第八章 热水网路的水力计算和水压图 第一节

第八章 热水网路的水力计算和水压图 第一节
第八章 热水网路的水力计算和水压图 第一节

济南铁道职业技术学院

教师授课教案

20____/20____学年第____学期课程供热工程

目的要求:

1、掌握采用当量长度法进行水力计算时热网中管段的总压降;

2、掌握热水网路水力计算的方法;

3、掌握水力计算的例题。

旧知复习:当量长度、折算长度

重点难点:

重点:水力计算的例题

教学过程:(包括主要教学环节、时间分配)

一、复习(5分钟)

二、新课

1、热水网路水力计算的任务(10分钟)

2、采用当量长度法进行水力计算时热网中管段的总压降(15分钟)

3、热网水力计算方法、步骤(15分钟)

4、例题(40分钟)

三、小结及作业(5分钟)

课后作业:

结合教材所给已知条件改变网路的计算中用户E、F、D的设计热负荷分别为2.186、3.245、5.478GJ/h,进行水力计算。

教学后记:

热水网路计算公式掌握管段总压降即可。

任课教师教研室主任

济南铁道职业技术学院授课教案附页 第 页

任课教师 郑枫 教研室主任 张风琴 年 月 日

第八章 热水网路的水力计算和水压图

热水网路水力计算的主要任务是:

1.按已知的热媒流量和压力损失,确定管道的直径;

2.按已知热媒流量和管道直径,计算管道的压力损失;

3.按已知管道直径和允许压力损失,计算或校核管道中的流量。

第一节 热水网路水力计算的基本公式

热水网路的水流量通常以吨/时(t /h)表示。

在热水网路计算中,还经常采用当量长度法,亦即将管段的局部损失折合成相当的沿程损失。

1、当采用当量长度法进行水力计算时,热水网路中管段的总压降就等于

zh d Rl l l R P =+=?)( Pa (9-11) 式中 zh l —一管段的折算长度,m 。

2、在进行估算时,局部阻力的当量长度d l 可按管道实际长度l 的百分数来计算。即

l l j d α= m (9-12) 式中 j α——局部阻力当量长度百分数,%(见附录9-3);

第二节 热水网路水力计算方法和例题

一、在进行热水网路水力计算之前,应有资料:网路的平面布置图,热用户热负荷的大小,热源的位置以及热媒的计算温度等。

二、热水网路水力计算的方法及步骤如下:

1.确定热水网路中各个管段的计算流量

对只有供暖热负荷的热水供暖系统,用户的计算流量可用下式确定

)()(/2/1//2/1//

ττττ-=-=n n n Q A c Q G t/h (9-13)

对具有多种热用户的并联闭式热水供热系统,采用按供暖热负荷进行集中质调节时,网路计算管段的设计流量应按下式计算 )(//,2//1////,2///1//2/1//

///τ

ττττττττ-+-+-=++=Q Q Q A G G G G t t n t n zh t/h (9-14) 2.确定热水网路的主干线及其沿程比摩阻

热水网路水力计算是从主干线开始计算。

网路中平均比摩阻最小的一条管线,称为主干线。在一般情况下,热水网路各用户要求预留的作用压差是基本相等的,所以通常从热源到最远用户的管线是主干线。

热水网路主干线的设计平均比摩阻,可取40一80Pa/m 进行计算。

3.报据网路主干线各管段的计算流量和初步选用的平均比摩阻R 值,确定主干线各管段的标准管径和相应的实际比摩阻。

4.确定各管段局部阻力的当量长度d l 总和,以及管段的折算长度zh l 。

5.根据管段的折算长度zh l 以及比摩阻,计算主干线各管段的总比降。

6.进行热水网路支干线、支线等水力计算。

[例题9—1]

[解] 1.确定各用户的设计流量

对热用户E ,根据式(9—13)

h t Q A G n n

/1470130518.38.238/2/1//=-=-=ττ 2.热水网路主干线计算

因各用户内部的阻力损失相等,所以从热源到最远用户D 的管线是主干线。 首先取主干线的平均比摩阻在R =40一80 Pa/m 范围之内,确定主干线各管段的管径。

管段AB :计算流量h t G n /44201014/=++=

根据管段AB 的计算流量和R 值的范围,确定管段AB 的管径和相应的比摩阻R 值。

d =150mm ;R=44.8Pa/m

管段AB 中局部阻力的当量长度d l ,可由附录查出,得

闸阀 1× 2.24=2.24m ;

方形补偿器 3×15.4=46.2m ;

局部阻力当量长度之和 d l =2.24+46.2=48.44m

管段AB 的折算长度 zh l =200+48.44=248.44m

管段AB 的压力损失

zh Rl P =?=44.8×248.44=11130 Pa

用同样的方法,可计算主干线的其余管段BC 、CD ,确定其管径和压力损失。管段BC 和CD 的局部阻力当量长度d l 值,如下:

管段BC DN=125mm 管段CD DN=100mm

直流三通 1×4.4=4.4m 直流三通 1×3.3=3.3m

异径接头 1×0.44=0.44m 异径接头 1×0.33=0.33m 方形补偿器 3×12.5=37.5m 方形补偿器 3×9.8=29.4m 总当量长度 d l =42.34 m 闸阀 1×1.65=1.65m

总当量长度 d l =34.68 m

3.支线计算

管段BE 的资用压差为:

CD BC BE P P P ?+?=?=12140十14627=26767Pa

设局部损失与沿程损失的估算比值j α=0.6(见附录9—3),则比摩阻大致可控制为

(j BE BE l P R α+?=1//=26767/70(1+0.6)=239 Pa/m 根据R /和/BE G =14t /h ,由附录9—3得出

BE d =70m m ;BE R =278.5 Pa/m ;υ=1.09m /s

管段BE 中局部阻力的当量长度d l ,查附录9—2,得:

