复合函数单调性的求法与含参数问题

复合函数单调性的求法与含参数问题
复合函数单调性的求法与含参数问题

复合函数单调性的求法与含参数问题

(一)求复合函数解析式

例1、(1)设 f(x)=2x -3 g(x)=x 2+2 求f[g(x)](或g[f(x)])。

(2)已知:f(x)=x 2-x+3 求:f(x 1

) f(x+1)

(二)求复合函数相关定义域

一、已知)(x f 的定义域,求复合函数()][x g f 的定义域

例1、(1) 已知)(x f 的定义域为]30(,,求)2(2x x f +定义域。

(2)设()x x x f -+=22lg ,则??

?

??+??? ??x f x f 22的定义域为 ( )

A. ()()4,00,4 -

B. ()()4,11,4 --

C. ()()2,11,2 --

D. ()()4,22,4 --

二、已知复合函数()][x g f 的定义域,求)(x f 的定义域

例2、 若函数()x f 23-的定义域为[]2,1-,求函数()x f 的定义域

三、已知复合函数()][x g f 的定义域,求()][x h f 的定义域

例3 、已知)1(+x f 的定义域为)32[,-,求()2-x f 的定义域。

(三)复合函数的单调性

判断复合函数的单调性的步骤如下:

(1)求复合函数定义域;

(2)将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数);

(3)判断每个常见函数的单调性;

(4)将中间变量的取值范围转化为自变量的取值范围;

(5)求出复合函数的单调性。

一、外函数与内函数只有一种单调性的复合型:

例1、已知函数y=log a (2-ax)在[0,1]上是x 的减函数,则a 的取值范围是( )

(A).(0,1) (B).(1,2) (C).(0,2) (D).[2,+∞)

二、外函数只有一种单调性,而内函数有两种单调性的复合型:

例2、函数y=log

0.5

(x2+4x+4)在什么区间上是增函数?

例3、讨论函数y=0.8x2-4x+3的单调性。

三、外函数有两种单调性,而内涵数只有一种单调性的复合型:

例4 、在下列各区间中,函数y=sin(x+π

4

)的单调递增区间是( )

(A).[π

2

,π] (B).[0,

π

4

] (C).[-π,0] (D). [

π

4

π

2

]

例5、讨论函数y=(log

2x)2+log

2

x的单调性。

四、外函数与内函数都有两种单调性的复合型:

例6、已知函数f(x)=8+2x-x2,如果g(x)=f(2-x2),那么g(x) ( ) (A).在区间(-1,0)上是减函数; (B).在区间(0, 1)上是减函数;

(C).在区间(-2,0)上是增函数; (D).在区间(0, 2)上是增函数.

(四)利用复合函数求参数取值范围

例1.已知函数f(x)=(x2-ax+3a)在区间[2,+∞)上是减函数,则实数a的取值范围是_______。

例2.若f(x)=log a (3-ax)在[0,1]上是减函数,则a 的取值范围是_______。

【反馈训练】

1.关于x 的函数212

log (2)y ax a a =-++在[1,+∞)上为减函数,则实数a 的取

值范围是 ( )

A .(-∞,0)

B .(-1,0)

C .(0,2]

D .(-∞,-1)

2、函数164x y =-的值域是( )

(A )[0,)+∞ (B )[0,4] (C )[0,4) (D )(0,4)

3、 函数()412

x x f x +=的图象( ) A. 关于原点对称 B. 关于直线y=x 对称

C. 关于x 轴对称

D. 关于y 轴对称

4、若函数2()1f x mx mx =++的定义域为R ,则实数m 的取值范围是( )

(A)04m << (B) 04m ≤≤ (C) 4m ≥ (D) 04m <≤

三、解答题

1.已知函数()log (1)(01)x a f x a a =-<<

(1)求()f x 的定义域;

(2) 讨论()f x 的单调性。

2、求1)2

1()41(+-=x x y ,[]2,3-∈x 的值域。

3、已知函数11)(+-=x x a a x f )10(≠>a a 且 (1)求)(x f 的定义域及值域。

(2)讨论)(x f 的奇偶性。

(3)讨论)(x f 的单调性。

复合函数单调性的判断

复合函数单调性的判断))((x g f y = 以上规律还可总结为:“同向得增,异向得减”或“同增异减”. 1求函数y=2 1log (4x-x 2)的单调区间. 2、 求函数()2 31x y =的单调性及最值 3.在区间(-∞,0)上为增函数的是 A. ) (log 21x y --= B.x x y -=1 C.y =-(x +1)2 D.y =1+x 2 3、求函数)12(log )(2 1+=x x f 的单调区间. 4、(1)函数3422)(-+-=x x x f 的递增区间为___________; (2)函数)34(log )(2 2 1-+-=x x x f 的递减区间为_________ 5、设函数)(x f 是减函数,且0)(>x f ,下列函数中为增函数的是 ( ) (A ))(1 x f y -= (B ))(2x f y = (C ))(log 2 1x f y = (D )2 )]([x f y =

