环氧树脂胶粘剂的改性研究

环氧树脂胶粘剂的改性研究
环氧树脂胶粘剂的改性研究

课程:涂料与胶粘剂

题目:环氧树脂胶粘剂的

改性研究

姓名:XXX 学号:XXX

姓名:XXX 学号:XXX

日期:XXXX-XX-XX

环氧树脂胶粘剂的改性研究

XXX XXX 化学工程与工艺

摘要:综述了环氧树脂胶粘剂耐热,增韧改性研究的现状, 介绍了各种增韧耐热的应用。关键词:环氧树脂,胶粘剂,耐热,改性,增韧;

Modification of epoxy adhesive

XXX XXX Chemical Engineering and Technology Abstract:Epoxy resin adhesive heat toughening modification of the status quo, and a the various toughening heat-application.

Keywords: epoxy resins, adhesives, heat-resistant, modified, toughened;

前言

环氧胶粘剂在整个合成胶粘剂中所占的比例并不大,但由于它的优异性能,在结构胶粘剂中却占据了主导地位,有“万能胶”之称。但其固化后易产生较大的内应力,且产物中有较稠密的芳环结构,使得未经改性的环氧固化物较脆,,且耐高温性较差,为此,环氧树脂胶粘剂的改性研究很多。相容性理论的发展和相容技术的进步推动了环氧树脂与弹性体(橡胶类)及热塑料树脂的合金化研究,经历了第二、第三代环氧胶粘剂时代。近年来,则采用其它耐高温树脂与环氧树脂物理共混或化学改性,或在环氧分子中引入新的基团来提高环氧树脂的耐热性。另外,胶粘剂中所用固体填料对改善耐热性也起重要作用。本文着重介绍我国ER胶粘剂耐热和韧性研究及其应用。

主题

一、环氧树脂胶粘剂在耐热性方面的改性的研究

本方法以环氧树脂(EP)和有机硅硼改性EP 预聚物为主体材料,研制出一种可室温固化、高温使用且固化压力仅为接触压力的胶粘剂。有机硅中硅氧键的键能要高于碳氧键的键能,可有效改善EP 的耐热性和韧性;而有机硅中加入硼元素后,可使硅氧键的键能明显增大。因此,可通过有机硅中引入硼元素来改善EP 胶粘剂的性能,那下面就看看加入有机硅硼前后的差别。

1、首先是红外光谱的分析:

图1 EP改性前后的红外光谱图

由图1 可知,在纯EP 的红外光谱图中,915 cm- 1处是环氧基的对称伸缩振动特征吸收峰,3 056 cm- 1处是环氧基中C- H 的伸缩振动吸收峰,改性后该两处峰的强度都明显减弱; 1 247 cm- 1处是环氧基的非对称伸缩振动特征吸收峰,改性后此峰完全消失。由改性前后红外谱图的变化可以说明,有机硅硼通过自身的羟基与EP 中的环氧基发生反应,从而连接在EP 的分子链上。此外,改性后的EP 在667 cm- 1处出现了一个新的吸收峰,应为B- O- C 中B- O 的变形振动吸收峰,1 300 cm- 1附近的吸收峰变宽加强,应归属于新的B- O- C 伸缩振动吸收峰在1 347 cm- 1处出现的结果,由此说明EP 中的羟基和有机硅硼中的硼羟基发生缩合反应生成了B- O- C 化学键。总之,EP 改性前后红外谱图的这些变化表明,有机硅硼通过羟基与EP中的环氧基和羟基反应,成功地接枝在EP 分子链上。

2、其次是涂胶后晾置时间对力学性能的影响:

在一定温度和湿度条件下,初粘力取决于涂胶后的晾置时间。表1 列出了涂胶后晾置时间与胶粘剂力学性能的关系,其中晾置温度为( 20 ±2 ) ℃,相对湿度为20 % ~40 % 。

表1 涂胶后晾置时间对力学性能的影响

由表1可知,涂胶后胶粘剂的剪切强度随晾置时间的延长呈先增后降的趋势;当晾置时间为40 min时,剪切强度达到最大值,分别为14.33 MPa ( 20 ℃)和4.25 MPa ( 100 ℃) 。涂胶后晾置时间不能过短也不能过长。若晾置时间过短时,, 由于溶剂还没有挥发完全,故难以达到合适的初粘力,从而容易导致胶接过程中结构件的脱落;此外,晾置时间过短时,胶层的动性较大, 粘合后容易产生气泡,致使粘接强度下降。若晾置时间过长时,溶剂过多地挥发会使胶层的流动性显著下降,从而使胶层变硬、失去初粘力,, 致使粘接强度下降。由表1可知,在室温及相对湿度约为40% 的条件下,涂胶后晾置时间为40 min

时的粘接强度最好。

3、再者就是在胶粘剂固化试样的热失重分析:

图2 改性前后胶粘剂固化试样的热失重曲线

由图2 可知,改性后胶粘剂的耐热性显著提高。首先,初始分解温度由纯EP 胶粘剂的60 ℃提高到改性胶粘剂的150 ℃;其次, 当失重率为10% 时,纯EP 胶粘剂的对应温度为170 ℃,而改性胶粘剂的对应温度为331 ℃。由此可知,改性后胶粘剂的热稳定性比改性前的高,原因在于有机硅硼中含有键能较高的硅氧硼键( Si - O - B ) ,其中硅氧键的键能为422.5 kJ/mol比碳氧键的键能344.4 kJ/mol 要高得多,因此要破坏硅氧键就需要有较高的能量。综上所述,改性胶粘剂可在100 ℃时长期使用,短期可耐150 ℃的高温。

4、结论:

本方法从实用角度开发出一种可室温固化、100 ℃时可长期使用、短期可耐150 ℃的高温、固化压力仅为接触压力且韧性好的EP 胶粘剂。该胶粘剂的研制成功,可以给工程中大型结构件的粘接带来方便,同时也为高温环境下使用胶粘剂的场合提供了选择。

二、环氧树脂胶粘剂在增韧方面的改性的研究

本方法通过高剪切分散和催化剂的催化相结合的方法,使纳米SiO2粒子与环氧树脂发生化学键接,制得纳米SiO2改性环氧树脂。其采用一种新的改性工艺,使纳米SiO2表面具有的活性硅醇基( Si-OH) 与低分子环氧树脂产生化学键接,所形成的改性环氧树脂中,由于引入了柔性的硅氧键( Si-O)和硅氧四面体网状结构,使改性产物具有很好的柔韧性,其具有的无机-有机结构,使其耐蚀性也得到增强。

1、不同纳米SiO2含量的改性环氧树脂涂膜力学性能研究:

表2 不同纳米SiO2含量的改性环氧树脂涂膜力学性能

从表2可以看出,改性后的环氧树脂与未改性的纯环氧树脂相比,断裂伸长率有很大提高,拉伸强度和弹性模量也有所增大,说明经纳米SiO2改性后,环氧树脂的柔韧性增强,涂膜的强度增大。在纳米SiO2 含量为15%时,断裂伸长率、拉伸强度和弹性模量达到最大值。这是因为,在改性树脂中引入了硅氧( Si-O)柔性链段和富有弹性的网状硅氧四面体结构,而且硅氧键键能很高,比C-C键的键能高很多;同时SiO2 是刚性粒子,可以增加环氧树脂的刚性,所以在增韧的同时,强度也得到一定增强。但由于纳米粉体粒径小,比表面积很大,容易团聚,如果纳米SiO2含量过大,往往导致纳米粉体分散不是很均匀,影响后期的化学改性反应,从而力学性能下降,所以在现有砂磨分散情况下,纳米SiO2 含量为15%比较好,此时增韧效果最佳。

2、为进一步了解涂膜拉伸的断裂情况,对纯环氧树脂及纳米SiO2 含量为15%的改性环氧树脂涂膜进行了拉伸试验。纯环氧树脂涂膜及15%纳米SiO2 改性环氧树脂涂膜的应力-应变曲线见图3:

图3 应力-应变曲线

从图3可以看出,纯环氧树脂的涂膜属于脆性断裂,基本没有屈服点。15%纳米SiO2改性产物为韧性断裂,其断裂应力大于屈服应力,达到了环氧增韧的目的。

3、再者是对红外光谱的分析:

图4 红外光谱图

a. 纯环氧树脂;

b. 纳米SiO2 与环氧树脂物理共混物;

c. 纳米SiO2 改性环氧树脂产物

从图4可知,3个红外光谱图中3508cm-1处为羟基特征吸收峰,915cm-1处为环氧基

特征吸收峰,1607cm-1处为苯环特征吸收峰。以苯环吸收峰为参比(苯环反应前后保持结构不变),则有环氧基吸收峰的相对强度依次为0. 6865,0. 9358,0. 9284,羟基吸收峰的相对强度依次为0. 4802,0. 4670,0. 3231。从以上分析数据可知,环氧树脂改性过程与一般的环氧树脂和纳米SiO2的物理共混过程不同,在改性反应中,环氧树脂分子部分环氧基发生开环与纳米SiO2表面的活性硅醇基( Si-OH)发生反应,环氧树脂上少量的羟基也和硅醇基发生部分缩合,产生了硅氧碳键( Si-O-C)。图3c中,1066cm-1处产生了新的硅氧碳键( Si-O-C)的特征吸收峰,证明改性环氧树脂中硅氧碳键的存在,环氧树脂和纳米二氧化硅发生了化学接枝反应,在环氧树脂中引入了硅氧( Si-O)柔性链段,使环氧树脂形成了无机-有机的骨架,达到了改性目的。

