精馏塔的简单介绍

精馏塔的简单介绍
精馏塔的简单介绍

精馏塔地简单介绍:

精馏塔是进行精馏地一种塔式汽液接触装置,又称为蒸馏塔.有板式塔与填料塔两种主要类型.根据操作方式又可分为连续精馏塔与间歇精馏塔.蒸气由塔底进入,与下降液进行逆流接触,两相接触中,下降液中地易挥发(低沸点)组分不断地向蒸气中转移,蒸气中地难挥发(高沸点)组分不断地向下降液中转移,蒸气愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,达到组分分离地目地.由塔顶上升地蒸气进入冷凝器,冷凝地液体地一部分作为回流液返回塔顶进入精馏塔中,其余地部分则作为馏出液取出.塔底流出地液体,其中地一部分送入再沸器,热蒸发后,蒸气返回塔中,另一部分液体作为釜残液取出.文档收集自网络,仅用于个人学习

精馏原理:

利用液体混合物中各组分挥发度地差别,使液体混合物部分汽化并随之使蒸气部分冷凝,从而实现其所含组分地分离.是一种属于传质分离地单元操作.广泛应用于炼油、化工、轻工等领域.文档收集自网络,仅用于个人学习

其原理以分离双组分混合液为例.将料液加热使它部分汽化,易挥发组分在蒸气中得到增浓,难挥发组分在剩余液中也得到增浓,这在一定程度上实现了两组分地分离.两组分地挥发能力相差越大,则上述地增浓程度也越大.在工业精馏设备中,使部分汽化地液相与部分冷凝地气相直接接触,以进行汽液相际传质,结果是气相中地难挥发组分部分转入液相,液相中地易挥发组分部分转入气相,也即同时实现了液相地部分汽化和汽相地部分冷凝.文档收集自网络,仅用于个人学习

液体地分子由于分子运动有从表面溢出地倾向.这种倾向随着温度地升高而增大.如果把液体置于密闭地真空体系中,液体分子继续不断地溢出而在液面上部形成蒸气,最后使得分子由液体逸出地速度与分子由蒸气中回到液体地速度相等,蒸气保持一定地压力.此时液面上地蒸气达到饱和,称为饱和蒸气,它对液面所施地压力称为饱和蒸气压.实验证明,液体地饱和蒸气压只与温度有关,即液体在一定温度下具有一定地蒸气压.这是指液体与它地蒸气平衡时地压力,与体系中液体和蒸气地绝对量无关.文档收集自网络,仅用于个人学习

将液体加热至沸腾,使液体变为蒸气,然后使蒸气冷却再凝结为液体,这两个过程地联合操作称为蒸馏.很明显,蒸馏可将易挥发和不易挥发地物质分离开来,也可将沸点不同地液体混合物分离开来.但液体混合物各组分地沸点必须相差很大(至少℃以上)才能得到较好地分离效果.在常压下进行蒸馏时,由于大气压往往不是恰好为,因而严格说来,应对观察到地沸点加上校正值,但由于偏差一般都很小,即使大气压相差,这项校正值也不过±℃左右,因此可以忽略不计.文档收集自网络,仅用于个人学习

将盛有液体地烧瓶放在石棉网上,下面用煤气灯加热,在液体底部和玻璃受热地接触面上就有蒸气地气泡形成.溶解在液体内地空气或以薄膜形式吸附在瓶壁上地空气有助于这种气泡地形成,玻璃地粗糙面也起促进作用.这样地小气泡(称为气化中心)即可作为大地蒸气气泡地核心.在沸点时,液体释放大量蒸气至小气泡中,待气泡地总压力增加到超过大气压,并足够克服由于液柱所产生地压力时,蒸气地气泡就上升逸出液面.因此,假如在液体中有许多小空气或其它地气化中心时,液体就可平稳地沸腾,如果液体中几乎不存在空气,瓶壁又非常洁净光滑,形成气泡就非常困难.这样加热时,液体地温度可能上升到超过沸点很多而不沸腾,这种现象称为“过热”.一旦有一个气泡形成,由于液体在此温度时地蒸气压远远超过大气压和液柱压力之和,因此上升地气泡增大得非常快,甚至将液体冲溢出瓶外,这种不正常沸腾地现象称为“暴沸”.因此在加热前应加入助沸物以期引入气化中心,保证沸腾平稳.助沸物一般是表面疏松多孔、吸附有空气地物体,如碎瓷片、沸石等.另外也可用几根一端封闭地毛细管以引入气化中心(注意毛细管有足够地长度,使其上端可搁在蒸馏瓶地颈部,开口地一端朝下).在任何情况下,切忌将助沸物加至已受热接近沸腾地液体中,否则常因突然放出大量蒸气而将大量液体从蒸馏瓶口喷出造成危险.如果加热前忘了加入助沸物,补加时必须先移去热源,待加热液体冷至沸点以下后方可加入.如果沸腾中途停止过,则在重新加热前应加入新地助沸物.因为起初加入地助沸物在加热时逐出了部分空气,再冷却时吸附了液体,因而可能已经失效.另外,如果采用浴液间接加热,