7、下列函数中,在区间]0,(-∞上是增函数的是 ( ) (A )842+-=x x y (B ))(log 21x y -=(C )1 2+- =x y (D )x y -=1 20.函数 342-+-=x x y 的单调增区间是 A.[1,3] B.[2,3] C.[1,2] D.(-∞,2] 21.函数y= 在区间[4,5]上的最大值是_______,最小值是_______。 21.若函数f (x )在R 上是减函数,那么f (2x -x 2 )的单调增区间是 A.(-∞,1] B.[-1,+∞) C.(-∞,-1] D.[1,+∞) 31.函数y =log a 2(x 2 -2x -3)当x <-1时为增函数,则a 的取值范围是 A.a >1 B.-11或a <-1 例7.若f(x)=log a (3-ax)在[0,1]上是减函数,则a 的取值范围是_______。 例6.已知函数f(x)= (x 2-ax+3a)在区间[2,+∞)上是减函数,则实数a 的取值范围是_____ 例6.已知函数f(x)= (x 2-ax+3a)在区间[2,+∞)上是减函数,则实数a 的取值范围是_______。 分析如下: 令u=x 2-ax+3a ,y= u 。 因为y= u 在(0,+∞)上是减函数 ∴ f(x)= (x 2-ax+3a)在[2,+∞)上是减函数 u=x 2-ax+3a 在[2,+∞)上是增函数,且对任意x∈[2,+∞),都有u >0。

函数含参数单调性问题

函数含参数单调性问题 知识点:已知函数在区间上单调或不单调,求解参变量的范围 思路提示: (1) 已知区间函数单调递增或单调递减,转化为导函数恒大于等于或小于等于零,先观 察导函数图像特点,如一次函数最值落在端点,开口向上抛物线最大值落在端点,开口向下抛物线最小值落在端点。 (2) 已知区间函数不单调,转化为导函数存在零点,且零点两侧异号。通常利用分离变 量法求解参数变量范围 类型一:已知单调区间求参数 例1:设.13)1(2 3)(23+++-=ax x a x x f (I )若函数)(x f 在区间(1,4)内单调递减,求a 的取值范围; (II )若函数a x x f =在)(处取得极小值是1,求a 的值,并说明在区间(1,4)内函数)(x f 的单调性.

变式:1.若函数y =3 1x 3-21ax 2+(a -1)x +1在区间(1,4)内为减函数,在区间(6,+∞)内为增函数,试求实数a 的取值范围. 2.设函数∈+++-=a ax x a x x f 其中,86)1(32)(23R. (1)若)0,()(-∞在x f 上为增函数,求a 的取值范围. 3.已知函数32()3 m f x x x x =+-,()m R ∈,且函数()f x 在(2,)+∞上存在单调递增区间,求m 的取值范围;

4.知函数.,33)(2 3R m x x mx x f ∈-+= (1)若函数1)(-=x x f 在处取得极值,试求m 的值,并求)(x f 在点))1(,1(f M 处的 切线方程; (2)设0

复合函数的概念和性质

复合函数的概念和性质 一、知识点内容和要求: 理解复合函数的概念,会求复合函数的单调区间 二、教学过程设计 (一)复习函数的单调性 引例:函数y=f(x)在上单调递减,则函数(a>0,且a≠1)增减性如何? (二)新课 1、复合函数的概念 如果y是a的函数,a又是x的函数,即y=f(a),a=g(x),那么y关于x的函数y=f[g(x)] 叫做函数y=f(x)和a=g(x)的复合函数,其中a是中间变量,自变量为x,函数值y。 例如:函数是由复合而成立。 函数是由复合而成立,a是中间变量。 2、复合函数单调性 由引例:对任意a,都有意义(a>0且a≠1)且。 对任意, 当a>1时,单调递增,当0<a<1时,单调递减。 ∵当a>1时, ∵y=f(u)是上的递减函数∴ ∴ ∴是单调递减函数 类似地, 当0<a<1时, 是单调递增函数 一般地, 定理:设函数u=g(x)在区间M上有意义,函数y=f(u)在区间N上有意义,且当X∈M时,u∈N。有以下四种情况: (1)若u=g(x)在M上是增函数,y=f(u)在N上是增函数,则y=f[g(x)]在M上也是增函数;

(2)若u=g(x)在M上是增函数,y=f(u)在N上是减函数,则y=f[g(x)]在M上也是减函数;(3)若u=g(x)在M上是减函数,y=f(u)在N上是增函数,则y=f[g(x)]在M上也是减函数;(4)若u=g(x)在M上是减函数,y=f(u)在N上是减函数,则y=f[g(x)]在M上也是增函数。即:同增异减。 注意:内层函数u=g(x)的值域是外层函数y=f(u)的定义域的子集。 例1、讨论函数的单调性 (1)(2) 解:① 又是减函数 ∴函数的增区间是(-∞,2],减区间是[2,+∞)。 ②x∈(-1,3) 令 ∴x∈(-1,1]上,u是递增的,x∈[1,3)上,u是递减的。 ∵是增函数 ∴函数在(-1,1]上单调递增,在(1,3)上单调递减。 注意:要求定义域 练习:求下列函数的单调区间。 1、(1)减区间,增区间; (2)增区间(-∞,-3),减区间(1,+∞); (3)减区间,增区间;

复合函数的单调性完全解析与练习(终审稿)