4、结论:

( 1)由于纳米SiO2粒径极小,比表面积很大,表面的硅醇基( Si-OH)化学活性很高,可以与环氧树脂产生化学键接,界面作用力很强,易引发微裂纹,吸收大量冲击能,还增加了基体的刚性,因此纳米SiO2粒子可以增强增韧环氧树脂。

( 2)环氧树脂经纳米SiO2 的改性,在环氧树脂中引入了Si-O-C键和Si-O-Si网状结构,形成无机-有机骨架,耐蚀性能得到增强。

( 3)由于纳米粒子尺寸小,表面活性高,容易团聚,因此在纳米SiO2改性环氧树脂过程中,纳米SiO2粒子应充分分散,高速剪切有助于纳米粒子在树脂中的分散。

三、其他方法对环氧树脂耐热增韧的研究

1.首先是耐热性能的方面,可以大约举两个例子

A. 环氧与双羧基邻苯二甲酰亚胺

采用芳香二胺与偏苯三酸酐按物质的量比1:2反应,合成双羧基邻苯二甲酰亚胺[ Bis( carboxyph-thalimide), BCPI],结构通式为:

与双酚A环氧GY-250反应,得到耐热环氧酰亚胺树脂。性能为:①剪切强度高,GY-250用BCPI-2固化,室温LSS为18~19MPa[不锈钢,双羧亚胺与环氧当量比( 0. 25~0. 75) :1. 0]。②热稳定性好,GY-250/BCPI-2固化物,在氮气下热分解温度为380℃;随着双羧亚胺比例增加,热稳定性和LSS均增高。③BCPI-2固化剂的效果最好;双酚A型ER比酚醛型ER与BCPI的反应性更好。

B. 环氧-芳胺(DA)-双马来酰亚胺(ER/DA/BMI)体系

BMI是加成型热固性聚酰亚胺中最重要的一种单体,结构通式为:

,2端基的活泼双键和耐热性的酰亚胺环赋予其优良的反应性和

耐热性。其自交联固化树脂耐热好但很脆,通常要用扩链剂适度扩链。优选的扩链剂有二元胺( DA)和烯丙基苯基化合物( APC),其中使用较多的是便宜、易得的二苯甲烷二胺( DDM), DDM伯胺基上的氢,经加成反应打开BMI双键并转移到双键上,形成既可固化为韧性耐热树脂,又可作为ER的固化剂的预聚物-聚氨基双马来酰亚胺( PABMI)或聚氨酰亚胺;利用其链上的仲胺基与环氧基的交联反应,形成力学性能和耐热性好的高度交联网络。若使用二苯甲烷型BMI( BDM)、二苯甲烷二胺( DDM)和双酚A型ER( E-44)的BDM/DDM/E-44体系,经溶液预聚合为单组分贮存较稳定的胶粘剂。粘接不锈钢的室温剪切强度( LSS)为20~25MPa,共固化树脂的耐热性列于表3。

表3 共固化树脂的热失重分析

由表1可看出, 随着BMI的增加耐热性显著提高,如ER为50%和BMI为40%时,耐热指数( Z)为183℃,达到了绝缘H级、耐热> 180℃的要求。此胶可用于制造耐热电绝缘层压板和云母板等。

2.其次是增韧方面的研究,大约举两个例子,以及新发展:

A.液体丁腈橡胶对环氧树脂的增韧

1)无规羧基丁腈橡胶(CRBN)

CRBN是丁二烯、丙烯腈与少量丙烯酸的三元共聚物。少量的丙烯酸无规地分布在分子链中,在环氧树脂固化时,,丙烯酸的羧基会与环氧树脂的环氧基发生反应,使环氧树脂固化物的交联网络中含丁腈橡胶软段,形成交联嵌段共聚物,这种软段使固化环氧网络中形成多相体系,从而增加了环氧树脂的韧性。

2)端羧基液体丁腈橡胶(CTBN)

分子链的2端是活性官能团羧基,这种丁腈能与环氧树脂发生反应,对环氧树脂增韧效果良好,增韧强度是无规羧基丁腈橡胶的近2倍,且随温度上升,强度下降缓慢,,所以国内的学者围绕它作了大量的研究工作。Wise CW等用多端基官能团的CTBN来增韧环氧-胺体系,发现CTBN不仅可起到增韧的作用,还能加速体系的固化。

3)端羟基液体丁腈橡胶(HTBN)

为了能使HTBN和环氧树脂成键连接,起到更好的增韧作用,员战奎等研究了丁腈-环氧树脂嵌段共聚物的合成。采用丁腈预聚法,先用HTBN与3, 4-TDI反应形成端-NCO基液体丁腈橡胶( ITBN),,然后再与含有少量腈基的环氧树脂反应形成ITBN-环氧树脂嵌段共聚物( ETBN)。采用此方法增韧的环氧树脂,贮存稳定性好,加热或室温条件下固化,均能获得较高的剪切强度和剥离强度。另一种方法是用异氰酸酯将HTBN接枝到环氧树脂上也能取得很好的增韧效果。

4)端胺基液体丁腈橡胶(A TBN)

A TBN也与CTBN有相似的链结构,而端基为胺基。Chi khi N等研究发现,用它增韧

环氧树脂,可降低环氧树脂的凝胶化温度和固化温度。如果在用CTBN增韧的环氧体系中加入少量A TBN,A TBN会起到减缓体系反应的作用。

B.热塑性塑料

常用高性能的聚砜、聚醚酮、聚醚砜、聚醚酰亚胺、聚碳酸酯等热塑性聚合物共混改性制备环氧结构胶粘剂。有人研究发现,环氧-聚砜结构胶粘剂在- 55~ 175e 宽温度范围内具有高强度、高韧性、优良的综合性能,经10a盐水浸渍试验、不同地区10a大气曝晒试验,表明有优良的耐久性。葛青山等以双氰胺为固化剂,用双酚A聚砜来增韧环氧( E-51),通过扫描电镜观察发现,, 环氧/聚砜(量比100/50)在固化后的聚合物体系内呈现半互穿网络结构,而双酚A聚砜为线性聚合物,体系呈2相且2者均为连续相,2相之间混合充分,分子间互穿和缠结。殷立新、亢雅君等也对环氧/聚砜体系进行了研究,他们认为环氧/聚砜体系结构与/ 海岛结构0模型和互穿网络结构( IPN)都不同,是以韧性的聚合物为连续相,固化后热固性树脂球粒为分散相形成的网络-球粒0结构。出现这种情况的原因是热塑性工程塑料Tg高,在固化温度下尚未流动,而固化初期阶段的环氧树脂却极易流动,并逐渐分离出来,在表面张力作用下,形成了以热塑性工程塑料为连续相、环氧树脂为分散体的蜂窝状结构形态。

聚碳酸酯( PC)是一种与环氧树脂的分子结构很相近、综合性能优良的工程塑料,具有优良的力学性能和热稳定性,能与环氧树脂很好地共溶。聚乙烯醇缩醛是热塑性线性高分子,关长参等以聚乙烯醇缩醛为骨架材料,用环氧树脂为粘料制成了一种结构胶,该胶不但保持了聚乙烯醇缩醛-酚醛胶耐久性好的特点,还具固化中无挥发物、韧性高等优点。用尼龙增韧环氧树脂制成的胶粘剂2组分在结构上刚柔结合,在性能上强韧兼备。

C.新发展

①互穿网络IPN改性环氧树脂

日本田明中裕子等研制了硅-聚丙烯酸( PAA)、硅-环氧、硅-聚丙烯酸-环氧3种IPN结构复合物,制备方法是烷氧基硅烷-PAA溶解-凝胶转移相分离法。用2种环氧树脂制备的这些IPN体系的储存模量,即使在Tg以上仍然较高。另外S-i PAA-EP的IPN在300e 以上才出现较高的模量损失,从而证明在高温下硅网络保护聚合物避免了热分解。张玲等在Sem-i IPN 体系中,用聚丙烯酸丁酯作增韧改性剂,可提高环氧树脂胶粘剂的力学性能。湿热老化试验说明环氧树脂与丙烯酸丁酯利用Sem-i IPN方法可使2者发挥协同作用,改善体系的相容性,从而提高胶粘剂的湿热老化性能。

②纳米粒子增韧环氧树脂

为了实现改性粒子良好分散,较为常用的方法是对纳米粒子表面处理或合成核壳粒子加入基体中,粒子通过氢键等接合力实现与基体的复合,从而起到增韧改性的作用。在用纳米粒子增韧环氧树脂时,环氧基团在界面上与纳米粒子形成远大于范德华力的作用力,形成理想的界面,能起到吸收能量、终止银纹的作用。目前关于环氧树脂/无机纳米材料复合的研究主要是用黏土、nmSiO2、nmCaCO3、nmTiO2和凹凸棒土等。刘竞超等把已烘干的nmSiO2加入到偶联剂的丙酮溶液中,超声波处理30min,与环氧树脂搅拌混匀,可大幅提高环氧树脂的冲击性能、拉伸强度和耐热性;铃木巧一在市售光学环氧胶中填充平均粒径为10 nm 的nmSiO2微粒子,仍可保持高的透明性,收缩和热胀系数降低,折射率可调节,固化速度增加。陈名华等采用超声波和高速乳化剪切分散方式,将纳米TiO2均匀分散在环氧树脂胶中,其用量为3%时,能明显提高环氧树脂胶力学性能、耐热性。康文韬等用经过十六烷基三甲基溴化铵(HDTMA)有机化表面处理的凹凸棒土与环氧树脂配合,起到了增强增韧作用。

