20吨每天剩余污泥厌氧消化工艺设计

20吨每天剩余污泥厌氧消化工艺设计
20吨每天剩余污泥厌氧消化工艺设计

1. 绪论

1.1 题目背景

随着我国经济的高速发展,城市化建设步伐的不断加快,人们对环境质量的要求日益提高,环保意识不断增强,环境保护与治理已成为国家可持续发展中不可或缺的一个重要工作。随着城市污水处理厂不断建成与使用,污泥量的增加速度越来越快。大量未稳定处理的污泥已成为沉重的负担。如果污泥进行处理或仅进行简单的填埋,将会引起严重的二次污染。所以如何将产量巨大、含水率高、成分复杂的污泥进行妥善安全地处理,使其无害化、减量化,最终达到资源化,已成为深受关注的重大课题。污泥成了多数污水处理厂亟待解决的问题。

1.2 国内外研究情况

城市污水处理剩余污泥的传统处理模式主要有填埋、焚烧、投海及土地利用等。但是,剩余污泥含有大量的营养元素,如氮、磷等和各种微量元素,同时也含有难降解有机物、重金属以及病原微生物和寄生虫卵等有害物。剩余污泥处理不当将会带来二次污染,引起地下水、地表水以及空气污染;且污泥体积庞大,将消耗大量的土地资源,严重的会引起一个地区的生态破坏 , 因为污泥含水率可达到90% ,呈胶体状结构,非常不易脱水,有机质性质不稳定,易腐败发臭,有毒有害污染物(主要指重金属和有毒有机物)容易释放到环境中。

目前,厌氧发酵减量化是常用的预处理途径。因为厌氧发酵可以很好的改善污泥的特性,增加脱水特性,并去除部分有机质。随着能源和资源危机的到来,污泥所含有机质和营养物质正是现代社会可持续发展的重要资源,通过合理的技术实现污泥的减量化、无害化和资源化才是最合理的方向。厌氧发酵产生的沼气或氢是一种优质清洁能源,剩余污泥厌氧发酵制取能源已经成为非常看好的途径,国内外都进行了大量研究。

1.3 城市污水处理厂污泥的综合利用

1.3.1 发电

目前城市污水处理厂污泥发电的方法主要有两种:一种是污泥燃烧发电,另一种是污泥厌氧发酵产沼气发电。而污泥燃烧发电又有两种:一种是利用污泥中含有的大量有机物,使污泥与煤、生活垃圾、农产品秸秆等混合燃烧来进行热力发电,还有一种是将污泥(已经机械脱水过)首先进行热干燥,然后再在沸腾炉中燃烧产生高压蒸汽,推动蒸汽机发电。

1.3.2 建材

由于城市污水处理厂污泥中含有一定的热能,且污泥无机部分含有较多的SiO2 和Al2O3,无机成分可以调整到与粘土相近,因此城市污水处理厂污泥经过处理后可用来生产一些建材而进行利用,如陶粒、水泥、砖瓦等等。

1.3.3 吸附剂

活性污泥具有良好的吸附性,通过对剩余污泥经高温分解或添加化学活化剂等方法进行再活化,可以将城市污水处理厂的污泥制成具有良好吸附性的吸附剂

1.3.4 土地利用与堆肥

污泥的土地利用就是把污泥或污泥堆肥用于林地、育苗、观赏植物、草皮、公园、农田、牧草、果树、蔬菜、高尔夫球场、垦荒地、填埋矿坑、固定海滩、高速公路绿化带及建筑供游乐的海岛等。

城市污水处理厂的污泥是一种十分有效的生物资源,它含有丰富的有益于植物生长的养分(N、P、K 等)和大量的有机物质,可以进行有效的利用来进行堆肥。但是由于污泥的含水率很高,易腐烂发臭,且含有病原菌、重金属及毒性有机物等,在土地利用与堆肥之前进行稳定化处理是十分必要的。

1.3.5 低温热解

污泥可通过干馏提取油、气等,不但可做燃料也可以用于制造四氯化碳等化工产品,具有工业利用前景,且能量回收率高,其经济性优于对污泥的焚烧。但现在对于污泥低温热解的热解机理和动力学研究还比较欠缺,在工艺和设备的改进方面有待新的突破,待这些理论与工艺问题解决后,低温热解将是一种极有前途的污泥资源化技术。

1.3.6 提取重金属

城市污水处理厂的污泥中还会含有部分重金属,如:Hg、Pb、Cu、Zn 等,可以通过对污泥的调理,向污泥中添加化学药剂等,改变污泥中重金属的形态,利用重金属或其化合物的特性从污泥中分离提取出来。

1.4 题目研究方法

厌氧消化工艺是城市污水处理厂污泥稳定化处理的主要技术之一,据统计,目前我国有近36. 5%的污水厂污泥采用厌氧消化处理工艺。由于我国城市污水处理厂的污泥处理起步较晚,直到20 世纪80年代才开始引入中温厌氧消化工艺。近年来该项技术的应用虽取得了较大进展,但在主要依托国外研究成果所进行的工艺设计与运行管理过程中,也暴露出诸多问题。

2. 污泥厌氧消化工艺

2.1 污泥的厌氧消化

污泥的厌氧消化,是在无氧条件下依靠厌氧微生物,使有机物分解的生物处理方法。适用于有机物含量较高的污泥。

2.2 污泥厌氧消化的目的

(1)减少污泥体积

减少污泥中可降的有机物含量,使污泥的体积减少。与消化前相比,消化污泥的体积一般可减少1/2~1/3。

(2)稳定污泥性质

减少污泥中可分解、易腐化物质的数量,使污泥性质稳定。

(3)提高污泥的脱水效果

未消化的污泥呈粘性胶状结构,不易脱水。消化过的污泥,胶体物质被气化、液化或分解,使污泥中的水分与固体易分离。

(4)利用产生的甲烷气体

污泥在消化过程中产生沼气,沼气中有用的甲烷气体约占2/3,可做为燃料用来发电、烧锅炉、驱动机械等。

(5)消除恶臭

污泥在厌氧消化过程,硫化氢分离出硫分子或与铁结合成为硫化铁,因此消化后的污泥不会再发出恶臭。

(6)提高污泥的卫生质量

污泥中含有很多有毒物质如细菌、病原微生物、寄生虫卵,极不卫生。污泥在消化过程中,产生的甲烷菌具有很强的抗菌作用,可杀死大部分病原菌以及其它有害微生物,使污泥卫生化。

2.3 保证厌氧消化池良好运行的主要设计条件

要使投产使用的消化池具有良好的消化功能,设计阶段的优化是至关重要的。工程设计人员不仅要基于生物反应过程的知识进行正确的设计,而所选择的池形和相应设备的选择也很重要。生物系统只有在相应的物理边界条件下才能创造出最佳的运行效果。为此,消化池的工艺设计应满足以下要求:

(1)适宜的池形选择;

(2)最佳的设计参数;

(3)节能、高效、易操作维护的设备;

(4)良好的搅拌设备,使池内污泥混合均匀,避免产生水力死角;

(5)原污泥均匀投入并及时与消化污泥混合接种;

(6)最小的热损失,及时的补充热量,最大限度避免池内温度波动;

(7)消化池产生的沼气能及时从消化污泥中输导出去;

(8)具有良好的破坏浮渣层和清除浮渣的措施;

(9)具有可靠的安全防护措施;

(10)可灵活操作的管道系统。

2.4 污泥消化池工艺设计中需要谨慎选择的几个因素

(1)厌氧消化的方式;

(2)消化池池形选择;

(3)设计参数的选定;

(4)消化池中污泥的混合搅拌方式确定;

(5)污泥加热方式的确定;

(6)污泥投配方法的确定;

(7)污泥及沼气排放方式的确定;

(8)浮渣及上清液的排除方法;

(9)安全防护措施的保证;

(10)监测和控制方法的确定;

(11)其它附属装置的选用。

上述诸多方面中,厌氧消化的方式、消化池的池形、主要设计参数、消化池中污泥的混合搅拌方式对消化池的工程造价和使用效果影响很大,应谨慎选择。

2.4.1 厌氧消化方式

(1)消化温度

污泥厌氧消化的温度根据消化池内生物作用的温度分为中温消化和高温消化。中温消化,温度一般控制在33~35℃,最佳温度为34℃。而高温消化的温度一般控制在55~60℃。

