随机数序列的选取方法

随机数序列的选取方法
随机数序列的选取方法

产生随机数序列的一般方法

要产生取值为0,1,2,…,9的离散型均匀分布的随机数,通常的操作方法是把10个完全相同的乒乓球分别标上0,1,2,…,9,然后放在一个不透明的袋中,搅拦均匀后从中摸出一球记号码后放回袋中,接着仍将袋中的球搅拌均匀后从袋中再摸出一球记下号码后再放回袋中,依次下去,就得到随机序列.通常称类似这种摸球的方法产生的随机数为真正的随机数.但是,当我们需要大量的随机数时,这种实际操作方法需要花费大量的时间,通常不能满足模拟试验的需要,比如教师不可能在课堂上做10000次掷硬币的试验,来观察出现正面的频率.计算机可以帮助人们在很短时间产生大量的随机数以满足模拟的需要,那么计算机产生的随机数是用类似摸球方法产生的吗?不是.计算机是用某种数学方法产生的随机数,实际上是按照一定的计算方法得到的一串数,它们具有类似随机数的性质,但是它们是依照确定算法产生的,便不可能是真正的随机数,所以称计算机产生的随机数为伪随机数.在模拟计算中通常使用伪随机数.对这些伪随机数,只要通过统计检验符合一些统计要求,如均匀性、随机性等,就可以作为真正的随机数来使用,我们将称这样产生的伪随机数为随机数.

在计算机上用数学方法产生随机数的一般要求如下:

1)产生的随机数列要有均匀性、抽样的随机性、试验的独立性和前后的一致性.

2)产生的随机数列要有足够长的周期,以满足模拟实际问题的要求.

3)产生随机数的速度要快,占用的内存少.

计算机产生随机数的方法内容是丰富的,在这里我们介绍几种方法,计算机通常是先产生[0,1]区间上均匀分布的随机数,然后再产生其他分布的随机数.

一维均匀随机数的产生

在连续型随机变量的分布中,最简单而且最基本的分布是单位均匀分布。由该分布抽取的简单子样称,随机数序列,其中每一个体称为随机数。单位均匀分布也称为[0,1]上的均匀分布,其中P(·)表示事件·发生的概率。反之,如果随机变量序列ξ1, ξ2…对于任意自然数s ,由s 个元素所组成的s 维空间上的点(ξn+1,…ξn+s )在Gs 上均匀分布,则它们是随机数序列。

由于随机数在蒙特卡罗方法中所处的特殊地位,它们虽然也属于由具有已知分布的总体中产生简单子样的问题,但就产生方法而言,却有着本质上的差别。

一般采用某种数值计算方法产生随机数序列,在计算机上运算来得到.

通常是利用递推公式:

非均匀分布随机数的产生

1. 反函数法

设连续型随机变量Y 的概率函数为 f(x), 需产生给定分布的随机数.

步骤:1)产生n 个RND 随机数r1,r2,…,rn ;

;)()2i y i y dy y f r i

中解出从等式?∞-=

所得yi , i=1,2, …,n 即所求.

基本原理:

设随机变量Y的分布函数F(y)是连续函数,而且随机变量X~U(0,1),令Z=F-1(X),则Z与Y有相同分布。

2.舍选法

基本思想:实质上是从许多RND随机数中选出一部分, 使之成为具有给定分布的随机数.

设随机变量X的概率密度函数为f(x),存在实数a

步骤:

(1)选取常数λ,使λf(x)<1,x∈(a, b);

(2)产生两个RND 随机数r1 、r2,令y= a+(b-a)r1 ;

(3)若r2≤λf(y),则令x=y, 否则剔除r1和r2, 重返步骤(2).

(4)重复循环, 产生的随机数x1,x2,…,xN的分布由概率函数f(x) 确定.

3.乘同余法

乘同余方法是由Lehmer在1951年提出来的,它的一般形式是:对于任一初始值x1,伪随机数序列由下面

递推公式确定:其中a为常数。

为了便于在计算机上使用,通常取:M=2s 其中s为计算机中二进制数的最大可能有效位数 x1= 奇数 a = 52k+1 其中k为使52k+1在计算机上所能容纳的最大整数,即a为计算机上所能容纳的5的最大奇次幂。一般地,s=32时,a=513;s=48,a=515等。伪随机数序列的最大容量λ(M)=2s-2 。乘同余方法是使用的最多、最广的方法,在计算机上被广泛地使用。

4.乘加同余法

产生伪随机数的乘加同余方法是由Rotenberg于1960年提出来的,由于这个方法有很多优点,已成为仅次于乘同余方法产生伪随机数的另一主要方法。

乘加同余方法的一般形式是,对任意初始值x1,伪随机数序列由下面递推公式确定:

为了便于在计算机上使用,通常取M = 2s

其中s为计算机中二进制数的最大可能有效位数。 a = 2b+1(b≥2) c = 1

这样在计算中可以使用移位和指令加法,提高计算速度。

5.蒙特卡洛方法

蒙特卡洛方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。

20世纪40年代,在John von Neumann,Stanislaw Ulam和Nicholas Metropolis在洛斯阿拉莫斯国家实验室为核武器计划工作时,发明了蒙特卡洛方法。因为Ulam的叔叔经常在蒙特卡洛赌场输钱得名,而蒙特卡洛方法正是以概率为基础的方法。与它对应的是确定性算法。