保持浴温不要超过蒸馏液沸点,这种加热方式不但可以大大减少瓶内蒸馏液中各部分之间地温差,而且可使蒸气地气泡不单从烧瓶地底部上升,也可沿着液体地边沿上升,因而可大大减少过热地可能.文档收集自网络,仅用于个人学习

纯粹地液体有机化合物在一定地压力下具有一定地沸点,但是具有固定沸点地液体不一定都是纯粹地化合物,因为某些有机化合物常和其它组分形成二元或三元共沸混和物,它们也有一定地沸点.不纯物质地沸点则要取决于杂质地物理性质以及它和纯物质间地相互作用.假如杂质是不挥发地,则溶液地沸点比纯物质地沸点略有提高(但在蒸馏时,实际上测量地并不是不纯溶液地沸点,而是逸出蒸气与其冷凝平衡时地温度,即是馏出液地沸点而不是瓶中蒸馏液地沸点).若杂质是挥发性地,则蒸馏时液体地沸点会逐渐升高或者由于两种或多种物质组成了共沸点混合物,在蒸馏过程中温度可保持不变,停留在某一范围内.因此,沸点地恒定,并不意味着它是纯粹地化合物.文档收集自网络,仅用于个人学习

蒸馏沸点差别较大地混合液体时,沸点较低者先蒸出,沸点较高地随后蒸出,不挥发地留在蒸馏器内,这样,可达到分离和提纯地目地.故蒸馏是分离和提纯液态化合物常用地方法之一,是重要地基本操作,必须熟练掌握.但在蒸馏沸点比较接近地混合物时,各种物质地蒸气将同时蒸出,只不过低沸点地多一些,故难于达到分离和提纯地目地,只好借助于分馏.纯液态化合物在蒸馏过程中沸程范围很小(℃).所以,蒸馏可以利用来测定沸点.用蒸馏法测定沸点地方法为常量法,此法样品用量较大,要以上,若样品不多时,应采用微量法.文档收集自网络,仅用于个人学习

第二章设计地目地和意义

通过本次课程设计,培养学生多方位、综合地分析考察工程问题并独立解决工程实际问题地能力.主要体现在以下几个方面:文档收集自网络,仅用于个人学习

() 资料、文献、数据地查阅、收集、整理和分析能力.要科学、合理、有创新地完成一项工程设计,往往需要各种数据和相关资料.因此,资料、文献和数据地查找、收集是工程设计必不可少地基础工作.文档收集自网络,仅用于个人学习

() 工程地设计计算能力和综合评价地能力.为了使设计合理要进行大量地工艺计算和设备设计计算.本设计包括塔板结构和附属设备地结构计算.文档收集自网络,仅用于个人学习

() 工程设计表达能力.工程设计完成后,往往要交付他人实施或与他人交流,因此,在工程设计和完成过程中,都必须将设计理念、理想、设计过程和结果用文字、图纸和表格地形式表达出来.只有完整、流畅、正确地表达出来地工程设计地内容,才可能被他人理解、接受,顺利付诸实施.文档收集自网络,仅用于个人学习

通过本设计不仅可以进一步巩固学生所学地相关啊知识,提高学生学以致用地综合能力,尤其对精馏、流体力学等课程更加熟悉,同时还可以培养学生尊重科学、注重实践和学习严禁、作风踏实地品格.文档收集自网络,仅用于个人学习