复合函数的单调性完全 解析与练习 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

课题:函数的单调性(二) 复合函数单调性 北京二十二中刘青 教学目标 1.掌握有关复合函数单调区间的四个引理. 2.会求复合函数的单调区间. 3.必须明确复合函数单调区间是定义域的子集. 教学重点与难点 1.教学重点是教会学生应用本节的引理求出所给的复合函数的单调区间. 2.教学难点是务必使学生明确复合函数的单调区间是定义域的子集. 教学过程设计 师:这节课我们将讲复合函数的单调区间,下面我们先复习一下复合函数的定义. 生:设y=f(u)的定义域为A ,u=g(x)的值域为B ,若AB ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量. 师:很好.下面我们再复习一下所学过的函数的单调区间. (教师把所学过的函数均写在黑板上,中间留出写答案的地方,当学生回答得正确时,由教师将正确答案写在对应题的下边.) (教师板书,可适当略写.) 例求下列函数的单调区间. 1.一次函数y=kx+b(k ≠0). 解当k >0时,(-∞,+∞)是这个函数的单调增区间;当k <0时,(-∞,+∞)是这个函数的单调减区间. 2.反比例函数y=x k (k ≠0). 解当k >0时,(-∞,0)和(0,+∞)都是这个函数的单调减区间,当k <0时,(-∞,0)和(0,+∞)都是这个函数的单调增区间. 3.二次函数y=ax 2+bx+c(a ≠0). 解当a >0时(-∞,-a b 2)是这个函数的单调减区间,(-a b 2,+∞)是它的单调增区间; 当a <0时(-∞,-a b 2)是这个函数的单调增区间,(-a b 2,+∞)是它的单调减区间; 4.指数函数y=ax(a >0,a ≠1). 解当a >1时,(-∞,+∞)是这个函数的单调增区间,当0<a <1时,(-∞,+∞)是这个函数的单调减区间. 5.对数函数y=log a x(a >0,a ≠1). 解当a >1时,(0,+∞)是这个函数的单调增区间,当0<a <1时,(0,+∞)是它的单调减区间. 师:我们还学过幂函数y=x n (n 为有理数),由于n 的不同取值情况,可使其定义域分几种情况,比较复杂,我们不妨遇到具体情况时,再具体分析. 师:我们看看这个函数y=2x 2+2x+1,它显然是复合函数,它的单调性如何

含参函数的单调性习题

导数专题------求函数的单调区间 1.设()()2 56ln f x a x x =-+,其中a R ∈,曲线 ()y f x =在点()()1,1f 处的切线与y 轴相交于点 ()0,6.(1)确定a 的值; (2)求函数()f x 的单调区间与极值. 2.设函数()()2 1x f x x e kx =--(k ∈R ) 当1k =时,求函数()f x 的单调区间; 3.已知函数ln ()x x k f x e +=(k 为常数, 2.71828e =???是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行. (Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间; 4. 的单调区间求设函数)(,0,ln )(22x f a ax x x a x f >+-= 的单调区间和极值。)求函数(处的切线的斜率;,在点((时,求曲线当(设函数)(2))1(1)1)1(. 0),(,)1(3 1 ).5223x f f x f y m m R x x m x x x f ==>∈-++-=

。 的单调区间和极小值点求函数其中 (已知函数 ) ( .0 , ln ) 1( 2 1 ) .62 x f a x a x a x x f> + + - = 的单调区间。 )求 ( 处的切线方程 , 在点( 时,求曲线当 已知函数 ) ( 2 )) 1( 1 ) ( 2 )1( , 2 ) 1 ln( ) ( .72 x f f x f y k x k x x x f = = + - + = 8. 的单调区间。 ( 求 已知函数) ), .( )1 ( ln ) (2x f R a ax x x a x f∈ - - - = 的单调区间。 讨论 已知函数) ( ), 1 (, ln ) ( .9x f x ax x x x f> - =

复合函数的单调性例讲

复 合 函 数 的 单 调 性 例 讲 山西忻州五寨一中 摄爱忠 高考主要考查:①求复合函数的单调区间;②讨论含参复合函数的单调性或求参数范围问题. ①“中间变量”是形成问题转化的桥梁. ②函数思想是解决问题的关键. 复合函数定义: 1. 设)(u f y =定义域为A,)(x g u =的值域为B,若A B ?,则y 关于x 的函数)]([x g f y =叫做函 数 f 与 g 的复合函数,u 叫中间变量. 外函数:)(u f y =; 内函数:)(x g u = 复合函数的单调性:同增异减. 2. 若)(x g u = )(u f y = 则)]([x g f y = 增函数 增函数 增函数 减函数 减函数 增函数 增函数 减函数 减函数 减函数 增函数 减函数 3.求解复合函数的单调性的步骤如下: (1)求复合函数定义域; (2)将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数); (3)判断每个常见函数的单调性; (4)将中间变量的取值范围转化为自变量的取值范围; (5)求出复合函数的单调性。 题型1:内外函数都只有一种单调性的复合型. 例 题1: ◇已知函数y=log a (2-ax)在[0,1]上是x 的减函数,则a 的取值范围是( )