总结

EP的改性仍有许多课题,如耐热胶的使用往往需要加热加压固化,给大面积使用带来困难,理想的应该常温和接触压固化;双组分的改成单组分;一胶多用功能化,如既耐高温又耐湿,既可刷涂又可灌封,既可军用又可民用,既可溶剂化又可无溶剂化,既是坚硬的结构型又是坚韧的耐冲击型以及阻燃型等;还要没法降低成本,才会促进应用范围不断扩大。而环氧树脂增韧的方法已有突破性进展,改性后其冲击强度、断裂韧性和综合性能都可得到提高。同时在增韧改性的同时,不降低甚至提高环氧胶粘剂的固有特性仍是今后研究的热点。

参考文献

[1]关长参,张斌. 聚乙烯醇缩醛-环氧结构胶粘剂[ J]. 中国胶粘剂,1993,2( 2): 5- 7.

[2]张玲,韦亚兵. 环氧树脂胶粘剂的丙烯酸丁酯增韧研究[ J].高校化学工程学报,2005,19(5): 720- 724.

[3]袁金颖,潘才光. 膨胀单体对环氧树脂的改性研究[ J].功能高分子学报,1999,12( 1): 109-114.

[4]刘竞超,李小兵,等. 纳米二氧化硅增强增韧环氧树脂的研究[ J].胶体与聚合物,2000,18(4): 15-17.

[5]铃木巧一. 光学部品接合用a?微粒子充Fs复合胶粘剂[ J].工业材料,2002,50( 7): 102- 106.

[6]陈名华, 姚武文, 等. 纳米TiO2: 对环氧树脂胶粘剂性能影响的研究[ J].粘接,2004,25(6): 12-16.

[7]康文韬,占德权,等. 环氧树脂/无机纳米材料复合研究进展[ J].中国胶粘剂,2003,12(3): 55-57、61.

[8]王恩清. 无溶剂环氧聚氨酯涂料的研制[ J].涂料工业,2004,34( 4): 28~31

[9]刘润山,李友清,汪小华.含聚氨基双马来酰亚胺耐热固化剂的环氧-亚胺胶液[ J]. 热固性树脂,2003,18( 5):13-15.

[10]赵三平. 二苯甲烷双马来酰亚胺的合成及其与烯丙基酚(醚) /环氧树脂无溶剂耐热共聚物性能的研究[ D].武汉:湖北省化学研究所,1999. 6

[11]AdhinarayananK,Packirisamy S,et a.l Epoxy-imide res-ins based on bis( carboxyphthalimide)[ J]. J ApplPolym. Sc,i 1991,43: 783-791

[12]柯以侃,董慧茹. 分析化学手册( 第三分册) : 光谱分析[M]. 2 版. 北京: 化学工业出版社,2003 : 968.

[13]丑纪能,邓飞跃. 室温固化环氧树脂结构胶粘剂的研究[J]. 化工新型材料,2007 ,35 ( 3 ) : 80- 82.

环氧树脂的增韧改性研究

环氧树脂的增韧改性研究 环氧树脂是由具有环氧基的化合物与多元羟基化合物(双酚A、多元醇、多元酸、多元胺) 进行缩聚反应而制得的产品。环氧树脂具有高强度和优良的粘接性能,可用作涂料、电绝缘材料、增强材料和胶粘剂等。但因其固化物质脆,耐开裂性能、抗冲击性能较低,而且耐热性差,使其应用受到了一定的限制。为此国内外学者对环氧树脂进行了大量的改性研究工作,以改善环氧树脂的韧性。 目前环氧树脂的增韧研究已取得了显著的成果,其增韧途径主要有三种: ①在环氧基体中加入橡胶弹性体、热塑性树脂或液晶聚合物等分散相来增韧。②用热固性树脂连续贯穿于环氧树脂网络中形成互穿、半互穿网络结构来增韧。③用含有“柔性链段”的固化剂固化环氧,在交联网络中引入柔性链段,提高网链分子的柔顺性,达到增韧的目的。 1 橡胶弹性体增韧环氧树脂 橡胶弹性体通过其活性端基(如羧基、羟基、氨基) 与环氧树脂中的活性基团(如环氧基、羟基等)反应形成嵌段;正确控制反应性橡胶在环氧树脂体系中的相分离过程是增韧成功的关键。自Mc Garry发现端羧基丁腈橡胶(CTBN) 能使环氧树脂显著提高断裂韧性后的几十年间,人们在这一领域进行了大量基聚醚、聚氨酯液体橡胶、聚的研究。据文献报道,已经研究过的或应用的对环氧树脂增韧改性的橡胶有端羧硫橡胶、含氟弹性体、氯丁橡胶、丁腈橡胶、丙烯酸丁酯橡胶等。通过调节橡胶和环氧树脂的溶解度参数,控制凝胶化过程中相分离形成的海岛结构,以分散相存在的橡胶粒子中止裂纹、分枝裂纹、诱导剪切变形,从而提高环氧树脂的断裂韧性。 目前用液体橡胶增韧环氧树脂的研究有两种趋势。一种是继续采用CTBN 增韧环氧树脂体系,重点放在增韧机理的深入探讨;另一种是采用其它的合适的液体橡胶,如硅橡胶、聚丁二烯橡胶等。D1 Verchere[1 ] 等研究端环氧基丁腈橡胶(ETBN) 对双酚A 型环氧树脂的增韧效果, 当ETBN 含量为20wt %时, 树脂的断裂韧性GIC 由01163kJ / m2 提高到01588kJ / m2 ,比增韧前提高了3倍多。韩孝族[2 ]等用端羟基丁腈橡胶(HTBN) 增韧环氧/ 六氢邻苯二甲酸酐体系, 当HTBN 含量达20phr 时,增韧树脂的冲击强度达900kJ / cm2 ,较改性前(340kJ / cm2) 提高了2 倍多。孙军[3 ]等利用高 分子设计方法及控制反应工艺,制备出具有氨基封端的硅橡胶改性体,分析其红外光谱,证实其产物具有预想结构,即改性后的硅橡胶为氨基封端。用改性硅橡胶对环氧树脂进行增韧改性,通过对增韧体的冲击强度测试结果表明,在改性硅橡胶加入量为0~15 份的范围内,增 韧体的冲击强度有了大幅度提高,加入量超过15 份以后,增韧体的冲击强度增势缓慢,实验证明改性硅橡胶对环氧树脂具有良好的增韧效果。此外,还有活性端基液体橡胶增韧环氧树脂、聚硫橡胶改性环氧树脂等方面的研究也有很大进展。如王德武[4 ]等人研制的聚硫橡胶改性环氧防水防腐防霉涂料,是由聚硫橡胶改性环氧溶液为成膜物质,加入金属氧化物填料,添加有机胺固化剂所组成的双组分涂料。该涂料对金属、非金属的附着力强(对钢铁附着力为3~4MPa ,对混凝土附着力为4~5MPa) 、涂膜坚硬、光滑、丰满,不吸附污浊和藻类,具有韧性好、高弹性、耐候、耐霉菌、耐磨、耐酸碱和耐多种溶剂等特点。 近年来,核2壳乳液胶粒增容技术的应用使橡胶弹性体改性环氧树脂又有了新进展。核壳粒子大小及其环氧树脂的界面性能可以用乳液聚合技术来设计和改变。Lin K F[5 ]等研究了以丙烯酸丁酯为核、甲基丙烯酸甲酯和缩水甘油醚基丙烯酸甲酯共聚物为壳的核壳粒子增韧双酚A 型环氧树脂体系,并探讨了增韧机理。 Ashida Tadashi[6 ]等研究了在环氧树脂中分别加入聚丙烯酸丁酯橡胶粒子和PBA/ PMMA (聚丙烯酸丁酯/ 聚甲基丙烯酸甲酯) 核壳胶粒,以双氰胺为固化剂所得固化物的结构形态和性能。结果表明,用丙烯酸橡胶粒子可提高环氧树脂的断裂韧性,但远远低于核壳粒子(PBA/ PMMA) 的增韧效果;在环氧树脂固化过程中,由于PMMA 与环氧树脂的相容性好,环氧