高温消化比中温消化分解速率快,产气速率高,所需的消化时间短(气量达到总产气量90%时所需要的天数),消化池的容积小。高温消化对寄生虫卵的杀灭率可达90%以上。但高温消化加热污泥所消耗热量大,耗能高。因此,只有在卫生要求严格,或对污泥气产生量要求较高时才选用。

目前国内外常用的都是中温消化池。中温消化在国内外均已使用多年,技术上比较成熟,有一定的设计运行经验。

(2)消化等级

污泥厌氧消化的等级按其消化池的串联使用数量分为单级消化和二级消化。单级消化只设置一个池子,污泥在一个池中完成消化过程。而二级消化,消化过程分在两个串联的消化池内进行。一般,在二级消化的一级消化池内主要进行有机物的分解,只对一级消化池进行混合搅拌和加热,不排上清液和浮渣。污泥在一级消化池进行主要分解后,排入二级消化池。二级消化池不再进行混合搅拌和加热,使污泥在低于最佳温度的条件下完成进一部的消化。在二级消化的过程排上清液和浮渣。

单级消化的土建费用较省;可分解的有机物的分解率可达90%;由于不能在池内分离上清液,为减少污泥体积需要设浓缩池,另外以起到释气作用。二级消化的土建费用较高;有机物的分解率可略有提高,产气率一般比单级消化约高10%;二级消化的运行操作比单级消化复杂。

为了减少污泥处理总的投资,二级消化的形式目前在国内及国外用的相对较少,一般均采用单级消化。

2.4.2 消化池的池形

好的消化池池形应具有结构条件好、防止沉淀、没有死区、混合良好、易去出浮渣及泡沫等优点。消化池的池形,各个国家采用的样式较多。但常用的基本形状有以下四种:(1)龟甲形消化池

龟甲形消化池在英、美国家采用的较多,此种池形的优点是土建造价低、结构设计简单。但要求搅拌系统具有较好的防止和消除沉积物效果,因此相配套的设备投资和运行费用较高。

(2)传统圆柱形消化池

在中欧及中国,常用的消化池的形状是圆柱状中部,圆锥形底部和顶部的消化池池形。这种池形的优点是热量损失比龟甲形小,易选择搅拌系统。但底部面积大,易造成粗砂的堆积,因此需要定期进行停池清理。更重要的是在形状变化的部分存在尖角,应力很容易聚集在这些区域,使结构处理较困难。底部和顶部的圆锥部分,在土建施工浇铸时混凝土难密实,易产生渗漏。

(3)卵形消化池

卵形消化池在德国从1956年就开始采用,并作为一种主要的形式推广到全国,应用较普遍。

卵形消化池最显著的特点是运行效率高,经济实用。其优缺点可以总结为以下几点:①其池形能促进混合搅拌的均匀,单位面积内可获得较多的微生物。用较小的能量既可达到良好的混合效果。

②卵形消化池的形状有效地消除了粗砂和浮渣的堆积,池内一般不产生死角,可保证生

产的稳定性和连续性。

根据有关文献介绍,德国有的卵形消化池已经成功地运转了50年而没有进行过清理。

③卵形消化池表面积小,耗热量较低,很容易保持系统温度。

④生化效果好,分解率高。

⑤上部面积少,不易产生浮渣,即使生成也易去除。

⑥卵形消化池的壳体形状使池体结构受力分部均匀,结构设计具有很大优势,可以做到消化池单池池容的大型化。

⑦池形美观。

卵形消化池的缺点是土建施工费用比传统消化池高。然而卵形消化池运行上的优点直接提高了处理过程的效率,因此节约了运行成本。如果需要设置2个以上的卵形消化池,运行费用比较下来则更具有优势。节省下的运行费用,很容易弥补造价的差额,用户从高效的运行中受益更多。对大体积消化池采用卵形池更能体显其优点。

(4)平底圆柱形

平底圆形池是一种土建成本较低的池形。圆柱部分的高度/直径比≥1。这种池形在欧洲已成功的用在不同规模的污水厂。它要求池形与装备和功能之间要有很好的相互协调。当前可配套使用的搅拌设备较少,大都采用可在池内多点安装的悬挂喷入式沼气搅拌技术。

在我国,消化池的形状多年来大都采用传统的圆柱形,随着搅拌设备的引进,使我国污泥消化池的池形也变得多样化。近几年中我国先后设计并施工了多座卵形消化池,改变了国内消化池池形单一状况。如:杭州四堡污水处理厂已建成了3座容积10500立方米的卵形池;济南盖家沟污水厂的3座容积10500立方米的卵形池;济宁污水处理厂新近建成的2座容积12700立方米的卵形池。漳州污水处理厂2座容积11000立方米的卵形池也在施工中。

施工技术和脚手架技术是成功建设卵形池的重要因素,随着施工经验的积累,这些技术已经取得了长足的进展,因此可以在建筑过程中节省可观的费用

2.4.3 消化池污泥搅拌设备的选择

在污泥消化池的过程中,进行污泥混合搅拌,对于提高分解速度和分解率,即增加产气量很重要。

(1)消化池中污泥搅拌的作用

①通过对消化池中污泥的充分搅拌,使生污泥与消化污泥充分的接触,提高接种效果。

②通过搅拌,调整污泥固体与水分的相互关系,使中间产物与代谢产物在消化池内均匀分布。

③通过搅拌及搅拌时产生的振动能更有效地进行气体分离,使气体溢出液面。

④消化菌对温度和PH值的变化非常敏感,通过搅拌使池内温度和PH值保持均匀。

⑤对池内污泥不断地进行搅拌还可防止池内产生浮渣。

(2)消化池搅拌方式的分类

消化池搅拌的方式大致可分为如下几类:

①气体搅拌法;

②机械搅拌法;

③泵循环法;

④综合搅拌法。

现国内、外常用的搅拌方法较多采用的是沼气搅拌和机械搅拌法。泵循环法因耗电量较大且搅拌效果不太好已不再使用。原西安污水厂采用过泵循环加水射器的综合搅拌法。虽搅拌效果尚可,但也因耗电量大,不适于中、大容积消化池而不再使用。

在我国至今还尚无生产定型污泥消化搅拌设备的生产厂。在九十年代前建设的污泥消化池,因国内无成熟的经验,其技术参数和搅拌设备只能参考国外的一些文献资料来设计加工。其技术性能、运行效果、设备加工质量、自动控制水平等均不合人意。如杭州四堡

污水厂一期工程,参考法国文献资料采用的气体导流筒式沼气搅拌器;纪庄子污水厂参考美国和日本文献资料先后采用的气体导流筒式沼气搅拌器和后期改成的竖管式搅拌器。另外,在我国也曾试用过螺旋浆式机械搅拌器,但因存在轴密封不好,易漏气等问题而不能正常推广使用。八十年代我国开始在污水处理行业利用国外政府贷款。在引进外资的同时,也引进了国外先进的污泥消化技术和设备。如石家庄桥西污水处理厂和泰安污水处理厂引进了奥地利生产的垂直竖管式沼气搅拌器及配套的液体密封真空沼气压缩机;天津东郊污水处理厂引进了法国得利满公司(Degremont)的多根束管式沼气搅拌器;青岛、济宁污水厂引进了德国斯特林(STERLING)公司的螺旋桨式导流筒机械搅拌器;烟台污水厂引进了瑞士TECHFINR公司生产的多根底部吹管式沼气搅拌器;湖南永州污水处理厂引进了美国贝克(BAKER)公司生产的EDT和RDT螺旋桨式导流筒机械搅拌器;海口中心区污水处理厂和杭州四堡污水处理厂引进了德国洛蒂格(ROEDIGER)公司的悬挂喷嘴式沼气搅拌器等。上述所介绍的搅拌器其实际搅拌效果都已在多数工程实践中得到验证。这些设备的共同特点是:

A加工质量精细;

B技术性能高;

C所选材料材质较好;

D使用寿命长;

