基于压缩感知认知模型的面像识别与理解

基于压缩感知认知模型的面像识别与理解
基于压缩感知认知模型的面像识别与理解

基于稀疏贝叶斯回归的人脸姿势识别方法(专利)

一种基于稀疏贝叶斯回归的人脸姿势识别方法,用于图像处理技术领域。步骤如下:采用Gabor滤波器为人脸姿势图像提取Gabor特征;将Gabor特征进行下采样,然后将采样后的特征行堆叠为一维向量;在训练样本上运用线性切空间排列方法,获得人脸姿势图像的本质低维子空间,并且得到相应的投影矩阵;在低维子空间运用稀疏贝叶斯回归方法训练识别参数;将每一个测试样本通过训练的得到的投影矩阵映射到低维子空间,运用训练的得到的识别参数进行人脸姿势识别。本发明能够得到人脸姿势的非确定解,降低错误率,提高实时性。

基于非负矩阵因子的人耳识别研究(硕士)

生物识别技术已经作为一种较为成熟的身份识别鉴定技术应用于实际生活的各个方面,目前常用的

生物特征包括人脸、虹膜、指纹、手形等。但是由于各个生物特征都有其局限性和不足,在研究和应用

过程中仍然存在一些尚未解决的问题。人耳识别技术是个体生物特征识别领域的一项新技术,人耳生物

特征自身的一些特点使人耳识别能丰富生物特征识别技术,能补充目前的一些生物识别技术的不足,其

可行性已经得到了试验证明。但是在现实生活中,人耳总是会有意或无意地被遮挡。系统所提取的人耳

特征将会受到很大的影响,则系统的鲁棒性、可靠性都将有所下降。所以在实现“非打扰识别”中,有必要

研究人耳遮挡问题。因此我们探索和研究了一种有效的针对遮挡情况下的人耳特征描述方法。首先提出

了一种改进的带有稀疏性限制的非负矩阵因子方法,为了使基空间和特征空间同时具有良好的稀疏性,

通过增加一个使系数矩阵尽可能正交的约束条件来定义原目标函数,给出了求解该新目标函数的迭代规则,并证明了迭代规则的收敛性。然后对人耳图像进行子区域划分,用改进的带有稀疏性限制的非负矩

阵因子方法对各子区域提取特征,并计算各子区域相似度,最后融合各子区域相似度得到整体相似度,

确定由局部相似度到整体相似度的最佳映射,以保证最优类间区分能力。在实验中,针对样本库的人耳

用改进的带有稀疏性限制的非负矩阵因子方法提取其特征变量,从结果数据可以看出所提取的特征向量

稀疏性及正交性都有所增强,使得特征向量之间的可区分性增强,导致识别率的提高。实验结果还证明,在遮挡情况下,采用基于子区域划分的融合方法的识别率比基于单一模式的识别率高。

作者:张玉学科专业:控制理论与控制工程授予学位:硕士学位授予单位:北京科技大学导

师姓名:穆志纯学位年度:2005 研究方向:分类号:TP391.4 关键词:人耳识别生物识别子

区域划分识别技术目标函数

一种基于稀疏表示模型的脑电图信号分析方法

目的:癫痫是以脑内神经元异常放电致部分或整体脑功能障碍为特征的慢性疾患,模拟生物视觉感知系统,根据神经元响应的稀疏特性,对癫痫高危人群进行神经系统电生理筛查,以便及早发现和对相关人群进行干预。方法:选取适合的稀疏分解的匹配追踪算法,用新的较少的原子来重建正常的脑电信号和特定疾病类型的脑电信号,便于对各种神经系统疾病的脑电信号的特征波进行识别和提取。结果:处理16导标准脑电信号,分离出癫痫特征波,并对特征波进行识别,从而得到对癫痫的诊断,在此基础上将癫痫特征波反映射到16导标准电极,应用相关源电位软件对癫痫灶进行初步定位。结论:应用稀疏表示模型可以获取对脑电图信号的有效表示方法,通过对脑电图信号各分量进行有效的机器识别,归纳出系列特征波图谱,供临床诊断参考,从而降低了癫痫信号识别的工作量,提高了识别效率和正确率,实现癫痫的规模筛查。

基于压缩感知认知模型的面像识别与理解

像识别是模式分类、图像处理、计算机视觉、机器学习等领域的研究热点,其研究不但对于模式识别理论发展具有重要的学术意义,而且有着广泛的产业化前景,从而有可能为国家的经济建设做出贡献。本项目根据压缩感知原理,结合人的认知实际,提出崭新的视觉认知模型。该模型将测试样本表示为训练集(字典)的线性组合,组合系数的稀疏性与稀疏集中度可以用来衡量其类别属性。本项目将重点研究:(1)小样本条件下的降维与稀疏表示;(2)多重回归分析中的最优响应变量构造;(3)基于超分辨率重建技术与正则化策略的图像质量恢复;(4)大规模优化计算与在线学习算法;(5)面像认知与识别系统。项目的创新之处在于整合认知科学、信号处理、非线性优化、在线学习等理论,提出基于压缩感知的视觉认知模型并应用于面像识别领域,以解决小样本及非线性变化(畸变、遮挡等)问题。本课题的研究将丰富模式识别与机器学习理论,并为面像识别问题提供新的解决途径。

书名:信号与图像的稀疏分解及初步应用

图书编号:1452462

出版社:西南交通大学出版社

定价:29.0

ISBN:781104279

作者:王建英,尹忠科,张春梅著

出版日期:2006-01-01

版次:1

开本:其它

简介:

信号与图像的稀疏分解是信号与图像的一种新的分解方法,在信号与图像的压缩编码、去噪、信号的时频分析与信号识别等方面有着极为广阔的前景,是信号与图像处理研究领域中一个新的很有意义的研究方向。本书总结了国际上在这一研究方向的研究进展以及任教多年来的研究成果。在稀疏分解应用方面,重点介绍了作者在信号处理及图像压缩编码方面的研究成果。

本书适合于从事信号与信息处理、图像处理与压缩编码等方面工作的研科工作人员和研究生学习、研究中使用。

目录:

第1章信号空间理论基础

1.1信号集及其映射

1.2信号空间的基本概念

参考资料

第2章信号和图像的基本于完备原子库的稀疏表示与稀疏分解

2.1引言

2.2信号的稀疏逼近

2.3稀疏信号的精确重构条件

2.4过完备不相干级联原子库

2.5结束语

参考资料

第3章基于MP的信号与图像稀疏分解方法

3.1引言

3.2基于MP的信号稀疏分解

3.3MP算法的两大类实现方法

3.4MP算法改进算法——OMP算法

参考资料

第4章信号稀疏分解快速算法

4.1引言

4.2原子能量特性及在快速算法中的应用

4.3基于智能计算和MP的信号稀疏分解

4.4基于原子库集合划分和FFT的信号稀疏分解MP算法4.5总结

参考资料

第5章信号稀疏分解在信号处理中的应用

5.1稀疏分解在信号去噪中的应用

5.2稀疏分解在微弱信号检测中的应用

5.3稀疏分解在阵列信号处理中的应用

5.4绪论

参考资料

第6章基于MP的图像稀疏分解快速算法

6.1图像稀疏分解的原子库

6.2基于原子能量特性的图像稀疏分解算法

6.3在低维空间实现的图像稀疏分解算法

6.4基于智能计算的图像MP稀疏分解

参考资料

第7章稀疏分解在图像去噪中的应用

7.1稀疏分解图像去噪原理

7.2稀疏分解中图像上信息与噪声的区分

7.3稀疏分解图像去噪与最佳模板去噪的比较

参考资料

第8章稀疏分解在图像低比特率压缩中的应用

8.1引言

8.2基于稀疏分解的图像压缩国内外研究现状及分析8.3基于稀疏分解的图像压缩方法

8.4基于排序差分和稀疏分解的图像压缩编码方法

8.5绪论

参考资料

致谢

附录A基于MP的信号稀疏分解参考程序

附录B基于MP的信号参数估计参考程序

附录C基于GA和MP的信号稀疏分解参考程序

附录D利用FFT实现基于MP的信号稀疏分解参考程序

证据推理与模型认知

证据推理与模型认知 “证据推理与模型认知”是化学学科学习乃至科学研究中要求学习者思想上需要建立的一个强大武器。“宏观辨识与微观探析”是学科特点决定的对学习基本的要求。“变化观念与平衡思想”是对学习者思想观念上的一种更深入的要求。“证据推理与模型认知”是对学习者进入更高级层次,提升研究性学习能力以及独立思考、独立分析问题能力的一种素养要求。 首先谈谈对“证据推理”的理解。“证据”就是要求学生具有获取证据、筛选证据的能力。先说证据的来源,学生获取证据来源可以是课本、课外书籍、网络资料、实验数据等等形式。获取证据后,还要具有要筛选证据的能力。尽量选择比较权威的证据,证据如果有冲突需要进一步分析比对择取其中较可靠的数据。有些证据是正面证明的,同时注意也有些数据是证伪的,找寻逆向证伪的证据也是一个好的思路。有了证据还要建立观点与证据之间的逻辑关联以进行推理。一种方法是证据正向支持观点,此时最好多方证据从不同角度佐证观点。另一种方法是逆向驳斥观点,这种证伪的方法往往很具杀伤力,但基于化学的学科特点证伪并非意味着观点完全错误。例如,我们说浓度越大反应越快这一观点。并不能因为某些极个别的反应完全推翻这一结论,这一点是化学科比较独特的一个特点。很多观点或结论往往不能放之四海皆准。只要能解决大部分问题,能解释说明绝大部分现象就不错了。通过正向、逆向多方证据的反复推理论证我们即可了解一

个观点或理论的内涵与外延以及适用范围。 接下来谈谈模型认知问题。模型含义是模式、样式的意思。分为实物模型和思想模型等类型。实物模型在化学上主要是用于分子结构、晶体结构等知识的认知与理解。因为此类微观的化学知识具有看不见、摸不着及其抽象的特点,借助于实物模型(3d计算机模型也可归入此类,实际上实物模型的虚拟化)可以更好地理解、认识相关知识。所以在此类教学中利用好实物模型,或教师制作精良的计算机3d模型、动画就非常有价值。思想模型是指解决问题的一种思维方式,包括概念原理模型、数学模型、复合模型等类型。模型认知对学生来讲是至关重要的,是建立学科理论框架的重要工作。教学中应该下大力气解决一些最基本的模型的认知与建立。模型认知教学主要包括以下几步:①模型初步认识,解决模型是什么的问题;②模型建立的证据,解决模型为什么的问题;③模型的运用,是理论联系实际,解决模型有啥用的问题;④模型的评价与重构,模型在运用过程中不可避免的会出现一些不适用的情况(尤其是化学学科),通过模型评价找出模型适用条件重构模型的内涵外延,甚至发展处高级的新模型。模型认知教学对于学生形成科学、完善的学科理论至关重要。所以教学中要下大力气解决。

压缩感知理论综述(原创)

压缩感知理论综述 摘要:信号采样是模拟的物理世界通向数字的信息世界之必备手段。多年来,指导信号采样的理论基础一直是著名的Nyquist采样定理,但其产生的大量数据造成了存储空间的浪费。压缩感知(Compressed Sensing)提出一种新的采样理论,它能够以远低于Nyquist采样速率采样信号。本文详述了压缩感知的基本理论,着重介绍了信号稀疏变换、观测矩阵设计和重构算法三个方面的最新进展,并介绍了压缩感知的应用及仿真,举例说明基于压缩感知理论的编解码理论在一维信号、二维图像处理上的应用。 关键词:压缩感知;稀疏表示;观测矩阵;编码;解码 一、引言 Nyquist采样定理指出,采样速率达到信号带宽的两倍以上时,才能由采样信号精确重建原始信号。可见,带宽是Nyquist采样定理对采样的本质要求。然而随着人们对信息需求量的增加,携带信息的信号带宽越来越宽,以此为基础的信号处理框架要求的采样速率和处理速度也越来越高。解决这些压力常见的方案是信号压缩。但是,信号压缩实际上是一种资源浪费,因为大量的不重要的或者只是冗余信息在压缩过程中被丢弃。从这个意义而言,我们得到以下结论:带宽不能本质地表达信号的信息,基于信号带宽的Nyquist采样机制是冗余的或者说是非信息的。 于是很自然地引出一个问题:能否利用其它变换空间描述信号,建立新的信号描述和处理的理论框架,使得在保证信息不损失的情况下,用远低于Nyquist 采样定理要求的速率采样信号,同时又可以完全恢复信号。与信号带宽相比,稀疏性能够直观地而且相对本质地表达信号的信息。事实上,稀疏性在现代信号处理领域起着至关重要的作用。近年来基于信号稀疏性提出一种称为压缩感知或压缩采样的新兴采样理论,成功实现了信号的同时采样与压缩。 简单地说,压缩感知理论指出:只要信号是可压缩的或在某个变换域是稀疏的,那么就可以用一个与变换基不相关的观测矩阵将变换所得高维信号投影到一个低维空间上,然后通过求解一个优化问题就可以从这些少量的投影中以高概率重构出原信号,可以证明这样的投影包含了重构信号的足够信息。在该理论框架