蒙特卡洛方法在金融工程学,宏观经济学,生物医学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。 1). 蒙特卡洛方法的基本思想

通常蒙特卡洛方法可以粗略地分成两类:一类是所求解的问题本身具有内在的随机性,借助计算机的运算能力可以直接模拟这种随机的过程。例如在核物理研究中,分析中子在反应堆中的传输过程。中子与原子核作用受到量子力学规律的制约,人们只能知道它们相互作用发生的概率,却无法准确获得中子与原子核作用时的位置以及裂变产生的新中子的行进速率和方向。科学家依据其概率进行随机抽样得到裂变位置、速度和方向,这样模拟大量中子的行为后,经过统计就能获得中子传输的范围,作为反应堆设计的依据。另一种类型是所求解问题可以转化为某种随机分布的特征数,比如随机事件出现的概率,或者随机变量的期望值。通过随机抽样的方法,以随机事件出现的频率估计其概率,或者以抽样的数字特征估算随机变量的数字特征,并将其作为问题的解。这种方法多用于求解复杂的多维积分问题。

假设我们要计算一个不规则图形的面积,那么图形的不规则程度和分析性计算(比如,积分)的复杂程度是成正比的。蒙特卡洛方法基于这样的思想:假想你有一袋豆子,把豆子均匀地朝这个图形上撒,然后数这个图形之中有多少颗豆子,这个豆子的数目就是图形的面积。当你的豆子越小,撒的越多的时候,结果就越精确。借助计算机程序可以生成大量均匀分布坐标点,然后统计出图形内的点数,通过它们占总点数的比例和坐标点生成范围的面积就可以求出图形面积。

2). 蒙特卡洛方法的工作过程

在解决实际问题的时候应用蒙特卡洛方法主要有两部分工作:

1. 用蒙特卡洛方法模拟某一过程时,需要产生各种概率分布的随机变量。

2. 用统计方法把模型的数字特征估计出来,从而得到实际问题的数值解。 3). 蒙特卡洛方法在数学中的应用

通常蒙特卡洛方法通过构造符合一定规则的随机数来解决数学上的各种问题。对于那些由于计算过于复杂而难以得到解析解或者根本没有解析解的问题,蒙特卡洛方法是一种有效的求出数值解的方法。一般蒙特卡洛方法在数学中最常见的应用就是蒙特卡洛积分。

参考文献:

1.杨自强,魏公毅.《产生伪随机数的若干新方法》.数值计算机应用, 2001,3:210~216.

2.周燕, 冯天祥.《关于一种新的随机数发生器的研究》. 华北水利电力学院学报, 2000, 21(2): 75-77.

3.王萍,许海洋.《一种新的随机数组合发生器的研究》,计算机技术与发展,2006,16:79~81.

4.徐柏军, 岳春国, 徐正军. 《伪随机数实验及变换方法研究》. 科学技术与工程, 2007, 6: 2472-247

5.

5. 威廉·费勒、胡迪鹤《概率论及其应用(第3版)》人民邮电出版社2006

.

用C语言产生随机数

用c语言产生随机数 在C语言中,rand()函数可以用来产生随机数,但是这不是真真意义上的随机数,是一个伪随机数,是根据一个数,我们可以称它为种子,为基准以某个递推公式推算出来的一系数,当这系列数很大的时候,就符合正态公布,从而相当于产生了随机数,但这不是真正的随机数,当计算机正常开机后,这个种子的值是定了的,除非你破坏了系统,为了改变这个种子的值,C提供了srand()函数,它的原形是void srand( int a)。 可能大家都知道C语言中的随机函数random,可是random函数并不是ANSI C标准,所以说,random函数不能在gcc,vc等编译器下编译通过。 rand()会返回一随机数值,围在0至RAND_MAX 间。返回0至RAND_MAX之间的随机数值,RAND_MAX定义在stdlib.h,(其值至少为32767),运算的结果是一个不定的数,要看你定义的变量类型,int整形的话就是32767。在调用此函数产生随机数前,必须先利用srand()设好随机数种子,如果未设随机数种子,rand()在调用时会自动设随机数种子为1。一般用for语句来设置种子的个数。具体见下面的例子。 一如何产生不可预见的随机序列呢 利用srand((unsigned int)(time(NULL))是一种方法,因为每一次运行程序的时间是不同的。

在C语言里所提供的随机数发生器的用法:现在的C编译器都提供了一个基于ANSI标准的伪随机数发生器函数,用来生成随机数。它们就是rand()和srand()函数。这二个函数的工作过程如下:1) 首先给srand()提供一个种子,它是一个unsigned int类型,其取值围从0~65535; 2) 然后调用rand(),它会根据提供给srand()的种子值返回一个随机数(在0到32767之间) 3) 根据需要多次调用rand(),从而不间断地得到新的随机数; 4) 无论什么时候,都可以给srand()提供一个新的种子,从而进一步“随机化”rand()的输出结果。 下面是0~32767之间的随机数程序: #include #include #include //使用当前时钟做种子 void main( void ) {int i; srand( (unsigned)time( NULL ) ); //初始化随机数for( i = 0; i < 10;i++ ) //打印出10个随机数 printf( " %d\n", rand() ); } 根据上面的程序可以很容易得到0~1之间的随机数:

