重点高中平面几何常用定理总结

重点高中平面几何常用定理总结
重点高中平面几何常用定理总结

重点高中平面几何常用定理总结

————————————————————————————————作者:————————————————————————————————日期:

2

1 (高中)平面几何基础知识(基本定理、基本性质)

1.

勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,

等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍. 2. 射影定理(欧几里得定理)

3.

中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有

)(22222BP AP AC AB +=+;

中线长:2

222

22a c b m a

-+=

4.

垂线定理:2222BD BC AD AC CD AB -=-?⊥.

高线长:C b B c A a

bc

c p b p a p p a h a

sin sin sin ))()((2===---=

. 5.

角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个

角的两边对应成比例.

如△ABC 中,AD 平分∠BAC ,则AC

AB DC

BD =;(外角平分线定理).

角平分线长:2

cos 2)(2A

c b bc a p bcp c b t a +=-+=(其中p 为周长一半)

. 6. 正弦定理:

R C

c

B b A a 2sin sin sin ===,

(其中R 为三角形外接圆半径). 7. 余弦定理:C ab b a c cos 2222-+=. 8. 张角定理:AB

DAC AC

BAD AD

BAC ∠+∠=∠sin sin sin .

9.

斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一

点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD .

10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如

何转化?)

11.弦切角定理:弦切角等于夹弧所对的圆周角.

12.圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:)

13.布拉美古塔(Brahmagupta)定理:在圆内接四边形ABCD中,AC⊥BD,自对角线的交点P向一边作垂线,其延长线必平分对边.

14.点到圆的幂:设P为⊙O所在平面上任意一点,PO=d,⊙O的半径为r,则d2-r2就是点P对于⊙O的幂.过P任作一直线与⊙O交于点A、B,则PA·PB= |d2-r2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.

15.托勒密(Ptolemy)定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC·BD=AB·CD+AD·BC,(逆命题成立) .(广义托勒密定理)AB·CD+AD·BC≥AC·BD.

16.蝴蝶定理:AB是⊙O的弦,M是其中点,弦CD、EF经过点M,CF、DE 交AB于P、Q,求证:MP=QM.

17.费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角

2

形两顶点距离之和大于到另一点的距离.定理2三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点.

18.拿破仑三角形:在任意△ABC的外侧,分别作等边△ABD、△BCE、△CAF,则AE、AB、CD三线共点,并且AE=BF=CD,这个命题称为拿破仑定理.以△ABC的三条边分别向外作等边△ABD、△BCE、△CAF,它们的外接圆⊙C1、⊙A1、⊙B1的圆心构成的△——外拿破仑的三角形,⊙C1、⊙A1、⊙B1三圆共点,外拿破仑三角形是一个等边三角形;△ABC的三条边分别向△ABC的内侧作等边△ABD、△BCE、△CAF,它们的外接圆⊙C2、⊙A2、⊙B2的圆心构成的△——内拿破仑三角形,⊙C2、⊙A2、⊙B2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心.

19.九点圆(Nine point round或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如:

(1)三角形的九点圆的半径是三角形的外接圆半径之半;

(2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;

(3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.

20.欧拉(Euler)线:三角形的外心、重心、九点圆圆心、垂心依次位于

3

4 同一直线(欧拉线)上.

21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d 2=R 2-2Rr .

22. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和.

23. 重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3

,3

(C B A C B A y y y x x x G ++++

重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC 于D ,则D 为

BC 的中点,则1:2:=GD AG ;

(2)设G 为△ABC 的重心,则ABC ACG BCG ABG

S S S S ????===3

1

(3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于

E ,过G 作P

F ∥AC 交AB 于P ,交BC 于F ,过

G 作HK ∥AB 交AC 于K ,交BC 于

H ,则2;32=++===AB

KH CA

FP BC

DE AB

KH CA

FP BC

DE ;

(4)设G 为△ABC 的重心,则

①222222333GC AB GB CA GA BC +=+=+;

②)(3

1222222CA BC AB GC GB GA ++=++;

③22222223PG GC GB GA PC PB PA +++=++(P 为△ABC 内任意一点); ④到三角形三顶点距离的平方和最小的点是重心,即2

22GC GB GA ++最小;

⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心).

5 24. 垂心:三角形的三条高线的交点;

)cos cos cos cos cos cos ,cos cos cos cos cos cos (C

c

B b A a y

C c

y B b y A a C c B b A a x C c x B b x A a H C

B A

C B A ++++++++ 垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍;

(2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上; (3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆; (4)设

O ,H 分别为△ABC 的外心和垂心,则

HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,.

25. 内心:三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等;

),(

c

b a cy by ay

c b a cx bx ax I C

B A

C B A ++++++++

内心性质:(1)设I 为△ABC 的内心,则I 到△ABC 三边的距离相等,反之亦然; (

2

I 为△ABC 的内心,则

C AIB B AIC A BIC ∠+?=∠∠+?=∠∠+

?=∠2

1

90,2190,2190; (3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内

心的距离相等;反之,若A ∠平分线交△ABC 外接圆于点K ,I 为线段AK 上的点且满足KI=KB ,则I 为△ABC 的内心;

(4)设I 为△ABC 的内心,,,,c AB b AC a BC === A ∠平分线交BC 于D ,

6 交△ABC 外接圆于点K ,则a

c

b KD IK KI AK ID

AI +=

=

=; (5)设I 为△ABC 的内心,,,,c AB b AC a BC ===I 在AB AC BC ,,上的射影分

别为F E D ,,,内切圆半径为r ,令)(2

1c b a p ++=,则①pr

S ABC

=?;②

c p CD CE b p BF BD a p AF AE -==-==-==;;;③CI BI AI p abcr ???=.

26. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等;

)2sin 2sin 2sin 2sin 2sin 2sin ,2sin 2sin 2sin 2sin 2sin 2sin (

C

B A Cy By Ay

C B A Cx Bx Ax O C

B A

C B A ++++++++

外心性质:(1)外心到三角形各顶点距离相等;

(2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠-?=∠2360; (3)?

=

S abc R 4;(4)锐角三角形的外心到三边的距离之和等于其

内切圆与外接圆半径之和.

27. 旁心:一内角平分线与两外角平分线交点——旁切圆圆心;设△ABC 的三边,,,c AB b AC a BC ===令)(2

1c b a p ++=,分别与AB AC BC ,,外侧相切的旁切圆

圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,.

旁心性质:(1),2

1,2

190A C BI C BI A C BI C B A ∠=∠=∠∠-?=∠(对于顶角B ,C 也有

类似的式子); (2))(2

1

C A I I I C

B A ∠+∠=

∠; (3)设A AI 的连线交△ABC 的外接圆于D ,则DC DB DI A ==(对于C B CI BI ,有同样的结论);

(4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径'R 等于△ABC 的直径为2R .

7 28. 三

角形面积公式:

C B A R R abc C ab ah S a ABC

sin sin sin 24sin 21212====?)

cot cot (cot 4222C B A c b a ++++=

))()((c p b p a p p pr ---==,其中a h 表示BC 边上的高,R 为外接圆半径,r 为

内切圆半径,)(2

1c b a p ++=.

29. 三角形中内切圆,旁切圆和外接圆半径的相互关系:

;2

sin 2cos 2cos 4,2cos 2sin 2cos 4,2cos 2cos 2sin 4;2sin 2sin 2sin

4C B A R r C B A R r C B A R r C B A R r c b a ==== .1111;2

tan

2tan ,2tan 2tan ,2tan 2tan r r r r B A r r C A r r C B r r

c b a c b a

=++===

30. 梅涅劳斯(Menelaus )定理:设△ABC 的三边BC 、CA 、AB 或其延长线和一条不经过它们任一顶点的直线的交点分别为P 、Q 、R 则有

1=??RB

AR QA CQ PC BP .(逆定理也成立) 31. 梅涅劳斯定理的应用定理1:设△ABC 的∠A 的外角平分线交边CA 于Q ,∠C 的平分线交边AB 于R ,∠B 的平分线交边CA 于Q ,则P 、Q 、R 三点共线.

32. 梅涅劳斯定理的应用定理2:过任意△ABC 的三个顶点A 、B 、C 作它的外接圆的切线,分别和BC 、CA 、AB 的延长线交于点P 、Q 、R ,则P 、Q 、R 三点共线.

33. 塞瓦(Ceva )定理:设X 、Y 、Z 分别为△ABC 的边BC 、CA 、AB 上的一点,

则AX 、BY 、CZ 所在直线交于一点的充要条件是AZ ZB ·BX XC ·CY

YA

=1.

34. 塞瓦定理的应用定理:设平行于△ABC 的边BC 的直线与两边AB 、AC 的

交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中点M.35.塞瓦定理的逆定理:(略)

36.塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点,三角形的三条高线交于一点,三角形的三条角分线交于一点.

37.塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB 分别相切于点R、S、T,则AR、BS、CT交于一点.

38.西摩松(Simson)定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线Simson line).

39.西摩松定理的逆定理:(略)

40.关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上.

41.关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点.

42.史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC 的点P的西摩松线通过线段PH的中心.

43.史坦纳定理的应用定理:△ABC的外接圆上的一点P的关于边BC、CA、AB的对称点和△ABC的垂心H同在一条(与西摩松线平行的)直线上.这条直线被叫做点P关于△ABC的镜象线.

44.牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对

8

角线的中点,三点共线.这条直线叫做这个四边形的牛顿线.

45.牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线.

46.笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.

47.笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.

48.波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2 ) .49.波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点.

50.波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、

C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的

垂心的连线段的中点.

51.波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC 的西摩松线,如设QR为垂直于这条西摩松线该外接圆的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点.

52.波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,

9

设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、

E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩

松线交于一点.

53.卡诺定理:通过△ABC的外接圆的一点P,引与△ABC的三边BC、CA、AB分别成同向的等角的直线PD、PE、PF,与三边的交点分别是D、E、F,则D、E、F三点共线.

54.奥倍尔定理:通过△ABC的三个顶点引互相平行的三条直线,设它们与△ABC的外接圆的交点分别是L、M、N,在△ABC的外接圆上取一点P,则PL、PM、PN与△ABC的三边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.

55.清宫定理:设P、Q为△ABC的外接圆的异于A、B、C的两点,P点的关于三边BC、CA、AB的对称点分别是U、V、W,这时,QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.56.他拿定理:设P、Q为关于△ABC的外接圆的一对反点,点P的关于三边BC、CA、AB的对称点分别是U、V、W,这时,如果QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.(反点:P、Q分别为圆O的半径OC和其延长线的两点,如果OC2=OQ×OP则称P、Q 两点关于圆O互为反点)

57.朗古来定理:在同一圆周上有A1、B1、C1、D1四点,以其中任三点作三角形,在圆周取一点P,作P点的关于这4个三角形的西摩松线,再从P

10

向这4条西摩松线引垂线,则四个垂足在同一条直线上.

58.从三角形各边的中点,向这条边所对的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心.

59.一个圆周上有n个点,从其中任意n-1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点.

60.康托尔定理1:一个圆周上有n个点,从其中任意n-2个点的重心向余下两点的连线所引的垂线共点.

