况下,火焰中心上移类似于过剩空气系数增加,过热汽温略有下降;反之,过热汽温略有上升。若要保持过热温不变,亦需重新调整煤水比。 2.2. 5 受热面结渣 煤水比不变的调节下,炉膛水冷壁结渣时,过热汽温会有所降低;过热器结渣或积灰时,过热汽温下降较明显。前者情况发生时,调整煤水比就可;后者情况发生时,不可随便调整煤水比,必须在保证水冷壁温度不超限的前提下调整煤水比。对于直流锅炉,在水冷壁温度不超限的条件下,后四种影响过热汽温因素都可以通过调整煤水比来消除;所以,只要控制、调节好煤水比,在相当大的负荷范围内,直流锅炉的过热汽温可保持在额定值。此优点是汽包锅炉无法比拟的;但煤水比的调整,只有自动控制才能可靠完成。

锅炉汽温调节系统

汽包锅炉蒸汽温度自动调节系统 一、蒸汽温度自动调节系统 锅炉蒸汽温度自动调节包括过热蒸汽温度和再热蒸汽温度调节。调节的任务是维持锅炉过热器及再热器的出口汽温在规定的允许范围之内。 1、过热汽温调节任务和特点 过热汽温是锅炉运行质量的重要指标之一。过热汽温过高或过低都会显著地影响电厂的安全性和经济性。过热汽温过高,可能会造成过热器、蒸汽管道和汽机的高压部分金属损坏,因为超温会引起汽轮机金属内部过大的热应力,会缩短使用寿命,还可能导致叶片根部的松动;过热汽温过低,会引起机组热耗上升,并使汽机轴向推力增大而可能造成推力轴承过载。过热汽温过低还会引起汽轮机尾部叶片处蒸汽湿度增加,从而降低汽轮机的内效率,并加剧对尾部叶片的水蚀。所以,在锅炉运行中,必须保持过热汽温长期稳定在规定值附近(一般范围为额定值541±5℃)。 过热汽温调节对象的静态特性是指过热汽温随锅炉负荷变化的静态关系。过热器的传热形式、结构、布置都将直接影响过热器的静态特性。对流式过热器和辐射式过热器的过热汽温静态特性完全相反。对于对流式过热器,当负荷增加时,通过其烟气的温度和流速都增加,因而使过热汽温升高。而对于辐射式过热器,由于负荷增加时炉膛温度升高不多,而炉膛烟温升高所增加的辐射热量小于蒸汽负荷增大所需要的吸热量。我们的过热器系统采取了对流式、辐射式和屏式(半辐射式)交替串联布置的结构,这有利于减小过热器出口汽温的偏差,并改善了过热汽温调节对象的静态特性。 引起过热蒸汽温度变化的原因很多,如蒸汽流量变化、燃烧工况变化、进入过热器的蒸汽温度变化、流过过热器的烟气温度和流速变化等。归结起来,过热汽温调节对象的扰动主要来自三个方面:蒸汽流量变化(机组负荷变化),加热烟气的热量变化和减温水流量变化(过热器入口汽温变化)。 过热汽温调节对象的动态特性是指引起过热汽温变化的扰动与过热汽温之间的动态关系。在各种扰动下的过热汽温调节对象动态特性的特点是有迟延和惯性,典型的过热汽温阶跃反应曲线如下图所示。