三通分流:1× 3.0=3.0m ;方形补偿器 2× 6.8=13.6 m ;闸阀2×

1.0=2.0m ,总当量长度d l =18.6m 。

管段BE 的折算长度zh l 70+18.6=88.6m 。 管段BE 的压力损失

zh BE Rl P =?=278.5×88.6=24675Pa 用同样方法计算支管CF ,计算结果见表9-3。

小结:1、热水网路主干线的平均比摩阻的确定。 2、热水网路支干线、支线水力计算方法。

给水排水管道系统水力计算汇总

第三章给水排水管道系统水力计算基础 本章内容: 1、水头损失计算 2、无压圆管的水力计算 3、水力等效简化 本章难点:无压圆管的水力计算 第一节基本概念 一、管道内水流特征 进行水力计算前首先要进行流态的判别。判别流态的标准采用临界雷诺数Re k,临界雷诺数大都稳定在2000左右,当计算出的雷诺数Re小于2000时,一般为层流,当Re大于4000时,一般为紊流,当Re介于2000到4000之间时,水流状态不稳定,属于过渡流态。 对给水排水管道进行水力计算时,管道内流体流态均按紊流考虑 紊流流态又分为三个阻力特征区:紊流光滑区、紊流过渡区及紊流粗糙管区。 二、有压流与无压流 水体沿流程整个周界与固体壁面接触,而无自由液面,这种流动称为有压流或压力流。水体沿流程一部分周界与固体壁面接触,另一部分与空气接触,具有自由液面,这种流动称为无压流或重力流 给水管道基本上采用有压流输水方式,而排水管道大都采用无压流输水方式。 从水流断面形式看,在给水排水管道中采用圆管最多 三、恒定流与非恒定流 给水排水管道中水流的运动,由于用水量和排水量的经常性变化,均处于非恒定流状态,但是,非恒定流的水力计算特别复杂,在设计时,一般也只能按恒定流(又称稳定流)计算。 四、均匀流与非均匀流 液体质点流速的大小和方向沿流程不变的流动,称为均匀流;反之,液体质点流速的大小和方向沿流程变化的流动,称为非均匀流。从总体上看,给水排水管道中的水流不但多为非恒定流,且常为非均匀流,即水流参数往往随时间和空间变化。 对于满管流动,如果管道截面在一段距离内不变且不发生转弯,则管内流动为均匀流;而当管道在局部有交汇、转弯与变截面时,管内流动为非均匀流。均匀流的管道对水流的阻力沿程不变,水流的水头损失可以采用沿程水头损失公式进行计算;满管流的非均匀流动距离一般较短,采用局部水头损失公式进行计算。

给水管网水力计算基础

给水管网水力计算基础 为了向更多的用户供水,在给水工程上往往将许多管路组成管网。管网按其形状可分为枝状[图1(a)]和环状[图1(b)]两种。 管网内各管段的管径是根据流量Q 和速度v 来决定的,由于v d Av Q )4/(2 π==所以管径v Q v Q d /13.1/4== π。但是,仅依靠这个公式还不能完全解决问题,因为在流 量Q 一定的条件下,管径还随着流速v 的变化而变化。如果所选择的流速大,则对应的管径就可以小,工程的造价可以降低;但是,由于管道内的流速大,会导致水头损失增大,使水塔高度以及水泵扬程增大,这就会引起经常性费用的增加。反之,若采用较大的管径,则会使流速减小,降低经常性费用,但反过来,却要求管材增加,使工程造价增大。 图 1管网的形状 (a)枝状管网;(b)环状管网 因此,在确定管径时,应该作综合评价。在选用某个流速时应使得给水工程的总成本(包括铺设水管的建筑费、泵站建筑费、水塔建筑费及经常抽水的运转费之总和)最小,那么,这个流速就称为经济流速。 应该说,影响经济流速的因素很多,而且在不同经济时期其经济流速也有变化。但综合实际的设计经验及技术经济资料,对于一般的中、小直径的管路,其经济流速大致为: ——当直径d =100~400mm ,经济流速v =0.6-1.0m/s ; ——当直径d>400mm ,经济流速v=1.0~1.4m/s 。 一、枝状管网 枝状管网是由多条管段而成的干管和与干管相连的多条支管所组成。它的特点是管网内任一点只能由一个方向供水。若在管网内某一点断流,则该点之后的各管段供水就有问题。因此供水可靠性差是其缺点,而节省管料,降低造价是其优点。 技状管网的水力计算.可分为新建给水系统的设计和扩建原有给水系统的设计两种情况。 1.新建给水系统的设计 对于已知管网沿线的地形资料、各管段长度、管材、各供水点的流量和要求的自由水头(备用水器具要求的最小工作压强水头),要求确定各管段管径和水塔水面高度及水泵扬程的计算,属于新建给水系统的设计。 自由水头由用户提出需要,对于楼房建筑可参阅下表。 建筑物层数 1 2 3 4 5 6 7 8 自由水头Hz (m ) 10 12 16 20 24 28 32 36 这一类的计算,首先应从各管段末端开始,向水塔方向求出各管段的流量,然后选用经

枝状管网水力计算

9)4.10 3.88 单定压节点树状管网水力分析 某城市树状给水管网系统如图所示,节点(1)处为水厂清水池,向整个管网供水,管段[1]上设有泵站,其水力特性为:s p1=311、1(流量单位:m 3/S,水头单位:m),h e1=42、6,n=1、852。根据清水池高程设计,节点(1)水头为H1=7、80m,各节点流量、各管段长度与直径如图中所示,各节点地面标高见表,试进行水力分析,计算各管段流量与流速、各节点水头与自由水压。 以定压节点(1)为树根,则从离树根较远的节点逆推到离树根较近的节点的顺序就是:(10),(9),(8),(7),(6),(5),(4),(3),(2);或(9),(8),(7),(10),(6),(5),(4),(3),(2);或(5),(4),(10),(9),(8),(7),(6),(3),(2)等,按此逆推顺序求解各管段流量的过程见下表。 ,即: q 1+Q 1=0,所以,Q 1=- q 1=-93、21(L/s) 根据管段流量计算结果,计算管段流速及压降见表。计算公式与算例如下: 采用海曾威廉-公式计算(粗糙系数按旧铸铁管取C w =100)