61.康托尔定理2:一个圆周上有A、B、C、D四点及M、N两点,则M和N 点关于四个三角形△BCD、△CDA、△DAB、△ABC中的每一个的两条西摩松线的交点在同一直线上.这条直线叫做M、N两点关于四边形ABCD的康托尔线.

62.康托尔定理3:一个圆周上有A、B、C、D四点及M、N、L三点,则M、N两点的关于四边形ABCD的康托尔线、L、N两点的关于四边形ABCD的康托尔线、M、L两点的关于四边形ABCD的康托尔线交于一点.这个点叫做M、N、L三点关于四边形ABCD的康托尔点.

63.康托尔定理4:一个圆周上有A、B、C、D、E五点及M、N、L三点,则M、N、L三点关于四边形BCDE、CDEA、DEAB、EABC中的每一个康托尔点在一条直线上.这条直线叫做M、N、L三点关于五边形A、B、C、D、E的康托尔线.

64.费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切.

65.莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相

11

12 得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形.

66. 布利安松定理:连结外切于圆的六边形ABCDEF 相对的顶点A 和D 、B 和E 、C 和F ,则这三线共点.

67. 帕斯卡(Paskal )定理:圆内接六边形ABCDEF 相对的边AB 和DE 、BC 和EF 、CD 和FA 的(或延长线的)交点共线.

68. 阿波罗尼斯(Apollonius )定理:到两定点A 、B 的距离之比为定比m :

n (值不为1)的点P ,位于将线段AB 分成m :n 的内分点C 和外分点D 为

直径两端点的定圆周上.这个圆称为阿波罗尼斯圆.

69. 库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆.

70. 密格尔(Miquel )点: 若AE 、AF 、ED 、FB 四条直线相交于A 、B 、C 、

D 、

E 、

F 六点,构成四个三角形,它们是△ABF 、△AED 、△BCE 、△DCF ,

则这四个三角形的外接圆共点,这个点称为密格尔点.

71. 葛尔刚(Gergonne )点:△ABC 的内切圆分别切边AB 、BC 、CA 于点D 、

E 、

F ,则AE 、BF 、CD 三线共点,这个点称为葛尔刚点.

72. 欧拉关于垂足三角形的面积公式:O 是三角形的外心,M 是三角形中的任意一点,过M 向三边作垂线,三个垂足形成的三角形的面积,其公式:

2

22ABC D 4||R d R S S EF -=

??.

13

小学奥数-几何五大模型(蝴蝶模型)整理版

任意四边形、梯形与相似模型 卜亠\ 模型三蝴蝶模型(任意四边形模型) 任意四边形中的比例关系(“蝴蝶定理”): D S1: S2 = S4: S3或者S S3 =S2 S4 ② AO : OC =[S S2 : S4 S3 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。 【例1】(小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD被对角线AC BD分成四个部分,△ AOB面积为1平方千米,△ BOC面积为2平方千米,△ COD勺面积为3平方千米,公园由陆地面积是 6. 92平方千米和人工湖组成,求人工湖的面积是多少平方千米? 【分析】根据蝴蝶定理求得S^AOD=3 1-'2=1.5平方千米,公园四边形ABCD的面积是12 3 45 = 7.5平方千米,所以人工湖的面积是7.5-6.92=0.58平方千米 【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知, 求:⑴三角形BGC的面积:⑵AG:GC= ? 【解析】⑴根据蝴蝶定理,S BGC 1=2 3,那么S BGC=6 ; ⑵根据蝴蝶定理,AG:G^ 1 2 : 3 6 =1:3 . (? ??) 【例2】四边形ABCD的对角线AC与BD交于点0(如图所示)。如果三角形ABD的面积等于三角形BCD的

面积的 1 ,且AO =2 , DO =3,那么CO的长度是DO的长度的_____________ 倍。 3 【解析】在本题中,四边形ABCD为任意四边形,对于这种”不良四边形”,无外乎两种处理方法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形。看到题目中给出条件S A BD : S BCD =1:3,这可以向模型一蝴蝶定理靠拢,于是得出一种解法。又观察题目中给出的已知条件是面积的关系,转化为边的关系,可以得到第二种解法,但是第二种解法需要一个中介来改造这个”不良四边形”,于是可以作AH垂直BD于H , CG垂直BD于G,面积比转化为高之比。再应用结论:三角形高相同,则面积之比等于底边之比,得出结果。请老师注意比较两种解法,使学生体会到蝴蝶定理的优势,从而主观上愿意掌握并使用蝴蝶定理解决问题。 解法一:T AO :OC = S ABD: S BDC =1 : 3 , 二OC =2 3 =6 , ??? OC:OD =6:3 2:1 . 解法二:作AH _BD 于H , CG_BD 于G . ?- AH」CG , 3 1 ?- AO CO , 3 ?OC =2 3=6 , ?OC:OD =6:3 =2:1 ? 【例3】如图,平行四边形ABCD的对角线交于O点,A CEF、△OEF、△ODF、△BOE的面积依次是2、 4、4和6。求:⑴求A OCF的面积;⑵求A GCE的面积。 【解析】⑴根据题意可知,△BCD的面积为2 4 4 ^16,那么△BCO和:CDO的面积都是16亠2=8 , 所以A OCF 的面积为8—4=4; ⑵由于△ BCO的面积为8, △BOE的面积为6,所以A OCE的面积为8-6=2 , 根据蝴蝶定理,EG:FG 二 Sg E:S.COF =2:4 =1:2,所以S.GCE:S.GCF = EG : FG =1:2 , 1 1 2 那么S GCE S CEF 2 ~~? 1+2 3 3 【例4】图中的四边形土地的总面积是52公顷,两条对角线把它分成了4个小三角形,其中2个小三角形的面积分别是6公顷和7公顷。那么最大的一个三角形的面积是多少公顷? S 'ABD S BCD 3审 S AOD =—S DOC 3

