孔板流量计测量误差的影响因素

孔板流量计测量误差的影响因素
孔板流量计测量误差的影响因素

淮安嘉可自动化仪表有限公司

孔板流量计测量误差的影响因素

1、仪表选型或使用条件的影响

在仪表选型设计阶段,没有充分考虑到工艺日常操作中各种工况的影响,导致孔板流量计在使用过程中,工艺操作的最低流量在孔板设计量程的30%及以下或者工艺操作的最高流量大于孔板的设计流量,从而使流量显示出现极大偏差,影响到工艺人员的生产操作。以1.5级精度的孔板流量计来为例,在流量为量程的10%时,差压值只为差压量程的1%,根据GB/T2624-93中不确定度估算方法,差压测量的不确定度由变送器的精度等级决定,根据上述公式还可推算出当测量流量为设计量程的30%时,不确定度为3.7%。可以发现,在30%量程以下,孔板的测量有很大误差,甚至在10%量程以下时,会对变送器进行小流量切除,避免造成流量测量不准,给工艺操作员造成参考偏差,一般孔板流量计使用条件会在量程的30%~90%之间比较好。

2、孔板前后直管段或孔板本身腐蚀影响

孔板流量计在长期受到高温、高压气体或液体的持续冲刷,特别是带腐蚀性废气或油品的侵蚀后,会导致孔板的直管段内壁或孔板直角边缘腐蚀,入口边缘尖锐度变钝、直角垂直度、直管段管壁粗糙度变差。而流量系数与孔板入口边缘锐度、管壁粗糙度等因素有关,在相等流量的介质通过该孔板时产生的前后压差变小,仪表输出偏小。孔板入口边缘磨损越严重,测量误差就越大。因此,需要对孔板进行修正(不

淮安嘉可自动化仪表有限公司

划算),或更换相同型号的孔板。

3、孔板安装不规范的影响

孔板施工安装不规范,如孔板装反导致流量测量偏小,孔板露出的部分标记“+”号的为介质入口方向;孔板安装时孔板的中心线要和前后直管段中心线重合,避免孔板偏心,孔板偏心引起的测量误差大约在2%以左右。还有引压管的插入位置、敷设坡度过大都对测量产生很大影响。而节流装置(孔板)密封垫片没有按照环室尺寸加工,使得垫片伸入到管内,干扰流体稳定流动;或直管段前后过短等更是会造成流量测量不准,流量测量线性度也达不到相关要求。

4、差压变送器零点漂移的影响

受环境温度、湿度及介质温度等的影响,可能会引起差压变送器中某些参数发生细微改变,从而影响仪表的测量准确度。比如,差压变送器在长时间运行后,零点会一定程度上发生漂移,正漂移引起差压偏大,仪表输出偏大,反之则偏小。零点校零时,要确认三阀组正负压侧手阀完全关闭,平衡打开,正负压侧排空丝堵打开,连通大气后再校零。

5、操作失误的影响

操作员不按操作规程启用或投用三阀组,易造成差压变送器单向受压,有时会让仪表测量产生附加误差,严重时会让差压变送器损坏。测量蒸汽的孔板流量计没有等冷凝罐冷凝后就投用或冷凝罐液位高低不等;测量液体的流量计没有完全排尽系统内残气就开始投用或者

淮安嘉可自动化仪表有限公司

没有正确校零,原始参数输入不准确,均会导致流量测量不准。6、工艺介质变化的影响

孔板测量数值不只是与差压有关,还与介质的密度、压力、温度等参数有关,因为雷诺数受流体的速度、流束定型尺寸、粘度等影响,而流量系数又与雷诺数有很大的关系。流量系数α与节流孔板的几何形状、安装方式、流体条件、管道条件等多种因素有关,当雷诺数低于界限雷诺数时,α将随着流量的减小而增大,如果忽略其他参数的影响,流量输出将偏小。大量实验表明,只有流体接近充分湍流时α才是与流动状态无关的常数,流量系数α只有在雷诺数大于某一界限值时才保持常数。因此,孔板测量条件最好在高雷诺数环境下测量。而使用智能型差压变送器,里面的压力传感器、温度传感器等单元会及时完成各种参数的自动补偿,降低测量误差。

水准测量误差来源及控制方法

水准测量的误差来源及控制方法 水准测量是确定公路工程地面点高程的方法之一,是高程测量中精度较高且常用的方法。实施过程中,需要几个人合作才能完成,误差允许范围内的精度由于仪器和人为的影响而不容易控制,而且易出现隐蔽性错误,如果不能及早发现,基础资料是错误的,从而水准点高程不正确,直接影响路线纵断面设计和施工。关键词:水准测量水准仪高程误差 1. 0勘察设计过程中水准测量的问题 水准测量是采用几何原理,利用水平视线测定两点间高差。仪器使用水准仪,工具是水准尺和尺垫。公路工程测量一般使用DS3型微倾式自动安平水准仪,每公里能达到的精度是3mm,水准仪在一个测站使用的基本程序是安置仪器、粗略整平、瞄准水准尺、精确整平和读数。我们在实际勘测过程中按这个顺序施行,在每一水准点段测完后复核结果。 同一条公路采用同一个高程系统,测量方法是基平与中平同时测量,两台水准仪同时观测一个水准尺,间视和转点由两个人立水准尺,但两台水准仪总是同时观测一个水准尺进行读数,一个水准点段测完后检核,在每一测站,没有检查、复核,为误差的积累创造了条件,容易返工,耽误时间、浪费人力。通过工程实践证明,这一方法经常出现错误,节选五个水准点连续错误中的一个测段结果如表1.1和1.2所示:

表1.1经过成果整理,读数差Δh=Σ后视-Σ前视,Δh小于2mm满足规范要求。但是施工过程中,施工单位提出问题,经过表1.2复核补充测量成果证实,外业测量的结果不正确,因此,有必要分析水准测量的误差,找出控制纠正的方法,避免错误的出现,保证项目的顺利施工。 2. 0水准测量的现状 现在应用水准点与中桩分开观测的方法,水准点观测采取往返测量,成果整理要求高差闭合差fh容(fh容=Σh往+Σh返)达到平原微丘区三等水准测量的精度不大于±20·L(1/2)。平原微丘地区影响水准测量精度的主要因素是水准路线的长度,长度越长,精度越低。山区,则是测站,测站越多,精度越低。 3. 0水准测量的误差分析及控制方法 水准测量误差有仪器误差、观测误差和外界条件的影响。 3.1仪器误差之一是水准仪的望远镜视准轴不平行于水准管轴所产生的误差 仪器虽在测量前经过校正,仍会存在残余误差。因此造成水准管气泡居中,水准

孔板流量计误差原因分析与修正

孔板流量计误差原因分析与修正 差压流量计是在工业场合应用极为广泛的一种流量计量仪器,对于气体、液体和蒸汽的流量都可以测定。据数据统计,工业场合差压流量计的使用占流量仪表总数的1/3以上,此中应用最普遍的是由差压计和节流装置构成的节流式流量计。 差压流量计所采用的典型节流件主要为孔板、文丘里管、喷嘴和文丘里喷嘴等。孔板流量计上世纪初便被最先用于天然气流量的测定。截止目前,大量学者已对孔板流量计的结构设计进行深入探讨,使孔板流量计逐步趋于标准化。根据孔板流量计的测量原理,可以直接确定节流件前后差压与流量的关系,此特性是孔板流量计所独有的。 1 孔板流量计的计量原理 在管道中安装一个流通面积小于管道截面积的节流部件,节流件的变截面效应可使流体在经过节流件时产生局部收缩,流速急剧增加,压强明显变小,从而在节流件前后截面差生压差。针对某一标准节流装置,如果管道、计量装置、测压位置及流体参数均保持恒定,节流件前后截面的差压与管道流量间存在一定的函数关系。因此,可以通过直接测量节流件前后截面的压差,间接计量流量。 2 孔板流量计的误差原因分析 2.1 流体本身特性的影响 管道中流体自身的温度、压力等特性参数极易受到环境温度的影响产生波动,进而影响孔板流量计的测量精度。尽管温度等环境参数对流体粘度的影响并不明显,但仍影响孔板流量计的计量精度和准确度。经验表明,孔板流量计常用于单相流体流量的测定,针对多相流体流动,其精度将受到严重的干扰。 2.2 流量积算方式的影响 将孔板节流装置与各种二次测量仪表相结合,就形成了多种流量积算的方法。如果在流量计量过程中,测量系统不按照计量标准安装

对应的二次测量仪表,流量积算时便不能对流体压力、温度的变化进行补偿,测量精度将难以保证。针对此问题,可以采用先进的微计算机技术对流量进行精确的计算,持续地对流量进行补偿。 2.3 结构及附属仪器的影响 孔板流量计的结构也会造成很多误差,主要包括:孔板和管道的直径比改变;孔板发生变形;孔板表面粗糙度不达标等因素,都将影响孔板流量计的计量精度。同时附属仪器的影响也不可忽视。比如,如果下游引压管与流量仪表间的连接件产生漏气、堵塞等状况,会导致流量计的计量流量略大。另外,差压变送器的零点通常需要校准。 2.4 安装条件的影响 使用场地通常不能达到流量计上游最短直管段长度的要求,致使管线布置经常发生偏离。同时为了避免进口流体流动状况对流量计计量精度的影响,要求孔板流量计上游具有最短直管段长度,但在实际中一般很难满足。另外流量、流速等电子信号设备应远离存在电磁干扰的场合,保证其工作性能。 2.5 环境条件的影响 使用环境条件严重影响孔板流量计的性能,比如流体温度急剧变化将增加管道内的流体的湿度,加速腐蚀;环境温度直接决定流体的密度、粘度等物性参数;流量计的结构尺寸发生变化等。 3 提高计量精度的改进办法 3.1 设计安装应严格遵循标准 必须依照标准进行孔板节流装置的设计,根据孔板前阻力件形式配接至少30倍管徑的直管段,从而减小计量误差。在安装场地不允许的场合,必须在上游直管段上加设整流器,且孔板的侧面务必与管道中心线垂直。同时安装时应正确选择压差计的型号与量程。 3.2 避免流体脉动,保证良好的流动状况 在符合计量能力的前提下,尽量选用较小内径测量管,保证管道内流体在高雷诺数下运行,抑制脉动流的产生。采用上下游相同长度的短引压管线,抑制引压管线系统中阻力件对流动所造成的影响。消

误差与有效数字练习答案

误差与有效数字练习题答案 1.有甲、乙、丙、丁四人,用螺旋测微计测量一个铜球的直径,各人所得的结果表达如下:d 甲 =(±)cm ,d 乙 =(±)cm ,d 丙 =(±)cm ,d 丁 =(±)cm ,问哪个人表达得正确其他人错在哪里 答:甲对。其他人测量结果的最后位未与不确定度所在位对齐。 仪 =0.0002g 请计算这一测量的算术平均值,测量标准误差及相对误差,写出结果表达式。 3.61232i m m g n ∑= = A 类分量: (0.6831 1.110.0001080.000120S t n g =-=?= B 类分量: 0.6830.6830.00020.000137u g =?=?=仪 合成不确定度:0.000182U g == 取 ,测量结果为: (3.612320.00018)m U g ±=± ( P= ) 相对误差: 0.000180.005%3.61232 U E m = == 试求其算术平均值,A 类不确定度、B 类不确定度、合成不确定度及相对误差,写出结果表达式。 cm n L L i 965.98=∑= , A 类分量: (0.6831S t n =-=?0.0064cm 类分量: 0.6830.6830.050.034u cm =?=?=仪 合成不确定度: 0.035U cm ==== 相对误差: %04.096 .9804.0=== L U E ( P= ) 结果: cm U L )04.096.98(±=±