管道摩阻系数 管段水头损失 泵站扬程按水力特性公式计算: 管段编号[1][2][3][4][5][6][7][8][9] 管段长度(m) 600 300 150 250 450 230 190 205 650 管段直径(mm) 400 400 150 100 300 200 150 100 150 管段流量(L/s) 93、21 87、84 11、04 3、88 60、69 18、69 11、17 4、1 11、26 管段流速(m/s) 0、74 0、70 0、63 0、49 0、86 0、60 0、63 0、52 0、64 管段摩阻系数109、72 54、86 3256、05 39093、49 334、04 1229、92 4124、33 32056、66 14109、56 水头损失(m) 1、35 0、61 0、77 1、34 1、86 0、77 1、00 1、22 3、48 泵站扬程(m) 38、76 0 0 0 0 0 0 0 0 管段压降(m) -37、41 0、61 0、77 1、34 1、86 0、77 1、00 1、22 3、48 以定压节点(1)为树根,则从离树根较近的管段顺推到离树根较远的节点的顺序就是:[1],[2],[3],[4],[5],[6],[7],[8],[9]; 或[1],[2],[3],[4],[5],[9],[6],[7],[8]; 或[1],[2],[5],[6],[7],[8],[9],[3],[4]等,按此顺推顺序求解各定流节点节点水头的过程见下表。 步骤树枝管段号管段能量方程节点水头求解节点水头(m) 1 [1]H 1-H 2 =h 1 H 2 =H 1 -h 1 H 2 =45、21 2 [2]H 2-H 3 =h 2 H 3 =H 2 -h 2 H 3 =44、60 3 [3]H 3-H 4 =h 3 H 4 =H 3 -h 3 H 4 =43、83 4 [4]H 4-H 5 =h 4 H 5 =H 4 -h 4 H 5 =42、49 5 [5]H 3-H 6 =h 5 H 6 =H 3 -h 5 H 6 =40、63 6 [6]H 6-H 7 =h 6 H 7 =H 6 -h 6 H 7 =39、86 7 [7]H 7-H 8 =h 7 H 8 =H 7 -h 7 H 8 =38、86 8 [8]H 8-H 9 =h 8 H 9 =H 8 -h 8 H 9 =37、64 9 [9]H 6-H 10 =h 9 H 10 =H 6 -h 9 H 10 =34、16 节点编号i 1 2 3 4 5 6 7 8 9 10 地面标高(m) 9、80 11、50 11、80 15、20 17、40 13、30 12、80 13、70 12、50 15、00 节点水头(m) 7、80 45、21 44、60 43、83 42、49 40、63 39、86 38、86 37、64 34、16 自由水头(m) —33、71 32、80 28、63 25、09 27、33 27、06 25、16 25、14 19、16

PPR水力计算表

建筑给水聚丙烯管道(PP—R)应用技术规程 前言 建筑给水聚丙烯管道(PP—R)是国际上九十年代发展起来的化学建材,它与钢管、铜管相比,具有卫生、质轻、耐压、耐腐蚀、阻力小、隔热保温、连接方便可靠、使用寿命长、废料可回收利用等特点,可广泛用于冷、热水供应系统和纯净水系统,有良好的推广应用前景和显著的社会效益、经济效 益。 本规程是参照国外有关资料和上海市建筑产品推荐性应用标准《建筑给水聚丙烯管道(PP—R)工程技术规程》DBJ/CT501—99基础上编制的。由于经验有限,难免有不足之处,有待在实践中不断完 善。在使用中如有意见和建议,请寄至:广东省南海市松岗镇沙水工业区,南海市彩虹塑胶实业有限公司,邮政编码528234,以便修订时采用。 本规程编写单位及起草人名单如下: 主编单位:广州市建设委员会广东省土木建筑学会广东省给排水技术专业委员会 参编单位:南海市彩虹塑胶实业有限公司广西省土木建筑学会 主要起草人:曲申酉、李大鹏、何枫,郭秀英 参加起草人:劳锦华、陈永昌、杜吉军、张海忠、刘勇、余敏 第一章总则 1.0.1 为了使建筑给水系统中采用聚丙烯管道的工程,在设计、施工及验收中做到技术先进、安全卫生、经济合理、保证质量,特制订本规程。 1.0.2 本规程适用于各种民用建筑和工业建筑中生活给水、生活热水和饮用洁净水的管道系统的设计、施工及验收。本规程规定的系统工作压力不大于0.6MPa,水温不大于70℃。 1.0.3 聚丙烯管道不得用作消防管道。聚丙烯管道用于输送化工流体介质时,应探讨其化学稳定性,应参考有关资料或做试验确定。

1.0.4 本规程采用的聚丙烯管材、管件的规格、尺寸及性能,均应符合南海市彩虹塑胶实业有限公司产品企业标准Q/CHl.1— 1999、Q/CHl.2—1999的要求,该企业标准中管材等同采用德国工业标准 DIN8077—1996及DIN8078—1996中第三类型管的要求。管件等同采用德国工业标准DINl6962E中第5、6、7、8部分的规定。 1.0.5给水聚丙烯管道工程的设计、施工及验收,除执行本规程外,还应符合国家有关标准、规范的规定。 第二章术语 2.0.1 热熔连接由相同热塑性塑料制作的管材与管件互相连接时,采用专用热熔机具将连接部位表面加热,连接接触面处的本体材料互相熔合,冷却后连接成为一个整体。热熔连接有对接式热熔连接、承插式热熔连接和电熔连接。 2.0.2 公称压力管材在介质温度为20℃,使用期限为50年,以MPa为单位的允许压力称为公称压力。 2.0.3 允许压力在某一介质温度下,对应一定的使用年限,管道系统可以承受的最大压力,称为允许压力。 2.0.4 工作压力为确保管道系统在使用期限内安全运行,各公称压力等级的管道,将其允许压力乘以安全系数后确定的压力,称为工作压力。 2.0.5 自然补偿利用管道敷设中自然存在的曲折或加设的曲折,吸收管道因温差产生的变形,称为自然补偿。 2.0.6 自由臂自然补偿时,利用折角管段的悬臂位移,吸收管道自固定点起至转弯处的伸缩变形,该对应的转弯管段称为自由臂。 2.0.7 电熔连接由相同的热塑性塑料管道连接时,插入特制的电熔管件,由电熔连接机具对电熔管件通电,依靠电熔管件内部预先埋设的电阻丝产生所需要的热量进行熔接,冷却后管道与电熔管件连接成为一个整体。 2.0.8 法兰连接件由金属法兰盘及PP—R过渡接头组成,过渡接头与管材用热熔连接套入法兰盘形成法兰连接件。法兰连接件是PP—R管道法兰连接的专用型式,构造示意图如下:

管道的水力计算及强度计算.