(A).(0,1) (B).(1,2) (C).(0,2) (D).[2,+∞) 解:设y= log a u ,u=2-ax ,∵a 是底数,所以a>0, ∵ 函数y=log a u 在u ∈[0,1]上是减函数,而u=2-ax 在区间x ∈[0,1]上是减函数, ∴ y= log a u 是u ∈(0, +∞)上的增函数,故a>1,还要使2-ax>0在区间上总成立, 令g(x)= 2-ax ,由{g(0)=2-a ·0>0 g(1)=2-a ·1>0 ,解得a<2,∴1-x ,得 00知函数的定义域为),1()3, (∞+-?--∞∈x , 因y= log 0.5u 在u ∈(0,+∞)上是减函数,而u= x 2 +4x+4在x ∈(-∞,-3)上是减函数, 在(-1,+ ∞)上是增函数,根据复合规律知, 函数y=log 0.5(x 2 +4x+4) 在x ∈(-∞,-3)上是增函数;在x ∈(-1,+ ∞)上是减函数. 变式训练: ◇讨论函数3 4252+-? ? ? ??=x x y 的单调性。 解:函数定义域为R. 令u=x 2 -4x+3,y=0.8u 。 指数函数u y ?? ? ??=52在u ∈(-∞,+∞)上是减函数, u=x 2 -4x+3在(-∞,2]上是减函数,在[2,+∞)上是增函数, ∴ 函数3 4252+-? ? ? ??=x x y 在(-∞,2]上是增函数,在[2,+∞)上是减函数。 这里没有第四步,因为中间变量允许的取值范围是R ,无需转化为自变量的取值范围。 题型3:外函数有两种单调性内函数有一种单调性的复合型. 例 题3:

高一数学中函数的单调性4种求法

高一数学中函数的单调 性4种求法 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高一数学中函数的单调性非常重要,分析函数的单调性方法有:定义法,图像法,性质法,复合法.下边结合例题加以说明: 1.定义法 例题已知函数y=x^3-x在(0,a]上是减函数,在[a,+)上是增函数,求a的值。 解分析函数在R+上的单调性 任取x1>x2>0 Y1-Y2=(X1^3-X2^3)-(X1-X2)=(X1-X2)(X1^2+X1X2+X2^2)-(X1-X2) =(X1-X2)(X1^2+X1X2+X2^2-1) 令y1-y2>0 所以 X1^2+X1X2+X2^2-1>0 因为X1^2+X1X2+X2^2-1>X2^2+X2X2+X2^2-1=3X2^2-1 当3X2^2-1>=0时即X2^2>=1/3 X2>=根号3/3时 y1-y2>0 函数是递增的 同理当3X1^2-1<=0时即X1<=根号3/3时 y1-y2<0 函数是递减的 故函数在R+上的增区间为[根号3/3,+)减区间为(0,根号3/3) 因此 a=根号3/3 一般情况下,用定义求函数的单调区间就是求出使y1-y2>0(<0)的x1,x2的取值范围,要变换不等式,求出x1和x2的范围,就可求出函数的单调区间。 2.图像法 例题求y=x+3/x-1的单调区间 解函数定义域为(-,1)并(1,+) Y=X+3/X-1=X-1+4/X-1=1+4/X-1 由图像可知函数在(-,1)和(1,+0)上递减。 函数的图像是解决这类问题的关键。 3.性质法 性质:增+增=增减+减=减

含有参数的函数单调性问题教学设计

含有参数的函数单调性问题教学设计 胡蓉 一、教材地位 导数在新课标卷中以压轴题的形式考察,近五年最后一道压轴题都是含有参数的函数题,熟悉含参函数单调性问题的求解是非常重要的,它是解决含参函数极值、最值、零点等问题的基础。 二、教学背景与教学目标 笔者所教学生为重点中学文科学生,己经学完导数在研究函数中的应用三个课时,但是相对而言还比较零散,缺少整体联系但又具有一定的知识迁移能力。 学生在学习一元二次不等式时,经常遇到含参问题,需要进行讨论,因此对含参问题并不陌生。但是对于含参的函数的单调性问题,何时需要分类讨论,以及如何分类讨论做到不重不漏并不清楚,也没有形成解题系统。 三、教学重点、难点 重点:掌握含有参数的函数单调性问题分析及解决能力 难点:培养利用分类讨论、化归、数形结合、类比等数学思想与方法进行解题的意识 四、教学过程设计 (一)复习引入 (1)求函数()x x x f ln 2 12-=的单调区间 设计意图:师生共同解决此题,同时回顾了不含参函数单调区间的求解过程,也为解决例1搭建桥梁 解:函数定义域为()0,+∞,()2' 11x f x x x x -=-= 令()'0f x >得2101x x ->?>; 令()' 0f x <得21001x x -得20x a x ->?> 令()'0f x <得200x a x -

函数的单调性及函数解析式的求法

知识点五:函数解析式的求法 (1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以 x 替代g (x ),便得f (x )的解析式(如例(1)); (2)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法(如例(3)); (3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围(如例(2)); (4)方程思想:已知关于f (x )与f ? ?? ??1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x )(如A 级T6). 例6 (1)已知f ? ?? ??x +1x =x 2+1 x 2,求f (x )的解析式; (2)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ). 变式.(1)已知f (x +1)=x +2x ,求f (x )的解析式; (2)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式. 例7 已知2f (1/x )+f (x )=x(x ≠0) 。 求f (x ) 变式 已知f (1/x )+af (x )=ax(x ≠0,a ≠±1) 。 求f (x )

函数单调性与最大(小)值 知识点一 增函数、减函数、单调性、单调区间的概念: 一般地,设函数f(x)的定义域为A ,区间 如果对于内的任意两个自变量的值x 1、x 2,当x 1f(x 2),那么就说f(x)在区间上是减函数. 如果函数f(x)在区间D 上是增函数或者减函数,那么函数f(x)在这一区间上具有严格的单调性,区间D 叫做函数的单调区间。 知识点二:常见函数的单调性 (1)一次函数的单调性:对函数y ax b =+(0)a ≠ 当0>a 时,函数)(x f 单调增加; 当0

专题5导数的应用含参函数的单调性讨论(答案)