E维修工作量小。

根据以往文献设计经验,消化池搅拌设备的选择,应根据消化池的池形,池容积的大小及设备投资,运行管理等综合因素确定。

(3)几种常用搅拌器的性能比较

目前国内外主要采用的搅拌器形式有以下几种:

①螺旋桨机械搅拌器

螺旋桨式搅拌设备组成简单,操作容易,可以通过竖管向上或向下两个方向推动污泥,因此在固定污泥液面的前提下,能够有效地消除浮渣层。螺旋桨式搅拌器特别适用卵形或者带陡峭锥底的圆柱形消化池。运行简单,维修量少。但在池内的螺旋桨发生故障时,消

化池需打开,消化系统要停止运行。螺旋桨式搅拌器的能力,一般情况下按照,在一天内将消化池全池完全搅拌一次的次数和完成搅拌一次的时间来选择。

②悬挂喷嘴式沼气搅拌器

悬挂喷嘴式沼气搅拌器,主要由悬挂在池顶部的沼气输送竖管和喷咀组成。搅拌器可以按需要在池内多点布置,并可分组运行。具有结构简单;设置和操作灵活;由于可分组搅拌,使所需要的搅拌强度较小;对池的适应性强;不受液面控制等优点。此类形的搅拌器适合于上述的各种池形,用在平底或底部锥形较缓的消化池中更显示出其优点。搅拌器的能力,一般情况下按照,一天内将消化池全池完全搅拌一次的次数及搅拌系统的组数和完成搅拌一次的时间来选择。

③多根束管式沼气搅拌器

多根束管式沼气搅拌器主要由多根沼气输送管(束管)和沼气释放口组成。束管由消化池顶部的中间位置进入池中,延伸至池底部的释放口。此搅拌器的特点是构造简单,易操作。但容易堵塞,需在池顶各束管端头增设观察球及高压水冲洗装置。因沼气释放口的设置聚集在池底中部,适合于小直径且带陡峭锥底的池形。搅拌器的选型根据整池的容积选择。

④底部多根吹管式沼气搅拌器

底部多根吹管式沼气搅拌器主要由多根沼气输送管和沼气释放口组成。沼气输送管可从池顶部侧壁或池侧面进入,沿池底伸入到池中部与沼气释放口连接。与多根束管式沼气搅拌器类似,此方式搅拌器的特点是构造简单,易操作。但易堵塞;因沼气释放口的设置聚集在池底中部,适合于小直径且带陡峭锥底的池形搅拌器。搅拌器的选型根据整池的容积选择。

上述常用的四种搅拌形式中,除螺旋桨机械搅拌器外,另外三种均利用消化池运行中产生的沼气。

沼气搅拌法的优点是:由于沼气的气泡迅速上升造成的湍流可提高混合质量;污泥可以在内部循环;通过在污泥表面形成的湍流防止浮渣形成;改善脱气效果;与消化池的形状和污泥的液位无关。但沼气搅拌系统的组成较复杂,一般由沼气压缩机、沼气喷射管及

沼气循环管及附属的冷凝水排放、沼气过滤器等组成。其运行管理复杂。由于沼气具有易燃和易爆的特性,因此,沼气搅拌工艺对设备的安装,所使用管件的制造材料和安全措施有特殊的要求。对运行和操作要求严格。污泥厌氧消化处理在技术和投资上都是污泥处理工艺中重要的组成部分,污泥厌氧消化的工艺设计较复杂,需要考虑确定的因素很多。

3. 20t/d剩余污泥厌氧消化工艺

3.1 工艺处理过程

3.1.1 工艺过程

①.水解阶段

在细菌胞外酶的作用下大分子的有机物水解为小分子的有机物

②.发酵阶段

梭状芽孢杆菌、拟杆菌等酸化细菌吸收并转化为更为简单的化合物分泌到细胞外,产物有挥发性脂肪酸、醇类、乳酸、二氧化碳、氢气、氨等

③.产乙酸阶段

上一阶段的产物被进一步转化为乙酸、氢气、碳酸以及新的细胞物质,这一阶段的主导细菌是乙酸菌。同时水中有硫酸盐时,还会有硫酸盐还原菌参与产乙酸过程。

④.产甲烷阶段

乙酸、氢气、碳酸、甲酸和甲醇等被甲烷菌利用被转化为甲烷和以及甲烷菌细胞物质。经过这些阶段大分子的有机物就被转化为甲烷、二氧化碳、氢气、硫化氢等小分子物质和少量的厌氧污泥。

3.1.2 工艺流程图

3.2 消化池的设计计算

消化池的设计计算的主要内容包括:

①消化池体积的计算与池体设计;

②消化池内搅拌设备的设计与计算;

③消化池所需要的加热保温系统的设计与计算。

3.2.1 消化池的池体设计

本次设计采用一级圆形消化池

目前,国内一般按污泥投配率来计算所需的消化池容积,即:

(3)

式中:V——消化池的有效容积,m3;

V’——每天需要处理的新鲜污泥的统计,m3/d;

p ——污泥投配率。

一般当采用高速消化池来处理来自城市生活污水处理长的剩余污泥时,在消化温度为30~35°C时,投配率p可取6~18%;在实际工程中,一般要求消化池不少于2个,以便轮流检修。

由于污泥的密度,大约为1.4-1.7吨/立方米。本设计中,取剩余污泥1t=1.5m3

即本设计中

20t=30m3=V’

根据经验,中温消化的新鲜污泥投配率以6%-8%为宜,在设计时新鲜污泥投配率可在5%-12%之间选用。若要求气量多,采用下限值;若以处理污泥为主,则可采用上限值。本设计中采用下限值P=5%。

所以消化池有效容积

V=30/0.05=600m3

3.2.2 消化池的结构尺寸

在确定了所需的消化池的有效容积后,就可计算消化池各部的结构尺寸,其一般要求如下:

①圆柱形池体的直径一般为6~35m;

②柱体高径之比为1:2;

③池总高与直径之比为0.8~1.0;

④池底坡度一般为0.08;

⑤池顶部的集气罩,高度和直径相同,一般为2.0m;

⑥池顶至少设两个直径为0.7m的人孔。

本设计V=600m3,按要求大概计算得池体总高为10.61米,池直径为8.48米

3.2.3消化池的工艺管道

在消化池中还需要设置多种工艺管道,其中主要包括:①污泥管:进泥管、出泥管、循环搅拌管;②上清液排放管;③溢流管;④沼气管;⑤取样管;等

3.2.4 进水分配系统的设计

本次设计采用一管多点的布水方式,布水点数量与处理废水的流量、进水浓度、容积负荷等因素有关。

为配水均匀,出水孔孔径一般为10~20mm,常采用15mm,孔口向下或与垂线成呈450

方向,为了使穿孔管各孔出水均匀,要求出口流速不小于2m/s.

本厌氧池采用连续进料方式,布水孔孔口向下,有利于避免管口堵塞,而且由于厌氧池底部反射散布作用,有利于布水均匀。

为了增强污泥与废水之间的接触,减少底部进水管的堵塞,建议进水点距厌氧池底200~250mm,本次设计布水管离厌氧池底部200mm。

3.2.5 排泥系统的设计

一般认为,排出剩余污泥的位置在厌氧池的1/2高度处,但大都推荐把排泥设备安装在靠近厌氧池的底部,也有人在三相分离器下0.5m处理设计排泥管,以排除污泥床上面部分的剩余絮状污泥,而不会把颗粒污泥排走,对于厌氧池排泥系统,必须同时考虑在上、中、下不同位置设排泥设备,应根据生产运行中的具体情况考虑实际的排泥要求,来确定排泥位置。

本次设计在三相分离器下0.5m开始设置三个排泥口。

厌氧池每三个月排泥一次,污泥排入集泥池中。

3.3 沼气的收集与利用

污泥和高浓度有机废水进行厌氧消化时均会产生大量沼气;沼气的热值很高(一般为21000~25000 kJ/m3,即5000~6000 kCal/m3),是一种可利用的生物能源。

3.3.1污泥消化过程中沼气产量的估算

沼气成分:一般认为CH4 50~70%,

CO2 20~30%,

H2 2~5%,

N2 ~10%,

微量H2S等;