第三章管道的水力计算及强度计算 第一节管道的流速和流量 流体最基本的特征就是它受外力或重力的作用便产生流动。如图3—1所示装置,如把管道中的阀门打开,水箱内的水受重力作用,以一定的流速通过管道流出。如果水箱内的水位始终保持不变,那么管道中的流速也自始至终保持不变。管道中的水流速度有多大?每小时通过管道的流量是多少?这些都是实际工作中经常遇到的问题。 图3—1水在管道内的流动 为了研究流体在管道内流动的速度和流量,这里先引出过流断面的概念。图3—2为水通过管道流动的两个断面1—1及2—2,过流断面指的是垂直于流体流动方向上流体所通过的管道断面,其断面面积用符号A来表示,它的单位为m2或cm2。 图32管流的过流断面 a)满流b)不满流 流量是指单位时间内,通过过流断面的流体体积。以符号q v表示,其单位为m3/h,cm3/h或m3/s,cm3/s。 流速是指单位时间内,流体流动所通过的距离。以符号。表示,其单位为m/s或cm /s。 图3—3管流中流速、流量、过流断面关系示意图

流量、流速与过流断面之间的关系如下: 以水在管道中流动为例,如图3—3所示,在管段上取过流断面1—1,如果在单位时间内水从断面1—1流到断面2—2,那么断面1—1和断面2—2所包围的管段的体积即为单位时间内通过过流断面1—1时水的流量q v,而断面1—1和断面2—2之间的距离就是单位时间内水流所通过的路程,即流速。 由上可知,流量、流速和过流断面之间的关系式为 q v=vA (3—1) 式(3—1)叫做流量公式,它说明流体在管道中流动时,流速、流量和过流断面三者之间的相互关系,即流量等于流速与过流断面面积的乘积。如果在一段输水管道中,各过流断面的面积及所输送的水量一定,即在管道中途没有支管与其连接,既没有水流出,也没有水流入,那么管道内各过流断面的水流速度也不会变化;若管段的管径是变化的(即过流断面的面积A是变化的),那么管段中各过流断面处的流速也随着管径的变化而变化。当管径减小时,流速增大;而当管径增大时,流速即减小。然而,当流速一定时,流量的变化随管径成几何倍数变化,而不是按算术倍数变化。因为在管流中,管道的过流断面面积与管径的平方成正比。也就是说,管径扩大到原来的2倍、3倍、4倍时,面积增加到原来的4倍、9倍、16倍。如DN50mm的管子过流断面面积是DN25mm的管子的4倍,那么在流速相等的条件下,DN50mm管子中所通过的流量即是DN25mm管子的4倍;同理,DNlOOmm的管道内所通过的流量应是DN25mm管子的16倍。在日常施工中,常有人认为在流速一定时,管径之比就是所输送的流量之比,这无疑是错误的。 以上提到的以m3/h和cm3/s等为单位的流量又称为体积流量。如果指的是在单位时间内通过过流断面的流体质量时,该流量则称为质量流量,以符号qm表示,常采用的单位为kg/h或kg/s。质量流量与体积流量之间的关系为 qm=ρq v 而由式(3—1)知 q v=vA 则 q m=ρvA (3—2) 式中q m——质量流量(kg/s); ρ——流体的密度,即单位体积流体的质量(ks/m3); V——流体通过过流断面的平均流速(m/s); A——过流断面面积(m2)。 例管径为DNlOOmm的管子,输送介质的流速为lm/s时,其小时流量为多少? 解DNlOOmm管子的过流断面面积为 A=πD3/4=3.14×0.12/4=0.00785m2 则q v=1×0.00785×3600=28.3m3/h 答:该管道的小时流量为28.3m3/h。 第二节管道的阻力损失 流体在管渠中流动时,过流断面上各点的流速并不是相同的。例如在河沟中,靠近岸边的水,流动较慢;而河沟中心的水,流速就较大。管道内流动的流体也是如此,靠近管内壁面的流体流速较小,处在管中心的流体流速最大。产生这一现象的原因在于,流体流动时与管内壁面发生摩擦产生阻力,同时管内流体各流层之间由于流速的变化而引起相对运动所产生的内摩擦阻力,也阻挠流体的运动。流体在流动中,为了克服阻力就要消耗自身所具有的机械能,我们称这部分被消耗掉的能量为阻力损失。流体的性质不同,流动状态相同,流动时所产生的阻力损失大小也不同。流动是产生阻力损失的外部条件,流速越高,流体与管壁及流体自身之间的摩擦就越剧烈,阻力也就越大。相反,流速越小,摩擦减弱,阻力也就越

热水管网的水力计算

8章建筑内部热水供应系统 8.4热水管网的水力计算 8.4 热水管网的水力计算 8.4热水管网的水力计算

热水管网的水力计算是在完成热水供应系统布置,绘出热水管网系统图及选定加热设备后进行的。 水力计算的目的是: 计算第一循环管网(热媒管网)的管径和相应的水头损失; 计算第二循环管网(配水管网和回水管网)的设计秒流量、循环流量、管径和水头损失; 确定循环方式,选用热水管网所需的各种设备及附件,如循环水泵、疏水器、膨胀设施等。

以热水为热媒时,热媒流量G按公式(8-8)计算。 热媒循环管路中的配、回水管道,其管径应根据热媒流量G、热水管道允许流速,通过查热水管道水力计算表确定,并据此计算 出管路的总水头损失H h 。热水管道的流速,宜按表8-45选用。 8.4.1 第一循环管网的水力计算 1.热媒为热水 热水管道的流速表8-12

当锅炉与水加热器或贮水器连接时,如图8-12所示, 热媒管网的热水自 然循环压力值H zr 按式 (8-35)计算: ) (8.921ρρ-?=h H zr 图8-12