浅谈环氧树脂胶粘剂的发展前景

浅谈环氧树脂胶粘剂的发展前景 摘要:作为一种具有良好粘结力及耐腐蚀性能的高分子材料,环氧树脂以其优良的机械强度和绝缘性能领先于其他热固性高分子材料,成为现阶段漆类产品发展的趋势和代表,并在国民经济产业构成中起到了相当重要的作用,其技术水平及推广应用的范围已成为衡量国家工业化水平的一个重要指标。本文从对环氧树脂特性与用途的分析入手,综述了国内外环氧树脂胶粘剂消费市场及其应用的现状,并重点对环氧树脂胶粘剂的技术应用进展情况加以阐述和说明关键词:环氧树脂胶粘剂应用进展 一、引言 环氧树脂是指分子中含有环氧基团的高分子化合物的统称,在各类环氧树脂中,产量最大,应用最广的是由环氧氯丙烷与二酚基丙烷在碱的作用下缩聚而成的具有线型结构的热塑性的高聚物。作为胶黏剂使用时,一般为低分子量液体环氧树脂,其分子量一般在340-700之间。环氧树脂有极强的粘结力,它对大部分材料如:木材、金属、玻璃、塑料、皮革、陶瓷、纤维等都有良好的粘结性能,只对少数材料如聚苯乙烯、聚氯乙烯等粘结力较差。近年来,环氧树脂总的发展趋势是寻找高耐热性、高强度、高韧性,以及能在低温或其他特殊环境下固化的、操作简便的新颖树脂体系。通常情况下,工程上应用的环氧树脂胶粘剂主要是由基料、稀释剂、固化剂等原料配置而成的,由于其低廉的成本,良好的粘接性能和简便的粘结工艺已在汽车制造、电子电器及航天工业领域得到了广泛的推广和应用。现阶段,随着对环氧树脂特性的深入研究,新工艺、新配方得到了不断的使用,具有高性能的环氧树脂胶粘剂陆续出现。因而对于近年来环氧树脂胶粘剂发展状况及相关技术应用的研究具有非常重要的现实意义。 二、环氧树脂胶粘剂特性与应用分析 环氧树脂具有许多独特的优良性能,主要表现在以下几个方面: 1.良好的加工工艺性; 2.高度的粘结力; 3.收缩性小; 4.稳定性好; 5.具有优良的电绝缘性能; 6.由于结构中含有环氧基、醚键等,同时结构很紧密,所有有良好的机械性能; 7.因含有稳定的苯环及醚键,因而热稳定性也很好; 8.吸水率低,室温下的吸水率在0.5%以下。 由于环氧树脂具有优良的粘结性、绝缘性以及耐化学腐蚀性等优异的特点,所以在许多工业部门,包括造船、化工、电器直至国防、航天飞船等方面都得到极为广泛的应用,它可以作胶粘剂、作层压材料、作浇筑等磨具,并可以用作涂料等,特别是近年来,许多性能优异的新品种相继问世,使环氧树脂的用途越来越广。环氧树脂对金属与金属,金属与非金属等材料都有很强的粘结力,故而用途广泛的胶粘剂,熟称“万能胶”。用它粘合拖拉机及起重机上的吊件可以承受12吨的载荷。由于环氧树脂可以在室温固化,固化后又可经受高低温作用,这就对一些不能经受高温的精密部件的紧固极为适用,光学仪器,蜂巢结构材料等的的胶粘剂已广泛使用环氧树脂。

环氧树脂简介

环氧树脂 环氧树脂是泛指分子中含有两个或两个以上环氧基团的,除个别外,它们的都不高。环氧树脂的分子结构是以分子链中含有活泼的环氧基团为其特征,环氧基团可以位于分子链的末端、中间或成环状结构。由于分子结构中含有活泼的环氧基团,使它们可与多种类型的固化剂发生而形成不溶、不熔的具有三向网状结构的。 基本概述 凡中含有环氧基团的统称为。固化后的环氧树脂具有良好的物理、性能,它对和非金属材料的面具有优异的粘接强度,介电性能良好,变定收缩率小,尺寸稳定性好,高,柔韧性较好,对碱及大部分稳定[1],因而广泛应用于国防、国民经济各部门,作浇注、浸渍、层压料、粘接剂、等用途。 国内研究 我国自1958年开始对环氧树脂进行了研究,并以很快的速度投入了工业生产,至今已在全国各地蓬勃发展,除生产普通的-环氧型环氧树脂外,也生产各种类型的新型环氧,以满足国防建设及国家经济各部门的急需。 基本分类 分类标准 环氧树脂的分类目前尚未统一,一般按照强度、耐热等级以及特性分类,环氧树脂的主要品种有16种,包括通用胶、结构胶、耐温胶、耐低温胶、水中及潮湿面用胶、、、点焊胶、环氧树脂胶膜、、应变胶、软质材料粘接胶、密封胶、特种胶、潜伏性固化胶、土木建筑胶16种。 几种分类 对环氧树脂胶黏剂的分类在行业中还有以下几种分法: 1、按其主要组成分为纯环氧树脂胶黏剂和改性环氧树脂胶黏剂; 2、按其专业用途分为机械用环氧树脂胶黏剂、建筑用环氧树脂胶黏剂、电子眼环氧 树脂胶黏剂、修补用环氧树脂胶黏剂以及交通用胶、船舶用胶等;

3、按其施工条件分为常温固化型胶、低温固化型胶和其他固化型胶; 4、按其包装形态可分为单组分型胶、双组分胶和多组分型胶等; 还有其他的分法,如无溶剂型胶、有溶剂型胶及水基型胶等。但以组分分类应用较多。理化性质 物质特性 环氧树脂具有仲羟基和,仲羟基可以与异氰酸酯反应。环氧树脂作为多元醇直接加入聚氨酯胶黏剂含羟基的组分中,使用此方法只有羟基参加反应,环氧基未能反应。 用酸性树脂的、羧基,使环氧开环,再与聚氨酯胶黏剂中的异氰酸酯反应。还可以将环氧树脂溶解于乙酸乙酯中,添加磷酸加温反应,其加成物添加到聚氨酯胶黏剂中;胶的初黏;耐热以及水解稳定性等都能提高0 r还可用醇胺或胺反应生成多元醇,在加成物中有叔氮原子的存在,可加速NCO反应。 用环氧树脂作多羟基组分结合了聚氨酯与环氧树脂的优点,具有较好的粘接强度和耐化学性能,制造聚氨酯胶黏剂使用的环氧树脂一般采用EP-12、EP-13、EP-16和EP-20等品种。 改性方法 1.选择; 2.添加反应性稀释剂; 3.添加填充剂; 4.添加特种热固性或; 5.改良环氧树脂本身。 生产应用 生产情况

环氧树脂的改性研究发展

环氧树脂的改性研究发展 付东升 1 朱光明 1 韩娟妮2 (1西北工业大学化工系,2西北核技术研究所) 1、前言 近年来,科研工作者对环氧树脂进行了大量的改性研究,以克服其性脆,冲击性、耐热性差等缺点并取得了丰硕的成果。过去,人们对环氧树脂的改性一直局限于橡胶方面,如端羧基丁脂橡胶、端羟基丁腊橡胶、聚琉橡胶等[1—4]。近年来,对环氧树脂的改性不断深入,改性方法日新月异,如互穿网络法、化学共聚法等,尤其是液晶增韧法和纳米粒子增韧法更是近年来研究的热点。综述了近年来国内外对环氧树脂的改性研究进展。2、丙烯酸增韧改性环氧树脂 利用丙烯酸类物质增韧环氧树脂可以在丙烯酸酯共聚物上引入活性基团,利用活性基团与环氧树脂的环氧基团或经基反应,形成接技共聚物,增加两相间的相容性。另一种方法是利用丙烯酸酯弹性粒子作增韧剂来降低环氧树脂的内应力。还可以将丙烯酸酯交联成网络结构后与环氧树脂组成互穿网络(IPN)结构来达到增韧的目的。张海燕[5]等人利用环氧树脂与甲基丙烯酸加成聚合得到环氧-甲基丙烯酸树脂(EAM),其工艺性与不饱和聚酯相似,化学结构又与环氧树脂相似,得到的改性树脂体系经固化后不仅具有优异的粘合性和化学稳定性,而且具有耐热性好、较高的延伸率,固化工艺简单等优点。同时由于共聚链段甲基丙烯酸酯的引入,体系固化时的交联密度降低,侧基的引入又为主链分子的运动提供更多的自由体积,因此改性体系的冲击性能得以提高。 韦亚兵[6]利用IPN法研究了聚丙烯酸酯对环氧树脂的增韧改性。他将线性聚丙烯丁酯交联成网状结构后与环氧树脂及固化剂固化,形成互穿网络结构。该方法增加了丙烯酸丁酯与环氧树脂的相容性。该互穿网络体系具有较高的粘接强度和优异的抗湿热老化能力。 李已明[7]通过乳液聚合法首先制备出丙烯酸丁酯(PBA)种子乳液,在引发剂作用下合成出核乳液,然后在该种子上引入聚甲基丙烯酸甲酯壳层得到核壳粒子。利用该粒子来增韧环氧村脂时,由于聚甲基丙烯酸甲酯的溶解度参数与环氧树脂的溶解度参数相近,因此两者的界面相容性非常好。用SEM对其进行观察时可发现核壳粒子的壳层与环氧树脂溶为一体,而核芯PBA则在环氧基体中呈颗粒状的分散相。M.Okut[8]对PBA/PMMA核壳粒子增韧环氧基体体系进行了动态力学分析,在动态力学图谱上高温区可以发现没有与PMMA对应的玻璃化转化峰,只有与环氧树脂对应的玻璃化转变峰,这同时也证明了环氧树脂与PM MA的相容性。改性体系的缺口冲击强度显著提高,断口特征形貌由环氧树脂的脆性断裂转化为韧性断裂。 3、聚氨酯增韧环氧树脂 利用聚氨酯改性环氧树脂主要是为了改善其脆性,提高其柔韧性,增加剥离强度。聚氨酯粘接性能好,分子链柔顺,在常温下表现出高弹性。施利毅等[9]利用高分子合金的思想,采用熔体共混法制备出了PU/EP共混体系。他以异氰酸根封端的聚氨酯预聚体与环氧树脂在熔融条件下加入固化剂固化后得到共混改性体系:由于异氰酸根本身能与环氧基团反应,因此得到的改性体系两相间有良好的相容性,利用DMA分析,可发现其谱图上在m(PU):m(EP)=20:80时只有单一的宽的玻璃化转变蜂,这进一步证明了两相间的相容性。改性体系比环氧树脂的冲击强度有了大幅度提高。 目前研究最多的聚氨酯增韧环氧树脂体系是以聚氨酯与环氧树脂形成SIPN和IPN结构,这两种结构可起“强迫互容”和“协同效应”作用,使聚氨酯的高弹性与环氧树脂的良好的耐热性、粘接性有机地结合在一起,取得满意的增韧效果。 Y.Li[10]等利用双酚A环氧树脂与末端为异氰酸酯的聚醚聚氨酯低聚物进行改性接枝,二者在四氢呋喃溶液中形成均相溶液,然后在DDM固化剂作用下形成线性聚氨酯贯穿于环氧网络的半互穿网络结构。两者在用量比为