〖专题5〗 导数的应用—含参函数的单调性讨论 “含参数函数的单调性讨论问题”是近年来高考考查的一个常考内容,也是我们高考复习的重点.从这几年来的高考试题来看,含参数函数的单调性讨论常常出现在研究函数的单调性、极值以及最值中,因此在高考复习中更应引起我们的重视. 一、思想方法: 上为常函数 在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('?=∈?<∈?>∈?∈? 讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论. 二、典例讲解 [典例1] 讨论x a x x f + =)(的单调性,求其单调区间. 解:x a x x f + =)(的定义域为),0()0,(+∞-∞ )0(1)('2 22≠-=-=x x a x x a x f (它与a x x g -=2 )(同号) I )当0≤a 时,)0(0)('≠>x x f 恒成立, 此时)(x f 在)0,(-∞和),0(+∞都是单调增函数, 即)(x f 的增区间是)0,(-∞和),0(+∞; II) 当0>a 时 a x a x x x f > -或)0(0)(' a x x a x x f < <<<-?≠<00)0(0)('或 此时)(x f 在),(a --∞和),(+∞a 都是单调增函数, )(x f 在)0,(a -和),0(a 都是单调减函数, 即)(x f 的增区间为),(a --∞和),(+∞a ; )(x f 的减区间为)0,(a -和),0(a . 步骤小结:1、先求函数的定义域, 2、求导函数(化为乘除分解式,便于讨论正负), 3、先讨论只有一种单调区间的(导函数同号的)情况, 4、再讨论有增有减的情况(导函数有正有负,以其零点分界), 5、注意函数的断点,不连续的同类单调区间不要合并. [变式练习1] 讨论x a x x f ln )(+=的单调性,求其单调区间.

复合函数单调性(讲解+练习)

课题:函数的单调性(二) 复合函数单调性 北京二十二中 刘青 教学目标 1.掌握有关复合函数单调区间的四个引理. 2.会求复合函数的单调区间. 3.必须明确复合函数单调区间是定义域的子集. 教学重点与难点 1.教学重点是教会学生应用本节的引理求出所给的复合函数的单调区间. 2.教学难点是务必使学生明确复合函数的单调区间是定义域的子集. 教学过程设计 师:这节课我们将讲复合函数的单调区间,下面我们先复习一下复合函数的定义. 生:设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量. 师:很好.下面我们再复习一下所学过的函数的单调区间. (教师把所学过的函数均写在黑板上,中间留出写答案的地方,当学生回答得正确时,由教师将正确答案写在对应题的下边.) (教师板书,可适当略写.) 例 求下列函数的单调区间. 1.一次函数y=kx+b(k ≠0). 解 当k >0时,(-∞,+∞)是这个函数的单调增区间;当k <0时,(-∞,+∞)是这个函数的单调减区间. 2.反比例函数y=x k (k ≠0). 解 当k >0时,(-∞,0)和(0,+∞)都是这个函数的单调减区间,当k <0时,(-∞,0)和(0,+∞)都是这个函数的单调增区间. 3.二次函数y=ax 2+bx+c(a ≠0). 解 当a >1时(-∞,-a b 2)是这个函数的单调减区间,(-a b 2,+∞)是它的单调增 区间;当a <1时(-∞,-a b 2)是这个函数的单调增区间,(-a b 2,+∞)是它的单调减区间; 4.指数函数y=ax(a >0,a ≠1). 解 当a >1时,(-∞,+∞)是这个函数的单调增区间,当0<a <1时,(-∞,+∞)是这个函数的单调减区间. 5.对数函数y=log a x(a >0,a ≠1). 解 当a >1时,(0,+∞)是这个函数的单调增区间,当0<a <1时,(0,+∞)是它的单调减区间. 师:我们还学过幂函数y=x n (n 为有理数),由于n 的不同取值情况,可使其定义域分几 种情况,比较复杂,我们不妨遇到具体情况时,再具体分析. 师:我们看看这个函数y=2x 2+2x+1,它显然是复合函数,它的单调性如何? 生:它在(-∞,+∞)上是增函数. 师:我猜你是这样想的,底等于2的指数函数为增函数,而此函数的定义域为(-∞,+ ∞),所以你就得到了以上的答案.这种做法显然忽略了二次函数u=x 2+2x+1的存在,没有考 虑这个二次函数的单调性.咱们不难猜想复合函数的单调性应由两个函数共同决定,但一时

已知函数单调性求参数(简单)

已知函数单调性求参数(简单) 一、选择题 1.函数y=ax3-x在(-∞,+∞)上是减函数,则() A.a= B.a=1 C.a=2 D.a≤0 2.若函数f(x)=kx-ln x在区间(1,+∞)上单调递增,则k的取值范围是() A. (-∞,-2] B. (-∞,-1] C. [2,+∞) D. [1,+∞) 3.若函数f(x)=a ln x+在区间(1,+∞)上单调递增,则实数a的取值范围是() A. (-∞,-2] B. (-∞,-1] C. [1,+∞) D. [2,+∞) 4.已知f(x)=a ln x+x2,若对任意两个不等的正实数x 1,x2都有>0成立,则实数a的取值范围是() A. [0,+∞) B. (0,+∞) C. (0,1) D. (0,1] 5.已知函数f(x)=-x3+2ax在(0,1]上是单调递增函数,则实数a的取值范围是()