证据推理与模型认知

从高中化学核心素养的构建来看,证据推理和模式建构是文化基础维度下科学精神素养的理性思考的两个基本点。通过对高中化学课程的研究,要求学生能够解释证据与结论之间的关系,确定形成科学结论所需的证据和寻找证据的途径;能够根据材料及其变化的信息,抽象总结和构建模型,以及运用模型思维理解材料质量及其变化的一般规律[2]。6目前,许多教师设计了基于证据的课堂教学推理和模式认知,反映了大多数化学教师对化学核心素养教学建设的积极态度;在研究这些教师的成绩的过程中,笔者对化学核心素养的本义进行了分析和比较。现在,我将把这些想法提供给大家参考和交流。 1没有证据 在科学探究过程中,实验事实与待验证猜想之间存在三种逻辑关系:①可以证明是正确的;②可以证明猜想是错误的;③猜想不能被证明。可以说,前两个实验事实是要证明的猜想的证据(在第一种关系中,实验事实是要验证的猜想的积极证据,在第二种关系中,实验事实是对要验证的猜想的否定。证据),不能说第三条证据是要证实的猜想的证据,也就是说,它不是证据。例如,已知溶液中只有一种氯化物溶质;假设溶质

为BaCl2。①如果在溶液中加入白色的酸液滴,则会使溶液中的硝酸盐滴不溶解,如果实验事实是在溶液中加入1-2滴Na2SO4溶液,溶液中没有白色沉淀,则推测为负证据; ③但如果实验事实是在溶液中加入1-2滴AgNO3溶液会导致白色沉淀,那么这不是投机的证据,勘探活动必须重新设计。 2逆向推理 它可以解释证据与结论之间的关系,不仅包括证据推理中的结论,还包括结论逆向推理所需的证据。强调逆向推理的原因之一是科学探究中运用了两个推理方向:逆向推理是从猜想中推断出必要的证据,设计实验收集证据;正推理用于推断猜想是否属实,根据实验得出结论和结论。其次,在解决问题的过程中,我们还需要运用两个方向的推理。例如,在有机合成的过程中,我们经常使用逆向推理思维。三是逆向推理具有发散性思维的特点。不同程度的分歧会导致不同的证据和设计实验的方向。通过逆向推理得到的不同证据,其证明难度、可信度和证明力也不同。一般来说,从证据到结论的积极思维越直接,证据就越有效。如果从多个不同的证据推理中得出相同的结论,则结论更

认知ABC理论

认知ABC理论 情绪不是由某一诱发性事件本身所引起的,而是由经历了这一事件的个体对这一事件的解释和评价所引起的。这一理论又被称作ABC理论。ABC来自 3个英文字的字首。在ABC理论的模型中,A是指诱发性事件(Activating events);B是指个体在遇到诱发事件之后相应而生的信念(Beliefs),即他对这一事件的看法、解释和评价;C是指在特定情景下,个体的情绪及行为的结果(Consequences)。 通常,人们会认为人的情绪及行为反应是直接由诱发性事件A引起的,即是A引起。RET的ABC理论指出,诱发性事件A只是引起情绪及行为反应的间接原因;而B——人们对诱发性事件所持的信念、看法、解释才是引起人的情绪及行为反应的更直接的起因。 当我们的日常生活出现问题,大多数人会不假思索地认为,是那些发生了的事情使我们感到难受。例如,当我们感到愤怒或忧伤,我们会认为是别人使我们产生这样的感受;当我们感到焦虑、受挫或忧伤,我们倾向于责怪自己的处境。然而,正如埃利斯指出的那样,并不是人和事让我们喜悦或悲伤--它们只不过是提供了一种刺激。其实,是我们的认知决定了我们在特定情况下的感受。 为了阐明这一理论,埃利斯提出了“A-B-C”模型: A代表“前因”(antecedent)(引发反应的情况)。 B代表“观念”(beliefs)(我们对该情况的认知)。 C代表“结果”(consequences)(我们的感受和行为)。 尽管我们倾向于责怪“A”(前因)造成了“C”(结果),其实是“B”(观念)使我们产生了那样的感受。让我们来看一个简单的例子: 设想你约会要迟到了,你感到很着急。 A:前因:约会将要迟到 C:结果:焦虑,烦躁,开车鲁莽 你感到焦虑(C),不是因为你将要迟到(A),而是因为你认为自己必须守时并且担心迟到的后果(B)。在这种情况下使人感到焦虑的典型观念包括:“我必须守时。如果我迟到,别人就不会喜欢我了。不论何时,我都必须得到每个人的赞赏。如果他们对我有看法,那可麻烦了。” 行为的决定因素:中介变量 托尔曼强烈反对把行为看作是刺激-反应的简单做法,认为介于环境刺激和行为反应之间的心理过程与有机体所作出的行为反应具有密切的关系,他提出中介变量的概念,认为认知、期望、目的、假设和嗜好等都是中介变量的具体表现形式。他还认为,对于行为的最初