热水管网的水力计算 8.4.1 第一循环管网的水力计算 式中H zr —热水自然循环压力,Pa ; Δh —锅炉中心与水加热器内盘管中心或贮水器中心垂直高度,m ;ρ1—锅炉出水的密度,kg/m 3; ρ2—水加热器或贮水器的出水密度,kg/m 3。 当H zr >H h 时,可形成自然循环,为保证运行可靠一般要求 (8-36): h H 当H zr 不满足上式的要求时,则应采用机械循环方式,依靠循环水泵强制循环。循环水泵的流量和扬程应比理论计算值略大一些,以确保可靠循环。 zr H ≥(1.1~1.15)h H

城给水管网水力计算程序及例题

给水排水管道工程 课程设计指导书 环境科学与工程学院

第一部分城市给水管网水力计算程序及习题 一、程序 #define M 18 #define N 6 #define ep 0.01 #include int sgn(double x); main() { int k, i,ko,q,p,flag=0; double h[M]; double l[]={?}; double D[]={?}; double Q[]={?}; int io[]={?}; int jo[]={?}; double f[N+1],r[N+1],dq[N+1]; for(k=0;k<=M-1;k++) { Q[k]=Q[k]*0.001; } for(k=0;k<=M-1;k++) { Q[k]=Q[k]*sgn(io[k]); } ko=0; loop: for(k=0;k<=M-1;k++) { h[k]=10.67*pow(fabs(Q[k]),1.852)*l[k]; h[k]=h[k]/(pow(100,1.852)*pow(D[k],4.87))*sgn(Q[k]); }

for(i=1;i<=N;i++) { f[i]=0;r[i]=0; dq[i]=0; for(k=0;k<=M-1;k++) { if(abs(io[k])!=i) goto map; f[i]=f[i]+h[k]; r[i]=r[i]+(h[k]/Q[k]); map: if( abs(jo[k])!=i) continue; f[i]=f[i]+h[k]*sgn(jo[i]); r[i]=r[i]+(h[k]/Q[k]); } dq[i]=-(f[i]/(r[i]*2)); } { if (fabs(f[N])<=ep) flag=1; } if (flag==1) goto like; for(k=0;k<=M-1;k++) { p=abs(io[k]);q=abs(jo[k]); Q[k]=Q[k]+dq[p]+(dq[q]*sgn(jo[k])); } ko=ko+1; if(flag==0) goto loop; like: printf("\n\n"); for(i=1;i<=N;i++) {printf("%f\n",f[i]);} printf("ep=%f\n",0.01); printf("n=%d,m=%d,ko=%d\n",N,M,ko); for(k=0;k<=M-1;k++) { printf("%d)",k+1);

给排水水力计算工具集

给排水水力计算工具集 *********************************************************** ******************** 版本号:1.1 更新日期:2004.7.28 版本更新说明: 1.修正了给水水力计算默认管材下改变温度时计算报错的bug; 2.修正了排水水力计算铸铁管和PVC-U排水管管径变化时无法 自动调整坡度的bug,修正了PVC-U管材计算内径。 *********************************************************** ******************** 摘要依据国家最新规范及标准图等,并通过实际工程应用,设计开发的给排水计算工具。 关键词给排水设计计算软件开发Visual Basic 从事给排水设计过程中,使用过一些他人开发的计算软件,发现有些软件的操作不太方便,功能不全,毕业到现在2年来,机器上积攒了不少软件,存在功能交叉,管理不便,同时由于新规范的颁布,有些计算方法已不能满足新规范要求,为此决定开发一个功能相对集成的软件。部分版块参考相关软件进行界面设计,经过数月内部测试,目前v1版基本完成,主要包括如下版块:给水水力计算、满流非满

流水力计算、雨水水力计算、消火栓水力计算、灭火器配置计算、化粪池选型、钢制管件、防水套管、排水管件。下面将介绍各版块的设计依据及设计思路。https://www.360docs.net/doc/b38753946.html, 中国最大的管理资料库下载 1. 给水水力计算 用于钢衬塑复合管、PP-R 冷、热水管、薄壁不锈钢管、衬树脂铸铁管、普通钢管、铸铁管、铜管的水力计算。 设计依据 《建筑给排水设计规范》 GB50015-2003 《给水排水设计手册》第二版 《2003全国民用建筑工程设计技术措施》给排水分册 沿程水头损失h i =k ·i ·L= k ·105C h -1.85d j -4.87q g 1.85·L, 流速v= 2g 4 1q j d S h i -沿程水头损失 i-单位长度水头损失 d j -管道计算内径

城给水管网水力计算程序及例题

给水排水管道工程课程设计指导书

环境科学与工程学院 第一部分城市给水管网水力计算程序及习题一、程序 #define M 18 #define N 6 #define ep 0.01 #include int sgn(double x); main() { int k, i,ko,q,p,flag=0; double h[M]; double l[]={?}; double D[]={?}; double Q[]={?}; int io[]={?}; int jo[]={?}; double f[N+1],r[N+1],dq[N+1]; for(k=0;k<=M-1;k++) { Q[k]=Q[k]*0.001; } for(k=0;k<=M-1;k++) { Q[k]=Q[k]*sgn(io[k]); } ko=0; loop:

for(k=0;k<=M-1;k++) { h[k]=10.67*pow(fabs(Q[k]),1.852)*l[k]; h[k]=h[k]/(pow(100,1.852)*pow(D[k],4.87))*sgn(Q[k]); } for(i=1;i<=N;i++) { f[i]=0;r[i]=0; dq[i]=0; for(k=0;k<=M-1;k++) { if(abs(io[k])!=i) goto map; f[i]=f[i]+h[k]; r[i]=r[i]+(h[k]/Q[k]); map: if( abs(jo[k])!=i) continue; f[i]=f[i]+h[k]*sgn(jo[i]); r[i]=r[i]+(h[k]/Q[k]); } dq[i]=-(f[i]/(r[i]*2)); } { if (fabs(f[N])<=ep) flag=1; } if (flag==1) goto like;