丁腈橡胶的基本性能及用途

字体大小:| | 2010-08-28 16:56 - 阅读:135 - :0 ,由丁二烯与丙烯腈共聚而制得的一种合成橡胶。是耐油(尤其是烷烃油)、耐老化性能较好的合成橡胶。丁腈橡胶中丙烯腈含量(%)有42~46、36~41、31~35、25~30、18~24 等五种。丙烯腈含量越多, 耐油性越好,但耐寒性则相应下降。它可以在120℃的空气中或在150℃的油中长期使用。此外,它还具有良好的耐水性、气密性及优良的粘结性能。广泛用于制各种耐油橡胶制品、多种耐油垫圈、垫片、套管、 软包装、软胶管、印染胶辊、电缆胶材料等,在汽车、航空、石油、复印等行业中成为必不可少的弹性材料。 丁腈橡胶基本性能 主要采用低温乳液聚合法生产,丁腈橡胶具有优良的耐油性,其耐油性仅次于聚硫橡胶和氟橡胶,并且具有的耐磨性和气密性,粘接力强。丁晴橡胶的缺点是不耐臭氧及芳香族、卤代烃、酮及酯类溶剂,不宜做 绝缘材料。丁腈橡胶耐低温性差,电性能低劣,弹性稍低。 丁腈橡胶主要用途 丁腈橡胶主要用于制作耐油制品,如耐油管、胶带、橡胶隔膜和大型油囊等,常用于制作各类耐油模压橡胶制品,如O形圈、油封、皮碗、 膜片、活门、波纹管等,也用于制作胶板和耐磨零件。

公司代理经销南帝公司的产品有:普通丁腈橡胶、特殊丁腈橡胶、丁腈胶乳、热塑性弹性体(TPV)等。其中镇江南帝主要牌号:NANCAR 1051、1052、1053、1052M30、1043N、2845、2865、2875、3345、3365、4155等。特殊丁腈橡胶有以下: ??羧化丁腈(XNBR):NANCAR 1072、1072CG、3245C 具优越耐磨性,适用于下列橡胶制品: a. 高耐磨的输送带、工业制品、纺织胶辊、及特殊鞋底等制品。 b. AB胶系接着剂及丙烯酸酯系接着剂。 c. 环氧树脂改性应用。 d. 软性电路板。 ??充油丁腈(NBR/DOP):NANCAR 1082 适用于超低硬度(40 Shore A以下) 并兼具耐油特性之橡胶制品,如:工业胶辊、工业制品等。 ??丁腈/PVC (NBR/PVC):NANCAR 1203D、1203HD、1203L D、具有良好的耐候性、耐油性,适用于下列橡胶制品: a. 耐臭氧的汽车部品(防尘套及胶管)、工业制品(胶板及杂件)、及电缆被 覆等制品。 b. 耐酒精汽油、低萃取燃料油管。 c. 耐溶剂的胶辊(工业胶辊、造纸胶辊、印刷胶辊)及纺织皮圈等制品。 d. 保温材料及运动器材等发泡制品。 ??丁腈/PVC/DOP (NBR/PVC/DOP):NANCAR 1204D 适用于超低硬度并兼具耐油耐臭氧之橡胶制品,如:印刷胶辊厂、工业制品等。 ??预交联丁腈(NBR):NANCAR 1022 具良好的尺寸安定性,特别适用于PVC改质,提高橡胶质感。 ??超低,极高丙烯腈丁腈(NBR):NANCAR 1965、4580

环氧树脂增韧途径与机理

环氧树脂增韧途径与机理 环氧树脂(EP)是一种热固性树脂,因其具有优异的粘结性、机械强度、电绝缘性等特性,而广泛应用于电子材料的浇注、封装以及涂料、胶粘剂、复合材料基体等方面。由于纯环氧树脂具有高的交联结构,因而存在质脆、耐疲劳性、耐热性、抗冲击韧性差等缺点,难以满足工程技术的要求,使其应用受到一定限制。因此对环氧树脂的共聚共混改性一直是国内外研究的热门课题。 一、序言 目前环氧树脂增韧途径,据中国环氧树脂行业协会专家介绍,主要有以下几种:用弹性体、热塑性树脂或刚性颗粒等第二相来增韧改性; 用热塑性树脂连续地爨穿于热固性树脂中形成互穿网络米增韧改性; 通过改变交联网络的化学结构以提高网链分子的活动能力来增韧; 控制分子交联状态的不均匀性形成有利于塑性变形的非均匀结构来实现增韧。 近年来国内外学者致力于研究一些新的改性方法,如用耐热的热塑性工程塑料和环氧树脂共混;使弹性体和环氧树脂形成互穿网络聚合物(I PN)体系;用热致液晶聚合物对环氧树脂增韧改性;用刚性高分子原位聚合增韧环氧树脂等。这些方法既可使环氧捌脂的韧性得到提高,同时又使其耐热性、模量不降低,甚至还略有升高。 随着电气、电子材料及其复合材料的飞速发展,环氧树脂正由通用型产品向着高功能性、高附加值产品系列的方向转化。中国环氧树脂行业协会专家表示,这种发展趋势使得对其增韧机理的研究H益深入,增韧机理的研究对于寻找新的增韧方法提供了理论依据,因此可以预测新的增韧方法及增韧剂将会不断出现。 采用热塑性树脂改性环氧树脂,其研究始于20世纪80年代。使用较多的有聚醚砜(P ES)、聚砜(P S F)、聚醚酰亚胺(P EI)、聚醚醚酮(PE EK)等热塑性工程塑料,人们发现它们对环氧树脂的改性效果显著。据中国环氧树脂行业协会专家介绍,这些热塑性树脂不仪具有较好的韧性,而且模量和耐热性较高,作为增韧剂加入到环氧树脂中同样能形成颗粒分散相,它们的加入使环氧树脂的韧性得到提高,而且不影响环氧固化物的模量和耐热性。 二、热塑性树脂增韧环氧树脂 1、热塑性树脂增韧方法 未改性的PE S对环氧的增韧效果不明显,后来实验发现两端带有活性反应基团的P ES 对环氧树脂改性效果显著。如苯酚、羟基封端的P E S可使韧性提高100%;双氨基封端、双羟基封端的P E S也是有效的改性剂;环氧基封端的PE S由于环氧基能促进相互渗透,因而也提高了双酚A型环氧树脂的韧性。以二氨基二苯砜为固化剂,P E S增韧的环氧树脂