A. (-∞,) B. [,+∞) C. (,+∞) D. (-,) 6.函数f(x)=e x-ax-1在R上单调递增,则实数a的取值范围为() A.R B. [0,+∞) C. (-∞,0] D. [-1,1] 7.已知a,b是正实数,函数f(x)=-x3+ax2+bx在x∈[-1,2]上单调递增,则a+b的取值范围为() A. (0,] B. [,+∞) C. (0,1) D. (1,+∞) 8.已知函数f(x)=x3+ax在[1,+∞)上是增函数,则a的最小值是() A.-3 B.-2 C. 2 D. 3 9.已知函数f(x)=-x3+ax2-x-1在(-∞,+∞)上是减函数,则实数a的取值范围是() A. (-∞,-)∪[,+∞) B. [-,]

(完整版)复合函数单调性的判定方法

复合函数单调性的判定方法 定理设y=f(u),u∈(m,n),u=g(x),x∈(a,b).(1)若y=f(u)是(m,n)上的减函数,则y=f[g(x)]的增减性与g(x)的增减性相反;(2)若y=f(u)是(m,n)上的增函数,则y=f[g(x)]的增减性与g(x)的增减性相同. 证明:(1)若g(x)在(a,b)上是增函数,任取a<x 1<x 2 <b, 则有m<g(x 1)<g(x 2 )<n,由f(u)在(m,n)上是减函数得f[g(x 1 )] >f[g(x 2 )],故f[g(x)]在(a,b)上是减函数.若g(x)在(a,b)上是减函数,同理可证f[g(x)]在(a,b)上是增函数. (2)若g(x)在(a,b)上是增函数,任取a<x 1<x 2 <b,则有m <g(x 1)<g(x 2 )<n,由f(u)在(m,n)上是增函数,得f[g(x 1 )]< f[g(x 2 )],所以f[g(x)]在(a,b)上是增函数.若g(x)在(a,b)上是减函数,同理可证f[g(x)]在(a,b)上是减函数. 由此定理可知,复合函数单调性的判定是以简单函数的单调性为基础,而中学数学中的简单函数均是初等函数,因此熟悉各种初等函数的单调性是判定复合函数单调性的基础.若能对各种初等函数的图象了如指掌,则对复合函数的单调性的判定将大有裨益.我们就可借助初等函数的图象确定它的单调性,判定它的单调区间和函数值域,再利用上述定理就很容易判定复合函数的单调性. 例1讨论函数f(x)=log 0.5 (x2+4x+4)的单调性.解 f(x)的定义域为(-∞,-2)∪(-2,+∞).f(x)可视为 y=log 0.5 u与u=x2+4x+4复合而成.u的图象是以x=-2为对称轴,开口向上的抛物线,在(-∞,-2)上为减函数,在(-2,+ ∞)上为增函数.又y=log 0.5 u在其定义域上是减函数,故f(x)在(-∞,-2)上是增函数,在(-2,+∞)上是减函数.例2试求函数f(x)=2x2的单调区间. 解函数f(x)=2x2可视为f(u)=2u与u=x2复合而成.函数u =x2在(-∞,0]上为减函数,在[0,+∞)上为增函数,且u≥0.函数f(u)=2u在u≥0时为增函数.所以,f(x)在(-∞,0]上为减函数.在[0,+∞)上为增函数. 推论由有限个简单函数复合而成的多重复合函数,若在所讨论的区间内每个简单函数均有意义,且均为严格单调函数.当其中减函数的个数是偶数时,则复合函数是增函数;当减函数的个数是奇数时,则复合函数是减函数.

复合函数的单调性完全解析与练习

复合函数单调性 北京二十二中 刘青 教学目标 1.掌握有关复合函数单调区间的四个引理. 2.会求复合函数的单调区间. 3.必须明确复合函数单调区间是定义域的子集. 教学重点与难点 1.教学重点是教会学生应用本节的引理求出所给的复合函数的单调区间. 2.教学难点是务必使学生明确复合函数的单调区间是定义域的子集. 教学过程设计 师:这节课我们将讲复合函数的单调区间,下面我们先复习一下复合函数的定义. 生:设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量. 师:很好.下面我们再复习一下所学过的函数的单调区间. (教师把所学过的函数均写在黑板上,中间留出写答案的地方,当学生回答得正确时,由教师将正确答案写在对应题的下边.) (教师板书,可适当略写.) 例 求下列函数的单调区间. 1.一次函数y=kx+b(k ≠0). 解 当k >0时,(-∞,+∞)是这个函数的单调增区间;当k <0时,(-∞,+∞)是这个函数的单调减区间. 2.反比例函数y=x k (k ≠0). 解 当k >0时,(-∞,0)和(0,+∞)都是这个函数的单调减区间,当k <0时,(-∞,0)和(0,+∞)都是这个函数的单调增区间. 3.二次函数y=ax 2+bx+c(a ≠0). 解 当a >0时(-∞,-a b 2)是这个函数的单调减区间,(-a b 2,+∞)是它的单调增区间;当a <0时(-∞,-a b 2)是这个函数的单调增区间,(-a b 2,+∞)是它的单调减区间; 4.指数函数y=ax(a >0,a ≠1). 解 当a >1时,(-∞,+∞)是这个函数的单调增区间,当0<a <1时,(-∞,+∞)是这个函数的单调减区间. 5.对数函数y=log a x(a >0,a ≠1). 解 当a >1时,(0,+∞)是这个函数的单调增区间,当0<a <1时,(0,+∞)是它的单调减区间. 师:我们还学过幂函数y=x n (n 为有理数),由于n 的不同取值情况,可使其定义域分几种情况,比较复杂,我们不 妨遇到具体情况时,再具体分析. 师:我们看看这个函数y=2x 2+2x+1,它显然是复合函数,它的单调性如何? 生:它在(-∞,+∞)上是增函数. 师:我猜你是这样想的,底等于2的指数函数为增函数,而此函数的定义域为(-∞,+∞),所以你就得到了以上 的答案.这种做法显然忽略了二次函数u=x 2+2x+1的存在,没有考虑这个二次函数的单调性.咱们不难猜想复合函数的单 调性应由两个函数共同决定,但一时猜不准结论.下面我们引出并证明一些有关的预备定理. (板书) 引理1 已知函数y=f [g(x)].若u=g(x)在区间(a,b)上是增函数,其值域为(c ,d),又函数y=f(u)在区间(c,d)上是增函数,那么,原复合函数y=f [g(x)]在区间(a,b)上是增函数. (本引理中的开区间也可以是闭区间或半开半闭区间.) 证明 在区间(a,b)内任取两个数x 1,x 2,使a <x 1<x 2<b. 因为u=g(x)在区间(a,b)上是增函数,所以g(x 1)<g(x 2),记u1=g(x 1),u2=g(x 2)即u 1<u 2,且u 1,u 2∈(c,d). 因为函数y=f(u)在区间(c,d)上是增函数,所以f(u 1)<f(u 2),即f [g(x 1)]<f [f(x 2)], 故函数y=f [g(x)]在区间(a,b)上是增函数. 师:有了这个引理,我们能不能解决所有复合函数的单调性问题呢? 生:不能.因为并非所有的简单函数都是某区间上的增函数.