主蒸汽、再热蒸汽及旁路系统

主蒸汽、再热蒸汽及旁路系统 一、概述 主蒸汽系统是指从锅炉过热器联箱出口至汽轮机主汽阀进口的主蒸汽管道、阀门、疏水管等设备、部件组成的工作系统。主蒸汽管道是指从锅炉过热器出口输送新蒸汽到汽轮机高压主汽门的管道,同时还包括管道上的疏水管道以及锅炉过热器出口的安全阀及排汽管道。 再热蒸汽系统分为冷再热蒸汽及热再热蒸汽系统。冷再热蒸汽管道是指从汽轮机高压缸排汽口输送低温再热蒸汽到锅炉再热器进口的管道,同时还包括管道上的疏水管道以及锅炉再热器进口的安全阀及排汽管道。另外还包括与冷再热蒸汽管道相连的几根支管。 旁路装置的选择与汽轮机特性、锅炉型式及结构特性、燃料种类、运行方式、电网对机组的要求等因素有关。 二、旁路系统的作用 1、缩短启动时间,改善启动条件,延长汽轮机寿命。 2、溢流作用:即协调机炉间不平衡汽量,溢流负荷瞬变过程中的过剩蒸汽。由于锅炉的实际降负荷速率比汽机小,剩余蒸汽可通过旁路系统排至凝汽器,使机组能适应频繁启停和快速升降负荷,并将机组压力部件的热应力控制在合适的范围内。 3、保护再热器:在汽轮机启动或甩负荷工况下,经旁路系统把新蒸汽减温减压后送入再热器,防止再热器干烧,起到保护再热器的作用。 4、回收工质、热量和消除噪声污染:在机组突然甩负荷(全部或部分负荷)时,旁路快开,回收工质至凝汽器,改变此时锅炉运行的稳定性,减少甚至避免安全阀动作。 5、旁路系统投入后,待冷再压力达到高辅压力时,用冷再供高辅用汽。 三、旁路装置的选型 对于百万千瓦级机组,当前世界上欧、美、日、俄(苏)等不同的技术流派基本都采用超(超)临界技术,为满足机组启动、机炉协调等功能要求,均设置了汽轮机旁路系统。但由于地域及技术体系的不同,对于旁路系统的配置及运行方式也有很大差别。在美国,一般都采用小于20%BMCR 的小旁路,仅用于机组启动阶段,锅炉过热器出口配置安全阀。日本基本上传承了美国的技术体系。欧洲在旁路系统的应用上,其理念与美(日)体系不同,百万级机组大部分釆用了 100%的高、低压旁路配置,拓展了旁路系统的作用。 旁路的选型与机组的启动方式有关,一般1000MW —次再热机组均考虑高压缸启动及高中压缸联合启动两种方式。高压缸启动方式下,高压调门控制蒸汽量控制汽轮机的冲动转速和负荷,中压调节门全开;高中压缸联合启动方式下,高压调门控制机组转速及负荷,中压调节门跟踪高压调节门开度或者跟踪机组负荷参与机组的转速及负荷控制,多余蒸汽通过汽机中压旁路阀,进入凝汽器,一般在30%负荷左右中压调节门全开。 二次再热机组启动方式有超高压缸+高压缸启动、超高压缸+高中压缸联合启动、单中压缸启动等不同启动方式。 四、高、低旁阀结构 1、高压旁路 高压旁路装置由高压旁路阀、喷水调节阀、喷水隔离阀及相应管道等组成。高、低压旁路阀及其喷水调节阀、喷水隔离阀为电动操作,当失电时阀门维持失电前状态。

直流锅炉主蒸汽温度、压力控制

直流锅炉主蒸汽温度、压力控制 肖斌[国电福州发电有限公司] 摘要:随着近年来火电机组单机容量不断增大,参数不断增高,如何控制主蒸汽温度和压力成为影响机组安全经济运行的首要问题。本文从火电厂运行值班员角度分析了主蒸汽温度、压力变化的原因以及控制手段,具有一定的实践指导意义。 关键词:直流锅炉;主蒸汽温度;主蒸汽压力;控制 对于直流锅炉而言,主蒸汽温度和主蒸汽压力是其燃烧控制的主要参数,也是影响朗肯循环效率的重要参数,控制好主蒸汽温度和主蒸汽压力对火电机组的安全、经济运行有着十分重要的意义。 一.主蒸汽温度控制 主蒸汽温度是锅炉燃烧控制的一项主要参数,温度超温,损坏过热器受热面,影响汽轮机组的寿命及安全性;主蒸汽温度过低,易形成蒸汽带水,对汽轮机组的安全运行造成巨大威胁。 1.燃水比 直流炉主蒸汽温度的控制主要依靠控制锅炉的燃水比来实现,燃水比控制是否合适是通过中间点温度来反映的,即我们通常所说的分离器出口温度,在机组控制中通过“过热度”这一参数直观的反映中间点温度,这里的“过热度”是指分离器出口蒸汽温度与分离器压力对应下的蒸汽饱和温度的差值。维持足够的过热度是保证主蒸汽温度稳定的重要前提,机组正常运行中该过热度一般控制在12-16℃之间。 过热度的调整通过设定偏置值来实现我们期望达到的分离器出口温度,但由于给水系统的响应需要时间,锅炉自动控制系统不能立即调整至设定值,这时候需要运行人员的人为干预进行快速调整和预判调整。①快速调整主要是通过设定给水流量偏置,以使给水流量快速响应,在短时间内改变给水流量,达到调整燃水比的目的。此手段较为快捷,对燃水比调节系统的后续扰动也较大,一般作为紧急情况下的干预手段。②预判调整是指值班员通过调整BTU(热值校正系数)、过热度偏置设定值等手段提前改变燃水比,实现分离器出口温度的稳定,预判的依据是实际入炉燃料量及热值。当实际入炉燃料量或热值增大或者即将增大时,我们通过上调BTU数值或者减小过热度偏置设定值来减小燃水比,反之亦然。该调整手段的实质是通过值班员的预判调整来减轻锅炉燃烧系统及协调控制系统的迟滞状况,进而减轻直至消除燃水比失衡的现象,使主蒸汽温度维持稳定。 2.过热器减温水 过热器减温水分为一级减温水和二级减温水,主要作用是保证过热蒸汽温度不超温,从而保护过热器。减温水的控制主要依靠自动控制,值班员通过设置温度偏置值来控制过