压缩感知简介

2011.No31 0 3.2 熟悉结构施工图 结构施工图是关于承重构件的布置,使用的材料、形状、大小及内部构造的工程图样,是承重构件以及其他受力构件施工的依据。 看结构施工图最难的就是钢筋,要把结施图看懂就要知道钢筋的分布情况,现在都是在使用平法来标示钢筋,所以也要把平法弄懂才行。在识读与熟悉结施图的过程中应该充分结合钢筋平法表示的系列图集,搞清楚: a 各结构构件的钢筋的品种,规格,以及受力钢筋在各构件的布置情况。 b 箍筋与纵向受力钢筋的位置关系。 c 各个构件纵向钢筋以及箍筋弯钩的角度及其长度。 d 熟悉各构件节点的钢筋的锚固长度。 e 熟悉各个构件钢筋的连接方式。 f 熟悉在钢筋的搭接区域内,钢筋的搭接长度。 g 核算钢筋的间距是否满足施工要求,尤其是各个构件节点处的钢筋间距。 h 弯起钢筋的弯折角度以及离连接点的距离。 除此以外,对于钢筋混凝土构件,还应该熟悉各个构件的砼保护层厚度,各个构件的尺寸大小、布置位置等。特别注意的是对于结施图的阅读应充分结合建施图进行。 4 结束语 在熟悉施工图纸的过程中,施工技术人员对于施工图纸中的疑问,和比较好的建议应该做好记录,为后续工作(图纸自审和会审)做好准备。 参考文献 [1]《建筑识图》周坚主编 中国电力出版社 2007年;[2]《建筑工程项目管理》银花主编 机械工业出版社 2010年; 摘 要 压缩感知(Compressive Sensing, CS)理论是一个充分利用信号稀疏性或可压缩性的全新信号采集、编解码理论。本文系一文献综述,主要介绍了压缩感知的三部分即信号的稀疏表示、测量矩阵的设计、信号恢复算法的设计。 关键词 压缩感知 稀疏表示 测量矩阵 信号恢复算法 1 引言 1928年由美国电信工程师H.奈奎斯特(Nyquist)首先提出,1948年信息论的创始人C.E.香农(Shannon)又对其加以明确说明并正式作为定理引用的奈奎斯特采样定理,是采样带限信号过程所遵循的规律。它指出:在进行模拟/数字信号的转换过程中,当采样频率fs.max大于信号中最高频率fmax的2倍时(fs.max>=2fmax),采样之后的数字信号完整地保留了原始信号中的信息。一般实际应用中保证采样频率为信号最高频率的5~10倍。该理论支配着几乎所有的信号/图像等的获取、处理、存储、传输等。随着科技的发展,成为目前信息领域进一步发展的主要瓶颈之一,主要表现在两个方面: (1)数据获取和处理方面。在许多实际应用中(例如超宽带信号处理、核磁共振、空间探测等),Nyquist采样硬件成本昂贵、获取效率低下,信息冗余及有效信息提取的效率低下,在某些情况甚至无法实现。 (2)数据存储和传输方面。通常的做法是先按照Nyquist方式获取数据,然后将获得的数据进行压缩,最后将压缩后的数据进行存储或传输,这样会造成很大程度的资源浪费。另外,为保证信息的安全传输,通常以某种方式对信号进行编码,这给信息的安全传输和接收带来一定程度的麻烦。 近年来,由D .D o n o h o (美国科学院院士)、E . Candes(Ridgelet, Curvelet创始人)及华裔科学家T. Tao(2006年菲尔兹奖获得者,2008年被评为世界上最聪明的科学家)等人提出了一种新的信息获取指导理论,即压缩感知(Compressive Sensing(CS),或称Compressed Sensing、Compressed Sampling)。该理论指出:对可压缩的信号通过远低于Nyquist标准的方式进行数据采样,仍能够精确地恢复出原压缩感知简介 刘太明1 黄 虎2 (1、成都理工大学,四川成都,610059;2、成都理工大学,四川成都,610059) 始信号。该理论一提出,就在信息论、信号/图像处理、医疗成像、模式识别、地质勘探、光学/雷达成像、无线通信等领域受到高度关注,并被美国科技评论评为2007年度十大科技进展。 2 CS基本原理 信号x∈R n×1压缩传感的测量过程可以表示为y=Ax∈R M×1,M<

基于稀疏表示的人脸识别算法研究

目录 1 绪论 (2) 1.1 背景及意义 (2) 1.2 发展状况 (2) 2 人脸识别 (3) 2.1 人脸识别概念 (3) 2.2 影响因素及相应解决方法 (4) 2.2.1 光照问题 (4) 2.2.2 姿态问题 (4) 2.2.3 数据库大小问题 (4) 2.2.4 遮挡、年龄、表情等问题 (5) 3 稀疏表示 (5) 3.1 稀疏表示的意义 (5) 3.2 稀疏表示的概念 (5) 4 基于稀疏表示的人脸识别 (6) 4.1 基于稀疏表示的人脸识别原理 (6) 4.2 基于稀疏表示的人脸识别算法 (8) 4.2.1 正交匹配追踪算法 (8) 3.2.2 快速正交匹配追踪 (9) 5 实验结果与分析 (9) 5.1 有表情变化的实验 (10) 5.2 不同光照条件的实验 (11) 6 结束语 (11)

基研究 摘要:稀疏表示的数学实质就是在超完备字典下对给定信号的线性分解。本文研究了一种基于稀疏表示的正交匹配追踪(orthogonal marching pursuit,简称OMP)算法,递归的对所选原子集合进行正交化,并且利用矩阵cholesky分解简化迭代过程中矩阵求逆的计算。在人脸识别的实际应用中,利用实验样本构建冗余字典,将待检测样本表示成试验样本的线性组合。通过在不同人脸库上的实验证明了该算法的有效性。 关键字: 稀疏表示;稀疏编码;人脸识别;正交匹配追踪 ABSTRACT 1 绪论 1.1 背景及意义 随着科技的迅猛发展,人类社会已经进入信息时代,信息安全问题日益得到高度重视。钥匙、密码、证件等传统形式的身份认证技术已经远远不能完全满足现代社会中对信息安全有高质量要求的部门的需要。因此,新一代的身份认证技术应运而生。 人的生物特征具有唯一性、稳定性等多种优点,已逐渐成为新一代的身份认证技术的主要依据。在众多的基于生物特征的身份识别技术中,人脸识别技术因其自然性、友好性等显著优势而受到广泛关注,目前已经被应用到模式识别、人工智能、计算机视觉、认知科学等多个领域中。然而,由于人脸图像易受到光照、姿态、遮挡和表情等多种因素的影响,识别效果也易受图像数据库大小的干扰,计算机智能识别课题的研究仍然具有较高的挑战性。目前一些学者将稀疏表示用于人脸识别,得到了国内外学者的广泛关注,其基本思想是将待分类图像表示为以训练图像本身作为基原子的字典的稀疏线性组合。 1.2 发展状况