初三数学几何知识点归纳总结

初三数学几何知识点归纳总结 除了课堂上的学习外,数学知识点也是学生提高数学成绩的重要途径,本文为大家提供了初三数学几何知识点归纳总结,希望对大家的学习有一定帮助。 1 同角或等角的余角相等 2 过一点有且只有一条直线和已知直线垂直 3 过两点有且只有一条直线 4 两点之间线段最短 5 同角或等角的补角相等 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 初中几何公式:角 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 初中几何公式:三角形

15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理有两角和它们的夹边对应相等的两个三角形全等 24 推论有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理有三边对应相等的两个三角形全等 26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合

立体几何公理、定理推论汇总(修订)

立体几何公理、定理推论汇总 一、公理及其推论 公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。 符号语言:,,,A l B l A B l ααα∈∈∈∈?? 作用: ① 用来验证直线在平面内;② 用来说明平面是无限延展的。 公理2 如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。(那么它们有且只有一条通过这个公共点的公共直线) 符号语言:P l P l αβαβ∈?=∈I I 且 作用:① 用来证明两个平面是相交关系; ② 用来证明多点共线,多线共点。 公理3 经过不在同一条直线上的三点,有且只有一个平面。 符号语言:,,,,A B C A B C ?不共线确定一个平面 推论1 经过一条直线和这条直线外的一点,有且只有一个平面。 符号语言:A a A a a αα??∈?有且只有一个平面,使, 推论2 经过两条相交直线,有且只有一个平面。 符号语言:a b P a b ααα?=???有且只有一个平面,使, 推论3 经过两条平行直线,有且只有一个平面。 符号语言://a b a b ααα???有且只有一个平面,使, 公理3及其推论的作用:用来证明多点共面,多线共面。 公理4 平行于同一条直线的两条直线平行(平行公理)。 符号语言://////a b a c c b ???? 图形语言: 作用:用来证明线线平行。 公理4 平行于同一条直线的两条直线平行(平行公理)。(1) 符号语言:////a b a c ??? 图形语言:

线面平行的判定定理 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。(2) 符号语言:////a b a a b ααα???????? 图形语言: 线面平行的性质定理 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 (3) 符号语言:////a b a a b βαβα??????=?I 图形语言: 面面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(4) 符号语言://(/,///),a b b b O a a ββαααβ??=?????? I 图形语言: 面面平行的判定 如果两个平面垂直于同一条直线,那么这两个平面平行。(5) 符号语言:,,//oo oo ααββ???? ⊥⊥ 图形语言: 面面平行的性质定理 如果两个平行平面同时和第三个平面相交,那么它们的交线平行。(6) 符号语言:////a a b b αγβγαβ? ?=???=?I I 图形语言: 面面平行的性质1 如果两个平面平行,那么其中一个平面内的直线平行于另一个平面。(7) 符号语言:////a a βααβ????? 图形语言: 面面平行的性质 如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面。(8) 符号语言://a a ββαα????⊥⊥ 图形语言: 面面平行的性质3 平行于同一个平面的两个平面平行。(9) 符号语言://////αβαγγβ??? 图形语言:

高中数学平面解析几何知识点总结

平面解析几何 一、直线与圆 1.斜率公式 2121 y y k x x -=-(111(,)P x y 、222(,)P x y ). 2.直线的五种方程 (1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121 y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). < (4)截距式 1x y a b +=(a b 、分别为直线的横、纵截距,0a b ≠、). (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 3.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ?=≠; ②12121l l k k ⊥?=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222 ||A B C l l A B C ? =≠; < ②1212120l l A A B B ⊥?+=; 4.点到直线的距离 d =(点00(,)P x y ,直线l :0Ax By C ++=). 5.圆的四种方程 (1)圆的标准方程 222()()x a y b r -+-=. (2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).圆心??? ??--2,2E D ,半径r=2 422F E D -+. 6.点与圆的位置关系 点00(,)P x y 与圆2 22)()(r b y a x =-+-的位置关系有三种: . 若d =d r >?点P 在圆外;d r =?点P 在圆上;d r 相离r d ; 0=???=相切r d ; 0>???<相交r d . 其中22B A C Bb Aa d +++=. 8.两圆位置关系的判定方法 # 设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21 条公切线外离421??+>r r d ; 条公切线外切321??+=r r d ;

几何五大定理

第一大定理:共角定理(鸟头定理) 即在两个三角形中,它们有一个角相等(互补),则它们就是共角三角形。它们的面积之 比,就是对应角(相等角、互补角)两夹边的乘积之比。 雪帆华数: 这个不建议记,符合这种的直接用,不符合这种的呢?还不如直接记推导的思 路。
2013-5-20 22:15 回复
第二大定理:等积变换定理。 1、等底等高的两个三角形面积相等; 2、两个三角形(底)高相等,面积之比等于高(底)之比。 3、在一组平行线之间的等积变形。
如图所示,S△ACD=S△BCD;反之,如果 S△ACD=S△BCD,则可知直线 AB 平行于 C D。 第三大定理:梯形蝴蝶定理。
这个为了竞赛,不得不记