主蒸汽温度控制系统

主蒸汽温度控制系统 本机组的锅炉为单汽包、单炉膛、再热式自然循环锅炉。由汽包分离分离出的蒸汽依次流过顶棚、热回收包覆面、初级过热器、屏式过热器和未级过热器,最后达到一定的温度离开锅炉. 两级喷水减温器分别布置于初过出口、屏过入口处和屏过出口、未级过热器入口处,如图1所示。主蒸汽温度控制系统,通过这两级喷水减温,将未级过热器出口主蒸汽温度控制在某个定值上,并且保护整个过热器管路乃至主蒸汽管道及汽机金属不被高温损坏. 该系统分两级喷水控制,每级喷水又分左右两侧控制,如图1所示,同一级的两侧减温控制设计思想是相同的。一、二级减温水控制系统是相互独立的,现分别予以剖析。 1.1一级减温水控制 一级减温水的作用,简单地说是将一级减温器出口温度即屏过入口温度控制在某个定值上.图2为原理性框图。 这个温度定值通常是锅炉负荷(用汽机第一级压力P1代表),主汽压力P,主汽压偏差△P的函数(P1、P、△P).其中,定值与负荷的关系,如图2中的曲线所示,而与压力的关系待定。但在特殊工况下,这个定值还要受最小减温水量和最大减温水量的限制。 ①最小一级减温水量限制 限制最小减温水量的目的是为了防止屏式过热器被高温烧坏,因屏过接受炉内高温火焰辐射,防止屏过内蒸汽温度过高尤为重要,因此最小一级减温水量限制又可理解成屏过出口最高蒸汽温度限制。图2中,A1为屏过出口所允许的最高汽温值.当屏过出口汽温高于这个最高值后,PID1将逐渐减小输出,最后在小值选择器之后,将取代通常的定值(P1、P,△P),

即去降低一级减温器出口温度定值,PID0将去增加一级减温水量,从而降低整个屏过段的蒸汽温度。 ②最大一级减温水量限制 限制最大一级减温水量目的是为了防止屏过入口汽温过低以致低于此处当前压力下水蒸汽的饱和点,所以又可将最大一级减温水量限制理解成屏过入口最低温度限制。图2中,f(x)输出为相应压力下屏过入口蒸汽的饱和温度,在此基础上再加上A2(约11℃)的过热度,这个和值在大值选择器中与前级的小选输出进行比较,取大值输出。这样就可限制屏过入口蒸汽温度定值,使其不致低于饱和点,从而防止了屏过入口蒸汽带水。 如果不出现两种极端情况,即屏过出口汽温过高或屏过入口汽温过低,定值将是f(P1、P、△P). 实际屏过入口温度与其定值求偏差后,经PID0调节器运算,其输出去调节一级减温水量最终使屏过入口实际汽温与其定值相等。 由此可见,一级减温水控制回路只是一个单回路调节系统,虽然虽然在框图中有两个PID调节器“串联"在一起,但并不是串级控制系统。

汽温控制系统

1 蒸汽温度控制系统设计 1.1 控制系统任务 保证机组的安全经济运行,要求主蒸汽温度为设定值。过热汽温调节的任务是维持过热器出口蒸汽温度再允许范围内,并且保护过热器,使管壁温度不超过允许的工作温度。过热温度过高,可能造成过热器、蒸汽管道和汽轮机的高压部分金属损坏,因而过热温度的上限 不应超过额定值5C 。过热蒸汽温度过低,又会降低全厂的热效率并影响汽轮机的安全经济 运行,因而过热汽温的下限一般不低于额定值10C 。过热汽温的额定值通常在500C 以上。 1.2 控制系统构成 控制系统的构成,主要由被控对象——过热器管道,执行机构——执行器(电动喷水阀门),检测变送组件——热电偶或温度变送器,控制系统核心部件——调节器(电动控制器)组成。其中,被调量(测量值)——主汽温度,调节量(控制信号)——喷水流量,干扰信号——炉膛燃烧情况。 1.3 控制系统结构框图 图1-1汽温控制系统结构框图 1.4 控制过程简要分析 当主汽温度的测量值等于设定值时,喷水阀门不动,系统处在动态平衡状态。此时,若炉膛燃烧情况发生变化,使汽温上升,造成给定值和测量值产生偏差,则偏差信号经过控制器的方向性判断及数学运算后,产生控制信号使喷水阀门以适当形式打开,喷水量增加。测量值最终回到设定值,系统重新回到平衡状态。