已知函数单调性求参数范围公开课教案

已知函数单调性求参数范围 教学目标 1.知识与技能:学会利用导数来解决已知单调性求参数范围问题; 2.过程与方法:通过实例讲解,归纳,解决问题的方法; 3.情感与态度:通过问题的解决,体会转化思想的应用. 教学重点 已知单调性,利用导数求参数范围. 教学难点 不同问题的处理方法. 教学过程 (一)知识梳理 函数y =f (x )的导数为)('x f y =,对于区间(a ,b ). 1.若y =f (x )的单调区间为(a ,b ),则? ??==0)('0)('b f a f 2.若y =f (x )在区间(a ,b )上单调递增(递减),则)0)('(0)('≤≥x f x f 在(a ,b )上恒成立. (二)典例分析 例1 函数)(ln )(22R a ax x a x x f ∈+-=的单调递减区间是),1(+∞,求a 的值. 例2 函数)(ln )(22R a ax x a x x f ∈+-=在),1(+∞上是减函数, 求a 的取值范围. 例3 函数)0(22 1ln )(2<--=a x ax x x f 在定义域内单调递增,求a 的取值范围. 例4 函数1331)(223+-+=x m mx x x f 在区间)3,2(-上是减函数,求m 的取值范围. 例5已知R a ∈,函数3)1()(223+-+-=x a ax x x f 在)0,(-∞和),1(+∞上都是增函数, 求a 的取值范围.

(三)课时小结 本节课主要介绍了已知函数单调性来利用导数求参数范围. (四)备用练习 1.函数)0(3)(223>+-+=a x a ax x x f 在[-1,1]上没有极值点, 求a 的值. 2.函数)0(1)(2>+=a ax e x f x 在R 上为单调函数, 求a 的取值范围. 3.函数1)5()1()(23-++-+=x k x k x x g 在区间) (3,0上有极值点,求参数k 的取值范围。 (五)作业布置 <<状元之路>>第48页 11,12

导数中含参数单调性及取值范围

应用导数的概念及几何意义解题仍将是高考出题的基本出发点;利用导数研究函数的单调性、极值、最值、图象仍将是高考的主题;利用导数解决生活中的优化问题将仍旧是高考的热点;将导数与函数、解析几何、不等式、数列等知识结合在一起的综合应用,仍将是高考压轴题. 一. 含参数函数求单调性(求可导函数单调区间的一般步骤和方 法:(1)确定函数定义域;(2)求导数;(3)令导数大于0,解得增区间, 令导数小于0,解得减区间.) 例1(2012西2)已知函数2221 ()1 ax a f x x +-=+,其中a ∈R . (Ⅰ)当1a =时,求曲线()y f x =在原点处的切线方程; (Ⅱ)求)(x f 的单调区间. (1a =22()1 x f x x = +22(1)(1)()2 (1)x x f x x +-'=-+ (0)2f '=()y f x =20x y -= 2()(1) ()2 1x a ax f x x +-'=-+ 0a =2 2()1 x f x x '=+.所()f x (0,)+∞(,0)-∞ 0a ≠2 1 ()() ()21x a x a f x a x +-'=-+ , 0a >()0f x '=1x a =-21 x = ()f x ()f x ' 【 )(x f (,)a -∞-1(,)a +∞1 (,)a a - 0a <()f x ()f x '