对,竞赛的数学图形题都是这一类型的题。 任意四边形中,同样也有蝴蝶定理。
2013-5-20 22:15 回复 2013-5-22 13:22 回复
上述的梯形蝴蝶定理,就是因为 AD‖EC 得来的。
如果知道鸟头定理是怎么推导的,这个简直就是小菜。
2013-5-20 22:16 回复
:是的,共角定理。
2013-5-21 12:22 回复
这个很好,尤其是由△ABC 和△ADC 的面积得出对角线的比,对于任意四边形都可以,可 以当个定理来用了。
2013-5-21 19:17 回复
第四大定理:相似三角形定理。 1、相似三角形:形状相同,大小不相等的两个三角形相似; 2、寻找相似模型的大前提是平行线:平行于三角形一边的直线和其他两边或两边延长线 相交,所构成的三角形与原三角形相似。 3、相似三角形性质:1.相似三角形的一切对应线段(对应高、对应边)的比等于相似比; ②相似三角形周长的比等于相似比;③相似三角形面积的比等于相似比的平方。 相似模型大致分为金字塔模型、沙漏模型这两大类,注意这两大类中都含有 BC 平行 DE 这样的一对平行线!

高中复习数学竞赛基础平面几何知识点总结

高中数学竞赛平面几何知识点基础 1、相似三角形的判定及性质 相似三角形的判定: (1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似; (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.); (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.); (4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似.). 直角三角形相似的判定定理: (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似; (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 常见模型: 相似三角形的性质: (1)相似三角形对应角相等 (2)相似三角形对应边的比值相等,都等于相似比 (3)相似三角形对应边上的高、角平分线、中线的比值都等于相似比 (4)相似三角形的周长比等于相似比 (5)相似三角形的面积比等于相似比的平方 2、内、外角平分线定理及其逆定理 内角平分线定理及其逆定理: 三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。 如图所示,若AM平分∠BAC,则AB AC =BM MC 该命题有逆定理: 如果三角形一边上的某个点与这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连

线是三角形的一条角平分线 外角平分线定理: 三角形任一外角平分线外分对边成两线段,这两条线段和夹相应的内角的两边成比例。 如图所示,AD平分△ABC的外角∠CAE,则BD DC =AB AC 其逆定理也成立:若D是△ABC的BC边延长线上的一点, 且满足BD DC =AB AC ,则AD是∠A的外角的平分线 内外角平分线定理相结合: 如图所示,AD平分∠BAC,AE平分∠BAC的外角 ∠CAE,则BD DC =AB AC =BE EC 3、射影定理 在Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射 影定理如下: BD2=AD·CD AB2=AC·AD BC2=CD·AC 对于一般三角形: 在△ABC中,设∠A,∠B,∠C的对边分别为a,b,c,则有 a=bcosC+ccosB b=ccosA+acosC c=acosB+bcosA 4、旋转相似 当一对相似三角形有公共定点且其边不重合时,则会产生另 一对相似三角形,寻找方法:连接对应点,找对应点连线和 一组对应边所成的三角形,可以得到一组角相等和一组对应 边成比例,如图中若△ABC∽△AED,则△ACD∽△ABE 5、张角定理 在△ABC中D为BC边上一点,则 sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 6、圆内有关角度的定理 圆周角定理及其推论: (1)圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半(2)同弧所对的圆周角相等 (3)直径所对的圆周角是直角,直角所对的弦是直径

几何五大模型之二(鸟头定理)

三角形之鸟头模型 共角定理(鸟头模型) 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比. 如图在△ABC 中,D,E 分别是AB,AC 上的点如图(或D 、E 分别在BA 、CA 延长线上),则 AC AB AE AD AC AE AB AD S S ABC ADE ??=?=?? (夹角两边:大 大小 小??) 即,共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比 例题讲解: 1、如图,BD 长12厘米,DC 长4厘米,B 、C 和D 在同一条直线上。求三角形ABD 的面积是三角形ADC 面积的多少倍? 2、如右图,已知在△ABC 中,BE=3AE ,CD=2AD .若△ADE 的面积为1平方厘米.求三角形ABC 的面积. 3、如图在△ABC 中,D 在BA 的延长线上,E 在AC 上,且AB : AD = 5 : 2,AE :EC = 3: 2, 平方厘米12=?ADE S ,求△ABC 的面积.

4、 如图在ABC △中,,D E 分别是,AB AC 上的点,且:2:5AD AB =,:4:7AE AC =,16ADE S =△平方厘 米,求ABC △的面积. E D C B A 【巩固】如图,三角形ABC 中,AB 是AD 的5倍,AC 是AE 的3倍,如果三角形ADE 的面积等于1,那 么三角形ABC 的面积是多少? E D C B A A B C D E 【巩固】如图,三角形ABC 被分成了甲(阴影部分)、乙两部分,4BD DC ==,3BE =,6AE =,乙部分面 积是甲部分面积的几倍? 乙 甲 E D C B A A B C D E 甲 乙 5、 如图在ABC △中,D 在BA 的延长线上,E 在AC 上,且:5:2AB AD =, :3:2AE EC =,12ADE S =△平方厘米,求ABC △的面积. E D C B A E D C B A