环氧树脂及其胶粘剂的增韧改性研究进展_杨卫朋

环氧树脂及其胶粘剂的增韧改性研究进展 杨卫朋,郝 壮,明 璐 (西北工业大学理学院应用化学系,陕西西安 710129) 摘 要:综述了环氧树脂(EP )及其胶粘剂的增韧改性研究进展。介绍了EP 增韧方法[包括橡胶类弹 性体增韧改性EP 、互穿聚合物网络(IPN )增韧改性EP 、聚硅氧烷(PDMS )增韧改性EP 、纳米粒子增韧改性EP 和超支化聚合物(HBP )增韧改性EP 等]及相关增韧机制。展望了今后EP 及其胶粘剂的增韧改性发展方向。 关键词:环氧树脂;胶粘剂;增韧;改性中图分类号:TQ433.437:TQ323.5 文献标志码:A 文章编号:1004-2849(2011)10-0058-05 收稿日期:2011-05-26;修回日期:2011-06-24。 作者简介:杨卫朋(1987—),陕西咸阳人,在读硕士,主要从事环氧树脂增韧改性等方面的研究。E-mail :yangweipeng.883245@https://www.360docs.net/doc/b37072815.html, 0前言 环氧树脂(EP )是指其分子结构中至少含有两个环氧基团的高分子材料。EP 具有良好的综合性能,能以各种形式(如增强塑料、胶接材料、密封剂和涂料等)广泛应用于诸多领域。未改性EP 固化物脆性大、耐冲击强度低且易开裂(韧性不足),从而极大限制了其在某些重点技术领域的应用空间。本研究重点综述了近年来各种改性EP 的增韧方法,其中绝大部分增韧方法可用于EP 胶粘剂的增韧改性。 1 增韧改性EP 及其胶粘剂 1.1 橡胶类弹性体增韧改性EP 1.1.1 有关橡胶类弹性体增韧EP 的理论 橡胶类弹性体是较早用于增韧EP 的方法之 一。早期的增韧理论有Merz 等[1]提出的能量直接吸收理论和Newman 等[2]提出的屈服膨胀理论。早期的理论虽能解释某些试验现象,但不能普遍获得人们的认可。随着科学技术的不断发展,在早期理论基础上,建立了初步的橡胶增韧理论体系。目前被人们普遍接受的增韧理论有Bucknall 等[3-4]提出的银纹-剪切带理论。该理论认为橡胶颗料在增韧体系中发挥两个重要的作用:一是作为应力集中中心诱发大量银纹和剪切带;二是控制银纹的发展,并使银纹终止而不致发展成破坏性裂纹。银纹尖端的应 力场可诱发剪切带的产生,而剪切带也可阻止银纹的进一步发展;大量银纹或剪切带的产生和发展要消耗大量能量,故材料的冲击强度显著提高。另外,影响较大的是Kinloch 等[5]建立的孔洞剪切屈服理论认为:裂纹前段的三向应力场与颗粒相固化残余应力的叠加作用,使颗粒内部或颗粒/基体界面处破裂而产生孔洞;这些孔洞一方面产生体膨胀,另一方面又由于颗粒赤道上的应力集中而诱发相邻颗粒间基体的局部剪切屈服;这种屈服会导致裂纹尖端钝化,进一步达到减少应力集中和阻止断裂的目的。 1.1.2橡胶弹性体的类型 目前用于增韧EP 的反应性橡胶及弹性体主要包 括端羧基丁腈橡胶(CTPB )、端羟基丁腈橡胶(HTBN )、端环氧基丁腈橡胶和聚硫橡胶等。Chikhi [6]等用端氨基丁腈橡胶(ATBN )改善EP 的韧性,并对其热力学性能和玻璃化转变温度(T g )等进行了表征。研究结果表明:ATBN 的引入能显著改善EP 体系的韧性,其缺口处的冲击强度从0.85kJ/m 2增至2.86kJ/m 2,无缺口处的冲击强度从4.19kJ/m 2增至14.26kJ/m 2;其增韧机制是局部塑性剪切变形、T g 降低所致。赵祺等[7]以内亚甲基四氢邻苯二甲酸酐为固化剂,用聚硫橡胶增韧EP 。研究结果表明:加入20%聚硫橡胶后,EP 胶粘剂的拉伸弹性模量、拉伸强度、断裂伸长率、断裂能量和冲击强度分别增加了27%、34%、 22%、48%和330%;聚硫橡胶增韧EP 胶粘剂的综合力学性能明显提高,但其动态模量降低、T g 下降。 中国胶粘剂 CHINA ADHESIVES 2011年10月第20卷第10期 Vol.20No .10,Oct.2011 58--642() DOI:10.13416/j.ca.2011.10.015

有机硅改性环氧树脂粘合剂的研制

2011-03-04 虞鑫海(1969),男,博士。主要从事电子化学品、耐高温高分子材料及其单体的合成、合成纤维成形机理、电缆屏蔽带、胶粘剂、无卤阻燃材料、聚酰亚胺新材料等方面的研发工作,在国内外发表科技论文90余篇,授权中国发明专利50余项。E-mail:yuxinhai@dhu.edu.cn。 有机硅改性环氧树脂粘合剂的研制 虞鑫海1阎睿1刘思岑1刘万章2 1东华大学应用化学系,上海2016202浙江金鹏化工股份有限公司,浙江台州318050  摘要:采用含活性氨基的SR22000有机硅树脂、ECC202环氧树脂、K-12固化剂和2E4MI固化促进剂为 原料,通过配方设计,制得了有机硅改性环氧树脂粘合剂体系,并研究了SR22000的用量对粘合剂体系性能 的影响。 含活性氨基有机硅树脂;环氧树脂;粘合剂;制备 TQ433.4+37A1001-5922 ( 2012 ) 05-053-04

? 054 ?

@@[1]虞鑫海,刘万章新型含氟固化剂及其环氧胶粘剂的制备[J]粘接,2009,30(5):34-38. @@[2]虞鑫海,刘万章.聚硫醚酰亚胺树脂的合成及其改性环氧粘合剂的研制[J]粘接2009,30(6):34-38. @@[3]虞鑫海,徐永芬,赵炯心,等.耐高温单组分环氧胶粘剂的研制[J].粘接,2008,29(12):16-19. @@[4]虞鑫海,徐永芬,赵炯心.一种含氟多官能环氧树脂的制备方法[P].CN:101024681A,2007-08-29. @@[5]虞鑫海1,4-双(2,4-二氧基苯氧基)苯的制备方法[P].CN: 101215241A,2008-07-09. @@[6]毛蒋莉,徐梅芳,虞鑫海,等.热塑性聚酰亚胺增韧环氧胶粘剂体系的研制[J]粘接,2010,31(8):56-59. @@[7]樊良子,虞鑫海,刘万章.环氧树脂-聚酰亚胺胶粘剂体系的研究进展[J]粘接,2010,31(12):70-73. @@[8]徐永芬,虞鑫海,赵炯心,等.TGDDM/3,3’-二氨基-

丁腈橡胶的基本性能及用途

丁腈橡胶的基本性能及 用途 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

字体大小: | | 2010-08-28 16:56 - 阅读:135 - :0 ,由丁二烯与丙烯腈共聚而制得的一种合成橡胶。是耐油(尤其是烷烃油)、耐老化性能较好的合成橡胶。丁腈橡胶中丙烯腈含量(%)有42~46、36~41、31~35、25~30、18~24 等五种。丙烯腈含量越多,耐油性越好,但耐寒性则相应下降。它可以在120℃的空气中或在150℃的油中长期使用。此外,它还具有良好的耐水性、气密性及优良的粘结性能。广泛用于制各种耐油橡胶制品、多种耐油垫圈、垫片、套管、软包装、软胶管、印染胶辊、电缆胶材料等,在汽车、航空、石油、复印等行业中成为必不可少的弹性材料。 丁腈橡胶基本性能 主要采用低温乳液聚合法生产,丁腈橡胶具有优良的耐油性,其耐油性仅次于聚硫橡胶和氟橡胶,并且具有的耐磨性和气密性,粘接力强。丁晴橡胶的缺点是不耐臭氧及芳香族、卤代烃、酮及酯类溶剂,不宜做绝缘材料。丁腈橡胶耐低温性差,电性能低劣,弹性稍低。 丁腈橡胶主要用途 丁腈橡胶主要用于制作耐油制品,如耐油管、胶带、橡胶隔膜和大型油囊等,常用于制作各类耐油模压橡胶制品,如O形圈、油封、皮碗、膜片、活门、波纹管等,也用于制作胶板和耐磨零件。

公司代理经销南帝公司的产品有:普通丁腈橡胶、特殊丁腈橡胶、丁腈胶乳、热塑性弹性体(TPV)等。其中镇江南帝主要牌号:NANCAR 1051、1052、1053、1052M30、1043N、2845、2865、2875、3345、3365、4155等。特殊丁腈橡胶有以下: 羧化丁腈(XNBR):NANCAR 1072、1072CG、3245C 具优越耐磨性,适用于下列橡胶制品: a. 高耐磨的输送带、工业制品、纺织胶辊、及特殊鞋底等制品。 b. AB胶系接着剂及丙烯酸酯系接着剂。 c. 环氧树脂改性应用。 d. 软性电路板。 充油丁腈(NBR/DOP):NANCAR 1082 适用于超低硬度(40 Shore A以下) 并兼具耐油特性之橡胶制品,如:工业胶辊、工业制品等。 丁腈/PVC (NBR/PVC):NANCAR 1203D、1203HD、1203L D、具有良好的耐候性、耐油性,适用于下列橡胶制品: a. 耐臭氧的汽车部品(防尘套及胶管)、工业制品(胶板及杂件)、及电缆被 覆等制品。 b. 耐酒精汽油、低萃取燃料油管。 c. 耐溶剂的胶辊(工业胶辊、造纸胶辊、印刷胶辊)及纺织皮圈等制品。 d. 保温材料及运动器材等发泡制品。 丁腈/PVC/DOP (NBR/PVC/DOP):NANCAR 1204D 适用于超低硬度并兼具耐油耐臭氧之橡胶制品,如:印刷胶辊厂、工业制品等。 预交联丁腈(NBR): NANCAR 1022 具良好的尺寸安定性,特别适用于PVC改质,提高橡胶质感。 超低,极高丙烯腈丁腈(NBR):NANCAR 1965、4580