供热工程9.2 热水网络水力计算方法和例题

第二节热水网络水力计算方法和例题 热水网络水力计算所需资料: 1.网路的平面布置图(平面图上应标明管道所有的附件和配件); 2.热用户热负荷的大小; 3.热源的位置以及热媒的计算温度。 热水网路的水力计算方法及步骤: 1.确定热水网路中各个管段的计算流量 管段的计算流量就是该管段所负担的各个用户的计算流量之和,以此计算流量确定管段的管径和压力损失。 1)对只有供暖热负荷的热水供暖系统,用户的计算流量可用下式确定: (9—13) 式中'n Q ——供暖用户系统的设计负荷,通常可用GJ/h 、MW 或610kcal/h;'1τ、'2τ——网路的设计、回水温度,℃; c——水的质量比热,c=4.1868kj/(kg·℃)=1kcal/(kg·℃) A——采用不同计算单位系数; 2)对具有多种热源用户的并联闭式热水供热系统,采用按供暖热负荷进行集中质调节时,网路计算管道的设计流量应按下式计算: (9—14)式中'sh G ——计算管段的设计流量,t/h ;' n G 、' t G 、' r G ——计算管段担负供暖、通风、热水供应的热负荷设计流量,t/h ;'n Q 、't Q 、'r Q ——计算管段担负的供暖、通风和热水供应的设计热负荷,通常可以GJ/h 、MW 或610kcal/h 表示; A——采用不同计算单位时的系数; '''1τ——在冬季通风室外设计算温度'w.t t 时的网路供水温度,℃;'''t .2τ——在冬季通风室外设计算温度'w.t t 时,流出空气加热器的网路回 水温度,采用与供暖热负荷质调节时相同的回水温度,℃; ''1τ——供热开始或开始间歇调节时的网路供水温度,℃; ''2.r τ——供热开始或开始间歇调节时,流出热水供应的水-水换热器的1212()()n n n Q Q G A c ττττ'''==''''--121 2.1 2.()n t r sh n t r t r Q Q Q G G G G A ττττττ'''''''=++=++''''''''''''---

球墨铸铁管的水力计算

球墨铸铁管的水力计算的探讨 圣戈班管道系统有限公司李华成 一、前言 在二十世纪九十年代以前,绝大多数供水管材都是灰口铸铁管,依据我国27个大中城市的给水管材的调查数据,灰口铸铁管所占的比例为84.72%。在长期的使用过程中,灰口铸铁管有着十分成熟的设计规范、设计标准图集和施工规范。这些都给管道生产商、设计单位、施工单位带来了很大的便利。 球墨铸铁管是在灰口铸铁管基础上的一次新的革命。它不但继承了灰口管抗腐蚀、耐磨等优点,而且其机械性能远大于灰口管,更接近于钢管。随着球墨铸铁管进入中国市场,越来越多的自来水公司和建设单位了解和掌握球墨铸铁管的性能,球墨铸铁管成为供水管材的主导产品,并逐步取代灰口铸铁管,这已成为不争的事实。 但是遗憾的是,我国许多关于球墨铸铁管的设计、施工、验收规范都没有及时地推出,给管线的建设带来了无法可依的局面。由于标准的缺乏,现行的做法是只能套用灰口铸铁管的规范。我们知道,球墨铸铁管与灰口铸铁管相比,无论是管材的本身、接口防腐层、管线设计、安装、验收都有很大的不同,直接套用所产生的误差也是相当大的,对管线的正常运行,经济效益都带来了重大影响。 主要的问题如下: -管线的设计,由于球墨铸铁管内喷涂一层光滑的水泥内衬,粗糙度k约为0.03;而灰口铸铁管没有内衬保护,在管线运行一段时间后,会有一层腐蚀,粗糙度k约为0.2 ~ 0.3。 由此,两种管道的水力阻力系数会有很大的不同。由于这类的问题非常突出,本文就此进行了详细的阐述,并进行了技术、经济上的比较。 -管道的安装,球墨铸铁管一般采用T型滑入式柔性接口,灰口铸铁管接口比较多,如,青铅接口、膨胀水泥接口、石棉水泥接口等,这些均属于刚性接口。球墨铸铁管的安装相对简单得多,在生产厂家提供技术安装手册或技术人员亲临指导下,很容易掌握,所以安装问题并没有给建设单位造成多大的困难。但应当说明是,球墨铸铁管的安装标准,包括一些特殊接头的安装,在现行的大多数设计施工规范中都没有体现,这样的形势是无法另人满意的。 -水泥支墩,我国给排水标准图集S3中,有对水泥支墩的定义,它的设计依据是由1965年北京、上海、成都三个地区灰口铸铁管的试验做出的。由于管材、接口形式等不同,图集中的支墩尺寸并不适合于球墨铸铁管。如果能推出一系列球墨铸铁管水泥支墩的安装图集,将给管线的设计、施工带来很大的便利。 -工程的水压试验,现行的GB50268-97《给水排水管道工程施工及验收规范》的水压试验中一些方法及一些参数的取值均不合理,已经不适应于球墨铸铁管的验收要求。目前,郑州自来水公司在工程建设中积累了大量的试验数据,对水压试验的修订提供了许多宝贵的建议,这些都为球墨铸铁管在中国的发展有着积极地推动作用。 -产品标准的陈旧与错误,GB13295-91及GB13294-91历经了十几年没有更新,已不能跟上球墨铸铁管的发展。另外,GB13295-91还包含着一些错误,例如,DN700管道的重量(K9级,标准工作长度6m)为1126kg,如果按照承口部分的重量加上直管部分的重量计算,其结果是1123kg。两者的结果相差3kg,显然是不合理的。新的国家标准GB/T13295-200X已经出台了报批稿,那么新版本也将正式推出,这无疑是个值得庆贺的好消息。 总之,一方面,球墨铸铁管的使用得到了供水行业决大多数技术专家的认同;另一方面,