全新 中考数学几何知识点全总结

初中几何公式:线 1、同角或等角的余角相等 2、过一点有且只有一条直线和已知直线垂直 3、过两点有且只有一条直线 4、两点之间线段最短 5、同角或等角的补角相等 6、直线外一点与直线上各点连接的所有线段中,垂线段最短 7、平行公理经过直线外一点,有且只有一条直线与这条直线平行 8、如果两条直线都和第三条直线平行,这两条直线也互相平行 初中几何公式:角 9、同位角相等,两直线平行 10、内错角相等,两直线平行 11、同旁内角互补,两直线平行 12、两直线平行,同位角相等 13、两直线平行,内错角相等 14、两直线平行,同旁内角互补 初中几何公式:三角形 15、定理三角形两边的和大于第三边 16、推论三角形两边的差小于第三边 17、三角形内角和定理三角形三个内角的和等于180° 18、推论1 直角三角形的两个锐角互余 19、推论2 三角形的一个外角等于和它不相邻的两个内角的和 20、推论3 三角形的一个外角大于任何一个和它不相邻的内角 21、全等三角形的对应边、对应角相等 22、边角边公理有两边和它们的夹角对应相等的两个三角形全等 23、角边角公理有两角和它们的夹边对应相等的两个三角形全等 24、推论有两角和其中一角的对边对应相等的两个三角形全等 25、边边边公理有三边对应相等的两个三角形全等 26、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等 27、定理1 在角的平分线上的点到这个角的两边的距离相等

28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29、角的平分线是到角的两边距离相等的所有点的集合 初中几何公式:等腰三角形 30、等腰三角形的性质定理等腰三角形的两个底角相等 31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32、等腰三角形的顶角平分线、底边上的中线和高互相重合 33、推论3 等边三角形的各角都相等,并且每一个角都等于60° 34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35、推论1 三个角都相等的三角形是等边三角形 36、推论2 有一个角等于60°的等腰三角形是等边三角形 37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38、直角三角形斜边上的中线等于斜边上的一半 39、定理线段垂直平分线上的点和这条线段两个端点的距离相等 40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42、定理1 关于某条直线对称的两个图形是全等形 43、定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c 47、勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形 初中几何公式:四边形 48、定理四边形的内角和等于360° 49、四边形的外角和等于360° 50、多边形内角和定理n边形的内角的和等于(n-2)×180° 51、推论任意多边的外角和等于360° 52、平行四边形性质定理1 平行四边形的对角相等 53、平行四边形性质定理2 平行四边形的对边相等

高中数学几何知识点总结

高中数学几何知识点总结 高中数学几何知识点总结:平面 1. 经过不在同一条直线上的三点确定一个面. 注:两两相交且不过同一点的四条直线必在同一平面内. 2. 两个平面可将平面分成3或4部分.(①两个平面平行,②两个平面相交) 3. 过三条互相平行的直线可以确定1或3个平面.(①三条直线在一个平面内平行,②三条直线不在一个平面内平行) [注]:三条直线可以确定三个平面,三条直线的公共点有0或1个. 4. 三个平面最多可把空间分成 8 部分.(X、Y、Z三个方向) 高中数学几何知识点总结:空间的直线与平面 ⒈平面的基本性质⑴三个公理及公理三的三个推论和它们的用途. ⑵斜二测画法. ⒉空间两条直线的位置关系:相交直线、平行直线、异面直线. ⑴公理四(平行线的传递性).等角定理. ⑵异面直线的判定:判定定理、反证法. ⑶异面直线所成的角:定义(求法)、范围.

⒊直线和平面平行直线和平面的位置关系、直线和平面平行的判定与性质. ⒋直线和平面垂直 ⑴直线和平面垂直:定义、判定定理. ⑵三垂线定理及逆定理. 5.平面和平面平行 两个平面的位置关系、两个平面平行的判定与性质. 6.平面和平面垂直 互相垂直的平面及其判定定理、性质定理. (二)直线与平面的平行和垂直的证明思路(见附图) (三)夹角与距离 7.直线和平面所成的角与二面角 ⑴平面的斜线和平面所成的角:三面角余弦公式、最小角定理、斜线和平 面所成的角、直线和平面所成的角. ⑵二面角:①定义、范围、二面角的平面角、直二面角. ②互相垂直的平面及其判定定理、性质定理. 8.距离 ⑴点到平面的距离. ⑵直线到与它平行平面的距离. ⑶两个平行平面的距离:两个平行平面的公垂线、公垂线段.

小学平面几何知识点总结

3、其它的几何概念 1、距离:从直线外一点到这条直线所垂直线段的长度叫做距离。 2、三角形的内角和等于180°。 3、周长:围成一个图形的所有边长的总和叫做这个图形的周长。 4、面积:物体的表面或围成的平面图形的大小,叫做它们的面积。 5、表面积:一个立体图形所有的面的面积总和,叫做它的表面积。 6、体积:一个立体图形所占空间的大小,叫做它的体积。 7、容积:一个容器所能容纳物体体积的多少叫做该容器的容积。 8、角的计量单位是"度",用符号"°"表示。 9、角的大小要看两条边叉开的大小,叉开的越大,角越大。角的大小与角的两边画出的长短没有关系。 10、平行线间的距离都相等。 11、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合。这个图形叫做轴对称图形。 12、对称轴:这条直线叫做对称轴。 13、两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。 4、关于几何的一些操作知识 1、画一个角的步骤如下: ⑴画一条射线,使量角器的中心和射线的端点重合,零刻度线和射线重合; ⑵在量角器所取刻度线的地方点一个点; ⑶以画出的射线的端点为端点,通过刚画的点,再画一条射线。 2、垂线的画法: 1)过直线上一点画这条直线的垂线。 2)过直线外一点画这条直线的垂线。 3、画平行线的步骤是: ⑴固定三角板,沿一条直角边先画一条直线; ⑵用直尺紧靠三角板的另一条直线边,固定直尺然后平移三角板; ⑶再沿一条直角边画出另一条直线 4、例:画一个长是2.5厘米,宽是2厘米的长方形。画的步骤如下: ⑴画一条2.5厘米长的线段; ⑵从画出的线段两端,在同侧画两条与这条线段垂直的线段,使它们分别长2厘米。 ⑶把这两条线段另外的端点连接起来。 5、圆的画法: ⑴分开圆规的两脚,在直线上确定半径: ⑵固定圆规有针尖的脚,确定圆心; ⑶旋转有铅笔尖的一只脚画出一个圆。 平面图形习题精编 一、认真思考,准能填好。 1.三角形的一个内角正好等于其余两个内角的和,这是一个()三角形。 2.一个等腰三角形,它的顶角是72o,它的底角是()度。 3.一个等腰三角形的两条边分别是5厘米和8厘米,那么它的周长最多是()厘米,最少是()厘米。 (第三条边为整厘米数) 4.用圆规画一个周长是12 .56厘米的圆,圆规两脚间的距离应该是()厘米。 5.用360厘米长的铁丝围成一个三角形,三条边长度的比是1:2:3,它的三条边的长度分别是().()和()厘米。 二、仔细推敲,准确判断。