2 控制系统工作原理 系统中有两个调节器,构成两个闭环回路。内回路祸福回路,包括控制对象、副参数变送器、副调节器、执行器和喷水阀,它的任务是尽快消除减水温度的干扰,在调节过程中起初调作用;外回路或主回路,包括主对象、主参数变送器、主调节器、副回路,其作用是保持过热器出口汽温等于给定值。 主调节器接受被控量出口汽温以及给定值信号,主调的输出给定汽温与喷水减温器出口汽温共同作为副调节器输入,副调节器输出汽温信号控制执行机构位移,从而控制减温水调节阀门的张开闭合程度。当炉膛燃烧剧烈,过热器管道过热,有喷水量的自发性增加造成干扰,如果不及时加以调节,出口温度将会降低,但因为喷水干扰引起的汽温降低快于出口汽温的降低,温度测量变送器输出的汽温信号会降低,副调节器输出也降低,通过执行器使喷水阀门开度减少,则喷水量降低,使扰动引起的汽温变化波动很快消除,从而使主汽温基本上不受影响。另外副调还受到主调输出的影响,当某种原因引起主汽温的增加,测量变送器的输出回增加,并且它对主调是反作用,主调输出的给定信号也会降低,而且它对副调也是反作用,使副调的输出量增加,通过执行器使喷水阀门的开度变大,使喷水量增加,从而稳定主汽温度。 图2-1汽温控制系统工作原理图

火电厂锅炉主汽温度变化原因及控制方法分析

火电厂锅炉主汽温度变化原因及控制方法分析 经济的快速发展,各行各业及人们在生产生活中对电能的需求量有了大幅度的提升,为了保证电能的有效供应,电厂在技术上有了很大的改变。锅炉做为电厂正常生产运营的重要设备,其自身的正常运营是保证电能稳定供应的关键。长期以来,在锅炉运行过程中其主蒸汽温度都是控制的难点。文章对引起主蒸汽温度变化的各种原因进行了分析,并进一步对主汽温度控制的主要方法进行了具体的阐述。 标签:火电厂;锅炉;主汽温度;控制 前言 电厂的正常运行,需要各设备有效的发挥各自的性能,而锅炉做为电厂的重要生产设备,对电厂的稳定安全运行有着极其重要的作用。主蒸汽温度作为锅炉运行过程中重要的输出变量,对其进行严格的控制,不仅可以保证锅炉运行的安全性和稳定性,同时还能有效的保证电能的正常供应,对锅炉的使用寿命将起到了积极的作用。所以可以通过对过热器出口气温的控制来对主蒸汽温度进行调节,从而使其在正常范围内进行运转,这是具有十分重要意义的事情。 1 引起主蒸汽温度变化的各种原因分析 1.1 主蒸汽压力的变化 主蒸汽压力对于过热汽温的影响是通过工质焓升分配和蒸汽比热容的变化实现的,过热蒸汽的比热容受压力影响较大,低压下额定汽温与饱和温度的差值增大,过热汽总焓升就会减小。 1.2 给水温度的影响 当锅炉出力不变时,给水温度的高低对主蒸汽压力的影响是很大的。当锅炉给水温度较低时,则需要较多的燃料,这时炉膛内燃料量较多,炉内总辐射热及出口烟温差则会有所增加,同会导致过热器出口的汽温增加,同时烟气量和传热温差的增加也会使出口的汽温升高,这二者相加起来则会导致过热汽温有大幅度的升高,而且升高的幅度比锅炉单纯增加负荷时要大得多,通常情况下给水温度降低3℃,过热汽温就升高约1℃。 1.3 炉膛火焰中心位置的影响 炉膛出口烟的温度会随着炉膛火焰中心位置的移动而发生变化,越往上移,其出口的烟温则会越高。通常在锅炉运行时,导致其火焰中心位置温度发生的变化的因素较多,大致有以下几点:

锅炉过热蒸汽温度控制系统

摘要 锅炉是一种应用最广的热能装置,人们通常将燃料比喻做工业的“粮食”,那么锅炉就相当于工业的“肠胃”。目前,工业锅炉是能源转换和能源消耗的重要设备。为了保证锅炉的安全、经济运行,锅炉的水位、温度、压力、流量都要严格的控制,不应该有较大的波动,应该严格控制在一个精确的范围内,只有这样才能安全生产。工业锅炉是能源转换和消耗的重要设备,对锅炉的水位、温度、压力、流量都要严格的控制,不仅能够提高产品质量,改善操作人员的工作环境和条件,而且可以使锅炉燃烧效率最佳。 我国各行各业广泛使用着大量中小型工业锅炉。锅炉工艺复杂、控制要求较高。若用微机技术进行改造,使之实现自动化,不仅可加强运行安全可靠性、提高供汽质量、减轻劳动强度,有利于环境保护和节能;而且也不必对锅炉作大幅度改造、不需要增添过多设备;是一项利国利民、经济实惠的理想举措。为了保证锅炉的安全、经济运行,锅炉的水位、温度、压力、流量都需要监控, 锅炉在正常运行时,为了保证其安全和经济,必须维持主要运行参数在规定值。主要运行参数为水位、压力、温度等。随着蒸汽负荷极其因素的变化,水位、压力、温度将发生变化偏离设定值。此时,应及时调整给水量,燃料供给量和通风量,使主要参数返回到规定值。 在这次设计中,主要考虑锅炉过热蒸汽温度控制对其他的变量不加考虑。为改善调节品质,引入导前汽温微分信号,组成汽温调节系统的又一种策略。由汽温被调对象的动态特性可知,导前汽温可以提前反映扰动,取其微分信号引入调节器后,由于微分信号动态时不为零稳态时为零,所以动态时可使调节器的调节作用超前,稳态时可使过热器出口汽温等于给定值,从而改善调节品质。将减温器出口温度的微分信号作为前馈信号,与过热器出口温度相加后作为过热器温度控制器测量,当减温器出口温度有变化时,才引入前馈信号。稳定工况下,该微分信号为零,与单回路控制系统相同。 关键字:过热蒸汽控制串级控制反馈控制影响因素系统参数