沼气产率是指每处理单位体积的生污泥所产生的沼气量,即m3沼气/m3生污泥;产

气率与污泥的性质、污泥投配率、污泥含水率、发酵温度等有关;当污泥来自城市污水处理厂,生污泥含水率为96%时:中温消化,投配率为6~8%,产气率可达10~12 m3沼气/m3生污泥;高温消化,投配率为6~8%,产气率可达22~26 m3沼气/m3生污泥;投配率为13~15%,产气率可达13~15 m3沼气/m3生污泥

3.3.2 沼气的收集:

在沼气管道沿程上应设置凝结水罐;注意安全;设置阻火器;为防止在冬季结冰引起堵塞,有时在沼气管上还应采取保温措施。

3.3.3 沼气的贮存与利用

一般需要采用沼气柜来调节产气量与用气量之间的平衡;调节容积一般为日平均产气量的25~40%,即6~10h的产气量;注意防腐、防火。

城市污泥厌氧消化处理技术

城市污泥厌氧消化处理技术 彭光霞李彩斌王立宁张晓慧 (北京中持绿色能源环境技术有限公司北京100192) 摘要:随着我国城镇污水处理厂建设的推进,城市脱水污泥的处理处置问题越来越凸显出来。目前我国多数城市污水处理厂多采用浓缩、脱水后外运填埋或作农肥。城市污泥中的生物质能没得到充分利用,造成了资源、能源的浪费。污泥厌氧消化技术作为污泥处理处置的处理工艺,可以实现减量化、稳定化、无害化和资源化,可与多种工艺相结合,为现有污水厂污泥处理处置提供了很好的方向。 关键词:污泥处理处置、厌氧消化、分级分相、土地利用、资源化 1 概述 污泥厌氧消化可以实现污泥处理的减量化、稳定化、无害化和资源化。 污泥经厌氧消化后,体积大大减少,脱水性能大大提高,可实现污泥的减量化和稳定化;污泥在消化过程中,产生的甲烷菌具有很强的抗菌作用,可杀死大部分病原菌以及其它有害微生物,使污泥卫生化。同时,污泥厌氧消化产生大量的清洁能源--沼气,可用作锅炉燃料、直接驱动鼓风机、沼气发电提供污水处理厂的部分用电量、沼气提纯并网、沼气提纯用作汽车燃料等。 1.1 污泥厌氧处理技术原理 厌氧消化是利用兼性菌和厌氧菌进行厌氧生化反应,分解污泥中有机物质的一种污泥处理工艺。消化过程中可回收能源,但消化后的污泥含水率较高,仍需进一步脱水。厌氧消化可以实现污泥处理的减量化、稳定化、无害化和资源化。 污泥厌氧消化是一个由多种细菌参与的多阶段生化反应过程,每一反应阶段都以某类细菌为主,其产物供下一阶段的细菌利用。厌氧降解过程的化学、生物化学和微生物学相发复杂,但是可以综合三阶段理论[2]:1)水解阶段;2)产酸阶段;3)产甲烷阶段。

污水处理厂污泥厌氧消化工艺选择与设计要点概要

污水处理厂污泥厌氧消化工艺选择与设计要点陈怡 (北京市市政工程设计研究总院 , 北京 100082 摘要以北京市小红门污水处理厂和西安市第五污水处理厂为例 , 对污水处理厂污泥厌氧消化工艺选择和设计要点进行了详细论述 , 包括污泥厌氧消化工艺选择、进泥预处理、厌氧消化池、沼气系统、上清液处理和污泥输送管路等 , 以保证污水处理厂污泥厌氧消化工艺的顺利实施。 关键词污水处理厂污泥厌氧消化工艺选择污泥投配污泥搅拌沼气系统 K e y p o i n t s o f t h e p r o c e s s s e l e c t i o n a n d d e s i g n o f t h e s l u d g e a n a e r o b i c d i g e s t i o n i n w a s t e w a t e r t r e a t m e n t p l a n t C h e n Y i (B e i j i n g G e n e r a l M u n i c i p a l E n g i n e e r i n g D e s i g n a n d R e s e a r c h I n s t i t u t e , B e i j i n g 100082, C h i n a A b s t r a c t :T a k i n g t h e B e i j i n g X i a o h o n g m e n W a s t e w a t e r T r e a t m e n t P l a n t a n d X i ’ a n F i f t h W a s t e w a t e r T r e a t m e n t P l a n t a s e x a m p l e , t h i s p a p e r d e s c r i b e d t h e k e y p o i n t s o f t h e p r o c e s s s e l e c -t i o n a n d d e s i g n o f t h e s l u d g e a n a e r o b i c d i g e s t i o n i n t h e w a s t e w a t e r t r e a t m e n t p l a n t , i n c l u d i n g s l u d g e a n a e r o b i c d i g e s t i o n p r o c e s s s e l e c t i o n , s l u d g e p r e -t r e a t m e n t , a n a e r o b i c d i g e s t i o n t a n k , m e t h -a n e s y s t e m , u p -l e v e l c l e a n l i q u i d t r e a t m e n t , a n d s l u d g e t r a n s m i s s i o n p i p

不同预处理方法对剩余污泥厌氧消化产沼气过程的影响

第28卷第1期2009年1月 食品与生物技术学报Journal of Food Science and Biotechnology Vol.28 No.1Jan. 2009  文章编号:167321689(2009)0120107206 收稿日期:2007212229 基金项目:江苏省高技术研究项目(D G 2006044);江苏省自然科学基金项目(B K2006023)。 3通讯作者:阮文权(19662),男,上海人,教授,工学博士,主要研究环境厌氧生物技术。Email :wqruan @https://www.360docs.net/doc/b3896324.html, 不同预处理方法对剩余污泥厌氧消化 产沼气过程的影响 高瑞丽1, 严群1,2, 邹华1,2, 阮文权31,2 (1.江南大学工业生物技术教育部重点实验室,江苏无锡214122;2.江南大学环境与土木工程 学院,江苏无锡214122) 摘 要:研究了不同预处理方法对剩余污泥固态法厌氧消化产沼气过程的影响。结果表明:不同的预处理方法均可不同程度地提高产气量和甲烷含量。其中,经酶法处理后,剩余污泥前4h 产气速率最快,平均每小时为3129mL/g ;经热处理后,剩余污泥累积产气量最多,为45180mL/g ,比对照提高了230%;而经微波处理后,剩余污泥所产沼气中甲烷质量分数最高,为62126%,比对照增加了130%。 关键词:剩余污泥;厌氧消化;预处理;甲烷中图分类号:X 703;X 705文献标识码:A E ffects of Different Pretreatment of W aste Activated Sludge on Methane Production via Anaerobic Digestion GAO Rui 2li 1 , YAN Qun 1,2 , ZOU Hua 1,2 , RUAN Wen 2quan 1,23 (1.Key Laboratory of Industrial Biotechnology ,Ministry of Education ,Jiangnan University ,Wuxi 214122,China ;21School of Environment and Civil Engineering ,Jiangnan University ,Wuxi 214122,China ) Abstract :In t his manuscript ,effect s of different p ret reat ment met hods on t he met hane p roduction by waste activated sludge were caref ully investigated.It was found t hat :(1)by t reated wit h alkali p rotease ,t he specific rate of gas achieved at t he highest value (3129mL/g vs/h );(2)by t hermally t reated in an autoclave ,t he gas production was 4518mL/g ,higher 230%t han t hat of t he cont rol ;(3)by t reated by microwave irradiation ,t he met hane content was increased to 62126%,higher 130%t han t hat of t he control. K ey w ords :waste activated sludge ,anaerobic digestio n ,p ret reat ment ,met hane 随着国民经济的不断发展,我国城镇工业废水以及生活污水排放量不断增加。为了防止水域污染,改善生态环境,截止到2004年底,我国已建成城市污水处理厂708座,日处理能力达71387×107 m 3。在污水处理过程中,一般会产生占污水体积0102%的污泥,因而数量巨大,目前已成为亟待处 理的城市固体废物之一[1]。目前国内外对污泥厌氧 消化的研究多集中于采用剩余污泥或初沉污泥和剩