给水管网水力计算基础

给水管网水力计算基础-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

给水管网水力计算基础 为了向更多的用户供水,在给水工程上往往将许多管路组成管网。管网按其形状可分为枝状[图1(a)]和环状[图1(b)]两种。 管网内各管段的管径是根据流量Q 和速度v 来决定的,由于 v d Av Q )4/(2π==所以管径v Q v Q d /13.1/4==π。但是,仅依靠这个公式还不能完全解决问题,因为在流量Q 一定的条件下,管径还随着流速v 的变化而变化。如果所选择的流速大,则对应的管径就可以小,工程的造价可以降低;但是,由于管道内的流速大,会导致水头损失增大,使水塔高度以及水泵扬程增大,这就会引起经常性费用的增加。反之,若采用较大的管径,则会使流速减小,降低经常性费用,但反过来,却要求管材增加,使工程造价增大。 图 1管网的形状 (a)枝状管网;(b)环状管网 因此,在确定管径时,应该作综合评价。在选用某个流速时应使得给水工程的总成本(包括铺设水管的建筑费、泵站建筑费、水塔建筑费及经常抽水的运转费之总和)最小,那么,这个流速就称为经济流速。 应该说,影响经济流速的因素很多,而且在不同经济时期其经济流速也有变化。但综合实际的设计经验及技术经济资料,对于一般的中、小直径的管路,其经济流速大致为: ——当直径d =100~400mm ,经济流速v =-1.0ms ; ——当直径d>400mm ,经济流速v=~1.4m/s 。 一、枝状管网 枝状管网是由多条管段而成的干管和与干管相连的多条支管所组成。它的特点是管网内任一点只能由一个方向供水。若在管网内某一点断流,则该点之后的各管段供水就有问题。因此供水可靠性差是其缺点,而节省管料,降低造价是其优点。 技状管网的水力计算.可分为新建给水系统的设计和扩建原有给水系统的设计两种情况。 1.新建给水系统的设计 对于已知管网沿线的地形资料、各管段长度、管材、各供水点的流量和要求的自由水头(备用水器具要求的最小工作压强水头),要求确定各管段管径和水塔水面高度及水泵扬程的计算,属于新建给水系统的设计。 自由水头由用户提出需要,对于楼房建筑可参阅下表。 表 自由水头Hz 值

试卷及答案16

一. 填空(每空1分,共25分) 1. 通风、空调系统并联管路阻力平衡的方法和。 2.敞口的竖直管中的气体重力流,其流动动力的大小取决于 和之积,流动方向取决于 ,若管道内气体密度,则管道内气流向上。 3.建筑高度超过的公共建筑或工业建筑、楼层数在 的住宅建筑为高层建筑。 4.燃气管道的与其它管道相比,有特别严格的要求。 5.室内热水供应系统设置循环管的目的是。 6.蒸汽供暖系统水平失调具有和。 7.水封水量损失的主要原因为、和 。 8.设计室内排水系统横管时须满足的规定有、、 和。 9.泵、风机的能量损失包括、、和 。 10.泵、风机采用串联运行的条件是和 。 二.单项选择(每题1分,共5分) 1.对于压力和重力综合作用下的气体管流,压力和重力综合作用将 管内气体的流动。 A.增强 B.削弱 C.不一定 2.蒸汽管网比冷热水管网在设计和运行管理上较复杂的原因是。 A.蒸汽的比重小 B.蒸汽和凝水状态参数变化较大 C.蒸汽系统的压力大 3.欧拉方程的特点是流体经泵或风机所获得的理论扬程。 A.与流动过程有关 B.与流体进出口速度有关 C.与被输送流体的种类有关 4.两台性能相同的泵或风机并联运行时,总流量增量的大小与下列哪一项有关。 A.管网性能曲线形状 B.泵或风机性能曲线形状 C.前两者 5.随着并联泵或风机台数的增多,总流量增量的幅度越来。 A.越大 B.越小 C.不变 三.判断对错(每题1分,共10分) 1.当量直径就是与矩形风管有相同单位长度摩擦阻力的圆形风管直径。

2.吸送式气力输送系统的风机安装在系统尾部,系统在负压下运行。 3.应使排水立管内的水流状态处于水塞流。 4.轴功率表示在单位时间内流体从离心式泵或风机中所获得的总能量。 5.风机的全压为单位体积的气体流经风机时所获得的总能量。 6.理想条件下,泵或风机的Q T-H T性能曲线为抛物线形状。 7.改变管网性能曲线最常用的方法是改变管网中阀门的开启度。 8.泵的调节阀安装在吸入管上时,技术和经济性较好。 9.对于具有驼峰形性能曲线的泵或风机,其在压头峰值点的左侧区域运行 时,设备的工作状态能自动地与管网的工作状态保持平衡,稳定工作。 10.系统效应反映的是泵或风机进出口与管网系统连接方式对泵或风机的性能产生的影响。 四.简答题(每题5分,共30分) 1.什么叫均匀送风﹖实现均匀送风的基本条件﹖ 2.阐述湿式自动喷水灭火系统的工作原理。 3.建筑给水系统所需压力的组成﹖如何根据所需压力及外网水压确定供水 方式﹖ 4.分析建筑内排水立管的压力变化。 5.试比较前向叶片、径向叶片和后向叶片。 6.什么叫泵或风机的喘振﹖其危害﹖防治的方法﹖ 五. 制图分析题(10分) 下图为热水网路平面示意图及干管在正常水力工况下的水压曲线,请绘出(1)关小阀门A(2)关小阀门B两种情况下的水压曲线,并分析各种用户的流量变化。 六.分析计算题(10分) 下图为某热水网路平面图,管线纵剖面图和水压图,网路供、回水温度130℃/70℃(130℃水汽化压力17.6mH2O),用户3为低温水供暖用户,压力损失为2mH2O,主干线长为1000m,试问 1。在图中标出定压点C的位置 2。确定网路循环水泵扬程 3。确定热源内部压力损失 4。网路主干线压力损失 5。回水主干线平均比压降 6。定性比较用户1和用户2供水支线压力损失大小 7。验证热水网路在用户3入口处压力工况是否满足技术要求 8。确定用户3连接方式 七.计算题(10分) 某厂区热水供热系统网路平面如图,供水温度t1=130℃,回水温度t2=70℃,用户流量及用户内部阻力损失如图所示,试进行热水网路水力计算。( a j =0.6局部损失与沿程损失的估算比值)