4.在测量固体比热实验中,放入量热器的固体的起始温度为t 1 ±S t 1= ± 0.3℃,固体放入水中后,温度逐渐下降,当达到平衡时,t 2 ±S t 2= ± 0.3℃,试求温度降低值t =t 2 – t 1的表示式及相对误差。 处理:t =t 2 – t 1= U ==+=+2 222t 21t 3.03.0S S ℃ , %7.03 .735 .0=== t U E ( 或 ℅) t =( ± ℃ ( P= ) 5.一个铅质圆柱体,测得其直径为d ±U d =(±) cm ,高度为 h ±U h =( ± )cm , 质量为m ±U m =( ± )g 。试求:(1)计算铅的密度ρ;(2)计算铅的密度ρ的相对误差和不确定度;(3)表示ρ的测量结果。 处理:(1)072.11120 .4040.214159.310 .149442 2=???=== h d m V m πρg/㎝3 (2)%3.00030.0120.4003.0040.2003.0410.14905.02 22==?? ? ??+??? ??+??? ??==ρρ U E 3cm g 04.0033.0003.0072.11U ==?=?=E ρρ (3) )04.007.11(±=±ρρU g/㎝3 ( P= ) 6.按照误差理论和有效数字运算规则改正以下错误: (1)N =± 正:N =(±)cm ,测量误差决定测量值的位数(测量结果存疑数所在位与误差对齐) (2)有人说有五位有效数字,有人说只有三位,请纠正,并说明其原因。 答:有效数字的位数应从该数左侧第一个非零数开始计算,应有四位有效数字。其左端的“0”为定位用,不是有效数字。右端的“0”为有效数字。 (3)L =28cm =280mm 正:L =×102mm ,改变单位时,其有效数字位数不变。 (4)L =(28000±8000)mm 正:L =(±)×104mm ,误差约定取一位有效数字。 7.试计算下列各式(在书写计算过程中须逐步写出每步的计算结果): (1)已知y = lg x ,x ±σx =1220 ± 4 ,求y : 处理: y = lg x = lg 1220 = 10 ln 12204 10ln = =x Ux Uy = 0014.00864.3±=±Uy y ( P= ) (2)已知y = sin θ ,θ±S θ=45°30′±0°04′ ,求y : 处理: y = sin45°30′= U y =∣cos θ∣U θ =∣cos 45°30′∣60 1804 ???π= , 0008.07133.0±=±Y U y ( P= )

水准测量误差分析(精)

水准测量误差分析 3.5.1水准测量的误差分析 水准测量误差包括仪器误差,观测误差和外界条件的影响三个方面。 (一) 仪器误差 ① 仪器校正后的残余误差 例如水准管轴与视准轴不平行,虽经校正仍然残存少量误差等。这种误差的影响与距离成正比,只要观测时注意使前、后视距离相等,便可消除或减弱此项误差的影响。 ② 水准尺误差 由于水准尺刻划不正确,尺长变化、弯曲等影响,会影响水准测量的精度,因此,水准尺须经过检验才能使用。至于尺的零点差,可在一水准测段中使测站为偶数的方法予以消除。 (二) 观测误差 ①水准管气泡居中误差 设水准管分划道为τ″,居中误差一般为±0.15τ″,采用符合式水准器时,气泡居中精度可提高一倍,故居中误差为 m =ρτ' '?'''±215.0·D 3-35 式中 D —水准仪到水准尺的距离。 ② 读数误差 在水准尺上估读数毫米数的误差,与人眼的分辨力、望远镜的放大倍率以及视线长度有关,通常按下式计算 m v =ρ' '?''D V 06 3-36 式中 V —望远镜的放大倍率; 60″—人眼的极限分辨能力。 ③ 视差影响 当存在视差时,十字丝平面与水准尺影像不重合,若眼睛观察的位置不同,便读出不同的读数,因而也会产生读数误差。 ④ 水准尺倾斜影响 水准尺倾斜将尺上读数增大,如水准尺倾斜033'?,在水准尺上1m 处读数时,将会产生2mm 的误差;若读数大于1m ,误差将超过2mm 。 (三)外界条件的影响 ① 仪器下沉 由于仪器下沉,使视线降低,从而引起高差误差。若采用“后、前、前、后”观测程序,可减弱其影响。 ② 尺垫下沉 如果在转点发生尺垫下沉,使下一站后视读数增大,这将引起高差误差。采用往返观测的方法,取成果的中数,可以减弱其影响。 ③ 地球曲率及大气折光影响 如式3-25所示 地球曲率与大气折光影响之和为 R D f 2 43.0?= 3-37

孔板流量计产生误差的原因分析

孔板流量计产生误差的原因分析 1、孔板流量计安装不合理 孔板流量计的安装应符合相应的安装规范。根据GB/T 21446—2008《用标准孔板流量计测量天然气流量》,节流装置应安装在2段具有等直径的圆形横截面的直管段之间,毗邻孔板的上、下游直管段应符合一定的技术要求。一般情况下,海上油田孔板安装要求为:毗邻孔板的上游直管段长度应为10D(D为测量管内径),下游直管段长度应为5D。在实际安装的过程中基本可以满足要求,但往往一些细节问题会被忽视,也会造成安装误差,如:直管段内壁粗糙度不符合要求,引起误差;施工人员领料、用料不符合规范,实际安装管道与设计要求不符等。 2、取压与气流异常 从地层中开采出的原油进入油井计量分离器进行油气水三相分离,这一过程中,当出现天然气气液分离效果不好或分离器内部结构件(波纹板、捕雾器)故障破损时,也会产生不利的影响因素。如: (1)会使导压管路、测量腔室在长时间使用中产生积水、积油现象,严重的情况下原油中的油泥及颗粒也会进入导压管,发生堵塞,从而影响计取压的准确性,造成计量误差; (2)在冬季,环境气温较低时,有可能会使积液产生冻堵,此时流量计也不能真实地反映出孔板的前后压差,造成计量数据不准确;(3)仪表变送器经过长期使用,会发生相应的零点漂移,造成测量