临床试验中的随机分组方法

临床试验中的随机分组方法 时间:2009-10-23 22:17:46 来源:admin 万霞1,刘建平2 (1.中国医学科学院基础医学研究所/中国协和医科大学基础医学院流行病学教研室,北京市东单三5号, 100005; 2.北京中医药大学循证医学中心) 【摘要】成功地实施随机分配依赖于两个相关的步骤:(1)产生随机分配序列用于试验组和对照组的分配; (2)随机分配方案在随机分组实施过程中的隐匿。随机分组方法有: 简单随机化、区组随机化分段(或分层)随机化、分层区组随机化及动态随机化等;随机分配方案隐匿的方法有按顺序编码、不透光、密封的信封, 中心随机系统, 编号或编码的瓶子或容器, 中心药房准备的药物等。科研工作者在临床研究中需要根据设计方法, 正确选择随机分组及随机分配方案隐匿的方法。 【关键词】随机分配; 随机分组; 随机方案; 隐匿 随机分配方法确保对比组之间基线均衡可比,被认为是减少两组患者选择偏倚的最佳方法[1]。因此,有学者认为正是由于随机分配方法,使得随机对照试验在提高医疗卫生服务中起着至关重要的作用[2]。在临床研究中,正确地实施真正的随机分配是临床试验的关键。成功地实施随机分配依赖于两个相关的步骤[3]:(1)产生随机分配序列并用于随机分配到试验组和 对照组; (2) 随机分配方案在随机分组中的隐匿(allocation concealment)。没有随机隐匿的随机临床试验也称为开放式的随机对照试验。 有试验研究表明[4],如果用不适当的分组和双盲方法, 即使是随机临床试验,其干预效果也 会被显着地高估(在一项研究中干预效果平均被夸大约50% )。遗憾的是90%以上的随机临床试验随机分组不恰当[5]。对卫生系统重大科研课题的终审标书进行的系统评价发现,部分治疗性研究存在假的随机分组[6]。有学者分层随机选择综合性国家级中医药学术期刊4种、省级和中医学院(大学)学报类中医药学术期刊各10种, 专业杂志(如针灸) 4种, 共计28种, 从1996 年12月开始回溯20年, 从中选取所有中医药疗效评价的文章逐一评阅。研究结果发现, 83%的文章未描述随机分组方法,操作是否恰当难以判断[7]。

C语言中产生随机数的方法

C语言中产生随机数的方法 引例:产生10个[100-200]区间内的随机整数。 #include #include //rand函数的头文件 #include //时间函数的头文件 int main() { int i; //循环变量 srand((unsigned) time(NULL)); //产生随机数的起始数据(以时间为种子) for (i=0; i<10; i++) //printf("%d\n", rand()); //产生[0,0x7fff)即[0,32767)以内的随机整数 //printf("%d\n", rand()%100); //产生0-99的随机整数 printf("%d\n", rand()%(200-100+1) + 100); //产生[100,200]内的随机整数return 0; } 在C语言中产生随机数需要以下几个函数的配合使用。 (1)rand函数——产生伪随机数 原型:int rand(void) 头文件:stdlib.h 功能:产生从0到RAND_MAX之间的随机数。RAND_MAX的值通常是0x7fff(十六进制数7FFF,也就是十进制数32767)。 例: #include #include int main() { int k; k = rand(); printf("%d\n", k); return 0; } 编译运行,发现每次运行程序产生的随机数都是一样的。 计算机中产生随机数,实际是采用一个固定的数作为“种子”,在一个给定的复杂算法中计算结果,所以叫“伪随机数”。 C语言中由于采用固定的序列作为种子,所以每次执行所取的是同一个数。 为上面的例子增加一个循环结构: #include #include int main() { int k,i;

java 生成一组不同的随机数(不重复)

本文由我司收集整编,推荐下载,如有疑问,请与我司联系 java 生成一组不同的随机数(不重复) 2017/03/22 0 import java.util.Random;/*** 生成一组不同的随机数* arr{1,2,3,4,5,6}* 比如随机生成了3 取出arr[3]=3,然后将arr{1,2,6,4,5,3} 数组模拟长 度减1* 比如随机生成了3 取出arr[3]=6,然后将arr{1,2,5,4,6,3} 数组模拟长度减1* @author pindu*/public class RamdomNums {public static void main(String[] args) {int num = 4;int min = 1;int max = 10;nums(num, min, max);System.out.println( ------------- for (int i = 0; i num; i ) {System.out.println(Math.random()*(max - min 1));}}public static void nums(int num,int min,int max) {//如果生成树目超出范围直接返回int len = max - min if (num len) {return ;}//生成有序数组int[] arr = new int[len];for (int i = 0; i len; i ) {arr[i] = i min;}//生成随机数int t = 0;while (num 0) {t = (int) (Math.random()*(max - min 1))%len;System.out.println(arr[t]);arr[t] = arr[--len];num--;}}} 结果 7192------------- 6.8698486251811616.2799489504900352.9301117297642018.195864045774911 tips:感谢大家的阅读,本文由我司收集整编。仅供参阅!