城给水管网水力计算程序及例题

给水排水管道工程

课程设计指导书 环境科学与工程学院 第一部分城市给水管网水力计算程序及习题一、程序 #define M 18 #define N 6

#define ep 0.01 #include int sgn(doublex); main() { int k, i,ko,q,p,flag=0; double h[M]; double l[]={?}; double D[]={?}; double Q[]={?}; int io[]={?}; int jo[]={?}; doublef[N+1],r[N+1],dq[N+1]; for(k=0;k<=M -1;k++) { Q[k]=Q[k]*0.001; } for(k=0;k<=M -1;k++) { Q[k]=Q[k]*sgn(io[k]); } ko=0; loop: for(k=0;k<=M -1;k++) { h[k]=10.67*pow(fabs(Q[k]),1.852)*l[k]; h[k]=h[k]/(pow(100,1.852)*pow(D[k],4.87))*sgn(Q[k]);

for(i=1;i<=N;i++) { f[i]=0;r[i]=0; dq[i]=0; for(k=0;k<=M -1;k++) { if(abs(io[k])!=i) goto map; f[i]=f[i]+h[k]; r[i]=r[i]+(h[k]/Q[k]); map: if( abs(jo[k])!=i) continue; f[i]=f[i]+h[k]*sgn(jo[i]); r[i]=r[i]+(h[k]/Q[k]); } dq[i]=-(f[i]/(r[i]*2)); } { if (fabs(f[N])<=ep) flag=1; } if (flag==1) goto like; for(k=0;k<=M -1;k++) { p=abs(io[k]);q=abs(jo[k]); Q[k]=Q[k]+dq[p]+(dq[q]*sgn(jo[k])); } ko=ko+1; if(flag==0) goto loop; like: printf("\n\n"); for(i=1;i<=N;i++) {printf("%f\n",f[i]);} printf("ep=%f\n",0.01); printf("n=%d,m=%d,ko=%d\n",N,M,ko); for(k=0;k<=M -1;k++) { printf("%d)",k+1); printf("k=%d, l=%f, h=%f, ",k+1,l[k],h[k]); printf("Q=%f, ",Q[k]*1000); printf("v=%f\n",4*Q[k]/(3.1416*pow(D[k],2))); } } int sgn(doublex) { if(x>0)return 1; elseif(x==0) return 0; elsereturn -1;

专题二建筑给排水水力计算

专题二建筑给水工程 2.1 建筑给水系统设计实例 1. 建筑给水系统设计的步骤 (1) 根据给水管网平面布置绘制给水系统图,确定管网中最不利配水点(一般为距引入管起端最远最高,要求的流出压力最大的配水点),再根据最不利配水点,选定最不利管路(通常为最不利配水点至引入管起端间的管路)作为计算管路,并绘制计算简图。 (2) 由最不利点起,按流量变化对计算管段进行节点编号,并标注在计算简图上。 (3) 根据建筑物的类型及性质,正确地选用设计流量计算公式,并计算出各设计管段的给水设计流量。 (4) 根据各设计管段的设计流量并选定设计流速,查水力计算表确定出各管段的管径和管段单位长度的压力损失,并计算管段的沿程压力损失值。 (5) 计算管段的局部压力损失,以及管路的总压力损失。 (6) 确定建筑物室内给水系统所需的总压力。系统中设有水表时,还需选用水表。并计算水表压力损失值。 (7) 将室内管网所需的总压力及室外管网提供的压力进行比较。比较结果按2.3.1节处理。 (8) 设有水箱和水泵的给水系统,还应计算水箱的容积;计算从水箱出口至最不利配点间的压力损失值,以确定水箱的安装高度;计算从引入管起端至水箱进口间所需压力来校核水泵压力等。 2. 建筑给水系统设计实例 图2.1为某办公楼女卫生间平面图。办公楼共2层,层高3.6m,室内外地面高差为0.6m。每层盥洗间设有淋浴器2个,洗手盆2个,污水池1个;厕所设有冲洗阀式大便器6套。室外给水管道位置如图2.1所示,管径为100mm,管中心标高为–1.5m(以室内一层地面为±0.000m),室外给水管道的供水压力为250kPa,镀锌钢管,排水管道采用塑料管材。

水力计算表

液压计算图简单,清晰,易于查阅。有关水力计算是根据新标准编制的。适用于给排水工程,环境工程,房屋建设,水利水电工程,污水处理,市政管道,暖通空调等领域的规划设计,施工,管理和决策人员。也可以作为工厂,矿业企业及相关高等学校的师生参考。 执行摘要 水力计算图是给水排水工程设计中常用的水力计算图的集合。内容包括供水工程用钢管,铸铁管和塑料管的水力计算表,圆形截面钢筋混凝土输水管的水力计算表,圆形,矩形,马蹄形和蛋形截面排水管道的水力计算图,梯形明渠水力计算图,热水管,钢塑复合管,蒸汽和压缩空气管的流量和压力损失计算表等。为了充分发挥实用的设计功能并配合应用在计算机辅助设计方面,“液压计算表”配备了上述所有液压计算表的电子软件,可以通过计算机准确,方便,快速地检索,查询和计算。 目录 1,给水管道水力计算 1.钢管和铸铁管 1.1计算公式 1.2表格和说明 1.3水力计算 2.钢筋混凝土供水管 2.1计算公式 2.2水力计算

3.塑料给水管 3.1计算公式 3.2准备和说明 3.3水力计算 2,排水道水力计算 4.钢筋混凝土圆形排水管(全流量,n = 0.013)4.1计算公式 4.2水力计算 5.钢筋混凝土圆形排水管(非全流量,n = 0.014)5.1计算公式 5.2水力计算图及说明 6.矩形横截面沟槽(全流量,n = 0.013) 6.1计算公式 6.2水力计算 7.矩形横截面沟槽(非全流量,n = 0.013) 7.1计算公式 7.2水力计算 8.梯形截面明渠(n = 0.025,M = 1.5) 8.1计算公式 8.2水力计算图及说明 9.马蹄形断面沟 9.1马蹄形(I型)涵洞

相关文档
最新文档