认知结构知识模型理论

认知结构知识模型理论 什么是认知结构知识模型理论 认知结构知识模型理论是范丰会和宋文红在其新书《新视界心理学——认知结构知识模型理论及其在学科教学、心理咨询和学习心理障碍辅导中的应用》中提出来的一个关于西方心理学的新理论体系。作者试图通过这一理论模型解决西方心理学“像灌木丛一样,流派林立、各说各话、相互矛盾”的现状,尝试进行西方心理学学科内综合,以便提高西方心理学对理论精华的继承性,更有效地发挥其在实践中的指导作用。 认知结构知识模型理论提出者简介 范丰会,物理学科教育学硕士、心理咨询师。1990年获首都师范大学物理系基础物理教育学硕士。曾从事过中学物理教学、中学教师继续教育、教育软件及教学资源开发、心理咨询、学习困难学生辅导、家长培训等工作。1990年完成硕士论文《大学生物理认知结构的定量研究》,之后工作28年来,对心理学基础理论、心理的发生发展、学科教学、学习心理障碍等相关领域的基础理论问题和重要实践问题进行了不懈的探索,颇有心得。 宋文红,1991年毕业于北京医科大学临床医学专业,从事儿科临床工作。2008年在北京大学第六附属医院进行精神科研究生课程,之后进入儿童保健和儿童心理专业,对儿童各类常见病、儿童发育性行为问题及儿童情绪行为障碍有丰富的诊疗经验。 认知结构知识模型理论形成过程 在《新视界心理学》一书中,作者从批评西方心理学各流派心理观和方法论缺陷出发,借鉴20世纪物理学的科学观和方法论成果,确立了指导心理学理论探索的心理观和方法论;在此基础上,秉持心理结构化和建构论的观点,沿着“用知识描述心理”的思路,创新提出了基于“认知结构知识模型”的基本理论框架;然后在这一理论框架基础上,继承各主流心理学流派的理论成果,融合形成了认知结构知识模型理论。根据这一理论,现行西方心理学主要流派和主要应用领域的问题都可以用一套基本范式进行解释,从而初步实现了对心理学各流派理论的综合与创新。 认知结构知识模型理论的主要内容 认知结构知识模型理论主要包括以下内容: 1.意识和潜意识共同构成心理活动的容器或空间。 2.用认知结构作为描述整体心理(包括意识和潜意识)结构的基本概念。认知结构是由陈述性知识、意象、程序性知识和策略性知识四种知识构成的网络化结构。 3.认知结构网络可以进一步划分为由以上四类知识构成的、相互依存的两层网络——认知结构潜网和认知结构显网。认知结构潜网是在由遗传获得的“原始意象-本能”结构基础上于人类幼年期逐渐建构并在6、7岁基本完成的“意象-程序性知识”结构,其基本作用模式是象征性思维,即以情绪感受为依据,通过同化、泛化和顺应而建构知识经验并作用于环境,如同所有哺乳动物的学习和适应方式一样;认知结构显网的构建是在人类抽象逻辑思维出现时开始的,是在认知结构潜网基础上建构起来的“陈述性知识-意象-程序性知识-策略性知识”结构,其基本作用模式是抽象逻辑思维,即以陈述性知识为核心、以抽象逻辑思维为主导进行的同化和顺应过程。通俗地讲,潜网、潜意识、象征性思维是“讲情”的;而显网、意识、逻辑思维是“讲理”的。双网融合、和谐一致、具备充分的环境适应性是一个心理发展良好人(人本主义心理学家所称“自我实现者”)的认知结构特征;否则,可能会产生各种内部冲突性和外部适应性心理问题。 4.认知结构有四种发展机制:同化、顺应、条件反射和整合。其中同化与顺应是从皮亚杰等理论引进。条件反射作用来源于行为主义的经典发现,在认知结构知识模型理论中作为潜意识学习规律,可以解释潜意识情结和行为习惯形成的原因。整合(类似于精神分析所

推理方法综述

智能控制导论大作业 学院:电子工程学院 专业:智能科学与技术

推理方法综述 一、推理的定义: 推理是人类求解问题的主要思维方法。所谓推理就是按照某种策略从已有事实和知识推出结论的过程。通过一个或几个被认为是正确的陈述、声明或判断达到另一真理的行动,而这真理被相信是从前面的陈述、声明或判断中得出的直接推理。 二、推理方式及其分类: 1.演绎推理、归纳推理、默认推理 (1). 演绎推理:一般→个别 演绎推理是从全称判断推出特称判断或单称判断的过程,即从一般到个别的推理。最常用的形式是三段论法。 例如: 1)所有的推理系统都是智能系统; 2)专家系统是推理系统; 3)所以,专家系统是智能系统。 (2). 归纳推理: 个别→一般 是从足够多的事例中归纳出一般性结论的推理过程,是一种从个别到一般的推理过程,分为完全归纳推理,又称为必然性推理,不完全归纳推理,又称为非必然性推理。 例如:

(3). 默认推理: 默认推理又称缺省推理,它是在知识不完全的情况下假设某些条件已经具备所进行的推理。 例如: 2.确定性推理、不确定性推理 如果按推理时所用的知识的确定性来分,推理可分为确定性推理与不确定性推理。 (1)确定性推理(精确推理)。 如果在推理中所用的知识都是精确的,即可以把知识表示成必然的因果关系,然后进行逻辑推理,推理的结论或者为真,或者为假,这种推理就称为确定性推理。(如归结反演、基于规则的演绎系统等) (2)不确定性推理(不精确推理)。 在人类知识中,有相当一部分属于人们的主观判断,是不精确的和含糊的。由这些知识归纳出来的推理规则往往是不确定的。基于这种不确定的推理规则进行推理,形成的结论也是不确定的,这种推理称为不确定推理。(在专家系统中主要使用的方法)。 例如: 3.单调推理、非单调推理 如果按推理过程中推出的结论是否单调增加,或者说推出的结论是否越来越接近最终目标来划分,推理又可分为单调推理与非单调推理。 (1)单调推理。(基于经典逻辑的演绎推理) 是指在推理过程中随着推理的向前推进及新知识的加入,推出的结论呈单调增加的趋势,并且越来越接近最终目标。(演绎推理是单调推理。)

基于压缩感知的人脸识别算法

龙源期刊网 https://www.360docs.net/doc/b33492752.html, 基于压缩感知的人脸识别算法 作者:胡槟 来源:《科技探索》2013年第09期 中图分类号:TP391.41 文献标识码:A 文章编号:1007-0745(2013)09-0141-01 1 压缩感知介绍 过去的几十年间,各种传感系统获取数据的能力不断地增强,这就对系统的采集和处理能力提出了更高的要求。如果仍然采用传统的Nyquis T采样定理,就需要二倍于信号带宽的采 样率,这给采样硬件设备带来了极大的挑战。 压缩感知理论是由Donoho与Candes等人提出的一个新的理论框架,其在线性模型的基础上,核心是只要信号是稀疏的,低维信号就能很好的恢复到高维信号。 2 理论简介 传统的信息处理主要由采样、压缩、传输和解压缩四个部分组成。在这个传统过程中,采样率必须高于信号模拟信号中最高频率的二倍,随着图像数据的越来越大,这给采样设备提出了更高的要求。传统的信号压缩是通过对信号进行一些变换(如:小波变换、离散余弦变换),然后剔除掉变换后为零或近似为零的数据,通过对少数绝对这大的新书进行压缩编码,从而实现大数据的压缩。在传统信号获取过程中,将采样和压缩分开,是否可以将压缩和采样过程合并呢?于是有人就尝试着将采样和压缩过程合并,这不仅能够大大缓解香农定理对于采样率和传输处理的要求,也能够大大提高数据采集的效率和性能。 2.1 信号稀疏表示 通常,大部分自然信号并不是稀疏的,但是通过实验发现大部分自然信号都可以通过某些映射变将其变换为稀疏的根据调和分析理论,一个一维离散信号f,可以通过一组标准正交基线性表出: 或(3.1) 其中,N为信号长度,为标准正交基,为正交基的第 i列的向量,系数矩阵。如果系数 矩阵x是稀疏的,那么原始信号f就是可稀疏表示的。如果说系数矩阵x为信号f的K稀疏表示,则向量x中只有K个非零分量。 2.2信号重构