随机数生成方法、随机数生成法比较以及检验生成的随机序列的随机性的方法讲义

摘要 摘要 本文着重讨论了随机数生成方法、随机数生成法比较以及检验生成的随机序列的随机性的方法。 在随机序列生成方面,本文讨论了平方取中法、斐波那契法、滞后斐波那契法、移位法、线性同余法、非线性同余法、取小数法等,并比较了各方法的优劣性。 在统计检验方面,介绍了统计检验的方法,并用其检验几种随机数生成器生成的随机数的随机性。 最后介绍了两种新的随机数生成法,并统计检验了生成随机序列的随机性。关键词:随机数,随机数生成法,统计检验 I

ABSTRACT ABSTRACT This article focuses on methods of random number generator, random number generation method comparison and test the randomness of the generated random sequence method. In random sequence generation, the article discusses the square method, Fibonacci method, lagged Fibonacci method, the shift method, linear congruential method, linear congruence method, taking minority law, and Comparison of advantages and disadvantages of each method. In statistical test, the introduction of the statistical test method, and used to test some random number generator random random numbers generated. Finally, two new random number generation method, and statistical tests of randomness to generate a random sequence. Key Words: random number,random number generator,statistical test II

EXCEL随机数据生成方法

求教:我的电子表格中rand()函数的取值范围是-1到1,如何改回1到0 回答:有两种修改办法: 是[1-rand()]/2, 或[1+rand()]/2。 效果是一样的,都可生成0到1之间的随机数 电子表格中RAND()函数的取值范围是0到1,公式如下: =RAND() 如果取值范围是1到2,公式如下: =RAND()*(2-1)+1 RAND( ) 注解: 若要生成a 与b 之间的随机实数: =RAND()*(b-a)+a 如果要使用函数RAND 生成一随机数,并且使之不随单元格计算而改变,可以在编辑栏中输入“=RAND()”,保持编辑状态,然后按F9,将公式永久性地改为随机数。 示例 RAND() 介于0 到1 之间的一个随机数(变量) =RAND()*100 大于等于0 但小于100 的一个随机数(变量) excel产生60-70随机数公式 =RAND()*10+60 要取整可以用=int(RAND()*10+60) 我想用excel在B1单元个里创建一个50-80的随机数且这个随机数要大于A1单元个里的数值,请教大家如何编写公式! 整数:=ROUND(RAND()*(80-MAX(50,A1+1))+MAX(50,A1+1),0) 无需取整数:=RAND()*(80-MAX(50,A1))+MAX(50,A1)

要求: 1,小数保留0.1 2,1000-1100范围 3,不要出现重复 =LEFT(RAND()*100+1000,6) 至于不许重复 你可以设置数据有效性 在数据-有效性设 =countif(a:a,a1)=1 选中a列设有效性就好了 其他列耶可以 急求excel随机生成数字的公式,取值要在38.90-44.03之间,不允许重复出现,保留两位小数,不允许变藏 =round(RAND()*5+38.9,2) 公式下拉 Excel随机数 Excel具有强大的函数功能,使用Excel函数,可以轻松在Excel表格产生一系列随机数。 1、产生一个小于100的两位数的整数,输入公式=ROUNDUP(RAND()*100,0)。 RAND()这是一个随机函数,它的返回值是一个大于0且小于1的随机小数。ROUNDUP 函数是向上舍入数字,公式的意义就是将小数向上舍入到最接近的整数,再扩大100倍。 2、产生一个四位数N到M的随机数,输入公式=INT(RAND()*(M-N+1))+N。 这个公式中,INT函数是将数值向下取整为最接近的整数;因为四位数的随机数就是指从1000到9999之间的任一随机数,所以M为9999,N为1000。RAND()的值是一个大于0且小于1的随机小数,M-N+1是9000,乘以这个数就是将RAND()的值对其放大,用INT 函数取整后,再加上1000就可以得到这个范围内的随机数。[公式=INT(RAND()*(9999-1000+1))+1000] 3、Excel函数RANDBETWEEN是返回位于两个指定数之间的一个随机数。使用这一个函数来完成上面的问题就更为简单了。要使用这个函数,可能出现函数不可用,并返回错误值#NAME?。 选择"工具"菜单,单击"加载宏",在"可用加载宏"列表中,勾选"分析工具库",再单击"确定"。接下来系统将会安装并加载,可能会弹出提示需要安装源,也就是office安装盘。放入光盘,点击"确定",完成安装。 现在可以在单元格输入公式=RANDBETWEEN(1000,9999)。 最后,你可以将公式复制到所有需要产生随机数的单元格,每一次打开工作表,数据都会自动随机更新。在打开的工作表,也可以执行功能键F9,每按下一次,数据就会自动随机更新了。

一维正态分布随机数序列的产生方法

一维正态分布随机数序列的产生方法 一、文献综述 1.随机数的定义及产生方法 1).随机数的定义及性质 在连续型随机变量的分布中,最简单而且最基本的分布是单位均匀分布。由该分布抽取的简单子样称,随机数序列,其中每一个体称为随机数。 单位均匀分布也称为[0,1]上的均匀分布。 由于随机数在蒙特卡罗方法中占有极其重要的位置,我们用专门的符号ξ表示。由随机数序列的定义可知,ξ1,ξ2,…是相互独立且具有相同单位均匀分布的随机数序列。也就是说,独立性、均匀性是随机数必备的两个特点。 随机数具有非常重要的性质:对于任意自然数s,由s个随机数组成的 s维空间上的点(ξn+1,ξn+2,…ξn+s)在s维空间的单位立方体Gs上 均匀分布,即对任意的ai,如下等式成立: 其中P(·)表示事件·发生的概率。反之,如果随机变量序列ξ1, ξ2…对于任意自然数s,由s个元素所组成的s维空间上的点(ξn+1,…ξn+s)在Gs上均匀分布,则它们是随机数序列。 由于随机数在蒙特卡罗方法中所处的特殊地位,它们虽然也属于由具有已知分布的总体中产生简单子样的问题,但就产生方法而言,却有着本质上的差别。 2).随机数表 为了产生随机数,可以使用随机数表。随机数表是由0,1,…,9十个数字组成,每个数字以0.1的等概率出现,数字之间相互独立。这些数字序列叫作随机数字序列。如果要得到n位有效数字的随机数,只需将表中每n 个相邻的随机数字合并在一起,且在最高位的前边加上小数点即可。例如,某随机数表的第一行数字为7634258910…,要想得到三位有效数字的随机数依次为0.763,0.425,0.891。因为随机数表需在计算机中占有很大内存, 而且也难以满足蒙特卡罗方法对随机数需要量非常大的要求,因此,该方法不适于在计算机上使用。 3).物理方法