主蒸汽、再热蒸汽系统

主蒸汽、再热蒸汽系统 一、作用 1、从蒸汽发生器向汽轮机供给蒸汽; 2、正常运行时向汽水分离再热器供汽; 3、在机组事故冷却时向大气排汽; 4、在汽机抽汽未投入时向厂用蒸汽系统供汽; 5、在事故时将发生事故的蒸汽发生器隔离; 6、防止蒸汽发生器超压。 二、工作原理 2.1 主蒸汽系统工作原理 主蒸汽系统包括从锅炉过热器出口联箱至汽轮机进口主汽阀的主蒸汽管道、阀门、疏水装置及通往进汽设备的蒸汽支管所组成的系统。对于装有中间再热式机组的发电厂,还包括从汽轮机高压缸排汽至锅炉再热器出口联箱的再热冷段管道、阀门及从再热器出口联箱到汽轮机中压缸进口阀门的再热热段管道、阀门。主蒸汽系统采用“2-1—2”布置。主蒸汽由锅炉过热器出口集箱经两根支管接出,汇流成一根单管通往汽轮机房,在进汽轮机前用一个45°斜三通分为两根管道,分别接至汽轮机高压缸进口的左右侧主汽门。 发电厂常用的主蒸汽系统有四种形式: (1)集中母管制系统。其特点是发电厂所有锅炉的蒸汽先引至一根蒸汽母管集中后,再由该母管引至汽轮机和各用汽处。这种系统通常用于锅炉和汽轮机台数不匹配,而热负荷又必须确保可靠供应的热电厂以及单机容量在6MW以下的电厂。 (2)切换母管制系统。其特点为每台锅炉与其对应的汽轮机组成一个单元,正常时机炉成单元运行,各单元之间装有母管,每一单元与母管相连处装有三个切换阀门。它们的作用是当某单元锅炉发生事故或检修时可通过这三个切换阀门由母管引来邻炉蒸汽,使该单元的汽轮机继续运行,也不影响从母管引出的其他用汽设备。该系统适用于装有高压供汽式机组的发电厂和中、小型发电厂采用。 (3)单元制系统。其特点是每台锅炉与对应的汽轮机组成一个独立单元,

华润登封电厂300MW机组蒸汽温度控制系统分析

《过程控制》课程设计(分析类) 任务书 一、目的与要求 1.目的:通过本课程设计,使学生巩固《过程控制》所学内容,培养学生的分析、设计能力。 2.要求:能够对指定现场应用控制系统进行正确分析。 二、主要内容 1.题目:华润登封电厂300MW机组过热蒸汽温度控制系统分析 2.内容: 1)查阅2-3篇相关资料; 2)对指定现场应用控制系统SAMA图进行分析:分析控制系统构成,掌握工作原理,判断调节器正反作用,分析自动跟踪与无扰切换,分析主要逻辑; 3)撰写分析说明。 三、进度计划 四、设计成果要求 1.对指定控制系统SAMA图进行分析,力求分析正确。 2.撰写分析报告。 五、考核方式 设计报告+答辩 学生姓名: 指导教师:金秀章 2009年7月2日

一、课程设计的目的与要求 1. 目的:通过本课程设计,使学生巩固《过程控制》所学内容,培养学生的分析、设计能力。 2. 要求:能够对指定现场应用控制系统进行正确分析。 二、设计正文 控制系统的构成: 华润登封电厂300MW 机组过热蒸汽温度控制系统:汽包所产生的饱和蒸汽先流经低温对流过热器进行低温过热,然后依次流经前屏过热器、后屏过热器和高温对流过热器后送入汽轮机。 (一)、一级减温调节系统 1 . SAMA 图纸:SAMA-B-40 2 .一过入口、出口蒸汽温度,均采用二选均标准逻辑。 3 .一级减温水流量,需进行温度补偿。补偿公式如下: ()t f k k q m ****1∆P =∆P =ρ 其中: ()) () (t f normal t t ρρ= ,tnormal 为减温水正常运行温度(或标定温度)。 缺省温度:tnormal =165℃(暂定)