初中数学知识内容概况:公理和定理

初中数学知识内容概况《公式和法则》 一、数的有关概念和运算 1、正数都大于零,负数都小于零,正数大于负数. 2、零的相反数是零 3、一个正数的绝对值是它本身;零的绝对值是零; 一个负数的绝对值是它的相反数. 4、两个负数,绝对值大的反而小. 5、有理数的运算: (1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得零;一个数同零相加,仍得这个数. (2)有理数减法法则:减去一个数,等于加上这个数的相反数. (3)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对植相乘.任何数同零相乘,都得零.不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正. 几个数相乘,有一个因数为零,积就为零. (4)有理数除法则:除以一个数等于乘上这个数的倒数. (注意:0不能作除数.) 有理数除法符号法则:两数相除,同号得正,异号得负,并把绝对值相除. 零除以任何一个不等于零的数,都得零. (5)有理数乘方法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数. (6)有理数混合运算的运算顺序规定如下:① 先算乘方,再算乘除,最后算加减;②同级运算,按照从左至右的顺序进行;③如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的. 6、(1)加法交换律:a+b =b+a ;加法结合律:a+b+c =a+(b+c );乘法交换律:a ·b =b ·a ;乘法结合律:abc =a (bc );乘法分配律:a (b +c )=ab +ac . (2)幂的运算:a m ·a n =a m+n (m 、n 为正整数);mn n m a a =)((m 、n 为正整数);()n n n b a ab =(n 为正整数);n m n m a a a -=÷(m 、n 为正整数,m >n ,a ≠0),a 0=1(a ≠0);n n a a 1=-(a ≠0,n 为正整数). (3)乘法公式:平方差公式:()()2 2b a b a b a -=-+;完全平方公式:()2b a +=222b ab a ++ 二、式的有关概念和运算 1、合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变. 2、去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号. 3、添括号法则:所添括号前面是“+”号,括到括号里的各项都不变符号;所添括号前面是“-”号,括到括号里的各项都改变符号. 4、整式加减的一般步骤可以总结为: (1) 如果有括号,那么先去括号;(2) 如果有同类项,再合并同类项. 5、二次根式的运算:()0,0≥≥=?b a ab b a ;b a b a =(0,0>≥b a )

高中平面解析几何知识点总结

高中平面解析几何知识点总结 一.直线部分 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率: αtan ),(21121 2=≠--= k x x x x y y k .两点坐标为111(,)P x y 、222(,)P x y . 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:121121x x x x y y y y --= -- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式:1 =+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式: B C x B A y - - =,即,直线的斜率: B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直 线一般不重合.

几何五大模型汇总

小学平面几何五大模型 一、 共角定理 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在ABC △中,,D E分别是, AB AC上的点如图⑴(或D在BA的延长线上,E在AC上),则:():() S S AB AC AD AE =?? △△ 证明:由三角形面积公式S=1/2*a*b*sinC可推导出 若△ABC和△ADE中, ∠BAC=∠DAE 或∠BAC+∠DAE=180°, 则 ADE ABC S S ? ? = AE AD AC AB ? ? 二、等积模型 ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如下图 12 :: S S a b = ③夹在一组平行线之间的等积变形,如右图 ACD BCD S S= △△ ; 反之,如果 ACD BCD S S = △△ ,则可知直线AB平行于CD. ④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. b a S2 S1 D C B A

三、蝶形定理 1、任意四边形中的比例关系(“蝶形定理”): ①1243::S S S S =或者1324S S S S ?=? ②()()1243::AO OC S S S S =++ 速记:上×下=左×右 蝶形定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面 可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系. 2、梯形中比例关系(“梯形蝶形定理”): ①2213::S S a b = ②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +. 四、相似模型 (一)金字塔模型 (二) 沙漏模型 G F E A B C D A B C D E F G ①AD AE DE AF AB AC BC AG ===; ②22:ADE ABC S S AF AG =△△:. 相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下: ⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; A B C D O b a S 3 S 2 S 1S 4 S 4 S 3 S 2 S 1O D C B A

平面几何知识点总结.