厌氧消化工艺设计要点

厌氧消化工艺设计要点 发布日期:2012-11-19 来源:互联网作者:佚名浏览次数:482 厌氧消化的工艺设计主要体现在对消化池型、搅拌方式和工艺运行参数的选择上。总的设计原则是:a)在参考相似工程案例及设计规范的基础上,试验得到最佳工艺运行参数,如停留时间、运行温度、固体负荷、有机负荷;b)适合的池型选择;c)良好的搅拌方式,搅拌均匀,不存死角;d)简单、稳定的运行保障,如易于操作维护的设备,避免温度波动的良好换热设备以及容易去除浮渣的措施等;e)安全可靠的沼气输送系统。 工艺设计需要确定的内容:a)消化方式的设计;b)消化池形选择;c)消化池中污泥的混合搅拌方式确定;d)设计参数的选定;e)污泥加热方式的确定;f)污泥投配方法的确定;g)污泥及沼气排放方式的确定;h)浮渣及上清液的排除方法;i)安全防护措施的保证;j)监测和控制方法的确定;k)其它附属装置的选用。上述诸多方面中,厌氧消化的方式、消化池的池形、主要设计参数、消化池中污泥的混合搅拌方式对消化池的工程造价和使用效果影响很大,应谨慎选择。 (1)消化方式的设计 ①消化温度,厌氧消化根据运行温度的不同分为中温消化(30~36℃)和高温消化(50~55℃),其中中温消化的最佳温度为35℃,高温消化的最佳温度会因其它影响因素发生较大变化。高温消化的特点是,分解速率快、产气速率高、停留时间短,进而提高消化处理能力,节省消化池容积;另外卫生学指标较好,对寄生虫卵的杀灭率可达95%,大肠菌指数可达10-100;能耗高,温度控制较难。中温消化的特点是,相对高温消化的各项优势较为逊色,但中温消化运行稳定、易于控制,能耗相对较低,设计运行经验成熟。目前,国内、外多采用中温厌氧消化。 ②消化等级,按照消化池的数量分为一级消化和两级消化。其中一级消化指污泥厌氧消化是在一个消化池内完成;两级消化指污泥厌氧消化在两个消化池内完成,第一级消化池设有加热、搅拌装置及气体收集装置,不排上清液和浮渣,第二级消化池不进行加热和搅拌,仅利用第一级的余热继续消化,同时排上清液和浮渣。两级消化工艺的土建费用较高,运行

我国城市污水厂污泥厌氧消化系统的运行现状

我国城市污水厂污泥厌氧消化系统的运行现状 吴 静, 姜 洁, 周红明, 毕 蕾 (清华大学环境模拟与污染控制国家重点联合实验室,北京100084) 摘 要: 对我国400余座城市污水厂污泥处理工艺的调查表明,目前采用污泥厌氧消化工艺的仅46家,主要采用浓缩/中温厌氧/脱水工艺,采用一级厌氧消化和二级厌氧消化的厂家数量接近,其中仅25家的污泥消化系统正在运行,沼气产量约为14×104m3/d,另有6家在调试。污泥厌氧消化工艺在实际应用中仍存在着较多亟待解决的问题,沼气产率低和利用率不高大大削弱了该工艺的优势。 关键词: 城市污水厂; 污泥处理; 厌氧消化; 沼气 中图分类号:X703.1 文献标识码:B 文章编号:1000-4602(2008)22-0021-04 C u r r e n t O p e r a t i o nS t a t u s o f S l u d g e A n a e r o b i c D i g e s t i o n S y s t e m i n Mu n i c i p a l Wa s t e w a t e r T r e a t m e n t P l a n t s i nC h i n a WUJ i n g, J I A N GJ i e, Z H O UH o n g-m i n g, B I L e i (S t a t e K e y J o i n t L a b o r a t o r y o f E n v i r o n m e n t S i m u l a t i o n a n d P o l l u t i o n C o n t r o l,T s i n g h u a U n i v e r s i t y,B e i j i n g100084,C h i n a) A b s t r a c t: T h er e s u l t so f t h ei n v e s t i g a t i o n o n s l u d g e t r e a t m e n t s y s t e m so v e r400m u n i c i p a l w a s t e w a t e r t r e a t m e n t p l a n t s i n C h i n a s h o wt h a t o n l y a b o u t46p l a n t s h a v e s l u d g e a n a e r o b i c d i g e s t i o n s y s-t e m s,m o s t o f w h i c h a d o p t t h i c k e n i n g/m e s o p h i l i c a n a e r o b i c d i g e s t i o n/d e w a t e r i n g p r o c e s s.A b o u t h a l f o f t h e p l a n t s h a v e o n e-s t a g e a n a e r o b i c d i g e s t i o n s y s t e m s a n d t h e o t h e r h a l f h a v e t w o-s t a g e a n a e r o b i c d i g e s-t i o n s y s t e m s.F o r t h e46p l a n t s,o n l y25p l a n t s o p e r a t e t h e i r a n a e r o b i c d i g e s t i o n s y s t e m s a n d p r o d u c e a- b o u t14×104m3b i o g a s/d,t h e o t h e r6p l a n t s c o m m i s s i o n t h e i r s y s t e m s.T h e r e a r e s o m e u r g e n t p r o b l e m s f o r t h e s l u d g e a n a e r o b i c d i g e s t i o n.T h e l o wb i o g a s y i e l d a n d u t i l i z a t i o n r a t e c o u n t e r a c t s o m e a d v a n t a g e s o f t h e s l u d g e a n a e r o b i c d i g e s t i o n. K e y w o r d s: m u n i c i p a l w a s t e w a t e r t r e a t m e n t p l a n t; s l u d g e t r e a t m e n t; a n a e r o b i c d i g e s t i o n;  b i o g a s 随着我国国民经济的高速发展以及城市化进程的不断加快,城镇生活污水量也大幅增加,并在1999年首次超过工业废水排放量,占全国污水排放总量的52.9%[1]。近年来,城镇生活污水量以年均5%的速度递增,已成为我国水环境的主要污染源。我国城市污水处理率长期偏低,直至20世纪90年代以后,城市污水处理的基础设施建设才被提到日程,全国城市污水处理厂数量迅速增加。2006年城市生活污水处理率达到43.8%[2]。根据国家环境保护“十五”计划,到2010年所有城市的污水处理率不得低于60%,直辖市、省会城市、计划单列市和风景旅游城市的污水处理率不得低于70%。故在今后一段时期,城市污水厂数量仍将持续增加。 伴随城市污水厂的兴建,大量城市污泥产生。2003年我国的城市污泥(干泥)产量估计达到160×104t。城市污泥主要由沉砂池和初沉池产生的初沉污泥(含水率为96%左右)以及好氧生物处理单元产生的剩余污泥(含水率为99.2%~99.6%)组 第24卷 第22期2008年11月 中国给水排水 C H I N AWA T E R&W A S T E WA T E R V o l.24N o.22 N o v.2008