数据偏差。 依据GB/T 21446—2008《用标准孔板流量计测量天然气流量》,气流通过孔板的流动应保持亚音速,是稳定或仅随时间缓慢变化的,应避免脉动气流。当不能满足孔板安装直管段的长度要求时,应安装阻流件及流动调整器,以确保气流的稳定。 3、测量范围选择不合理 在正常生产中,由于油藏属性、地层能量、开采方式等的不同,每口油井的生产状态与产量也会不同。单一开口尺寸的孔板流量计的计量范围是固定的,一般情况下常用孔板的量程比为1∶3。实际操作中,应根据油井的开发生产方案中的预测产气量或已知产气量选择与之相适应的孔板进行油井的计量。 4、人员操作及维护不当 对高产井与低产井的计量,由于其产气量的范围会超出测量范围,不可避免的工作就是更换不同孔径的孔板,以确保计量的准确性。人员的一些操作失误会直接导致计量数据不准确。对于该项操作有着相应的严格要求: (1)孔板喇叭口的朝向应为管线下游方向; (2)安装拆卸孔板不能使用蛮力或尖锐工具,避免孔板变形和工作面划伤; (3)安装密封圈应检查有无破损情况; (4)更换下来的孔板应妥善保存,防生锈、防挤压,运送途中避免

有效数字和误差

误差与有效数字 武汉市第六中学物理教研组 朱克生 物理实验离不开误差分析和测量值与计算值的有效数问题。本文主要目的是了解误差的有关概念,并对测量值与计算值的有数数字的保留个数做一个定量的描述。 一、误差 1、误差的定义 测量值与被测物体的真实值之间的差异叫误差。误差是绝对不能避免的,但是可以减小。 2、误差的分类 (1)、从误差来源上分为偶然误差与系统误差。 ①偶然误差是由于实验人和读数的不准确等偶然因素造成的。它的特点是:当多次重复同一测量时,偏大和偏小的机会比较接近,可以用取平均值的方法来减小偶然误差。 比如长度的测量,多次测量同一个物体的长度,估计值就会或大或小,为了减小误差可以取平均值。 ②系统误差是由仪器结构缺陷、实验方法不完善造成的。系统误差的特点:多次重复同一测量的结果总是大于(或小于)被测量的真实值,呈现单一倾向。比如采用打点计时器来验证机械能守恒定律,由于空气阻力和计时器与纸带的摩擦,造成物体增加的动能总比..物体减小的重力势能小。 (2)、从误差分析上分为绝对误差与相对误差。 ①绝对误差,测量值与真实值之差。注意:绝对误差有正负之分的。比如长度的测量,要估计到最小分度的下一位,估读总是不准确的,测量值有时比真实值大,有时比真实值小,所以绝对误差有正有负,但绝对误差的大小一般不大于最小分度值(天平指感量)。 ②绝对误差的绝对值与测量值的百分比称为相对误差。如果绝对误差用Δx 表示,测量值用x 表示,则相对误差就是η=%100??x x 。严格讲,式中分母应为真实值。实验估算时则用测量值代替。(人教版高中物理必修一P99) 绝对误差由于仪器本身的原因造成,一般很难减小,所以在相同的条件下为了提高测量的准确程度,应该考虑尽量减小相对误差。 比如用逐差法求匀变速直线运动的加速度。如果所给的长度有五段,此时应该舍去一段,我们就舍弃长度小的哪一段,因为在绝对误差相同的情况下,长度小的相对误差要大一些。 二、有效数字 1、定义:具体地说,是指在实验中实际能够测量到的数字。比如某一物体的长度测量值

测量误差的分类以及解决方法

测量误差的分类以及解决方法 1、系统误差 能够保持恒定不变或按照一定规律变化的测量误差,称为系统误差。系统误差主要是由于测量设备、测量方法的不完善和测量条件的不稳定而引起的。由于系统误差表示了测量结果偏离其真实值的程度,即反映了测量结果的准确度,所以在误差理论中,经常用准确度来表示系统误差的大小。系统误差越小,测量结果的准确度就越高。 2、偶然误差 偶然误差又称随机误差,是一种大小和符号都不确定的误差,即在同一条件下对同一被测量重复测量时,各次测量结果服从某种统计分布;这种误差的处理依据概率统计方法。产生偶然误差的原因很多,如温度、磁场、电源频率等的偶然变化等都可能引起这种误差;另一方面观测者本身感官分辨能力的限制,也是偶然误差的一个来源。偶然误差反映了测量的精密度,偶然误差越小,精密度就越高,反之则精密度越低。 系统误差和偶然误差是两类性质完全不同的误差。系统误差反映在一定条件下误差出现的必然性;而偶然则反映在一定条件下误差出现的可能性。 3、疏失误差 疏失误差是测量过程中操作、读数、记录和计算等方面的错误所引起的误差。显然,凡是含有疏失误差的测量结果都是应该摈弃的。 解决方法: 仪表测量误差是不可能绝对消除的,但要尽可能减小误差对测量结果的影响,使其减小到允许的范围内。 消除测量误差,应根据误差的来源和性质,采取相应的措施和方法。必须指出,一个测量结果中既存在系统误差,又存在偶然误差,要截然区分两者是不容易的。所以应根据测量的要

求和两者对测量结果的影响程度,选择消除方法。一般情况下,在对精密度要求不高的工程测量中,主要考虑对系统误差的消除;而在科研、计量等对测量准确度和精密度要求较高的测量中,必须同时考虑消除上述两种误差。 1、系统误差的消除方法 (1)对测量仪表进行校正在准确度要求较高的测量结果中,引入校正值进行修正。 (2)消除产生误差的根源即正确选择测量方法和测量仪器,尽量使测量仪表在规定的使用条件下工作,消除各种外界因素造成的影响。 采用特殊的测量方法如正负误差补偿法、替代法等。例如,用电流表测量电流时,考虑到外磁场对读数的影响,可以把电流表转动180度,进行两次测量。在两次测量中,必然出现一次读数偏大,而另一次读数偏小,取两次读数的平均值作为测量结果,其正负误差抵消,可以有效地消除外磁场对测量的影响。 2、偶然误差的消除方法 消除偶然误差可采用在同一条件下,对被测量进行足够多次的重复测量,取其平均值作为测量结果的方法。根据统计学原理可知,在足够多次的重复测量中,正误差和负误差出现的可能性几乎相同,因此偶然误差的平均值几乎为零。所以,在测量仪器仪表选定以后,测量次数是保证测量精密度的前提。 . 容:

浅析水准测量的误差来源及控制方法

浅析水准测量的误差来源及控制方法 【摘要】水准测量是确定公路工程地面点高程的方法之一,是高程测量中精度较高且常用的方法。实施过程中,需要几个人合作才能完成,误差允许范围内的精度由于仪器和人为的影响而不容易控制,而且易出现隐蔽性错误,如果不能及早发现,基础资料是错误的,从而水准点高程不正确,直接影响路线纵断面设计和施工。 【关键词】水准测量;水准仪;高程;误差 1 勘察设计过程中水准测量的问题 水准测量是采用几何原理,利用水平视线测定两点间高差。仪器使用水准仪,工具是水准尺和尺垫。公路工程测量一般使用DS3型微倾式自动安平水准仪,每公里能达到的精度是3mm,水准仪在一个测站使用的基本程序是安置仪器、粗略整平、瞄准水准尺、精确整平和读数。我们在实际勘测过程中按这个顺序施行,在每一水准点段测完后复核结果。 同一条公路采用同一个高程系统,测量方法是基平与中平同时测量,两台水准仪同时观测一个水准尺,间视和转点由两个人立水准尺,但两台水准仪总是同时观测一个水准尺进行读数,一个水准点段测完后检核,在每一测站,没有检查、复核,为误差的积累创造了条件,容易返工,耽误时间、浪费人力。因此,有必要分析水准测量的误差,找出控制纠正的方法,避免错误的出现,保证项目的顺利施工。 2 水准测量的现状 现在应用水准点与中桩分开观测的方法,水准点观测采取往返测量,成果整理要求高差闭合差fh容(fh容=Σh往+Σh返)达到平原微丘区三等水准测量的精度不大于±20·L(1/2)。平原微丘地区影响水准测量精度的主要因素是水准路线的长度,长度越长,精度越低。山区,则是测站,测站越多,精度越低。 3 水准测量的误差分析及控制方法 水准测量误差有仪器误差、观测误差和外界条件的影响。 3.1 仪器误差之一是水准仪的望远镜视准轴不平行于水准管轴所产生的误差 仪器虽在测量前经过校正,仍会存在残余误差。因此造成水准管气泡居中,水准管轴居于水平位置而望远镜视准轴却发生倾斜,致使读数误差。这种误差与视距长度成正比。观测时可通过中间法(前后视距相等)和距离补偿法(前视距离和等于后视距离总和)消除。针对中间法在实际过程中的控制,立尺人是关键,

水准测量的误差来源及控制

水准测量的误差来源及控制

浅析水准测量的误差来源及控制方法 0勘察设计过程中水准测量的问题 水准测量是采用几何原理,利用水平视线测定两点间高差。仪器使用水准仪,工具是水准尺和尺垫。公路工程测量一般使用DS 3型微倾式自动安平水准仪,每公里能达到的精度是3mm,水准仪在一个测站使用的基本程序是安置仪器、粗略整平、瞄准水准尺、精确整平和读数。我们在实际勘测过程中按这个顺序施行,在每一水准点段测完后复核结果。 同一条公路采用同一个高程系统,测量方法是基平与中平同时测量,两台水准仪同时观测一个水准尺,间视和转点由两个人立水准尺,但两台水准仪总是同时观测一个水准尺进行读数,一个水准点段测完后检核,在每一测站,没有检查、复核,为误差的积累创造了条件,容易返工,耽误时间、浪费人力。通过工程实践证明,这一方法经常出现错误,节选五个水准点连续错误中的一个测段结果如表1.1和1.2所示: 表1.1 廊泊一级公路BM4至BM5水准点外业测量结果 点号 后视 视线高 间视 前视 高程 点号 后视 视线高 间视 前视 高程 BM4 3.300

3.286 15.529 557.8 1.483 15.765 1.450 14.282 254.6 1.442 14.308 600 1.386 14.379

1.424 14.326 650 1.357 14.408 314.6 1.425 15.715 1.460 14.290 700 1.672 16.005

14.333 344.6 1.420 14.295 750 1.482 14.523 374.6 1.387 14.328 800

孔板流量计计量误差现场因素分析

石油工业技术监督·2009年6月 长距离输气管道通常采用差压式孔板计量进行贸易计量交接。由于多种原因,计量数据会存在偏差。为此,根据计量公式,结合日常运行实际,现对计量过程中的影响因素进行分析,确定各种因素对计量结果的影响方向,为精准计量和寻找计量误差提供依据。 石油行业标准SY/T6143-2004《用标准孔板流量计测量天然气流量》中,列出了天然气标准体积流量计算公式: q vn=A vn CEd2F GεF Z F T P1Δp 姨 式中q vn—天然气在标准参比条件下的体积流量,m3/s; A vn—体积流量计量系数,无量纲,秒体积流量 m3/s计量系数A vns=3.1794×10-6; C—流出系数,无量纲; E—渐进速度系数,无量纲; d—孔板开孔直径,mm; F G—相对密度系数,无量纲; ε—可膨胀性系数,无量纲; F Z—超压缩系数,无量纲; F T—流动温度系数,无量纲; P1—孔板上游侧取压孔气流绝对静压,MPa; Δp—气流流经孔板时产生的差压,Pa。 现场因素分析 1气体组分和气体质量对计量结果的影响 气体组分数据的得出有两种情况。一是有气质监测设备,定时把现场数据采集到计量系统中,适时更新;另一种是由于运行成本及其他原因,气体组分采用异地测量、人工输入的方式。组分对计量结果的影响为:如果轻质成分(如甲烷)含量增加,则天然气密度ρn会减小,根据G r=ρn/1.204449,真实相对密度G r相应减小,根据公式F G=1/G r 姨,相对密度系数F G则减小,流量计得出的结果与真实值相比会减小,即发生少计量现象。 美国雪佛龙公司和科罗拉多工程试验站的试验研究结果表明: (1)用孔板流量计测量气体流量,当气体中夹带少量液体时,流量测量不确定度偏高,测量的湿气流量随β(直径比)的增加而减少,在β为0.7时,测得的流量偏差为-1.7%; (2)当夹带少量液体时,在β为0.5时表明孔板性能较好,但是应将夹带液体在孔板上游脱出,以获得最佳的计量性能; (3)用旧的孔板流量计测量湿气,流量计量值将降低3%[1]。 如果气体中含有液体或污物沉积,则会对计量仪表测得的数值造成影响,从而影响计量精度。 2孔板对计量结果的影响 在孔板夹持器中安装孔板时,应注意孔板的安装方向,使气体从孔板的上游断面流向孔板的下游断面。如果装反,计量数据将偏小。原因是装设孔板的目的是让气体到孔板处能迅速减压,提高流速然后再迅速释放,以增大孔板前后的压差,然后根据此压差用伯努利方程来计算流量。如果装反了就不能达到迅速减压的目的,孔板前后压差会减小,而流量 孔板流量计计量误差现场因素分析 尹广增 中国石油管道兰州输气分公司(甘肃兰州730070) 摘要结合现场实际,从气体组分和气体质量、孔板、配套管路和测量仪表、流量计算中各常数等四个方面,对采用标准孔板的长距离天然气管道流量计量系统正负误差的产生原因进行了分析,并结合运行实践,提出了运行中应注意的问题,为提高计量准确度和误差综合分析提供了参考。 关键词输气管道天然气孔板流量计计量误差 Abstract According to the field practice,the causes of positive and negative errors in flow metering system of long-distance natural gas pipeline with standard orifice plate are analyzed from the following aspects,which include the components and quality of gas,the orifice plate,the supporting pipeline,the measuring instrument and various constants in flow calculation.And then,based on the op-erating practice,some problems worthy of drawing much attention in the operation have been proposed in order to provide references for the improvement of measuring accuracy and error comprehensive analysis. Key words gas pipeline;natural gas;orifice plate;measuring error 计量技术 15 TECHNOLOGY SUPERVISION IN PETROLEUM INDUSTRY