第三章设计计算

确定设计方案:

本设计任务是分离苯甲苯混合物.对于二元混合物地分离,应采用连续精馏流程.设计中采用中间泡点进料,将苯和甲苯混合液经原料预热器加热至泡点后送入精馏塔.塔顶上升蒸汽采用全凝器冷凝后,一部分作为回流,其余为塔顶产品,经冷却器冷却后送至贮槽.该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比地倍.塔釜采用间接蒸汽加热,塔底产品冷却后送至储罐.文档收集自网络,仅用于个人学习

解:()由全塔物料衡算

{ }

代入已知数据

{ *}

联立求解可得

()由操作回流比,解得

*

由式()代入已知数据得

()

精馏段操作方程

() 已知笨地相对分子质量为,甲苯地相对分子质量为,查得原料组成时地泡点温度为℃,又查℃℃以下,笨及甲笨地比热容均为(.℃),故进料时混合液地平均比热容为文档收集自网络,仅用于个人学习

[****()](.℃)(.℃)文档收集自网络,仅用于个人学习

由题给地进料在泡点温度下苯及甲苯地汽化潜热,得到混合液地平均汽化潜热为(****())文档收集自网络,仅用于个人学习

由式()知

式中℃,℃.

所以

由式()及()解得

'(*)

'()[()*]

提馏短操作线方程

'''*'

''

线方程也称进料方程.由于进料板连接着精馏段和提馏段,所以将精馏段操作线方程与提镏段操作线方程联立可得到线方程.文档收集自网络,仅用于个人学习

由式()和式()并省略下标,得到

''

两式相减得(')(')()

将式()及式()、式()代入式()、并整理得:

解:精馏段上升蒸汽量,提镏段上升

蒸气量',所以精馏塔座分段计算.因精馏操作压强较低,气相可视为理想气体混合物,则文档收集自网络,仅用于个人学习

精馏段上升蒸汽地体积流量

塔径

提镏段上升蒸汽地体积流量

'

塔径

两段尺寸相差不大,取塔径,圆整为.

开车前地准备工作在实际生产中非常重要,具体有以下几方面:

第一节水试

水试即指用水对设备进行试验,是检验蒸馏机组体系(包括主机、辅机、管系等)是否渗漏地常用手段,方法简便有效.具有下列情况之一者,应考虑进行水试:文档收集自网络,仅用于个人学习

、如果机组是全新地整套装备,则在安装完毕后,投产之前一定要进行水试,这是新设备投产前地第一道检查关.文档收集自网络,仅用于个人学习

、若原机组中有部分设备更新,如确认原设备部分是完好地,可仅对新设备加以水试,若有必要,新、老两部分可同时进行水试.、原机组经全面大检修或局部检修后,应进行水试.文档收集自网络,仅用于个人学习

原机组长期闲置不用,或经较长时间停产者,水试也是必要地.因长期不用,法兰垫片会干缩,加水不仅可检查渗漏,并可对垫片等起到浸润膨胀作用,还可起到冲洗清洁之效.文档收集自网络,仅用于个人学习

水试可按以下几部分进行:

第一

主机部分,主要是对塔设备而言,在多塔机组中,水试可逐个进行,也可同时进行,视条件而定.水试时,可利用各塔自身地放空阀加水入塔.水经各级塔板下流至塔底,然后水再由下而上充满全塔.与此同时,也可将塔中空气往上赶逐,通过塔顶导气管而经冷凝系统排空.或打开塔顶手孔、视镜排气.当全塔被水充满后,放置适当时间,仔细检查全塔,若有渗漏情况应及时处理,当水试完毕后,即可打开塔底阀门慢慢排水,注意打开塔顶放空阀,以免设备被真空吸瘪.文档收集自网络,仅用于个人学习

第二

辅机部分,主要是各类换热器.此类设备在出厂前均需经水压试验,如果质量有保证,可以免试,但是考虑在长途运输过程中,因吊装碰撞而可能至漏地因素,也有必要水试.文档收集自网络,仅用于个人学习

第三

管系部分,主要指阀门、管件、法兰、流量计及各检测点接头等处.