真随机数产生方法

ATmega1 28单片机的真随机数发生矗时间:2009-12-16 15:39:00 来源:单片机与嵌入式系统作者:刘晓旭,曹林,董秀成西华大学 ATmega1 28单片机的真随机数发生矗时间:2009-12-16 15:39:00 来源:单片机与嵌入式系统作者:刘晓旭,曹林,董秀成西华大学 引言 随机数已广泛地应用于仿真、抽样、数值分析、计算机程序设计、决策、美学和娱乐之中。常见的随机数发生器有两种:使用数学算法的伪随机数发生器和以物理随机量作为发生源的真随机数发生器。要获取真正随机的真随机数,常使用硬件随机数发生器的方法来获取。这些真随机数都是使基于特定的真随机数发生源(如热噪声、电流噪声等),每次获取的真随机数都是不可测的,具有很好的随机性。 真随机数因其随机性强,在数据加密、信息辅助、智能决策和初始化向量方面有着广泛应用,构建一种基于硬件真随机数发生源,具有广泛的应用价值。但目前硬件真随机数发生源均较复杂,而且很少有基于单片机的真随机数发生器。本文利用RC充放电的低稳定度,根据AVR单片机的特点设计了一种性价比极高的真随机数发生器。该随机数发生器使用元件很少,稳定性高,对一些价格敏感的特殊场合,如金融、通信、娱乐设备等有较大的应用意义。 1 基本原理和方法 1.1 基本原理 串联的RC充放电电路由于受到漏电流、电阻热噪声、电阻过剩噪声、电容极化噪声等诸多不确定性因素的影响,其充放电稳定度一般只能达到10-3。利用这种RC充放电的低稳定度特性实现廉价的真随机数发生源。 Atmel公司AVR单片机ATmega 128以其速度快、功能强、性价比高等优点广泛应用于各种嵌入式计算场合。利用AVR单片机引脚配置灵活多样的特点,使用Amnega128 两个I/O口作为真随机数的电气接口。 其原理如图1所示。主要原理是利用串联RC电路的不确定性产生真随机数源,收集数据,通过AVR单片机ATmega128和主时钟电路量化RC电路的充放电时问,获得不确定的2位二进制数据,再利用程序将每4次采集的数据综合,最后产生1个8位的真随机数。

产生不重复随机数方法

生成不重复的随机数的三种方法 下面我以生成1-10之间的10个不重复的随机数为例介绍生成不重复的随机数的三种方法: 1,通过while循环来实现 通过while循环不停的生成随机数,直到生成一个不重复的为止,这种方法比较容易想到,但是效率也比较低下,实例代码如下: static void Main(string[] args) { int[] result = new int[10]; int tmp = -1; Random random = new Random(); bool repeat = false; for (int i = 0; i < 10; i++) { repeat = true; while (repeat) { repeat = false; tmp = random.Next(1, 11); for (int j = 0; j < i; j++) { if (tmp == result[j]) { repeat = true; break; } } } result[i] = tmp; } for (int i = 0; i < 10; i++) Console.WriteLine(result[i].ToString()); } 2,通过for循环来实现 方法1使用了多处循环嵌套,效率十分低下,所以我应用一定的技巧来减少循环嵌套,来达到提高程序效率的目的。主要思路是如果检测到重复,就把循环变量减1,这样来重新进行一次循环,重新生成一个随机数,直到生成一个不重复的随机数为止,实例代码如下:static void Main(string[] args) { int[] result = new int[10]; int tmp = -1;

VB生成不重复的随机数

VB生成不重复的随机数 VB生成不重复的随机数 我的建议是:第一步、先做一个数组,存上这35个数(可以不是连续的数,也可以是人名、字符串什么的);第二步、随机生成一个1-35之间的数,输出;第三步:把这个数和数组的第一个单元交换;第四步、从数组的第2-35之间随机抽取第二个数,输出;第五步、把这随机抽取的第二个数和数组的第二个单元内容呼唤;第六步、随机抽取第三个数,输出。。。。。重复到从第35-35个数之间随机抽取一个数,这时直接输出最后一个就行了。 程序如下(VB6): 工程里默认的窗体上,画一个Command1,粘贴程序: option explicit private vArray(1 to 35) as currency '定义数组个数 private sub command1_click() test end sub private sub InitArray() dim i as long '给数组赋值 for i=1 to 35 varray(i)=i next i end sub private sub Test() dim iStart as long dim iPos as long dim vTemp as currency dim sReturn as string InitArray randomize timer '设置随机因子,使其每次运行程序的随机数都不一样iStart=1 do iPos=int(rnd*(ubound(vArray)-iStart+1))+iStart '产生iStart到35(35取自vArray 的上标)之间的整数