证据推理与模型认知

证据推理与模型认知 从高中化学核心素养的建构来看,证据推理、模型建构是属于文化基础维度之下科学精神素养之中理性思维的两个基本的要点[1]。通过高 中化学课程的学习,要求学生能解释证据与结论之间的关系,确定形成科学结论所需要的证据和寻找证据的途径;能依据物质及其变化的信息进 行抽象概括并建构模型,用模型思想认识物质及其变化的一般规律[2]6。目前已有不少教师设计了基于证据推理、模型认知的课时教学,这反 映了广大化学教师对构建化学核心素养教学的积极态度;在学习这些教师的成果时,对照作为化学核心素养设计者的专家们对化学核心素养本意 的剖析,引起了我的思考,现将这些思考提供给大家,供参考与交流。 一、非证据 科学探究过程中实验事实与想要求证的猜想之间在逻辑上有三种关系:①可证明猜想为真;②可证明猜想为假;③无法证明猜想真假。前两种 都可以说该实验事实是想要求证的猜想的证据(第一种关系中实验事实是想要求证的猜想的肯定性证据,第二种关系中实验事实是想要求证的

猜想的否定性证据),而第三种却不能说该实验事实是想要求证的猜想的证据,即非证据。例如:已知某溶液中只有一种氯化物溶质;所作猜想 为:溶质是BaCl2。①如果实验事实是:向溶液中滴加1~2滴Na2SO4溶液即出现白色沉淀,再滴加1~2滴硝酸白色沉淀未溶解,则这个事实 是猜想的肯定性证据;②反之,如果实验事实是:向溶液中滴加1~2滴Na2SO4溶液没有出现白色沉淀,则这个事实是猜想的否定性证据;③但 是如果实验事实是:向溶液中滴加1~2滴AgNO3溶液即出现白色沉淀,则这个事实就不是猜想的证据,此时就必须重新设计探究活动。 二、逆向推理 能解释证据与结论之间的关系,既包含由证据推理出结论,也包含由结论逆向推理出所需证据。之所以强调逆向推理,其一是因为两个方 向的推理在科学探究中都要用到:逆向推理用在由猜想推理出所需证据并据此设计实验取证,正向推理则用于由实验所取得的证据去推理猜想 是否成立并形成结论。其二是在问题解决的过程中也要用到两个方向的推理,如在有机物合成的问题解决中就常常使用逆向推理的思维方式。

陆吾生-压缩感知方法及其在稀疏信号和图像处理中的应用

陆吾生教授短期课程“压缩感知方法及其在稀疏信号和图像 处理中的应用”资料 1. 课程介绍_压缩感知方法及其在稀疏信号和图像处理中的应 用.doc 2. 陆吾生教授短期课程“压缩感知方法及其在稀疏信号和图像处理中的应用”的讲义 Lecture_Notes_CS_LWS_Final.pdf 3. 各章所涉及到的Matlab程序 Main functions Main functions.zip(内含 ex3_1.m (for Example 3.1) ex3_2.m (for Example 3.2) gp_denoise.m (for Algorithm GP in Sec.3.2) fgp_denoise.m (for Algorithm FGP in Sec.3.2) gp_deblurr.m (for Algorithm GPB in Sec.3.3) ) Auxiliary functions Auxiliary functions.zip(内含gen_dct.m oper_L.m oper_Lt.m proj_bound.m proj_pair.m gp_denoise_w.m) Data Data.zip(内含camera256.mat 及 lena256.mat)

4. 陆吾生“压缩感知方法及其在稀疏信号和图像处理中的应用”课程(1A-6B)上课录像 Lecture_LWS_1A.rmvb 2010.11.09.(220M) Lecture_LWS_1B.rmvb 2010.11.09.(231M) Lecture_LWS_2A.rmvb 2010.11.11.(252M) Lecture_LWS_2B.rmvb 2010.11.11.(193M) Lecture_LWS_3A.rmvb 2010.11.12.(225M) Lecture_LWS_3B.rmvb 2010.11.12.(200M) Lecture_LWS_4A.rmvb 2010.11.16.(239M) Lecture_LWS_4B.rmvb 2010.11.16.(169M) Lecture_LWS_5A.rmvb 2010.11.18.(239M) Lecture_LWS_5B.rmvb 2010.11.18.(226M) Lecture_LWS_6A.rmvb 2010.11.19.(256M) Lecture_LWS_6B.rmvb 2010.11.19.(224M) 5. 陆吾生教授2010.11.17.在上海大学所做的学术报告,题为:

压缩感知理论

压缩感知理论 一、压缩感知理论简介 压缩感知,又称压缩采样,压缩传感。它作为一个新的采样理论,它通过开发信号的稀疏特性,在远小于Nyquist 采样率的条件下,用随机采样获取信号的离散样本,然后通过非线性重建算法完美的重建信号。压缩感知理论一经提出,就引起学术界和工业界的广泛关注。它在信息论、图像处理、地球科学、光学、微波成像、模式识别、无线通信、大气、地质等领域受到高度关注,并被美国科技评论评为2007年度十大科技进展。 二、压缩感知产生背景 信号采样是模拟的物理世界通向数字的信息世界之必备手段。多年来,指导信号采样的理论基础一直是著名的Nyquist 采样定理。定理指出,只有当采样速率达到信号带宽的两倍以上时,才能由采样信号精确重建原始信号。可见,带宽是Nyquist 采样定理对采样的本质要求。但是,对于超宽带通信和信号处理、核磁共振成像、雷达遥感成像、传感器网络等实际应用,信号的带宽变得越来越大,人们对信号的采样速率、传输速度和存储空间的要求也变得越来越高。为了缓解对信号传输速度和存储空间的压力,当前常见的解决方案是信号压缩但是,信号压缩实际上是一种严重的资源浪费,因为大量采样数据在压缩过程中被丢弃了,它们对于信号来说是不重要的或者只是冗余信息。故而就有人研究如何很好地利用采集到的信号,压缩感知是由 E. J. Candes 、J. Romberg 、T. T ao 和D. L. Donoho 等科学家于2004 年提出,压缩感知方法抛弃了当前信号采样中的冗余信息。它直接从连续时间信号变换得到压缩样本,然后在数字信号处理中采用优化方法处理压缩样本。这里恢复信号所需的优化算法常常是一个已知信号稀疏的欠定线性逆问题。 三、压缩感知理论 压缩感知理论主要涉及到三个方面,即信号的稀疏表示、测量矩阵的设计和重构算法的构造。稀疏信号广义上可理解为信号中只有少数元素是非零的,或者信号在某一变换域内少数元素是非零的。那么在我们如果只保留这些非零数据,丢弃其他的系数,则可以减小储存该信号需要的空间,达到了压缩(有损压缩)的目的,同时,这些系数可以重构原始信号,不过一般而言得到的是X 的一个逼近。在实际生活中有很多数字信号都是稀疏信号或者在某一变换域内是稀疏的,这样压缩感知理论的第一个方面就可以得到满足。如果信号N x R ∈在某变换域内是稀疏的,可以用一组正交基12[,,,]N ψψψψ= 线性组合表示:1 N i i i x s s ψ===ψ∑,其中式中,是对应于正交基的投影系数。由稀疏性可知其内只含有少数不为零的数,感知信号y 可表示为:y x s s =Φ=Φψ=Θ,Φ就为测量矩阵,Ψ为稀疏表示矩阵,当测量矩阵与稀疏表示矩阵不相关时就可以从s 中不失真的恢复出原始信号x ,常用的测量矩阵有高斯随机阵等。接下来是算法的重构,由于用少数信号恢复原来的大信号,这是一个欠定问题,一般用最优化方法来求解。这就是压缩感知理论体系的基本理论。 四、对这一创新案例的分析

压缩感知原理

压缩感知原理(附程序) 1压缩感知引论 传统方式下的信号处理,是按照奈奎斯特采样定理对信号进行采样,得到大量的采样数据,需要先获取整个信号再进行压缩,其压缩过程如图2.1。 图2.1 传统的信号压缩过程 在此过程中,大部分采样数据将会被抛弃,即高速采样后再压缩的过程浪费了大量的采样资源,这就极大地增加了存储和传输的代价。 由于带宽的限制,许多信号只包含少量的重要频率的信息。所以大部分信号是稀疏的或是可压缩的,对于这种类型的信号,既然传统方法采样的多数数据会被抛弃,那么,为什么还要获取全部数据而不直接获取需要保留的数据呢?Candes和Donoho等人于2004年提出了压缩感知理论。该理论可以理解为将模拟数据节约地转换成压缩数字形式,避免了资源的浪费。即,在采样信号的同时就对数据进行适当的压缩,相当于在采样过程中寻找最少的系数来表示信号,并能用适当的重构算法从压缩数据中恢复出原始信号。压缩感知的主要目标是从少量的非适应线性测量中精确有效地重构信号。核心概念在于试图从原理上降低对一个信号进行测量的成本。压缩感知包含了许多重要的数学理论,具有广泛的应用前景,最近几年引起广泛的关注,得到了蓬勃的发展。 2压缩感知原理 压缩感知,也被称为压缩传感或压缩采样,是一种利用稀疏的或可压缩的信号进行信号重构的技术。或者可以说是信号在采样的同时被压缩,从而在很大程度上降低了采样率。压缩感知跳过了采集N个样本这一步骤,直接获得压缩的信号的表示。CS理论利用到了许多自然信号在特定的基 上具有紧凑的表示。即这些信号是“稀疏”的或“可压缩”的。由于这一特性,压缩感知理论的信号编解码框架和传统的压缩过程大不一样,主要包括信号的稀疏表示、编码测量和重构算法等三个方面。

认知语言学中的意象图式理论

认知语言学中的意象图式理论 一、意象图式的含义与理论基础 意象图式(ImageSchema)是认知模型理论中的一个非常重要的概念, 研究意象图式对于研究人们如何建构范畴、形成概念、分析隐喻、理 解意义、实行推理等过程具有重要意义。意象和图式原是两个独立的 概念。18世纪时康德讨论了图式的哲学意义,他认为图式是“连接感 知和概念的纽带,是建立概念与物体之间联系的手段,也是建构意象、制造意义的必要程序,个体共有的想象结构”(王寅,2007:172)。而 意象常被视作是一个心理学的术语,指代一种心理表征,即人们在看 不到某物时却仍然能够想象出该物体的形象和特点,而这正是在没有 任何外界事物提示的情况下,人们仍然能在心智中猎取这个事物的印 象的一种认知水平。 Lakoff和Johnson(1987)首次提出了意象图式这个概念。他们将它定 义为:意象图式是感知互动和运动活动中的持续再现的动态模式,这 个结构给我们的经验以连贯性和结构性。(Johnson,1987:xiv)Gibbs 和Colston(1995)描述意象图式为空间关系以及空间中运动的动态模拟表征,而Oakley(2004)认为它则是为了把空间结构映射到概念结构而 对感性经验实行的压缩性的再描写。(李福印,2007:81)认知语言学 家们赞同意象图式是基于人们的感知和体验的,并且先于人类语言。 换言之,“现实—认知—语言”是认知语言学的一条基本原理,并且 认知过程包括:互动体验、意象图式、范畴化、概念化、意义等过程。所以,意象图式只不过是认知过程中的一个细节。认知语言学的哲学 基础是体验哲学,即“经验是在我们持续通过与变化的环境互动之中 产生意义的体验性感知运动和认知结构的结果”(王寅,2007:37), 其心理学基础是皮亚杰的建构论和互动论。所以,意象图式也是基于 体验,与现实世界互动,并抽象出来的一种形而上的结构。 二、意象图式的类型