THG-8632电机线圈耐高温灌封胶

... 【电机线圈耐高温灌封胶产品特点】 ● 电机线圈耐高温灌封胶为改性环氧树脂耐高温胶,具有耐高温、粘接强度高、电性能优良、耐水性和耐腐蚀性优良.可用于层压、模压、缠绕、浇注等成型工艺,也用于绝缘耐温粘接.主要用于电机线圈锁固定位.短期耐温高达℃,固化时间短,固化物电器性能及机械性能好. 文档收集自网络,仅用于个人学习 【电机线圈耐高温灌封胶产品用途】 ● 主要用于高温环境下使用地电机线圈地浸渍、滴浸、灌封,电感线圈地浸渍、滴浸、灌封,变压器线圈地浸渍、滴浸、灌封等.文档收集自网络,仅用于个人学习 【电机线圈耐高温灌封胶产品物性】 电机线圈耐高温灌封胶详细技术参数请咨询研泰客服人员. 型号 外观透明色液体透明淡黄色液体 比重℃㎝ ± ± 粘度℃ 保质期限℃年 注:以上性能数据为该产品于湿度、温度℃时测试之典型数据,仅供客户使用时参考,并不能完全保证于某个特定环境时能达到地全部数据.敬请客户使用时,以实测数据为.可以根据客户要求调配.文档收集自网络,仅用于个人学习 【电机线圈耐高温灌封胶固化特性】 硬度±体积电阻Ω × 抗拉强度表面电阻Ω× 弯曲强度诱电损失 抗压强度吸水率℃< 耐电压耐热温度℃ 注:以上性能数据为该产品于湿度、温度℃时测试之典型数据,仅供客户使用时参考,并不能完全保证于某个特定环境时能达到地全部数据.敬请客户使用时,以实测数据为准.技术咨询:文档收集自网络,仅用于个人学习【电机线圈耐高温灌封胶使用说明】 ● 混合配比(重量比)::.混合均匀,然后涂刷或滴浸在线圈上,涂匀后送烘箱固化. ● 加温固化条件:℃*分钟℃*小时. ● 要灌封地产品需要保持干燥、清洁. ● 使用时请先检查剂,观察是否有沉降,并将剂充分搅拌均匀. ● 按配比取量,且称量准确,请切记配比是重量比而非体积比,、剂混合后需充分搅拌均匀,以避免固化不完全.文档收集自网络,仅用于个人学习 ● 灌注后,胶液会逐渐渗透到产品地缝隙中,必要时请进行二次灌胶. 【电机线圈耐高温灌封胶注意事项】 ● 在大量使用前,请先小量试用,掌握产品地使用技巧,以免差错. ● 组分如有结晶,为正常现象,在℃预热成为均一、透明液体即可. ● 固化过程中,请保持环境干净,以免杂质或尘土落入未固化地胶液表面. ● 有极少数人长时间接触胶液会产生轻度皮肤过敏,有轻度痒痛,建议使用时戴防护手套,粘到皮肤上请用丙酮或酒精擦去,并使用清洁剂清洗干净.文档收集自网络,仅用于个人学习 【电机线圈耐高温灌封胶储存包装】 ● 本品需在通风、阴凉、干燥处密封保存,保质期年,过期经试验合格,可继续使用. ● 包装规格为每组,其中包含主剂桶、固化剂桶. ...

环氧树脂改性聚乙烯材料的研究

熔融共混改性是提高高分子材料力学性能的一种有效方法[1]。一般地,加入玻璃纤维和无机填料可以使聚合物材料的力学性能得到增强[2],另有研究表明,PVC中加入一定量的环氧树脂,也可在一定程度上提高PVC的力学性能[3,4]。将功能化的环氧树脂加入到PET中,可增加其熔体强度,从而使其更适于挤出制备PET发泡材料[5]。此外,有研究者通过动态交联的方法,使环氧树脂均匀地分散到PP基体中,在一定程度上提高了PP的刚性和强度[6—8],另有研究者对PP/碳纤维/环氧树脂复合材料的结构与性能进行了研究[9,10]。除PP外,聚烯烃中的另一个重要品种PE的应用日益广泛,但其力学强度较低,限制了它在工程材料方面的应用。许多研究者对PE的改性进行了研究[11],而PE材料的力学性能很大程度上依赖于分子结构和形态结构[12,13],因此对PE进行增强改性时可从这方面入手,所制得的增强材料适用于制作电子、汽车等领域对材料刚硬度要求较高的结构零件。本研究先后将马来酸酐和环氧树脂引入到PE中,通过熔融共混制备环氧树脂增强聚乙烯材料,并使环氧树脂和马来酸酐接枝PE发生官能团之间的反应,以期促进环氧树脂对PE的增强效果。 1·实验部分 1.1主要原料

HDPE(MH602):上海石化公司,熔体指数为6.0g/10min(190℃,21.6kg);环氧树脂(E-44):巴陵石化公司,环氧当量为210~250g/eq,环氧值为0.40~0.47eg/100g,挥发份含量小于1.0%;聚酰胺固化剂(LM-650):镇江丹宝聚合物公司,分子量为600~1100,胺值为200±20;马来酸酐(MAH):广东西陇化工公司;过氧化二异丙苯(DCP):国药集团化学试剂厂。 1.2主要设备 双螺杆挤出机,SJSH-30,南京橡塑机械厂;双辊机:XSK-160,杭州苏桥佳迈机械设备有限公司;平板硫化机:KY6003,江都市开源试验机械厂;冲击实验机:XJJ-5,河北承德实验机公司;电子拉力实验机:RGD-5,深圳瑞格尔仪器有限公司;红外光谱仪:Spectrum One,美国PE公司;扫描电镜仪:JSM-6360LV,JEOL公司。 1.3样品制备 将PE,MAH,DCP和其它助剂按一定比例混合均匀,在双螺杆挤出机上将PE熔融接枝制成PE-g-MAH[14]。将PE-g-MAH(或PE)在双辊机上塑化,再加入一定比例的环氧树脂和聚酰胺固化剂的混合物,在双辊机上混炼均匀,前后辊温度分别为120℃和150℃。将制得的环氧树脂增强聚乙烯材料在平板硫化机上热压成片。

环氧树脂的介绍

环氧树脂胶(epoxy resin adhesive)一般是指以环氧树脂为主体所制得的胶粘剂,环氧树脂胶一般还应包括环氧树脂固化剂,否则这个胶就不会固化。 1种类折叠编辑本段 环氧树脂胶又分为软胶和硬胶。 1、环氧树脂软胶: 它是一种液型,双组份、软性自干型软胶,无色、透明、具有弹性,轻度划擦表面即自行恢复原形。适用于涤纶、纸张、塑料等标牌装饰。 2、环氧树脂硬胶: 它是一种液型,双组份硬性胶,无色、透明,适用于金属标牌同时可制作各种水晶钮扣、水晶瓶盖、水晶木梳、水晶工艺品等高档装饰品。 2分类折叠编辑本段 环氧树脂的分类目前尚未统一,一般按照强度、耐热等级以及特性分类,环氧树脂的主要品种有16种,包括通用胶、结构胶、耐温胶、耐低温胶、水下,潮湿面用胶、导电胶、光学胶、点焊胶、环氧树脂胶膜、发泡胶、应变胶、软质材料粘接胶、密封胶、特种胶、被固化胶、土木建筑胶16种。 对环氧树脂胶黏剂的分类在行业中还有以下几种分法: 1、按其主要组成,分为纯环氧树脂胶黏剂和改型环氧树脂胶黏剂; 2、按其专业用途,分为机械用环氧树脂胶黏剂、建筑用环氧树脂胶黏剂、电子眼环氧树脂胶黏剂、修补用环氧树脂胶黏剂以及交通用胶、船舶用胶等; 3、按其施工条件,分为常温固化型胶、低温固化型胶和其他固化型胶; 4、按其包装形态,可分为单组分型胶、双组分胶和多组分型胶等; 还有其他的分法,如无溶剂型胶、有溶剂型胶及水基型胶等。但以组分分类应用较多。 3特性折叠编辑本段 1. 基本特性:双组份胶水,需AB混合使用,通用性强,可填充较大的空隙

2. 操作环境:室温固化,室内、室外均可,可手工混胶也可使用AB胶专用设备(如AB胶枪 3. 适用温度一般都在-50至+150度 4. 适用于一般环境,防水、耐油,耐强酸强碱 5. 放置于避免阳光直接照射的阴凉地方,保质期限12个月 1、环氧树脂胶是在环氧树脂的基础上对其特性进行再加工或改性,使其性能参数等符合特定的要求,通常环氧树脂胶也需要有固化剂搭配才能使用,并且需要混合均匀后才能完全固化,一般环氧树脂胶称为A胶或主剂,固化剂称为B胶或固化剂(硬化剂)。 2、反映环氧树脂胶固化前的主要特性有:颜色、粘度、比重、配比、凝胶时间、可使用时间、固化时间、触变性(止流性)、硬度、表面张力等。 粘度(Viscosity):是指胶体在流动中所产生的内部摩擦阻力,其数值由物质种类、温度、浓度等因素决定。 凝胶时间:胶水的固化是从液体向固化转化的过程,从胶水开始反应起到胶体趋向固体时的临界状态的时间为凝胶时间,它由环氧树脂胶的混合量、温度等因素决定。 触变性:该特性是指胶体受外力触动(摇晃、搅拌、振动、超声波等)时,随外力作用由稠变稀,当外界因素停止作用时,胶体又恢复到原来时的稠度的现象。 硬度(Hardness):是指材料对压印、刮痕等外力的抵抗能力。根据试验方法不同有邵氏(Shore)硬度、布氏(Brinell)硬度、洛氏(Rockwell)硬度、莫氏(Mohs)硬度、巴氏(Barcol)硬度、维氏(Vichers)硬度等。硬度的数值与硬度计类型有关,在常用的硬度计中,邵氏硬度计结构简单,适于生产检验,邵氏硬度计可分为A型、C型、D型,A型用于测量软质胶体,C和D型用于测量半硬和硬质胶体。 表面张力(Surface tension):液体内部分子的吸引力使表面上的分子处于向内一种力作用下,这种力使液体尽量缩小其表面积而形成平行于表面的力,称为表面张力。或者说是液体表面相邻两部分间单位长度内的相互牵引力,它是分子力的一种表现。表面张力的单位是N/㎡。表面张力的大小与液体的性质、纯度和温度有关。 3、反映环氧树脂胶固化后特性的主要特性有:电阻、耐电压、吸水率、抗压强度、拉伸(引张)强度、剪切强度、剥离强度、冲击强度、热变形温度、玻璃化转变温度、内应力、耐化学性、伸长率、收缩系数、导热系数、诱电率、耐候性、耐老化性等。