实验一随机序列的产生及数字特征估计

实验一随机序列的产生及数字特征估计 一、实验目的 1、学习和掌握随机数的产生方法。 2、实现随机序列的数字特征估计。 二、实验原理 1、随机数的产生 随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。进行随机信号仿真分析时,需要模拟产生各种分布的随机数。在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。(0,1)均匀分布随机数是最最基本、最简单的随机数。(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即U(0,1)。实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下: y0=1,y n=ky n?1mod N(1.1) x n=y n N 序列x n为产生的(0,1)均匀分布随机数。 下面给出了(1.1)式的3 组常用参数: ①N = 1010,k = 7,周期≈5*10^7; ②(IBM随机数发生器)N = 2^31,k = 2^16 + 3,周期≈5*10^8;

③(ran0)N = 2^31 - 1,k = 7^5,周期≈2*10^9; 由均匀分布随机数,可以利用反函数构造出任意分布的随机数。 定理1.1 若随机变量X具有连续分布函数F X(X),而R为(0,1)均匀分布随机变量,则有 X=F X?1(R)(1.2) 由这一定理可知,分布函数为F X(X)的随机数可以由(0,1)均匀分布随机数按(1.2)式进行变换得到。 2、MATLAB 中产生随机序列的函数 (1)(0,1)均匀分布的随机序列 函数:rand 用法:x = rand(m,n) 功能:产生m×n的均匀分布随机数矩阵。 (2)正态分布的随机序列 函数:randn 用法:x = randn(m,n) 功能:产生m×n的标准正态分布随机数矩阵。 如果要产生服从N(μ,σ2)分布的随机序列,则可以由标准正态随机序列产生。(3)其他分布的随机序列 MATLAB 上还提供了其他多种分布的随机数的产生函数,表1.1 列出了部分函数。

随机数生成方法

University of Sydney School of Information Technologies Generating Random Variables Pseudo-Random Numbers Definition : A sequence of pseudo-random numbers ()i U is a deterministic sequence of numbers in []1,0 having the same relevant statistical properties as a sequence of random numbers. The most widely used method of generating pseudo-random numbers are the congruential generators: ()M X U M c aX X i i i i =+=?mod 1 for a multiplier a , shift c , and modulus M , all integers. The sequence is clearly periodic, with maximum period M . The values of a and c must be carefully chosen to maximise the period of the generator, and to ensure that the generator has good statistical properties. Some examples: M a c 259 1313 0 232 69069 1 231-1 630360016 0 232 2147001325 715136305 Reference: Ripley, Stochastic Simulation , Chapter 2

随机数生成原理 实现方法 不同编程语言的随机数函数

1-0:Microsoft VC++产生随机数的原理: Srand ( )和Rand( )函数。它本质上是利用线性同余法,y=ax+b(mod m)。其中a,b,m都是常数。因此rand的产生决定于x,x被称为Seed。Seed需要程序中设定,一般情况下取系统时间作为种子。它产生的随机数之间的相关性很小,取值范围是0—32767(int),即双字节(16位数),若用unsigned int 双字节是65535,四字节是4294967295,一般可以满足要求。 1-1:线性同余法: 其中M是模数,A是乘数,C是增量,为初始值,当C=0时,称此算法为乘同余法;若C ≠0,则称算法为混合同余法,当C取不为零的适当数值时,有一些优点,但优点并不突出,故常取C=0。模M大小是发生器周期长短的主要标志,常见有M为素数,取A为M的原根,则周期T=M-1。例如: a=1220703125 a=32719 (程序中用此组数) a=16807 代码: void main( ) { const int n=100; double a=32719,m=1,f[n+1],g[n],seed; m=pow(2,31); cout<<"设置m值为"<>seed; f[0]=seed; for(int i=1;i<=n;i++) //线性同余法生成随机数 { f[i]=fmod((a*f[i-1]),(m-1)); g[i-1]=f[i]/(m-1); cout.setf(ios::fixed);cout.precision(6); //设置输出精度 cout<

随机数产生方法

伪随机数的产生,现在用得较多的是“线性同余法" 就是下面这个式子 R(n+1) = [R(n) * a + b] mod c 为使随机数分布尽量均匀,a、b 均为质数, c 一般取值域内的最大值(mod 是求余数) 从这个式了可以看出,每次产生的随机数都跟上一次产生的数有关系,那么,第一个数是怎么来的呢?这就是线性同余法中必须用的的”种子",也就是说,给定某个种子后,所产生的随机数序列是固定的,在计算机编程中,一般使用系统时间来初始化种子,就是前面代码中的 srand((unsigned)time(NULL)); 这一句了。因为每次运行程序的时间肯定不一样,所以产生散列肯定也不一样,从而达到“随机”的目的。 a,b,c 的取值我用的是 a=3373, b=1, c=32768 下面的两个子程序是我在我的项目(S7-200 226)中产生随机的系统编号用的,因为我的编号中只有4位数采用了随机数,所以下面的程序中用的是整型,最大范围为32767。如果需要更宽范围的随机数,可以采用双字类型,并适当修改程序,代码很简单,就是将上面那个表达式用 S7-200 的指令表示出来就行了。 这两个子程序是从 MicroWIN V4.0 中导出来的,可以将它们用文本编辑器保存为 AW L 文件后直接导入 MicroWIN。 使用时在第一个扫描周期调用 Srand 初始种子,需要随机数的地方调用 Random Random 有了个最大范围参数,可以限制生成的随机数的最大范围,比如我只需要4位随机数,所以一般这样调用 CALL Random, 10000, vw0,生成的数就在 0-9999 范围内 下面是代码: SUBROUTINE_BLOCK Srand:SBR17 TITLE=初始化随机数种子 // // 直接使用系统时钟的分秒来作为种子 VAR_OUTPUT seed:WORD; END_VAR