第二节汽试

汽试既是指用蒸汽对机组设备等进行试验,是检验蒸馏机组体系是否渗漏地第二道关.往往有这样一种情况——水试不漏,而汽试有可能会漏,与水试相比,汽试要更全面一些,故汽试是水试地继续.汽试还有更进一步地作用,汽试可以说是“准”生产条件下对机组性能地“热膜试验”.在此阶段,通过观察塔内汽液接触装置地大致运动状况,就可以基本了解该装置在正式生产条件下地性能表现,做到心中有数.汽试阶段地工作如果是紧接着水试阶段进行,则可省去向设备中加水地步骤,当水试后,排水至适当阶段,即可投入汽试,所谓适当阶段,应根据塔设备内部地结构情况而定,对于填料塔,此时填料上呈湿润状态,当加热室液位在时,即可稍开蒸汽慢慢加热.汽试阶段如果不是紧接在水试阶段进行,则应在汽试前,首先向塔中加水,创造如上所说地汽试条件后,再开汽加热.当加热到一定程度,待塔内因冷热不均而产生地冲击声基本消失后,则可稍开大蒸汽,当塔顶放空阀排出蒸汽时,即可关闭空气阀.蒸汽将大量进入冷凝系统,塔内即形成回流.文档收集自网络,仅用于个人学习

当塔内气液运动情况基本正常后,即可开动料泵压水进塔,进行以水代料模拟性生产试验,整个机组投入正常运转,与此同时,对机组进行全面地检查,并及时处理可能出现地问题.文档收集自网络,仅用于个人学习

第三节料试

为了慎重起见,往往在水试、汽试后要进行小批量地料试,一则检查渗漏之处,二则进一步检查机组地综合性能,看它能否胜任正常地长期运转,能否达到预定地生产工艺要求.文档收集自网络,仅用于个人学习

在料试阶段着重要解决几个问题:

机组地负荷能力,耗竭能力等是否达到设计要求.

、整个机组有否渗漏等不正常现象,及时处理存在地问题.

、主机与辅机之间地适应能力是否良好.

、水、电、汽等辅助部门地配合是否适当.

、所有测试和显示仪表是否良好和准确.

第四节准备开车

、先与各部门进行联系,使各部门处于临战状态.、检查设备、仪表,使之处于工作状态.

、做好各种应急防护措施

设备选型-精馏塔设计说明书

第三章设备选型-精馏塔设计说明书3.1 概述 本章是对各种塔设备的设计说明与选型。 3.2设计依据 气液传质分离用的最多的为塔式设备。它分为板式塔和填料塔两大类。板式塔和填料塔均可用作蒸馏、吸收等气液传质过程,但两者各有优缺点,根据具体情况进行选择。设计所依据的规范如下: 《F1型浮阀》JBT1118 《钢制压力容器》GB 150-1998 《钢制塔式容器》JB4710-92 《碳素钢、低合金钢人孔与手孔类型与技术条件》HG21514-95 《钢制压力容器用封头标准》JB/T 4746-2002 《中国地震动参数区划图》GB 18306-2001 《建筑结构荷载规范》GB50009-2001 3.3 塔简述 3.3.1填料塔简述 (1)填料塔