污泥厌氧消化简介

简介: 污泥厌氧消化是指污泥在无氧条件下,由兼性菌和厌氧细菌将污泥中的可生物降解的有机物分解成二氧化碳、甲烷和水等,使污泥得到稳定的过程,是污泥减量化、稳定化的常用手段之一。 机理: 污泥厌氧消化是一个多阶段的复杂过程,完成整个消化过程,需要经过三个阶段(目前公认的),即水解、酸化阶段,乙酸化阶段,甲烷化阶段。各阶段之间既相互联系又相互影响,各个阶段都有各自特色微生物群体。 水解酸化阶段: 一般水解过程发生在污泥厌氧消化初始阶段,污泥中的非水溶性高分子有机物,如碳水化合物、蛋白质、脂肪、纤维素等在微生物水解酶的作用下水解成溶解性的物质。水解后的物质在兼性菌和厌氧菌的作用下,转化成短链脂肪酸,如乙酸、丙酸、丁酸等,还有乙醇、二氧化碳。 乙酸化阶段: 在该阶段主要是乙酸菌将水解酸化产物,有机物、乙醇等转变为乙酸。该过程中乙酸菌和甲烷菌是共生的。 甲烷化阶段: 甲烷化阶段发生在污泥厌氧消化后期,在这一过程中,甲烷菌将乙酸(CH3COOH)和H2、CO2分别转化为甲烷,如下: 2CH3COOH→2CH4↑+ 2CO2↑ 4H2+CO2→CH4+ 2H2O 在整个厌氧消化过程中,由乙酸产生的甲烷约占总量的2/3,由CO2和H2转化的甲烷约占总量的1/3。 影响因素: 温度: 在污泥厌氧消化过程中,温度对有机物负荷和产气量有明显影响。根据微生物对温度的适应性,可将污泥厌氧消化分为中温(一般30~36℃)厌氧消化和高温(一般50~55℃)厌氧消化。研究表明,在污泥厌氧消化过程中,温度发生±3℃变化时,就会抑制污泥消化速度;温度发生±5℃变化时,就会突然停止产气,使有机酸发生大量积累而破坏厌氧消化。 酸碱度: 研究表明,污泥厌氧消化系统中,各种细菌在适应的酸碱度范围内,只允许在中性附件波动。微生物对pH的变化非常敏感。水解与发酵菌及产氢、产乙酸菌适应的pH范围为5.0~6.5,甲烷菌适应的pH范围为6.6~7.5。如果水解酸化和乙酸化过程的反应速度超过甲烷化过程速度,pH就会降低,从而影响产甲烷菌的生活环境,进而影响污泥厌氧消化效果,然而,由于消化液的缓冲作用,在一定范围内避免这种情况的发生。 消化液是污泥厌氧消化过程血红有机物分解而产生的,其中含有除了CO2和NH3外,还有以NH4NCO3形态的NH4+,HCO3-和H2CO3形成缓冲体系,平衡小范围的酸碱波动。如下:H+ + HCO3- ═H2CO3 有毒物质浓度: 在污泥厌氧消化中,每一种所谓有毒物质是具有促进还是抑制甲烷菌生长的作用,关键在于它们的毒阈浓度。低于毒阈浓度,对甲烷菌生长有促进作用;在毒阈浓度范围内,有中等抑制作用,随浓度逐渐增加,甲烷菌可被驯化;超过毒阈上限。则对微生物生长具有强烈的抑制作用。 污泥厌氧消化分类:

污泥厌氧消化的方法和特点

污泥厌氧消化的方法是什么?污泥厌氧消化的阶段有哪些?污泥厌氧消化的特点是什么?污泥厌氧消化在无氧条件下,污泥中的有机物由厌氧微生物进行降解和稳定的过程称为厌氧消化。 污泥中的有机物含量很高,采用好氧法能耗太大,一般采用厌氧消化法:即在无氧的条件下,由兼性菌及专性厌氧细菌降解有机物,最终产物是二氧化碳和甲烷气(或称污泥气、消化气),使污泥得到稳定。所以污泥厌氧消化过程也称为污泥生物稳定过程。污泥厌氧消化是一个极其复杂的过程,多年来厌氧消化被概括为两阶段过程,第一阶段是酸性发酵阶段,有机物在产酸细菌的作用下,分解成脂肪酸及其他产物,并合成新细胞;第二阶段是甲烷发酵阶段,脂肪酸在专性厌氧菌——产甲烷菌的作用下转化成CH4和CO2。1979年,伯力特(Bryant)等人根据微生物的生理种群,提出了厌氧消化三阶段理论,是当前较为公认的理论模式。三阶段消化突出了产氢产乙酸细菌的作用,并把其独立地划分为一个阶段。三阶段消化的第一阶段,是在水解与发酵细菌作用下,使碳水化合物,蛋白质与脂肪水解与发酵转化成由糖、氨基酸、脂肪酸,甘油及二氧化碳、氢等;第二阶段,是在产氢产乙酸菌的作用下,把第一阶段的产物转化成氢、二氧化碳和乙酸。第三阶段,是通过两组生理上不同的产甲烷菌的作用,一组把氢和二氧化碳转化成甲烷,另一组是对乙酸脱羟产生甲烷。 影响污泥消化的主要有以下因素:l)温度:温度影响消化速度,也影响消化深度。温度为5-15℃称低温消化,30-35℃称中温消化,50-55℃称高温消化。高温消化几乎可以杀灭一切病原微生物,但操作管理复杂,加热费用高;中温消化只能杀灭部分病原微生物,低温消化效率很低,所以一般采取中温消化。2)投配率:即每天投入消化池内的生污泥量与池内熟污泥量的百分率。投配率的大小影响池内污泥的PH值和消化速率。投配率小污泥消化速度快而充分,产气量高,但要加大池体积;投配率大,消化速度慢,PH值降低,抑制甲烷细菌的生长,破坏正常的消化过程。一般对于生活污水或水质近似的工业废水, 投配率率以6-12%为宜。3)生熟污泥的混合程度:混合充分,可加速消化过程,提高产气量,因此需要搅拌。4)厌氧条件:甲烷菌是厌氧性微生物,因此要求消化池密封,隔绝空气。以上是绿环(煤质柱状活性炭生产厂家)为您介绍的关于水处理方面的知识,如有疑问,欢迎联系!

污泥厌氧消化系统

污泥厌氧消化系统 1 引言 随着城市规模的扩大和污水处理厂处理效率的提高,剩余污泥产量逐年增加.据统计,我国城市污泥年产量已达3000万吨(以80%含水率计),其中80%未得到妥善处理.在众多的污泥处理方法中,厌氧消化技术能够同时实现污泥减量和回收能源,在国内外得到了广泛应用.然而,目前污泥厌氧消化的效率不高,尤其是我国污水处理厂厌氧消化池的运行效果不够理想,设计和运行缺乏理论指导.对于一个厌氧消化系统,物料的流变特性是工艺设计和运行中的重要参数,对传质、传热、搅拌和物料输送等厌氧消化单元有重要意义.在厌氧消化过程单元设计中,必须清楚原料的流体类型,计算出原料的流变参数,才能对厌氧消化、特别是高浓度物料厌氧消化进行合理的工艺设计以及设备选用与开发.此外,原料的流变特性也是厌氧消化工艺控制的重要依据. 由于流变特性在厌氧消化工艺设计和运行中的重要作用,一些学者对污泥的流变特性做了初步研究.Pollice和Laera研究了在不同水力停留时间下污泥以黏度表征的流变特性.Chen和Hashimoto对新鲜污泥的流变特性进行了研究,试验的浓度变化范围是2.71%~6.53%,温度变化范围为 9.5~26 ℃,这个较低的浓度和温度变化范围不能适应如今广泛使用的中高温(>35 ℃)、高浓度(>8%)厌氧消化.Sozanski 等用旋转流变仪对污泥进行流变试验研究,对流变曲线进行分析,设计了流变模型,并针对模型给出了经验公式和一些预测参数值来探讨污泥在不同浓度和温度下的流变特性.Bos使用毛细管流变仪和旋转流变仪对污泥流变特性进行试验研究,建立了温度和含水率对污泥流变特性影响的流变方程. 目前,关于污泥厌氧消化原料流变特性的研究主要集中在污泥本身,而对于餐厨垃圾与污泥混合物料的流变特性研究,国内外却鲜有报道.近年来,国内外采用餐厨垃圾与污泥联合厌氧发酵的研究及沼气工程日益增多,大部分研究都集中在餐厨垃圾对泥质的改善方面,而对于添加餐厨垃圾对污泥流变特性的影响研究却很少,导致混合发酵原料流变特性参数仍然缺乏,制约了厌氧消化单元过程的优化设计. 本文对4种主要的厌氧消化原料——脱水污泥、脱水污泥与餐厨垃圾混合物、剩余污泥以及剩余污泥与餐厨垃圾混合物的流变特性进行了研究,考察了物料浓度和温度对流变特性参数的影响,并拟合了相应模型,以期为厌氧消化设备选用及工艺设计提供基础参数. 2 材料和方法 2.1 试验材料 脱水污泥(dewatered sludge,以下简称DS)和剩余污泥(waste activated sludge,以下简称WAS)取自天津市张贵庄污水处理厂,餐厨垃圾取自天津大学学生食堂,原料取回后保存于4 ℃冰箱冷藏待用,餐厨垃圾首先经人工分选出其中的杂物,包括塑料、纸类及骨头等,然后用破碎机破碎后搅匀冷藏.DS的总固体浓度(TS)和挥发性固体浓度(VS)分别为16.4%和9.4%,WAS的TS 和VS浓度分别为2.6%和1.4%,破碎后餐厨垃圾的TS和VS浓度分别为19.3%和18.9%. 2.2 试验方法

厌氧微生物的培养驯化及成熟污泥的特征

厌氧微生物的培养驯化及成熟污泥的特征 The final edition was revised on December 14th, 2020.