随机信号分析实验:随机序列的产生及数字特征估计

实验一 随机序列的产生及数字特征估计 实验目的 1. 学习和掌握随机数的产生方法。 2. 实现随机序列的数字特征估计。 实验原理 1.随机数的产生 随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。进行随机信号仿真分析时,需要模拟产生各种分布的随机数。 在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。 (0,1)均匀分布随机数是最最基本、最简单的随机数。(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即U(0,1)。实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下: N y x N ky y y n n n n = ==-) (mod ,110 (1.1) 序列{}n x 为产生的(0,1)均匀分布随机数。 下面给出了(1.1)式的3组常用参数: ① 1010=N ,7=k ,周期7 105?≈; ②(IBM 随机数发生器)312=N ,3216+=k ,周期8 105?≈; ③(ran0)1231 -=N ,5 7=k ,周期9 102?≈; 由均匀分布随机数,可以利用反函数构造出任意分布的随机数。 定理1.1 若随机变量X 具有连续分布函数)(x F X ,而R 为(0,1)均匀分布随机变量,则有 )(1 R F X X -= (1.2) 由这一定理可知,分布函数为)(x F X 的随机数可以由(0,1)均匀分布随机数按(1.2)式进行变换得到。 2.MATLAB 中产生随机序列的函数 (1)(0,1)均匀分布的随机序列

随机数产生原理及实现

电子信息与通信工程学院 实验报告 实验名称随机数的产生 课程名称随机信号分析 姓名顾康学号U201413323 日期6月6日地点南一楼东204 成绩教师董燕

以上为6种分布的实验结果 1.均匀分布 随机变量X~U(0,1)的一组样本值的模拟值一般采用某种数值计算方法产生随机数序列,在计算机上运算来得到,通常是利用递推公式: Xn=f(Xn-1,.....,Xn-k) 1.1 同余法 Xn+1 = λXn(mod M) Rn=Xn/M R1 R2...Rn即为(0,1)上均匀分布的随机数列。而上述方法是伪随机的,{Rn}本质上是递推公式给定的周期序列,周期T可看做logλ(M)。

解决方法是:选择模拟参数并对序列进行统计检验。 1.2选择模拟参数 1)周期长度取决于Xo,λ, M的选择 2)通过选取适当的参数可以改善随机数的性质 几组参考的取值 Xo =1 , λ=7 , M=10^10 Xo =1 , λ=5^13 , M=2 *10^10 Xo =1 , λ=5^17 , M=10^12 1.3对数列进行统计检验 对应序列能否看作X的独立同分布样本,须检验其独立性和均匀性 for i=2:1:size %同余法均匀分布 x(i)= mod ( v*x(i-1), M); y(i)=x(i)/M; end subplot(2,3,1); hist(y,100) [ahat,bhat,ACI,BCI]=unifit(y)% 以0.95的置信度估计样本的参数 首先我们的标准是U ~(0,1),而实验值,ACI表示ahat的范围[-0.0030,0], BCI表示bhat的范围[1.0000,1.0030]。同时样本的均值和方差分别为0.4932 和0.0830,结论与理论值很接近。该样本以0.95的可信度服从(0,1)均匀分布。 2.伯努利分布 2.1算法原理

用c语言产生随机数rand()

用c语言产生随机数rand() 在C语言中,rand()函数可以用来产生随机数,但是这不是真真意义上的随机数,是一个伪随机数,是根据一个数,我们可以称它为种子,为基准以某个递推公式推算出来的一系数,当这系列数很大的时候,就符合正态公布,从而相当于产生了随机数,但这不是真正的随机数,当计算机正常开机后,这个种子的值是定了的,除非你破坏了系统,为了改变这个种子的值,C提供了srand()函数,它的原形是void srand( int a)。 可能大家都知道C语言中的随机函数random,可是random函数并不是ANSI C标准,所以说,random函数不能在gcc,vc等编译器下编译通过。 rand()会返回一随机数值,范围在0至RAND_MAX 间。返回0至RAND_MAX之间的随机数值,RAND_MAX定义在stdlib.h,(其值至少为32767)我运算的结果是一个不定的数,要看你定义的变量类型,int整形的话就是32767。在调用此函数产生随机数前,必须先利用srand()设好随机数种子,如果未设随机数种子,rand()在调用时会自动设随机数种子为1。一般用for语句来设置种子的个数。具体见下面的例子。