主蒸汽系统控制逻辑

主蒸汽系统控制逻辑 主蒸汽系统控制逻辑 1(汽机主汽电动阀(1VVPH01-ST) 开关不允许条件有:电气故障;“OPEN”指令发出40s后“OPENED”信号没有出现;“OPEN”指令发出5s后“CLOSED”信号仍存在;“CLOSE”指令发出40s后“CLOSED”信号没出现;“CLOSE”指令发出5s后“OPENED”信号仍存在。 自动“开启”条件:无 自动“关闭”条件:无 2(汽机主汽电动阀1#旁路门(1VVPH02-ST) 同1. 3(汽机主汽电动阀2#旁路门(1VVPH06-ST) 同1. 4(低压缸喷水减温阀(1VVPH05-ST) 开关不允许条件:无 自动开阀条件:1)汽机排汽温度高开关1VVPTS14动作(定值:80?);2)汽机排汽温度高开关1VVPTS15动作(定值:80?);3)汽机转速大于600rpm同时汽机负荷 <15%。 自动关阀条件:温度开关1VVPTS14、TS15恢复(失电),且汽机负荷?15%基本负荷。 主蒸汽系统控制逻辑 5(汽机抽汽截止阀(1VVPH04-ST) 不允许开关阀的条件:无 自动开阀条件:无

自动关阀条件:1)低加水位(2CEXL01)> 950mm;2)汽机或发电机跳闸;3)GEN CUT BACK;4)低加水位高高开关2CEXLS03动作(整定值: ) 6(温差控制阀(1VVPH07-ST、1VVPH08-ST) 不允许开关阀门条件:无。 自动开阀条件:无。 自动关阀条件:无。 7(低加抽汽逆止阀(1VVPH03-ST) 不允许开阀条件:无。 允许关阀条件(任一):1)低加水位高高(2CEXLS03动作,整定值: ),延时3s。 2)发电机或汽机跳闸。3)GEN CUT BACK。4)低加水位(2CEXL01)> 950mm。 自动开阀条件:无。 自动关阀条件(任一):1)低加水位高高(2CEXLS03动作,整定值: ),延时3s。 2)发电机或汽机跳闸。3)GEN CUT BACK。4)低加水位(2CEXL01)> 950mm。 主蒸汽系统控制逻辑

过热器主蒸汽温度的导前微分控制

过热器主蒸汽温度的导前微分控制作者:王馨杉 来源:《科学与财富》2020年第24期

一.基本任务 过热蒸汽温度控制的任務是维持过热器出口蒸汽温度在允许的范围之内,并保护过热器,使其管壁温度不超过允许的工作温度。过热蒸汽温度是锅炉汽水系统中的温度最高点,蒸汽温度过高会使过热器管壁金属强度下降,以至烧坏过热器的高温段,严重影响安全。一般规定过

热蒸汽的温度上限不能高于其额定值+5℃,下限不低于其额定值10℃。通常,高参数电厂都要求保持过热汽温在540-10℃的范围内。 二.控制对象动态特性 影响汽温变换的扰动因素很多,如蒸汽负荷、烟气度和流速、火焰中心位置、减温水量、给水温度等。主要扰动有三个:蒸汽扰动下对象的动态特性、烟气扰动及减温水量扰动。 三、控制系统设计及参数整定 蒸汽流量的扰动由用户决定,不能做调节信号;烟气量扰动可以做调节信号,但会影响到燃烧控制系统的设计;减温水量扰动常做调节信号。 主蒸汽温度控制对策: 采用分段控制,即将整个过热器分成若干段,每段设置一个减温器,分别控制各段的汽温,以维持主汽温为给定值;采用带导前微分信号的双回路控制。 3.1; 控制系统参数整定 已知该系统减温水流量Gj可通过加装流量计进行检测,电动调节阀的开度可根据控制器输出值自动调整。 采用温度串级控制系统,使用matlab进行整定 将导前系统等效成串级系统整定 一> 副回路的整定 (1);; 将调节器的Ti置于最大;置微分Td时间为零;置比例带δ 于一个较大的值; (2);; 系统投闭环稳定后做阶跃扰动试验,观察控制过程。若过渡过程衰减率大于 0.75,应逐步减小δ,再次试验直到出现4:1的衰减过程。 (3);;;; 在曲线上求取ψ=0.75的振荡周期Ts,结合此过程的δs,按表计算调节器的各个参数。 由计算可得,δs=0.5,Ts=54.491-18.824=35.667。 副调为PI,由表可得,δ=1.2*0.5=0.6,T=35.667*0.5=17.83