厌氧消化系统试运行的一个主要任务是培养厌氧污泥,即消化污泥。厌氧活性污泥培养的主要目的是厌氧消化所需要的甲烷细菌和产酸菌,当两种菌种达到动态平衡时,有机质才会被不断地转换为甲烷气,即厌氧沼气。 (一)培菌前的准备工作 厌氧消化的启动,就是完成厌氧活性污泥的培养或甲烷菌的培养。当厌氧消化池经过满水试验和气密性试验后,便可开始甲烷菌的培养。 (二)培菌方法 污泥的厌氧消化中,甲烷细菌的培养与驯化方法主要有两种:和。 接种污泥一般取自正在运行的厌氧处理装置,尤其是城市污水处理厂的消化污泥,当液态消化污泥运输不便时,可用污水厂经机械脱水后的干污泥。在厌氧消化污泥来源缺乏的地方,可从废坑塘中取腐化的有机底泥,或以认粪、牛粪、猪粪、酒糟或初沉池底泥代替。大型污水处理厂,若同时启动所需接种量太大,可分组分别启动。 是向厌氧消化装置中投入容积为总容积的10%~30%的厌氧菌种污泥。接种污泥一般为含固率为3%~5%的湿污泥。再加入新鲜污泥至设计液面,然后通入蒸汽加热,升温速度保持1℃/h,直至达到消化温度。如污泥呈酸性,可人工加碱调整pH至~。维持消化温度,稳定一段时间(3-5d)后,污泥即可成熟。再投配新鲜污泥并转入正式运行。此法适用于小型消化池,因为对于大型消化池,要使升温速度为1℃ /h,需热量较大,锅炉供应不上。

指向厌氧消化池内逐步投入生泥,使生污泥自行逐渐转化为厌氧活性污泥的过程。该方法要使活性污泥经历一个由好氧向厌氧的转变过程,加之厌氧微生物的生长速率比好氧微生物低很多,因此培养过程很慢,一般需历时6~10个月左右,才能完成甲烷菌的培养。 或者通过加热的方法加速污泥的成熟:将每日产生的新鲜污泥投入消化池,待池内的污泥量为一定数量时,通入蒸汽。升温速度控制在1℃/h。当池内温度升到预定温度时,可减少蒸汽量,保持温度不变,并逐日投加一定数量的新鲜污泥,直至达到设计液面时停止加泥。整个成熟过程一直维持恒温,成熟时间约需30~40d。污泥成熟后,即可投配新鲜污泥并转入正式运行。 (三)培菌注意事项 厌氧消化系统的处理主要对象是活性污泥,不存在毒性问题。但是厌氧消化菌繁殖速度太慢,为加快培养启动过程,除投入接种污泥以外,还应做好厌氧污泥的加热。 厌氧消化污泥的培养,初期生污泥投加量与接种污泥的数量及培养时间有关,早期可按设计污泥量的30%~50%投加,到培养经历了60d 左右,可逐渐增加投加量。若从监测结果发现消化不正常时,应减少投泥量。 厌氧消化系统处理城市污水处理厂的活性污泥,由于活性污泥中碳、氮、磷等营养是均衡的,能够适应厌氧微生物生长繁殖的需要。因此,即使在厌氧消化污泥培养的初期也不需要和处理工业废水那样,加入营养物质。

污泥厌氧消化池设计说明书

课程设计 课程名称_固体废物利用与处置B课程设计_ 题目名称_ 260m3/d污泥厌氧消化池设计 学生学院_ _ 环境科学与工程__ _ 专业班级_ _ 环境科09级(2)班__ _ 学号 28 学生姓名_________余笃凝 ___ _____ 指导教师_________戴文灿 ___ ____ 2012 年 6 月 25 日

摘要 厌氧消化或称厌氧发酵是一种普遍存在于自然界的微生物过程。厌氧消化处理是指在厌氧状态下利用厌氧微生物使固体废物中的有机物转化为CH4和CO2的过程。厌氧消化池多用于大型污水处理场的脱水剩余污泥的厌氧处理,也可用以处理高浓度有机工业废水、悬浮固体含量较高和颗粒较大的有机废水、含难降解有机物的工业废水,也以被成功地应用于肉类食品工业废水的处理。厌氧发酵反应与固液分离在同一个池内进行,结构较为简单。此次课程设计要求我们在给定参数下设计日处理量为260m3 的中温定容式污泥厌氧消化池。 关键词:固体废物厌氧消化微生物有机物

Abstract Anaerobic digestion(some says anaerobic fermentation)is a kind of microbial process which commonly finds in nature area. Anaerobic digestion treatment means that use anaerobic microbe in order to make organic matter from solid waste into CH4 and CO2 process in anaerobic digestion pools usually used in large sewage farm to treats dewatering surplus sludge anaerobicly,it also can be used to deal with high concentration of organic industrial waste water, higher content of suspended solid and the larger particle organic wastewater, including refractory organics industrial wastewater, what’s more,it can applied successfully in the meat food industrial wastewater treatment. Anaerobic fermentation reaction and solid-liquid separation are react in the same pool so the structure is simple. The course design require us to design the steady increases type of sludge anaerobic digestion pool which capacity of 260 m3 under the given parameters. Keywords: solid waste anaerobic digestion microbial organic

国内污泥厌氧消化装置停运或运行不良的原因浅析

国内污泥厌氧消化装置停运或运行不良的原因浅析 ——高碑店消化发电项目数据解读 北京高碑店污水厂直到几年前还一直是我国污水界最有代表性的工程之一,其厌氧消化更是继天津的几个厌氧消化项目之后,国内建设最早、规模最大、设计配套最完整、运行时间较长的项目之一。但2008年奥运会前,消化部分停止了运行,至今尚未恢复生产,时间已过去了三年多,甚至还有传闻说消化罐等要彻底拆除,为计划中的带式干化项目让地。 关于高碑店的消化项目,有多篇已发表的论文可供参考。如张韵等《高碑店污泥消化发电项目》、张韵等《高碑店污水处理厂污泥处理系统及设计中应注意的一些问题》、刘达克《高碑店污泥消化的启动》、李维、杨向平等《高碑店污水处理厂沼气热电联供情况介绍》、王立国《高碑店厌氧消化与沼气发电》、宋晓雅等《高碑店污水处理厂污泥处理系统工艺介绍及运行分析》等。本文拟采用这些论文所提供的数据,建立一个厌氧消化的分析计算模型,以了解厌氧消化项目的设计思想,并结合所报道的实际运行数据,分析技术经济特征,进而探讨项目消化停运的原因。 一、项目设计条件与模型的建立 资料显示,一、二期项目在泥区物流、厌氧消化工艺方面的设计参数是基本一致的,所不同的地方仅在于消化器的搅拌形式、沼气发电机的选型和配置、脱硫工艺类型等。这里按每期项目数据单独分析。 “设计水量50万m3/d,初沉泥和二沉池的混合污泥量为4417m3/d,污泥含水率97%”,则浓缩污泥的干固体量为132.5吨/日。 项目采用中温两级消化,温度35度,一级消化的固体停留时间21