% ()f x 1 (,)a -∞1(,)a a --(,)a -+∞ 0a = 0a >)(x f 1(0,)a 1(,)a +∞)(x f (0,)+∞21 ()0f a a => 0x )(x f 2012a x a -=01 x a <0x x >()0f x >0x x <()0f x < )(x f [0,)+∞(0)0f ≤11a -≤≤ 0a >)(x f [0,)+∞a (0,1] 0a <)(x f (0,)a -(,)a -+∞)(x f (0,)+∞()1f a -=- )(x f [0,)+∞(0)0f ≥1a ≥1a ≤- 0a <)(x f [0,)+∞a (,1]-∞- | a (,1](0,1]-∞- 例2 设函数f (x )=ax -(a +1)ln(x +1),其中a ≥-1,求f (x )的单调区间. 【()f x (1,)-+∞'1()(1),1 ax f x a x -=≥-+ 10a -≤≤'()0,f x <()f x (1,)-+∞ 0a >'()0,f x =1.x a = '()f x x 1(1,)x a ∈-' ()0,f x <()f x 1(1,)a -

有关复合函数单调性的定义和解题方法

有关复合函数单调性的定义和解题方法 一、复合函数的定义 设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量. 二、函数的单调区间 1.一次函数y=kx+b(k ≠0). 解 当k >0时,(-∞,+∞)是这个函数的单调增区间;当k <0时,(-∞,+∞)是这个函数的单调减区间. 2.反比例函数y=x k (k ≠0). 解 当k >0时,(-∞,0)和(0,+∞)都是这个函数的单调减区间,当k <0时,(-∞,0)和(0,+∞)都是这个函数的单调增区间. 3.二次函数y=ax 2+bx+c(a ≠0). 解 当a >1时(-∞,-a b 2)是这个函数的单调减区间,(-a b 2,+∞)是它的单调 增区间;当a <1时(-∞,-a b 2)是这个函数的单调增区间,(-a b 2,+∞)是它的单调减区间; 4.指数函数y=ax(a >0,a ≠1). 解 当a >1时,(-∞,+∞)是这个函数的单调增区间,当0<a <1时,(-∞,+∞)是这个函数的单调减区间. 5.对数函数y=log a x(a >0,a ≠1). 解 当a >1时,(0,+∞)是这个函数的单调增区间,当0<a <1时,(0,+∞)是它的单调减区间. 三、复合函数单调性相关定理 引理1 已知函数y=f [g(x)].若u=g(x)在区间(a,b)上是增函数,其值域为(c ,d),又函数y=f(u)在区间(c,d)上是增函数,那么,原复合函数y=f [g(x)]在区间(a,b)上是增函数. (本引理中的开区间也可以是闭区间或半开半闭区间.) 证明 在区间(a,b)内任取两个数x 1,x 2,使a <x 1<x 2<b. 因为u=g(x)在区间(a,b)上是增函数,所以g(x 1)<g(x 2),记u1=g(x 1),u2=g(x 2)即u 1<u 2,且u 1,u 2∈(c,d). 因为函数y=f(u)在区间(c,d)上是增函数,所以f(u 1)<f(u 2),即f [g(x 1)]<f [f(x 2)], 故函数y=f [g(x)]在区间(a,b)上是增函数. 引理2 已知函数y=f [g(x)].若u=g(x)在区间(a,b)上是减函数,其值域为(c ,d),又函数y=f(u)在区间(c,d)上是减函数,那么,复合函数y=f [g(x)]在区间(a,b)上是增函数. 证明 在区间(a,b)内任取两个数x 1,x 2,使a <x 1<x 2<b. 因为函数u=g(x)在区间(a,b)上是减函数,所以g(x 1)>g(x 2),记u1=g(x 1),u2=g(x 2)即u 1>u 2,且u 1,u 2∈(c,d). 因为函数y=f(u)在区间(c,d)上是减函数,所以f(u 1)<f(u 2),即f [g(x 1)]<f [f(x 2)],故函数y=f [g(x)]在区间(a,b)上是增函数.

复合函数的单调性

函数的值域与函数的单调性 我们将复习函数的值域与函数的单调性两部分内容. 通过本专题的学习,同学们应掌握求函数值域的常用方法;掌握函数单调性的定义,能用定义判定函数的单调性;会判断复合函数的单调性;了解利用导数研究函数单调性的一般方法. [知识要点] 一.函数的值域 求函数值域的方法主要有:配方法、判别式法、换元法、基本不等式法、图象法,利用函数的单调性、利用函数的反函数、利用已知函数的值域、利用导数求值域等. 二.函数的单调性 1.定义 如果对于给定区间上的任意两个自变量的值x 1、x 2,当x 1f(x 2),那么就称f(x)在这个区间上是减函数.如果y=f(x)在某个区间上是增函数或减函数,就说y=f(x)在这一区间上具有严格的单调性,这一区间叫做f(x)的单调区间. 注:在定义域内的一点处,这个函数是增函数还是减函数呢?函数的单调性是就区间而言,对于单独的一点,由于它的函数值是唯一确定的常数,因而没有增减变化,所以不存在单调性问题. 2.函数单调性的运算规律 在共同的定义域上,设“f 型”是增函数,“g 型”是减函数,则: (1)f 1(x)+f 2(x)是增函数; (2)g 1(x)+g 2(x)是减函数; (3)f(x)-g(x)是增函数; (4)g(x)-f(x)是减函数. [典型例题] 一.函数值域的求法 (一)配方法 例1. 的值域求函数2234x x y -+-= 解: . 4244)1(4224)1(044)1(04)1(42222≤≤∴≤+---≤∴≤+--≤∴≤+--≤+---=y x x x x y 值域

相关文档
最新文档