平面几何知识点总结 4.托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组 对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和). 即: 1 PC BP R Q P AB CA BC ABC ABC l .1=????RB AR QA CQ ,则、、长线分别交于或它们的延 、、的三边并且与的顶点,不经过梅涅劳斯定理:若直线三点共线; 、、,则,这时若 或数为边上的点的个三点中,位于、、并且三点,上或它们的延长线上的、、三边的分别是、、梅涅劳斯逆定理:设R Q P 1PC BP 20ABC R Q P AB CA BC ABC R Q P .2=????RB AR QA CQ 1 :.3=???RB AR QA CQ PC BP CR BQ AP AB CA BC ABC R Q P 条件是三线共点的充要、、边上的点,则、 、的分别是、、塞瓦定理:设M Q R A C P B ; 内接于圆,则有: 设四边形BD AC BC AD CD AB ABCD ?=?+?; 内接于圆时,等式成立并且当且仅当四边形中,有:定理:在四边形ABCD BD AC BC AD CD AB ABCD ?≥?+?三点共线; 、、则,、、的垂线,垂足分别为、、作外接圆上一点西姆松定理:若从F E D F E D AC AB BC P ABC ?.5的外接圆上; 在则在同一直线上,、、若其垂足作垂线,的延长线或它们的三边向点西姆松的逆定理:从一ABC P N M L ABC P ??)(.6

; ,则、 于分别交和,连接和弦任意引 的中点蝴蝶定理:一个圆的弦NP MP N M AB CF DE EF CD P AB =.7 ; 2.8GH OG H G O H G O ABC =?且三点共线, 、、,则、、分别为的外心、重心、垂心欧拉定理:设 三线共点。 、、则,、、外面,做三个正三角形的的小于费马点:在每个内角都''''''120.9CC BB AA ABC CAB BCA ABC ?? 三角形。 ,此三角形称为拿破仑中心组成一个正三角形,则此三角形的边为边作三个正三角形三角形的外面,各以三拿破仑三角形:在任意.10 的莫莱恩线。 为三点共线。这条直线称、、,则、、长线交于的延、、别和作其外接圆的切线,分、、三个顶点莫莱恩线:过ABC F E D F E D AB CA BC C B A ABC ??.11 三点共线。 、、,则、、的中点分别是以及线段、,对角线延长线交于的、,另一组对边的延长线交于、的一组对边牛顿定理:设四边形Z Y X Z Y X EF BD AC F BC AD E CD BA ABCD .12 共线。 、、的交点和、和、和三边对边求是凸的不要边形巴斯卡定理:圆内接六N M L BC EF FA CD DE AB ABCDEF )(.13 共点。、、的三条对角线六边形卜利安香定理:圆外切CF BE AD ABCDEF .14 15.到三角形三顶点距离之和最小的点――费马点 到三角形顶点距离的平方和最小的点――重心 三角形内到三边距离之和最大的点――重心

平面几何-五大定理及其证明

平面几何定理及其证明 梅涅劳斯定理 1 .梅涅劳斯定理及其证明 定理:一条直线与 ABC 的三边AB BC CA 所在直线分别交于点 D E 、F ,且D E 、F 均 证明:如图,过点C 作AB 的平行线,交EF 于点G. 因为 CG // AB ,所以 CG CF --------------------- ( 1) AD FA 因为 CG // AB ,所以 EC ( 2) DB BE C F ,即得 A D C F EC FA DB EC FA 2.梅涅劳斯定理的逆定理及其证明 定理:在 ABC 的边AB BC 上各有一点 D E ,在边 AC 的延长线上有一点 F ,若 二、 塞瓦定理 3 .塞瓦定理及其证明 定理:在ABC 内一点P,该点与ABC 的三个顶点相连所在的 三条直线分别交 ABCE 边AB BC CA 于点D E 、F ,且D E 、F 三点均不是 ABC 不是ABC 的顶点,则有 AD BE CF 1 DB EC 由(1)宁(2) DB 可得兀 AD BE CF DB EC FA 1 ,那么,D E 、F 三点共线. 证明:设直线EF 交AB 于点D ,则据梅涅劳斯定理有 AD / BE CF 丽 EC FA 因为AD Bl CF DB EC FA 1,所以有誥 段AB 上,所以点D 与D 重合.即得D 鴿.由于点D D 都在线 E 、F 三点共线. 证明: 运用面积比可得 AD DB S ADP S BDP S ADC S BDC 根据 等 比定理有 S ADP S ADC S ADC S ADP S APC S S BDP BDC S BDC S BDP S

初中几何知识点总结非常全

证明(一) 1、本套教材选用如下命题作为公理: (1)、两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。 (2)、两条平行线被第三条直线所截,同位角相等。 (3)、两边及其夹角对应相等的两个三角形全等。 (4)、两角及其夹边对应相等的两个三角形全等。 (5)、三边对应相等的两个三角形全等。 (6)、全等三角形的对应边相等、对应角相等。 此外,等式的有关性质和不等式的有关性质都可以看做公理。 2、平行线的判定定理 公理两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。 简单说成:同位角相等,两直线平行。 定理两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。 简单说成:同旁内角互补,两直线平行。 定理两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。 简单说成:内错角相等,两直线平行。 3、平行线的性质定理 公理两条平行线被第三条直线所截,同位角相等。 简单说成:两直线平行,同位角相等。 定理两条平行线被第三条直线所截,内错角相等。 简单说成:两直线平行,内错角相等。 定理两条平行线被第三条直线所截,同旁内角互补。 简单说成:两直线平行,同旁内角互补。 如果两条直线都和第三条直线平行,那么这两条直线也互相平行。 4、三角形内角和定理三角形三个内角的和等于 180。 5、三角形内角和定理的推论 三角形的一个外角等于和它不相邻的两个内角的和。 三角形的一个外角大于任何一个和它不相邻的内角。 证明(二) 一、公理(1)三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。 (2)两边及其夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)。 (3)两角及其夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)。 (4)全等三角形的对应边相等、对应角相等。 推论:两角及其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS”)。 二、等腰三角形 1、等腰三角形的性质 (1)等腰三角形的两个底角相等(简称:等边对等角) (2)等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)。 等腰三角形的其他性质: ①等腰直角三角形的两个底角相等且等于45° ②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。 ③等腰三角形的三边关系:设腰长为a,底边长为b,则 2 b

相关文档
最新文档