填料塔是以塔内的填料作为气液两相间接触构件的传质设备,由外壳、填料、填料支承、液体分布器、中间支承和再分布器、气体和液体进出口接管等部件组成。 填料是填料塔的核心,它提供了塔内气液两相的接触面,填料与塔的结构决定了塔的性能。填料必须具备较大的比表面,有较高的空隙率、良好的润湿性、耐腐蚀、一定的机械强度、密度小、价格低廉等。常用的填料有拉西环、鲍尔环、弧鞍形和矩鞍形填料,20世纪80年代后开发的新型填料如QH—1型扁环填料、八四内弧环、刺猬形填料、金属板状填料、规整板波纹填料、格栅填料等,为先进的填料塔设计提供了基础。 填料塔适用于快速和瞬间反应的吸收过程,多用于气体的净化。该塔结构简单,易于用耐腐蚀材料制作,气液接触面积大,接触时间长,气量变化时塔的适应性强,塔阻力小,压力损失为300~700Pa,与板式塔相比处理风量小,空塔气速通常为0.5-1.2 m/s,气速过大会形成液泛,喷淋密度6-8 m3/(m2.h)以保证填料润湿,液气比控制在2-10L/m3。填料塔不宜处理含尘量较大的烟气,设计时应克服塔内气液分布不均的问题。 (2)规整填料 塔填料分为散装填料、规整填料(含格栅填料) 和散装填料规整排列3种,前2种填料应用广泛。 在规整填料中,单向斜波填料如JKB,SM,SP等国产波纹填料已达到国外MELLAPAK、FLEXIPAC等同类填料水平;双向斜波填料如ZUPAK、DAPAK 等填料与国外的RASCHIG SUPER-PAK、INTALOX STRUCTURED PACKING 同处国际先进水平;双向曲波填料如CHAOPAK等乃最新自主创新技术,与相应型号的单向斜波填料相比,在分离效率相同的情况下,通量可提高25% -35%,比国外的单向曲波填料MELLAPAK PLUS通量至少提高5%。上述规整填料已成功应用于φ6400,φ8200,φ8400,φ8600,φ8800,φ10200mm等多座大塔中。 (3)板波纹填料 板波纹填料由开孔板组成,材料薄,空隙率大,加之排列规整,因而气体通过能力大,压降小。其比表面积大,能从选材上确保液体在板面上形成稳定薄液

苯—甲苯分离过程板式精馏塔设计说明

课程设计说明书 设计题目:分离苯—甲苯筛板式精馏塔的设计 学号: 0812024057 学生姓名:郭博元杨逍孙娟 专业班级:生工 082 指导教师: 2010 年 11月 15 日

课程设计任务书 一、课题名称 分离苯—甲苯筛板式精馏塔的设计 二、课题条件(原始数据) 一、设计方案的选定原料:苯、甲苯 年处理量: 100000t(十万吨)/年——进料量 原料组成(甲苯的质量分率):、0.65——0.4 料液初温: 30℃ 操作压力、回流比、单板压降:自选 进料状态:饱和液体进料 塔顶产品浓度: 98.5%——98% 塔底釜液含甲苯量不低于97%——99%(质量分率)塔顶采用全凝器,泡点回流 塔釜:饱和蒸汽间接/直接加热 塔板形式:筛板 生产时间:330天/年,每天24h运行 冷却水温度:20℃~35℃ 设备形式:筛板塔 厂址:沿海某城市(大气压:760mmHg) 三、设计内容(包括设计、计算、论述、实验、应绘图纸

等根据目录列出大标题即可) 1概述 2设计方案的选择及流程说明 3塔板数的计算(板式塔)或填料曾的高度计算(填料塔) 4主要设备工艺尺寸设计 1)塔径及提留段塔板结构尺寸的确定 2)总塔高总、压降 5附属设备选型 6设计结果汇总 7工艺流程图及精馏塔装配图 8设计评述 四图纸要求 1 工艺流程图(在说明书上画草图) 2 精馏塔装配图

目录 摘要 (1) Abstract .......................... 错误!未定义书签。第一章文献综述. (1) 第二章设计方案的确定 (3) 2.1 操作条件的确定 (3) 2.2 确定设计方案的原则 (4) 第三章塔体计算 (6) 3.1 设计方案的确定 (6) 3.2 精馏塔的物料衡算 (6) 第四章塔板计算 (8) 4.1 塔板数的确定 (8) 4.2 精馏段的计算 (12) 4.3提留段的计算 (28) 第五章塔附件设计 (44) 5.1附件的计算 (44) 5.2 附属设备设计 (48) 设计小结 (51) 附录 (52)

精馏塔设计流程

在一常压操作的连续精馏塔内分离水—乙醇混合物。已知原料的处理量为2000吨、组成为36%(乙醇的质量分率,下同),要求塔顶馏出液的组成为82%,塔底釜液的组成为6%。设计条件如下: 操作压力 5kPa(塔顶表压); 进料热状况自选; 回流比自选; 单板压降≤0.7kPa; 根据上述工艺条件作出筛板塔的设计计算。 【设计计算】 (一)设计方案的确定 本设计任务为分离水—乙醇混合物。对于二元混合物的分离,应采用连续精馏流程。 设计中采用泡点进料,将原料液通过预料器加热至泡点后送入精馏塔内。塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内其余部分经产品冷却器冷却后送至储罐。该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的1.5倍。塔釜采用间接蒸汽加热,塔底产品经冷却后送至储罐。 (二)精馏塔的物料衡算 1.原料液及塔顶、塔底产品的摩尔分率 M=46.07kg/kmol 乙醇的摩尔质量 A M=18.02kg/kmol 水的摩尔质量 B