聚氨酯改性环氧树脂胶黏剂的研究

聚氨酯改性环氧树脂胶黏剂的研究 一. 选题的目的及意义: 聚氨酯(PU)是一类常用的高分子材料,以甲苯-2,4-二异氰酸酯(TDI)和二醇类为原料合成,结构中既有柔性的C-C链和C-O-C链,又有活性的酰胺基团,与环氧树脂相容性好。改性后的环氧树脂(EP)强度和韧度都得到提高,特别适用于环氧浇注、环氧涂料等方面,具有良好的应用前景。 二. 选题的国内外研究概况和趋势(设计只介绍相应产品的用途、作品的应 用等) 胶黏剂的一类古老而又年轻的材料,早在数千年前,人类的祖先就已经开始使用胶黏剂。到上个世纪初,合成酚醛树脂的发明,开创了胶黏剂的现代发展史。胶黏剂是具有良好粘结性能的物质,特别是合成胶黏剂强度高,对材质不同的重金属与非金属之间均可实现有效粘结,并且已经在越来越多的领域代替了机械粘结,从而为各行业简化工艺、节约能源、降低成本,提高经济效益提供了有效途径。全球胶黏剂、密封剂和表面处理剂市场总规模约500亿欧元(680亿美元),其中工业胶黏剂市场占44%的份额。 上世纪90年代,我国胶黏剂进入了一个高速发展的新阶段。本世纪前8年,随着我国改革开放的不断深入,胶黏剂工业整个发展势态越来越好。据中国胶黏剂工业协会统计,2004年、2005年和2006年我国胶黏剂产量分别为22.7万吨、251.7万吨和280.2万吨,年均增长率分别外14.32%、10.44%和11.32%,2007年和2008年产量为313.5万吨和344.8万吨,产量不断增加应用领域不断扩展。去年下半年,由于遭受美国、系,西欧和世界金融危机的影响,今年一季度开始,我国合成材料工业及其胶黏剂工业也受到一定影响。据预测今年胶黏剂产量可望达到372.38万吨,增长速度比去年有所下降。 如上所述,由于受国际金融危机的影响,今年我国采取了一系列产业结构调整政策和财政支持政策,进一步扩大内需,保增长,渡难关,上水平,如果没有受到其他影响,2012年后我国又将以崭新姿态出现在世人面前,2015年,即“十二五”计划末,我国胶黏剂产量将突破600万吨大关。据不完全统计,目前我国胶黏剂和密封剂生产厂家又3500多家,但上规模企业不足100家,品种牌号约3000多个。 从应用情况看,胶合板和木工用胶量最大,约点总胶量的46.97%,建筑材料用胶黏剂占26.12%,包装及商标用胶黏剂约占12.14%,制鞋及皮革用胶黏剂占6.07%,其他胶黏剂使用量占8.7%。 随着工业的发展,胶黏剂的应用市场越来越广泛,品种也日益增多,水溶性胶黏剂主要用于建筑、包装、运输、刚性粘合、非刚性粘合、胶带等方面。其中在包装方面的应用最为广泛,同时也用于标签、书包、杯子、信封等制造。目前世界合成胶黏剂发展的趋势表现为以下三方面:第一,环保型合成胶黏剂发展迅速。随着环保法规的日益严格,各发达国家大力研制水基和热熔型等无溶剂胶黏剂。1998年发达国家的合成胶黏剂的市场上水基胶黏剂占50%,热熔胶约占20%,溶剂类胶黏剂仅占20%。未来合成胶黏剂将由低污染的水基胶和热熔胶唱“主角”,环保型合成胶黏剂将是市场的抢手货。第二,高性能胶黏剂异军突起。高性能合成胶黏剂包括环氧、有机硅、聚氨酯及新型改性丙烯酸粘合剂等。第三,施工工艺和施胶设备不断更新。

浅谈环氧树脂的增韧改性

浅谈环氧树脂的增韧改性 摘要: 综述了环氧树脂的增韧改性技术,着重讨论了橡胶弹性体、热塑性树脂增韧环氧树脂的增韧机理和发展现状,并 简要介绍了热致液晶聚合物、柔性链段固化剂和互穿网络结构等环氧树脂增韧改性新技术。 关键词: 环氧树脂; 增韧; 改性 环氧树脂是由具有环氧基的化合物与多元羟基化合物(双酚A、多元醇、多元酸、多元胺) 进行缩聚反应而制得的产品。环氧树脂具有高强度和优良的粘接性能,可用作涂料、电绝缘材料、增强材料和胶粘剂等。但因其固化物质脆,耐开裂性能、抗冲击性能较低,而且耐热性差,使其应用受到了一定的限制。为此国内外学者对环氧树脂进行了大量的改性研究工作,以改善环氧树脂的韧性。 目前环氧树脂的增韧研究已取得了显著的成果,其增韧途径主要有三种: ①在环氧基体中加入橡胶弹性体、热塑性树脂或液晶聚合物等分散相来增韧。②用热固性树脂连续贯穿于环氧树脂网络中形成互穿、半互穿网络结构来增韧。③用含有“柔性链段”的固化剂固化环氧,在交联网络中引入柔性链段,提高网链分子的柔顺性,达到增韧的目的。 1 橡胶弹性体增韧环氧树脂 橡胶弹性体通过其活性端基(如羧基、羟基、氨基) 与环氧树脂中的活性基团(如环氧基、羟基等)反应形成嵌段;正确控制反应性橡胶在环氧树脂体系中的相分离过程是增韧成功的关键。自Mc Garry发现端羧基丁腈橡胶(CTBN) 能使环氧树脂显著提高断裂韧性后的几十年间,人们在这一领域进行了大量的研究。据文献报道,已经研究过的或应用的对环氧树脂增韧改性的橡胶有端羧基聚醚、聚氨酯液体橡胶、聚硫橡胶、含氟弹性体、氯丁橡胶、丁腈橡胶、丙烯酸丁酯橡胶等。通过调节橡胶和环氧树脂的溶解度参数,控制凝胶化过程中相分离形成的海岛结构,以分散相存在的橡胶粒子中止裂纹、分枝裂纹、诱导剪切变形,从而提高环氧树脂的断裂韧性。 目前用液体橡胶增韧环氧树脂的研究有两种趋势。一种是继续采用CTBN 增韧环氧树脂体系,重点放在增韧机理的深入探讨;另一种是采用其它的合适的液体橡胶,如硅橡胶、聚丁二烯橡胶等。D1 Verchere[1 ] 等研究端环氧基丁腈橡胶(ETBN) 对双酚A 型环氧树脂的增韧效果, 当ETBN 含量为20wt %时, 树脂的断裂韧性GIC 由01163kJ / m2 提高到01588kJ / m2 ,比增韧前提高了3倍多。韩孝族[2 ]等用端羟基丁腈橡胶(HTBN) 增韧环氧/ 六氢邻苯二甲酸酐体系, 当HTBN 含量达20phr 时,增韧树脂的冲击强度达900kJ / cm2 ,较改性前(340kJ / cm2) 提高了2 倍多。孙军[3 ]等利用高 分子设计方法及控制反应工艺,制备出具有氨基封端的硅橡胶改性体,分析其红外光谱,证实其产物具有预想结构,即改性后的硅橡胶为氨基封端。用改性硅橡胶对环氧树脂进行增韧改性,通过对增韧体的冲击强度测试结果表明,在改性硅橡胶加入量为0~15 份的范围内,增韧体的冲击强度有了大幅度提高,加入量超过15 份以后,增韧体的冲击强度增势缓慢,实验证明改性硅橡胶对环氧树脂具有良好的增韧效果。此外,还有活性端基液体橡胶增韧环氧树脂、聚硫橡胶改性环氧树脂等方面的研究也有很大进展。如王德武[4 ]等人研制的聚硫橡胶改性环氧防水防腐防霉涂料,是由聚硫橡胶改性环氧溶液为成膜物质,加入金属氧化物填料,添加有机胺固化剂所组成的双组分涂料。该涂料对金属、非金属的附着力强(对钢铁附着力为3~

相关文档
最新文档