人工智能原理教案03章 不确定性推理方法323证据理论

3.4证据理论 0. 前言 ●主观Bayes方法必须给出先验概率。 ●Dempster和Shafer提出的证据理论,可用来处理这种 由不知道所引起的不确定性。 ●证据理论采用信任函数而不是概率作为不确定性度量, 它通过对一些事件的概率加以约束来建立信任函数而 不必说明精确的难于获得的概率。 ●证据理论满足比概率论更弱的公理系统,当这种约束限 制为严格的概率时(即概率值已知时),证据理论就退 化为概率论了。 1. 证据的不确定性度量 (1) 基本理论 辨别框概念:设U为假设x的所有可能的穷举集合,且设U 中的各元素间是互斥的,我们称U为辨别框(Frame of discernment)。设U的元素个数为N,则U的幂集合2U的元素个数为2N,每个幂集合的元素对应于一个关于x取值情况的命题(子集)。 对任一A U,命题A表示了某些假设的集合(这样的命题间不再有互斥性)。针对医疗诊断问题,U就是所有可能疾病(假设)

的集合,诊断结果必是U 中确定的元素构成的。A 表示某一种(单元素)或某些种疾病。医生为了进行诊断所进行的各种检查就称作证据,有的证据所支持的常不只是一种疾病而是多种疾病,即U 的一子集A 。 定义1:基本概率分配函数(Basic probability assignment ): 对任一个属于U 的子集A (命题),命它对应于一个数 m ∈[0,1],而且满足 ∑?==ΦU A A m m 1)(0 )( 则称函数m 为幂集2U 上的基本概率分配函数bpa ,称m(A)为 A 的基本概率数。 m(A)表示了证据对U 的子集A 成立的一种信任的度量,取值 于[0,1],而且2U 中各元素信任的总和为1。m(A)的意义为 ● 若A ?U 且A ≠U ,则m(A)表示对A 的确定信任程度。 ● 若A=U ,则m(A)表示这个数不知如何分配(即不知道的 情况)。 例如, 设U={红,黄,白},2U 上的基本概率分配函数m 为 m ({ },{红},{黄},{白},{红,黄},{红,白},{黄,白},{红,黄,白})

压缩感知原理

压缩感知原理 1压缩感知引论 传统方式下的信号处理,是按照奈奎斯特采样定理对信号进行采样,得到大量 的采样数据,需要先获取整个信号再进行压缩,其压缩过程如图 2.1。 在此过程中,大部分采样数据将会被抛弃,即高速采样后再压缩的过程浪费了大量的采样资源,这就极大地增加了存储和传输的代价。 由于带宽的限制,许多信号只包含少量的重要频率的信息。所以大部分信号是稀疏的或是可压缩的,对于这种类型的信号,既然传统方法采样的多数数据会被抛弃,那么,为什么还要获取全部数据而不直接获取需要保留的数据呢?Candes和Donoho等人于2004年提出了压缩感知理论。该理论可以理解为将模拟数据节约地转换成压缩数字形式,避免了资源的浪费。即,在采样信号的同时就对数据进行适当的压缩,相当于在采样过程中寻找最少的系数来表示信号,并能用适当的重构算法从压缩数据中恢复出原始信号。压缩感知的主要目标是从少量的非适应线性测量中精确有效地重构信号。核心概念在于试图从原理上降低对一个信号进行测量的成本。压缩感知包含了许多重要的数学理论,具有广泛的应用前景,最近几年引起广泛的关注,得到了蓬勃的发展。 2压缩感知原理 压缩感知,也被称为压缩传感或压缩采样,是一种利用稀疏的或可压缩的信号进行信号重构的技术。或者可以说是信号在采样的同时被压缩,从而在很大程度上降低了采样率。压缩感知跳过了采集N个样本这一步骤,直接获得压缩的信号的表示。CS理论利用到了许多自然信号在特定的基上具有紧凑的表示。即这些信号 是“稀疏”的或“可压缩”的。由于这一特性,压缩感知理论的信号编解码框架和传统的压缩过程大不一样,主要包括信号的稀疏表示、编码测量和重构算法等三个方面。 对于一个实值的有限长一维离散时间信号 X ,可以看作为一个R N空间N X 1的 维的列向量,元素为n, n,=1 , 2,…N。R N空间的任何信号都可以用N X1维

压缩感知技术综述

压缩感知技术综述 摘要:信号采样是模拟的物理世界通向数字的信息世界之必备手段。多年来,指导信号采样的理论基础一直是著名的Nyquist采样定理,但其产生的大量数据造成了存储空间的浪费。压缩感知(Compressed Sensing)提出一种新的采样理论,它能够以远低于Nyquist采样速率采样信号。本文详述了压缩感知的基本理论,着重介绍了信号稀疏变换、观测矩阵设计和重构算法三个方面的最新进展,并介绍了压缩感知的应用及基于压缩感知SAR成像的仿真。 关键词:压缩感知;稀疏表示;观测矩阵;SAR成像; Abstract: Signal sampling is a necessary means of information world physical world to the digital simulation. Over the years, the base theory of signal sampling is the famous Nyquist sampling theorem, but a large amount of data generated by the waste of storage space. Compressed sensing and put forward a new kind of sampling theory, it can be much less than the Nyquist sampling signal sampling rate. This paper introduces the basic theory of compressed sensing, emphatically introduces the new progress in three aspects of signal sparse representation, design of measurement matrix and reconstruction algorithm, and introduces the application of compressed sensing and Simulation of SAR imaging based on Compressive Sensing Keywords: Compressed sensing; Sparse representation; The observation matrix; SAR imaging; 0 引言 Nyquist采样定理指出,采样速率达到信号带宽的两倍以上时,才能由采样信号精确重建原始信号。可见,带宽是Nyquist采样定理对采样的本质要求。然而随着人们对信息需求量的增加,携带信息的信号带宽越来越宽,以此为基础的信号处理框架要求的采样速率和处理速度也越来越高。解决这些压力常见的方案是信号压缩。但是,信号压缩实际上是一种资源浪费,因为大量的不重要的或者只是冗余信息在压缩过程中被丢弃。从这个意义而言,我们得到以下结论:带宽不能本质地表达信号的信息,基于信号带宽的Nyquist采样机制是冗余的或者说是非信息的。 于是很自然地引出一个问题:能否利用其它变换空间描述信号,建立新的信号描述和处理的理论框架,使得在保证信息不损失的情况下,用远低于Nyquist 采样定理要求的速率采样信号,同时又可以完全恢复信号。与信号带宽相比,稀疏性能够直观地而且相对本质地表达信号的信息。事实上,稀疏性在现代信号处理领域起着至关重要的作用。近年来基于信号稀疏性提出一种称为压缩感知或压缩采样的新兴采样理论,成功实现了信号的同时采样与压缩。

相关文档
最新文档