锅炉温度控制系统

锅炉温度控制系统 摘要:本文以锅炉主蒸汽温度作为被控对象,对传统PID控制下锅炉主蒸汽温度由于非线性和大惯性因素无法取得良好控制效果的缺点进行改进,增加智能控制策略,对复杂的被控对象进行分析求解,解决了锅炉主蒸汽温度的控制策略问题。 引言:锅炉在火力发电厂、化工厂、各类设备制造厂以及石油等重工业领域发挥着重要作用。锅炉主蒸汽温度在锅炉运行过程中,是一项至关重要的控制对象,同时也是锅炉汽水通道当中温度达到最大值的点。伴随着锅炉机组朝着大容量与大参数的方向过渡,主蒸汽温度被控对象有着较大的惯性与非线性等一系列的特点,传统 PID 策略已经无法满足高性能的控制水平与要求,传统的控制方法需要建立被控对象相关的数学模型,求取系统的传递函数。传递函数模型是古典控制理论中对线性系统进行研究的主要工具。通过列写系统的微分方程再对微分方程进行化简,通过拉普拉斯变换,得到代数数学方程。随着被控对象的复杂度提高,系统的求解难度越大。本文基于智能控制理论的持续研究,在以往控制方法的基础上,增加了部分新的智能控制措施,针对复杂问题进行求解。 一、研究背景 锅炉自动化控制系统,是指锅炉运行过程中的热工参数按照相关要求,或者运行负荷的性质实施自动监测与显示工作。在锅炉运行过程中,发挥自动控制作用,并且予以保护并关联,由此便会产生参数负荷要求的过热蒸汽,使机组运行过程更加安全与稳定。开展锅炉自动化控制有着众多的优点,比如说,能够令锅炉的有关输出变得趋向稳定,使现场工作人员与各类生产设备处在比较安全的状态,从而令锅炉机组的运行环境得到较大程度的改善,使现场工作人员的劳动难度得到降低。一般来讲,锅炉运行状况的优劣以及锅炉的使用寿命往往受到自动

主、再热蒸汽系统流程;主、再热蒸汽温度的调整方法;要点

国电双鸭山发电有限公司2×600MW机组 HG-1900/25.4-YM3型 超临界直流锅炉说明书 编号: 06.1600.008-01 编写: 校对: 审核: 审定: 批准: 哈尔滨锅炉厂有限责任公司

本说明书对国电双鸭山发电有限公司2×600MW机组超临界直流锅炉主要设计参数、运行条件及各系统部件的规范进行了说明,并介绍了采用英国三井巴布科克能源公司技术的超临界本生直流锅炉的技术特点。 本说明书应结合锅炉图纸,计算书等技术文件参考使用。

1. 锅炉容量及主要参数 (1) 2. 设计依据 (2) 2.1 燃料 (2) 2.2 点火及助燃油 (3) 2.3 自然条件 (3) 3 锅炉运行条件 (4) 4 锅炉设计规范和标准 (4) 5 锅炉性能计算数据表(设计煤种) (5) 6 锅炉的特点 (6) 7 锅炉整体布置 (8) 8 汽水系统 (9) 9 热结构 (19) 10 炉顶密封和包覆框架 (24) 11 烟风系统 (29) 12 钢结构(冷结构) (29) 13 吹灰系统和烟温探针 (32) 14 锅炉疏水和放气(汽) (33) 15 水动力特性 (34) 附图: (35)

国电双鸭山发电有限公司的2台600MW——HG-1900/25.4-YM3型锅炉是哈尔滨锅炉厂有限责任公司利用英国三井巴布科克能源公司(MB)的技术支持,进行设计、制造的。锅炉为一次中间再热、超临界压力变压运行带内置式再循环泵启动系统的本生(Benson)直流锅炉,单炉膛、平衡通风、固态排渣、全钢架、全悬吊结构、π型布置(见附图01-01~04)。锅炉为紧身封闭布置。锅炉设计煤种和校核煤种均为双鸭山本地煤。30只低NO X轴向旋流燃烧器(LNASB)采用前后墙布置、对冲燃烧,6台ZGM113N 中速磨煤机配正压直吹制粉系统。 锅炉以最大连续出力工况(BMCR)为设计参数。在任何5磨煤机运行时,锅炉能长期带额定负荷(ECR)。 1.锅炉容量及主要参数

锅炉过热蒸汽温度控制系统设计

锅炉过热蒸汽温度控制系统设计 一、摘要 这次课程设计任务是对锅炉过热蒸汽温度控制系统进行设计与分析。在控制系统的设计与分析中,分别对串级控制系统和单回路控制系统进行了分析与阐述,通过分析比较发现,采用串级控制系统控制效果更好,可以使系统更能适应不通环境,从而达到更好的控制效果。通过使用该控制系统,可以使锅炉过热器出口蒸汽温度在允许的范围内变化,并保证过热器壁温度不超过工作允许的温度,使其能够正常工作。 二、锅炉设备的介绍及设计任务的分析 1、锅炉设备介绍 锅炉是石油化工、发电等工业过程必不可少的重要动力设备,它所产生的高压蒸汽既可作为驱动透平的动力源,又可作为精馏、干燥、反应、加热等过程的热源。随着工业生产规模的不断扩大,作为动力和热源的过滤,也向着大容量、高参数、高效率的方向发展。 锅炉设备根据用途、燃料性质、压力高低等有多种类型和名称,工艺流程多种多样,常用的锅炉设备的蒸汽发生系统是由给水泵、给水控制阀、省煤器、汽包及循环管等组成。 燃料与空气按照一定比例送入锅炉燃烧室燃烧,生成的热量传递给蒸汽发生系统,产生饱和蒸汽,形成一点观其文的过热蒸汽,在汇集到蒸汽母管。过热蒸汽经负荷设备控制,供给负荷设备用,于此同时,燃烧过程中产生的烟气,除将饱和蒸汽变成过热蒸汽外,还经省煤器预热锅炉给水和空气预热器预热空气,最后经引风送往烟囱,排入大气。 图1锅炉设备主要工艺流程图