水准测量

水准测量 1.什么是绝对高程?什么是相对高程? 答:地面点沿其铅垂线方向至大地水准面的距离称为绝对高程。 地面点沿其铅垂线方向至任意假定的水准面的距离称为相对高程。 2. 什么叫水准面? 答:将海洋处于静止平衡状态时的海水面或与其平行的水面,称为水准面。 3.由于标准方向的不同,方位角可以分为哪几类? 答:可以分为真方位角、磁方位角、坐标方位角。真方位角是以过直线起点和地球南、 北极的真子午线指北端为标准方向的方位角。磁方位角是以过直线起点和地球磁场南、北极的磁子午线指北端为标准方向的方位角。坐标方位角是以过直线起点的平面坐标纵轴平行线指北端为标准方向的方位角。 4.测量工作应遵循哪些基本原则?为什么要遵循这些原则? 答:在程序上“由整体到局部”;在工作步骤上“先控制后碎部”,即先进行控制测量, 然后进行碎部测量;在精度上“有高级到低级”。遵循上述基本原则可以减少测量误差的传递和积累;同时,由于建立了统一的控制网,可以分区平行作业,从而加快测量工作的进展速度。 5.测量工作有哪些基本工作? 答:距离测量、水平角测量、高程测量是测量的三项基本工作。 6.简述水准测量的原理。 答:水准测量原理是利用水准仪所提供的水平视线,并借助水准尺,来测定地面两点间的高差,然后根据其中一点的已知高程推算出另一点的高程。 7.在一个测站上,高差的正、负号说明什么问题? 答:在一个测站上,高差等于后视读数减去前视读数。高差为正,说明后视读数大于前视读数;高差为负,说明后视读数小于前视读数。 8.DS3型微倾式水准仪上的圆水准器和管水准器各有什么作用?答:圆水准器是用来指示竖轴是否竖直的装置。管水准器是用来指示视准轴是否水平的装置。

孔板流量计的安装要求

孔板流量计安装注意事项: 1、管道条件: (1)节流件前后的直管段必需是直的,不得有肉眼可见的弯曲。 (2)装置节流件用得直管段应该是润滑的,如不润滑,流量系数应乘以粗糙度修正稀疏。 (3)为保证流体的活动在节流件前1D出构成充沛开展的紊流速度散布,而且使这种散布成平均的轴对称形,所以 1)直管段必需是圆的,而且对节流件前2D范围,其圆度要求其甚为严厉,并且有一定的圆度目标。详细权衡办法: (A)节流件前OD,D/2,D,2D4个垂直管截面上,以大至相等的角间隔至多辨别测量4个管道内径单测值,取均匀值D。恣意内径单测量值与均匀值之差不得超越±0。3% (B)在节流件后,在OD和2D地位用上述办法测得8个内径单测值,恣意单测值与D比拟,其最大偏向不得超越±2% 2)节流件前后要求一段足够长的直管段,这段足够长的直管段和节流件前的部分阻力件方式有关和直径比β有关,见表1(β=d/D, d为孔板开孔直径,D为管道内径)。 (4)节流件下游侧第一阻力件和第二阻力件之间的直管段长度可按第二阻力件的方式和β=0。7(不管实践β值是多少)取表一所列数值的1/2 (5)节流件下游侧为关闭空间或直径≥2D大容器时,则关闭空间或大容器与节流件之间的直管长不得小于30D(15D)若节流件和关闭空间或大容器之间尚有其它部分阻力件时,则除在节流件与部分阻力件之间设有附合表1上规则的最小直管段长1外,从关闭空间到节流件之间的直管段总长也不得小于30D(15D)。节流件上下游侧的最小直管段长度表1 节流件下游侧部分阴力件方式和最小直管段长度L 注:1、上表只对规范节流安装而言,对特殊节流安装可供参考 2、列数系为管内径D 的倍数。 3、上表括号外的数字为“附加绝对极限误差为零”的数值,括号内的数字为“附加绝对极限误差为±0.5%”的数值。即直管段长度中有一个采用括号内的数值时,流量测量的极限绝对误差τQ/Q。应再算术相加0.5%亦即(τQ/Q+0.5)% 4、若实践直管段长度大于括号内数值,而小于括号外的数值时,需按“附加极限绝对误差为0.5%”处置。 (1)直流件装置在管道中,其前端面必需与管道轴线垂直,允许的最大不垂直度不得超越±1°。 (2)节流件装置在管道中后,其开孔必需与管道同心,其允许的最大不同心度ε不得超越下列公式计算后果:ε≤0.015D(1/β-1)。 (3)一切垫片不能用太厚的资料,最好不超越0.5mm,垫片不能突出管壁内否则能够惹起很大的测量误差。 (4)但凡调理流量用的阀门,应装在节流件后最小值管段长度以外 (5)节流安装在工艺管道上的装置,必需在管道清洗吹扫后停止。 (6)在程度或倾斜管道装置的节流安装的取压方式。 1)被测流体为液体时,为避免气泡进工艺管道 入到牙关,取压扣应处于工艺管道 中心线下偏≤45°的地位上正负取αα α1