天,二级7天,一级消化器12个,二级4个,则单体消化器的有效容积为7800立方米。 入消化器浓缩污泥量2208立方米/日,则含固率的设计值为6%(实际4-5%); 设计消化参数取值为干基有机质含量60%,消化降解率50%。则每日有机质降解量为39.75吨/日。 设计日产气量设计值为26500立方米。假设甲烷含量在60-65%之间,取中值63%,则日产甲烷量约16695立方米/日。由此可知,设计时可能采用了有机质降解产甲烷系数0.42 Nm3/kg.VSSr。 消化器的设计直径20米,总高28.8米,其中地下5米。据此可得到消化器的表面积。 二期项目设计时,给出了项目“消化池冬季所需最大加热量为226.8万Kcal/h。夏季最小加热量为138.3万Kcal/h”的数据,据此,可采用北京地区气温、土温数据,建立适合此类消化池的加热部分计算模型。 为使模型完整,根据进出水数据,反推得到污水处理工艺的设计数据如下:入水BOD5 200 mg/l,出水20 mg/l,TSS进水200 mg/l,初沉池固体去除率50%,剩余污泥产率系数0.60 kg/kg,MLVSS浓度1.6 kg/m3,MLVSS分解系数0.05,MLVSS/MLSS比0.60。 在沼气使用方面,一、二期项目装机量均为2000 kW;以二期的设计发电效率38.3%考虑,需要耗用沼气19955立方米/日;根据二期项目发电机余热量50.3%,发电机满负荷时所产余热应能满足冬季最大加热量需求。 这里为分析方便起见,不采用全部余热生成热水的方法,而是考虑部分高温余热(相当于发电沼气输入热量的19.5%)生成蒸汽或导热油用于干化,以此来考察厌氧消化的多余能量结合干化实现污泥减量的潜力。仅采用缸套冷却水和润滑油冷却水进行热水回收,这相当于沼气发

厌氧消化的影响因素有哪些

厌氧消化的影响因素有哪些? 厌氧消化的影响因素有哪些? 甲烷发酵阶段是厌氧消化反应的控制阶段,因此厌氧反应的各项影响因素也以对甲烷菌的影响因素为准。 一、温度因素 厌氧消化中的微生物对温度的变化非常敏感(日变化小于±2℃),温度的突然变化,对沼气产量有明显影响,温度突变超过一定范围时,则会停止产气。 根据采用消化温度的高低,可以分为常温消化(10-30℃)、中温消化(33-35℃左右)和高温消化(50-55℃左右)。 二、生物固体停留时间(污泥龄)与负荷 三、搅拌和混合 搅拌可使消化物料分布均匀,增加微生物与物料的接触,并使消化产物及时分离,从而提高消化效率、增加产气量。同时,对消化池进行搅拌,可使池内温度均匀,加快消化速度,提高产气量。 搅拌方法包括气体搅拌、机械搅拌、泵循环等。气体搅拌是将消化池产生的沼气,加压后从池底部冲入,利用产生的气流,达到搅拌的目的。机械搅拌适合于小的消化池,液搅拌和气搅拌适合于大、中型的沼气工程。 四、营养与C/N比 厌氧消化原料在厌氧消化过程中既是产生沼气的基质,又是厌氧消化微生物赖以生长、繁殖的营养物质。这些营养物质中最重要的是碳素和氨素两种营养物质,在厌氧菌生命活动过程中需要一定比例的氮素和碳素(COD∶N∶P=200∶5∶1)。原料C/N比过高,碳素多,氮素养料相对缺乏,细菌和其他微生物的生长繁殖 受到限制,有机物的分解速度就慢、发酵过程就长。 若C/N比过低,可供消耗的碳素少,氮素养料相对过剩,则容易造成系统中氨 氮浓度过高,出现氨中毒。 五、有毒物质 挥发性脂肪酸(VFA是消化原料酸性消化的产物,同时也是甲烷菌的生长代谢 的基质。一定的挥发性脂肪酸浓度是保证系统正常运行的必要条件,但过高的VFA会抑制甲烷菌的生长,从而破坏消化过程。 有许多化学物质能抑制厌氧消化过程中微生物的生命活动,这类物质被称为抑制剂。 抑制剂的种类也很多,包括部分气态物质、重金属离子、酸类、醇类、苯、氰化物及去垢剂等。 六、酸碱度、pH值和消化液的缓冲作用 pH值的变化直接影响着消化过程和消化产物。 1、由于pH的变化引起微生物体表面的电荷变化, 进而影响微生物对营养物的吸收; 2、pH除了对微生物细胞有直接影响外,还可以促使有机化合物的离子化作用,从而对微生物产生 间接影响,因为多数非离子状态化合物比离子状态化合物更容易渗入细胞;

污泥厌氧消化池设计说明书样本

污泥厌氧消化池设 计说明书

课程设计 课程名称_固体废物利用与处理B课程设计_题目名称_ 260m3/d污泥厌氧消化池设计 学生学院_ _ 环境科学与工程__ _专业班级_ _ 环境科09级(2)班__ _学号 学生姓名_________余笃凝 ___ _____指导教师_________戴文灿 ___ ____ 年 6 月 25 日

摘要 厌氧消化或称厌氧发酵是一种普遍存在于自然界的微生物过程。厌氧消化处理是指在厌氧状态下利用厌氧微生物使固体废物中的有机物转化为CH4和CO2的过程。厌氧消化池多用于大型污水处理场的脱水剩余污泥的厌氧处理,也可用以处理高浓度有机工业废水、悬浮固体含量较高和颗粒较大的有机废水、含难降解有机物的工业废水,也以被成功地应用于肉类食品工业废水的处理。厌氧发酵反应与固液分离在同一个池内进行,结构较为简单。此次课程设计要求我们在给定参数下设计日处理量为260m3 的中温定容式污泥厌氧消化池。 关键词:固体废物厌氧消化微生物有机物

Abstract Anaerobic digestion(some says anaerobic fermentation)is a kind of microbial process which commonly finds in nature area. Anaerobic digestion treatment means that use anaerobic microbe in order to make organic matter from solid waste into CH4 and CO2 process in anaerobic state.Anaerobic digestion pools usually used in large sewage farm to treats dewatering surplus sludge anaerobicly,it also can be used to deal with high concentration of organic industrial waste water, higher content of suspended solid and the larger particle organic wastewater, including refractory organics industrial wastewater, what’s more,it can applied successfully in the meat food industrial wastewater treatment. Anaerobic fermentation reaction and solid-liquid separation are react in the same pool so the structure is simple. The course design require us to design the steady increases type of sludge anaerobic digestion pool which capacity of 260 m3under the given parameters.

污泥厌氧消化

污泥厌氧消化 1.污泥厌氧消化的原理 污泥厌氧消化,即污泥中的有机物在无氧的条件下被厌氧菌群最终分解成甲烷与CO2的过程,就是一个极其复杂的过程,一般分为三个阶段,第一阶段在水解与发酵细菌的作用下,使碳水化合物、蛋白质与脂肪水解与发酵,转化为单糖、氨基酸、脂肪酸、甘油及CO2及氢等;第二阶段在产氢产乙酸菌的作用下,把第一阶段的产物转化成氢、CO2与乙酸等;第三阶段,通过两组生理上不同的产甲烷菌的作用下,一组把氢与CO2转化为甲烷,另一组对乙酸脱羧产生甲烷。 2.厌氧消化影响因素 (1)温度 温度适宜时,细菌发育正常,有机物分解完全,产气量高。产甲烷菌在0-56℃设有特定的温度限制,但在一定温度驯化的甲烷菌对温度变化很敏感,在操作过程中,应尽量保持温度不变。 (2)污泥投配率 指每日加入污泥消化池的新鲜污泥体积与消化污泥体积的比率,以百分数计。根据经验,中温消化6%-8%为宜。在设计时,新鲜污泥投配率可在5%-12%之间选用。投配率大,有机物分解程度减少,产气量下降,所需消化池体积小,反之产气量增加,所需消化池容积大。 (3)营养与碳氮比 消化池的营养由投配污泥供给,营养配比中最重要的就是碳氮比(C/N)。碳氮比(C/N)太高或太低都不利于污泥消化,一般以10-20较为合适。 (4)搅拌与混合 污泥混合搅拌就是影响污泥消化的重要因素。搅拌操作可以使新鲜污泥与熟污泥均匀接触,加强热传导,均匀地供给细菌以养料,打碎液面上的浮渣层,提高消化池的负荷。近年来,在我国采用国产搅拌设备正常投入运行的并不多,对污泥消化池污泥混合程度也没有统一的评价标准,迫切需要这方面的理论探索与实际经验指导生产运行,以提高污泥厌氧消化的整体水平。 (5)酸碱度 甲烷菌的最佳pH值就是7、0-7、5,酸碱度影响消化系统的pH值与消化液的缓冲能力。

相关文档
最新文档