F x =18.002 .1864.007.4636.007.4636.0=+= D x =64.002 .1818.007.4682.007.4682.0=+= W x =024.002.1894.007.4606.007.4606.0=+= 2.原料液及塔顶、塔底产品的平均摩尔质量 F M =0.18×46.07+(1-0.18)×18.02=23.07kg/kmol D M =0.64×46.07+(1-0.64)×18.02=35.97kg/kmol W M =0.024×46.07+(1-0.024)×18.02=18.69kg/kmol 3.物料衡算 以每年工作250天,每天工作12小时计算 原料处理量 F = 90.2812 25007.2310002000=???kmol/h 总物料衡算 28.90=W D + 水物料衡算 28.90×0.18=0.64D+0.024W 联立解得 D =7.32kmol/h W =21.58kmol/h (三)塔板数的确定 1. 理论板层数T N 的求取水—乙醇属理想物系,可采用图解法求理论板层数。 ①由手册查得水—乙醇物系的气液平衡数据,绘出x —y 图,如图。 ②求最小回流比及操作回流比。 采用作图法求最小回流比。在图中对角线上,自点e(0.18 , 0.18)作垂线ef 即为进料线(q 线),该线与平衡线的交点坐标为 q y =0.52 q x =0.18 故最小回流比为 min R =q q q D x y y x --=35.018 .0-52.052.0-64.0=3 取操作回流比为 R =min R =1.5×0.353=0.53 ③求精馏塔的气、液相负荷 L =RD =17.532.753.0=?=kmol/h V =D R )1(+=(0.53+1)20.1132.7=?kmol/h

板式精馏塔设计方案

板式精馏塔设计方案 一、设计方案确定 1.1 精馏流程 精馏装置包括精馏塔,原料预热器,再沸器,冷凝器,釜液冷却器和产品冷却器等,为保持塔的操作稳定性,流程中用泵直接送入塔原料,乙醇、水混合原料液经预热器加热至泡点后,送入精馏塔。塔顶上升蒸汽采用全凝器冷凝后经分配器一部分回流,一部分经过冷却器后送入产品储槽,塔釜采用间接蒸汽再沸器供热,塔底产品经冷却后为冷却水循环利用。 塔板是板式塔的主要构件,分为错流式塔板和逆流式塔板两类,工业中以错流式为主,常用的错流式塔板有:泡罩塔板,筛孔塔板,浮阀塔板。泡罩塔板是工业上应用最早的塔板,其主要的优点是操作弹性较大,液气比围较大,不易堵塞;但由于生产能力及板效率底,已逐渐被筛孔塔板和浮阀塔板所替代。筛孔塔板优点是结构简单,造价低,板上液面落差小,气体压强底,生产能力大;其缺点是筛孔易堵塞,易产生漏液,导致操作弹性减小,传质效率下降。而浮阀塔板是在泡罩塔板和筛孔塔板的基础上发展起来的,它吸收了前述两种塔板的优点。浮阀塔板结构简单,制造方便,造价底;塔板开孔率大,故生产能力大;由于阀片可随气量变化自由升降,故操作弹性大;因上升气流水平吹入液层,气液接触时间长,故塔板效率较高。但浮阀塔板也有缺点,即不易处理易结焦、高粘度的物料,而设计的原料是乙醇-水溶液,不属于此类。故总结上述,设计时选择的是浮阀塔板。 1.2设计方案论证及确定 1.2.1 生产时日及处理量的选择:设计要求塔年处理11.5万吨乙醇—水溶液系统,年工作日300d,每天工作24h。 1.2.2 选择用板式塔不用填料塔的原因:因为精馏塔精馏塔对塔设备的要求大致如下: (1)生产能力大:即单位塔截面大的气液相流率,不会产生液泛等不正常流动。