第7章 定量分析中的误差及有效数字答案

思考题 1. 指出在下列情况下,各会引起哪种误差如果是系统误差,应该用什么方法减免 (1) 砝码被腐蚀; 答:引起系统误差(仪器误差),采用校准砝码、更换砝码。 (2) 天平的两臂不等长; 答:引起系统误差(仪器误差),采用校正仪器(天平两臂等长)或更换仪器。 (3) 容量瓶和移液管不配套; 答:引起系统误差(仪器误差),采用校正仪器(相对校正也可)或更换仪器。 (4) 试剂中含有微量的被测组分; 答:引起系统误差(试剂误差),采用空白试验,减去空白值。 # (5) 天平的零点有微小变动; 答:随机(偶然)误差。 (6) 读取滴定管体积时最后一位数字估计不准; 答:随机(偶然)误差。采用读数卡和多练习,提高读数的准确度。 (7) 滴定时不慎从锥形瓶中溅出一滴溶液; 答:过失,弃去该数据,重做实验。 (8) 标定HCl 溶液用的NaOH 标准溶液中吸入CO2。 答:系统误差(试剂误差)。终点时加热,除去CO2,再滴至稳定的终点(半分钟不褪色)。 2. 判断下列说法是否正确 (1) 要求分析结果达到%的准确度,即指分析结果的相对误差为%。 | (2) 分析结果的精密度高就说明准确度高。 (3) 由试剂不纯造成的误差属于偶然误差。 (4) 偏差越大,说明精密度越高。 (5) 准确度高,要求精密度高。 (6) 系统误差呈正态分布。 (7) 精密度高,准确度一定高。 (8) 分析工作中,要求分析误差为零。 (9) 偏差是指测定值与真实值之差。 (10) 随机误差影响测定结果的精密度。 (11) 在分析数据中,所有的“0”均为有效数字。 … (12) 方法误差属于系统误差。 (13) 有效数字中每一位数字都是准确的。 (14) 有效数字中的末位数字是估计值,不是测定结果。

测量误差及其处理的基本知识

第五章 测量误差及其处理的基本知识 1、测量误差的来源有哪些?什么是等精度测量? 答:测量误差的来源有三个方面:测量仪器的精度,观测者技术水平,外界条件的影响。该三个方面条件相同的观测称为等精度观测。 2、什么是系统误差?什么是偶然误差?它们的影响是否可以消除? 答:系统误差是指在相同的观测条件下对某量作一系列的观测,其数值和符号均相同,或按一定规律变化的误差。偶然误差是指在相同的观测条件下对某量作一系列的观测,其数值和符号均不固定,或看上去没有一定规律的误差。系统误差的影响采取恰当的方法可以消除;偶然误差是必然发生的,不能消除,只能削弱偶然误差的影响。 3、举出水准测量、角度测量及距离测量中哪些属于系统误差? 答:水准仪的i 角误差,距离测量时钢尺的尺长误差,经纬仪的视准轴误差、横轴误差和竖盘指标差等都属于系统误差。 4、评定测量精度的指标是什么?何种情况下用相对误差评定测量精度? 答:测量中最常用的评定精度的指标是中误差,其绝对值越大精度越低。当误差大小与被量测量的大小之间存在比例关系时,采用相对误差作为衡量观测值精度的标准。例如距离丈量,采用往返丈量的相对误差作为评定精度的指标。 所谓相对中误差(简称相对误差)就是中误差之绝对值(设为|m|)与观测值(设为D )之比,并将分子化为1表示K =| |/1||m D D m = 。 5、观测值中误差如何计算? 答:设在相同条件下对某量进行了n 次观测,得一组观测值L 1、L 2、……Ln ,x 为观测值的算术平均值, i v 表示观测值改正数,即 11L x v -= 22L x v -= ...... n n L x v -= 则中误差 [] 1-±=n vv m 6、算术平均值及其中误差如何计算?

公路工程水准测量的误差及控制

公路工程水准测量的误差及控制 间高差。公路工程测量过程中会出现各种误差,本文简要的分析水准测量的误差及控制方法。 关键词:水准测量;误差;控制 一、概述 公路工程水准测量是采用几何原理,利用水平视线测定两点间高差,仪器使用水准仪,工具是水准尺和尺垫。公路工程测量一般都使用微倾式自动安平水准仪,每公里精度能达到3mm,水准仪在一个测站的基本程序是:安置仪器,粗略整平,瞄准水准尺精平和读数,在每一测段测定完后复核结果。同一施工路线采用同一个高程系统测量方法是基平与中平同时测量,两台水准仪同时观测一个水准尺,间视和转点由两个人立水准尺。两台水准仪总是同时观测一个水准尺进行读数,一个水准点段测完后,进行检核,每一测站如果没有检查和复核,将为误差的积累创造条件,容易返工,耽误时间,浪费人力,在工程实践中,这一方法经常出现错误。现在我们将水准点与中桩分开观测,水准点观测采取往返测量,成果整理要求高差闭合差fh容(fh容=h往h返)达到平原微丘地区影响水准测量精度的主要因素是水准路线的长度,长度越长,精度越低,山区则是测站,测站越多,精度越低。 二、水准测量的误差分析及控制 水准测量误差产生有仪器误差,观测误差和外界条件的影响三个方面。