锅炉设备的控制任务是根据生产负荷的需要,供应一定压力或温度的蒸汽,同时要使锅炉在安全、经济的条件下运行。为达到这些控制要求,锅炉设备将有多个不同的控制系统,如下: 锅炉汽包水位控制系统,要求保证汽包水位平稳; 锅炉过热蒸汽温度控制系统,要求保证过热蒸汽温度稳定; 锅炉蒸汽出口压力控制系统,要求保证蒸汽出口压力保持在一定范围内,同时实现逻辑提量和逻辑减量; 锅炉蒸汽出口压力控制系统,要求保证蒸汽出口压力保持在一定范围内,同时实现燃烧过程的经济运行; 锅炉炉膛负压控制系统,要求保证炉膛负压在一定范围内,以保证锅炉的安全运行。 锅炉安全连锁控制系统,以防止回火和脱火。 本设计根据任务要求主要对锅炉过热蒸汽温度控制系统进行设计与分析。 2、任务分析与设计思路 锅炉过热蒸汽温度控制系统则是锅炉系统安全正常运行,确保蒸汽质量的重要部分。这个设计我们的任务是锅炉过热蒸汽温度控制系统的设计与分析。 蒸汽过热系统包括一级过热器、减温器、二级过热器。控制任务是使过热器出口温度维持在允许范围内,并保护过热器时管壁温度不超过允许的工作温度。 我们知道,过热蒸汽温度过高或过低,对锅炉运行及蒸汽用户设备都是不利的,所以必须把过热器出口蒸汽的温度控制在规定范围内。

主汽温串级控制系统仿真研究毕业论文.doc

主汽温串级控制系统仿真研究毕业论文 1绪论 1.1论文的意义和选题背景 在现代火力发电厂的热工过程控制系统中,锅炉过热器出口温度(主汽温)对整个电厂的效率和安全具有十分重要的作用,是锅炉的主要参数之一,对电厂的安全经济运行有重大影响。主汽温偏高,会使过热器和汽轮机高压缸承受过高的热应力而损坏,从而威胁机组的安全运行;主汽温偏低,则会降低机组的热效率,影响机组运行的经济性。同时,主汽温偏低会使蒸汽的含水量增加,从而缩短汽轮机叶片的使用寿命。因此,必须将主蒸汽温度严格控制在给定值附近。若温度过高,过热器和高压锅炉会被损坏,若温度过低,电厂的效率会被降低。过热器内部温度变化也要很好的抑制,否则,剧烈的温度变化会引起较大的机械压力,可能会引起锅炉破裂,从而会减少加热系统单元的生命并且增加维护费用。因此合理控制主汽温对保证电厂的安全经济运行有重大影响。 在实际中,由于过热汽温系统具有大迟滞,大惯性,对象具有明显的滞后性,非线性,时变性等特点,并且具有温度波动允许范围小,模型失配,参数不确定等因素,控制主汽温并不是一件容易的工作。国内电厂在这方面还有很多工作要做,例如,我国刚开始刚引进的300MW,600MW的大型机组时,主蒸汽只有一级喷水减温器作为调温手段,由于我国热控自动化应用水平有限,导致主汽温经常失控,甚至超温。到目前为止,锅炉生产厂家往往都采用至少两级喷水减温,降低控制难度来调节主汽温。单回路调节系统(只有被调量一个反馈回路)虽然是一种最基本的、使用最广泛的调节系统,但由于现场实际对象多半属于大迟延大惯性,用单回路调节系统性能指标很差,若调节质量要求较严时就无能为力了,采用传统的单回路控制难以达到控制要求。因此,需要改进调节结构、增加辅助回路或添加其他环节,组成串级调节系统。过热气温串级调节系统是火电厂最典型的调节系统,所以一般采用串级系统对生产流程加以控制。 据此,本文设计了主汽温串级控制系统,取得了较好的仿真结果。 1.2主汽温控制应用研究现状【1】 目前,主蒸汽温度控制基本上沿用PID串级控制策略。在主蒸汽温度串级PID控制系统中,有时会将负荷信号、燃料量信号、主蒸汽压力信号、给水流量信号以前馈形式引入到串级系统的副调节器中,以实现“超前”调节。但以调节参数固定不变的PID控制器来控制主蒸汽温度这种时变的复杂对象时,控制效果仍会很不理想。为此,以智能控制技术的思想被广泛的用于主蒸汽温度控制过程控制中,不少学者和技术人员开展了对主蒸汽温度控制的相关研究,主要有以下几个方面: (1) 预测控制技术在主汽温控制的应用 预测控制的最大优点是对模型精度要求不高,且跟踪性能好,比较适用于复杂工业过

相关主题
相关文档
最新文档