一如何产生不可预见的随机序列呢 利用srand((unsigned int)(time(NULL))是一种方法,因为每一次运行程序的时间是不同的。 在C语言里所提供的随机数发生器的用法:现在的C编译器都提供了一个基于ANSI标准的伪随机数发生器函数,用来生成随机数。它们就是rand()和srand()函数。这二个函数的工作过程如下: 1) 首先给srand()提供一个种子,它是一个unsigned int类型,其取值范围从0~65535; 2) 然后调用rand(),它会根据提供给srand()的种子值返回一个随机数(在0到32767之间) 3) 根据需要多次调用rand(),从而不间断地得到新的随机数; 4) 无论什么时候,都可以给srand()提供一个新的种子,从而进一步“随机化”rand()的输出结果。 下面是0~32767之间的随机数程序: #include #include #include //使用当前时钟做种子 void main( void ) {int i; srand( (unsigned)time( NULL ) ); //初始化随机数 for( i = 0; i < 10;i++ ) //打印出10个随机数

matlab产生随机数的方法

matlab 产生随机数的方法 第一种方法是用 random 语句,其一般形式为 y = random (' 分布的英文名 ',A1,A2,A3,m,n ) , 表示生成m 行n 列的m x n 个参数为(A1 , A2 , A3 ) 的该分 布的随机数。 例如: (1) R = random ('Normal',0,1,2,4): 生成期 望为 0, 标准差为 1 的(2 行 4 列)2 x 4个正态随机数 (2) R = random ('Poisson',1:6,1,6): 依次 生成参数为 1 到 6 的(1 行 6 列 )6 个 Poisson 随机数 第二种方法是针对特殊的分布的语句: 一. 几何分布随机数 R = geornd(P) R = geornd(P,m) (下面的 P , m 都可以是矩阵) (生成参数为 P 的几何随机数) (生成参数为 P 的 x m 个几何随机数) 1 R = geornd (P,m,n ) (生成参数为 P 的 m 行 n 列的 m x n 个几何随 机数) 例如 ⑴ R = geornd (1./ 2八(1:6))(生成参数依次为 1/2,1/2A 2,至U 1/2A 6 的 6 个几 何随机数 ) ⑵ R = geornd (0.01,[1 5])( 生成参数为0.01的(1行5列)5个几何随 机数). 二. Beta 分布随机数 R = betarnd(A,B) R = betarnd(A,B,m) 生成 m 行 n 列的 m x n 个数为 A,B 的 Beta 随 三.正态随机数 R = normrnd (MU, SIGMA ) (生成均值为 MU,标准差为SIGMA 的正态随机数) R = normrnd (MU , SIGMA,m ) (生成 1x m 个正态随机数) R = normrnd(MU , SIGMA,m,n) (生成 m 行 n 列的 m x n 个正态随机数) 例如 (1) R = normrnd(0,1,[1 5]) 生成 5 个正态 (0,1) 随机数 (2) R = normrnd([1 2 3;4 5 6],0.1,2,3) 生成期望依次为 [1,2,3;4,5,6], 方 差为 0.1 的 2x 3 个正态随机数. 生成参数为 A,B 的 Beta (生成 x m 个数为 A,B 随机数) 的 Beta 随机数) R = betarnd(A,B,m,n) 机数) .

一维连续型随机数序列的产生方法

随机数序列的产生方法 一维连续型随机数序列的产生方法 一.综述 由具有已知分布的总体中抽取简单子样,在蒙特卡罗方法中占有非常重要的地位。总体和子样的关系,属于一般和个别的关系,或者说属于共性和个性的关系。由具有已知分布的总体中产生简单子样,就是由简单子样中若干个性近似地反映总体的共性。 随机数是实现由已知分布抽样的基本量,在由已知分布的抽样过程中,将随机数作为已知量,用适当的数学方法可以由它产生具有任意已知分布的简单子样。 二.随机数的定义及性质 在连续型随机变量的分布中,最简单而且最基本的分布是单位均匀分布。由该分布抽取的简单子样称,随机数序列,其中每一个体称为随机数。单位均匀分布也称为[0,1]上的均匀分布,其分布密度函数为: 分布函数为: 其中P (·)表示事件·发生的概率。反之,如果随机变量序列ξ1, ξ2…对于任意自然数s ,由s 个元素所组成的s 维空间上的点(ξ n+1 ,…ξ n+s )在G s 上均匀分布,则它们是随机数序列。 由于随机数在蒙特卡罗方法中所处的特殊地位,它们虽然也属于由 1, 01()0, x f x ≤≤?=? ?其他 0,0(), 011,1 x F x x x x ?

具有已知分布的总体中产生简单子样的问题,但就产生方法而言,却有着本质上的差别 三.连续型随机数的模拟产生 最常用、最基础的随机数是在(0,1)区间内均匀分布的随机数(简记为RND)。一般采用某种数值计算方法产生随机数序列,在计算机上运算来得到.通常是利用递推公式: 给定k 个初始值ξ1,ξ2,…,ξk , 利用递推公式递推出一系列随机数ξ1,ξ2,…,ξn ,…. 利用在(0 , 1) 区间上均匀分布的随机数来模拟具有给定分布的连续型随机数. 1.反函数法 设连续型随机变量Y 的概率函数为 f (x ), 需产生给定分布的随机数. (1)算法:1)产生n 个RND 随机数r 1,r 2,…,r n ; 所得y i ,i =1,2, …,n 即所求。 (2)基本原理: 设随机变量Y 的分布函数F (y )是连续函数,而且随机变量X ~ U (0,1),令Z =F -1(X ),则Z 与Y 有相同分布. 证明:F Z (z )= P {F -1(X ) ≤ z }= P {X ≤F (z )}=G (F (z )) = F (z ) 因G (x )是随机变量X 的分布函数: 12(,,,) n n n n k f ξξξξ---= ; )()2i y i y dy y f r i 中解出从等式?∞ -= ?? ? ??≤<≤<=. 1,1;10, ;0, 0)(x x x x x G

相关文档
最新文档