1.仪器误差。准仪的望远镜视准轴不平行于水准管轴所产生的误差;仪器虽在测量前经过校正,但仍会在残余误差,因此造成水准管气泡居中,水准管轴居于水平位置,而望远镜视准轴却发生倾斜,致使读数误差。这种误差与视距长度成正比,观测时可通过中间法(前后视距相等)和距离补偿法(前视距离和等于后视距离总和)消除。中间法在实际操作过程中立尺人是关键,可采用普通皮尺测定距离之后立尺。而补偿法却不易操作。另外有水准尺误差:水准尺误差有尺长误差(尺子长度不准确),刻划误差(尺上的分划不均匀)和零点差(尺的零刻划位置不准确),三种情况组成。施工测量前对所使用的水准尺进行检查,尽可能不使用尺长误差和刻划误差的标尺,如只能使用应找出误差特点,进行数据修正后进行使用,对于尺的零误差,控制方法可通过在一个水准测段内,交替轮换使用两根水准尺(本测站用作视尺,下测站用作前视尺),并把测段站数目布设成偶数,以在高差中相互抵消,同时可减弱刻划误差和尺长误差的影响。 2.观测误差。 (1)符合水准管气泡居中的误差:由于符合水准气泡未能做到严格居中,造成望远镜视准轴倾斜面,产生读数误差。读数误差的大小与水准管的灵敏度有关,景要是水准管分划值J的大小。此外,读数误差与视线长度成正比,水准管居中误差一般认为是0.1.J,根据人公式m 居=0.1.s/p,因此只要观测时符合水准管气泡能够认真仔细进行居中,且对视线长度加以限制,与中间法一致,此误差可消除。 (2)视差的影响当存在视差时,尺像与十字丝平面不重合,观测

孔板流量计计算公式

孔板流量计计算公式-CAL-FENGHAI.-(YICAI)-Company One1

0引言 孔板是典型的差压式流量计,它结构简单,制造方便,在柳钢炼铁厂使用广泛,主要用于测量氧气、氮气、空气、蒸汽及煤气等流体流量。由于孔板的流入截面是突然变小的,而流出截面是突然扩张的,流体的流动速度( 情况) 在孔板前后发生了很大的变化,从而且在孔板前后形成了差压,通过测量差压可以反映流体流量大小[1]。但是流量的计算是一个复杂的过程。炼铁厂以往仅仅是通过开方器对孔板前后差压进行开方,然后乘以设计最大流量从而获得实际流量值,如公式(1)所示。 (1) 其中Q ——体积流量,Nm3/h; Q max——设计最大流量,Nm3/h; ΔP ——实际差压,Pa; ΔP设——设计最大差压,Pa。 其实这种方法并不能真实反映准确流量,特别是在压力、温度波动( 变化) 较大的时候,测量出来的流量和真实流量相差较大。所以,流量的计算还需要增加温度、压力补偿。在孔板通用公式中,增加压力、温度补偿的流量计算公式关键是对介质在工况下的密度进行处理,此外还需要孔板设计说明书上的流量系数、孔板开孔直径、膨胀系数、工况密度等参数,公式比较复杂;笔者经过大量的数据统计获得的简易公式则简单得多,只要有孔板的设计最大流量、设计差压和设计压力,即可准确获得实际流量值。

1孔板流量计计算公式 1.1通用计算公式(2) (2) 其中Q——体积流量,Nm3/h; K——系数; d——工况下节流件开孔直径,mm; ε——膨胀系数; α——流量系数; ΔP——实际差压,Pa; ρ——介质工况密度,kg/m3。 公式(2)中的介质工况密度ρ和温度、压力有关,根据克拉珀龙方程,有 (3) P ——压力,单位Pa; V ——体积,单位m3; T ——绝对温度,K; n ——物质的量; R ——气体常数。 相同( 一定) 质量的气体在温度和压力发生变化时,有:

误差与有效数字

分享 ?丁铖 ? ?丁铖的分享 ? ?当前分享 返回分享首页? 分享 大物实验 - 误差与有效数字练习来源:姚晨炜的日志 误差与有效数字练习题答案 1.有甲、乙、丙、丁四人,用螺旋测微计测量一个铜球的直径,各人所得的结果表达如下:d甲 =(1.2832±0.0003)cm ,d乙 =(1.283±0.0003)cm ,d丙 =(1.28±0.0003)cm ,d丁 =(1.3±0.0003)cm ,问哪个人表达得正确?其他人错在哪里? 答:甲对。其他人测量结果的最后位未与不确定度所在位对齐。 2.一学生用精密天平称一物体的质量m,数据如下表所示:Δ仪 =0.0002g 请计算这一测量的算术平均值,测量标准误差及相对误差,写出结果表达式。 A类分量: B类分量: 合成不确定度:=0.00018g 取0.00018g ,测量结果为: ( P=0.683 ) 相对误差: 3.用米尺测量一物体的长度,测得的数值为

试求其算术平均值,A类不确定度、B类不确定度、合成不确定度及相对误差,写出结果表达式。 , A类分量: =1.060.006=0.0064cm B类分量: 合成不确定度: =0.04cm 相对误差: ( P=0.683 ) 结果: 4.在测量固体比热实验中,放入量热器的固体的起始温度为t1±S t1= 99.5 ± 0.3℃,固体放入水中后,温度逐渐下降,当达到平衡时,t2±S t2= 26.2 ± 0.3℃,试求温度降低值t =t2–t1的表示式及相对误差。 处理:t =t2–t1=26.2-99.5=-73.3℃, U =0.5℃ , (或 -0.7℅) t =( -73.3 ± 0.5)℃ ( P=0.683 ) 5.一个铅质圆柱体,测得其直径为d ±U d=(2.040±0.003) cm ,高度为h±U h=(4.120 ± 0.003)cm, 质量为m±U m =(149.10 ± 0.05)g。试求:(1)计算铅的密度ρ;(2)计算铅的密度ρ的相对误差和不确定度;(3)表示ρ的测量结果。 处理:(1)g/㎝3 (2) (3) g/㎝3 ( P=0.683 ) 6.按照误差理论和有效数字运算规则改正以下错误: (1)N=10.8000±0.3cm 正:N =(10.8±0.3)cm ,测量误差决定测量值的位数(测量结果存疑数所在位与误差对齐)

相关文档
最新文档