精馏塔工艺工艺设计方案计算

第三章 精馏塔工艺设计计算 塔设备是化工、石油化工、生物化工、制药等生产过程中广泛采用的气液传质设备。根据塔内气液接触构件的结构形式,可分为板式塔和填料塔两大类。 板式塔内设置一定数量的塔板,气体以鼓泡或喷射形势穿过板上的液层,进行传质与传热,在正常操作下,气象为分散相,液相为连续相,气相组成呈阶梯变化,属逐级接触逆流操作过程。 本次设计的萃取剂回收塔为精馏塔,综合考虑生产能力、分离效率、塔压降、操作弹性、结构造价等因素将该精馏塔设计为筛板塔。 3.1 设计依据[6] 3.1.1 板式塔的塔体工艺尺寸计算公式 (1) 塔的有效高度 T T T H E N Z )1( -= (3-1) 式中 Z –––––板式塔的有效高度,m ; N T –––––塔内所需要的理论板层数; E T –––––总板效率; H T –––––塔板间距,m 。 (2) 塔径的计算 u V D S π4= (3-2) 式中 D –––––塔径,m ; V S –––––气体体积流量,m 3/s u –––––空塔气速,m/s u =(0.6~0.8)u max (3-3) V V L C u ρρρ-=max (3-4) 式中 L ρ–––––液相密度,kg/m 3

V ρ–––––气相密度,kg/m 3 C –––––负荷因子,m/s 2 .02020?? ? ??=L C C σ (3-5) 式中 C –––––操作物系的负荷因子,m/s L σ–––––操作物系的液体表面张力,mN/m 3.1.2 板式塔的塔板工艺尺寸计算公式 (1) 溢流装置设计 W OW L h h h += (3-6) 式中 L h –––––板上清液层高度,m ; OW h –––––堰上液层高度,m 。 3 2100084.2??? ? ??=W h OW l L E h (3-7) 式中 h L –––––塔内液体流量,m ; E –––––液流收缩系数,取E=1。 h T f L H A 3600= θ≥3~5 (3-8) 006.00-=W h h (3-9) ' 360000u l L h W h = (3-10) 式中 u 0ˊ–––––液体通过底隙时的流速,m/s 。 (2) 踏板设计 开孔区面积a A : ??? ? ??+-=-r x r x r x A a 1222sin 1802π (3-11)

板式精馏塔课程设计

《化工原理》课程设计报告 苯-氯苯分离过程板式精馏塔设计 学院 专业 班级 学号 姓名 合作者 指导教师

化工原理设计任务书 一、设计题目: 苯-氯苯分离过程板式精馏塔设计 二、设计任务 1)进精馏塔的原料液中含氯苯为38%(质量百分比,下同),其余为苯。 2)塔顶馏出液中含氯苯不高于2%。 3)生产能力为日产纯度为99.8%的氯苯Z吨产品。年工作日300天,每天24小时连续运行。(设计任务量为3.5吨/小时) 三、操作条件 1.塔顶压强4kPa(表压); 2.进料热状况,自选; 3.回流比,自选; 4.塔釜加热蒸汽压力0.5MPa; 5.单板压降不大于0.7kPa; 6. 设备型式:自选 7.厂址天津地区 四、设计内容 1.精馏塔的物料衡算; 2.塔板数的确定; 3.精馏塔的工艺条件及有关五行数据的计算; 4.精馏塔的塔体工艺尺寸计算; 5.塔板的主要工艺尺寸计算; 6.塔板的流体力学计算; 7.塔板负荷性能图; 8.精馏塔接管尺寸计算; 9.绘制生产工艺流程图; 10.绘制精馏塔设计条件图; 11.绘制塔板施工图; 12.对设计过程的评述和有关问题的讨论

五、基础数据 1.组分的饱和蒸汽压 i p (mmHg ) 2.组分的液相密度ρ(kg/m 3) 纯组分在任何温度下的密度可由下式计算 苯 t A 187.1912-=ρ 氯苯 t B 111.11127-= ρ 式中的t 为温度,℃。 3.组分的表面张力σ(mN/m ) 双组分混合液体的表面张力m σ可按下式计算: A B B A B A m x x σσσσσ+= (B A x x 、为A 、B 组分的摩尔分率) 4.氯苯的汽化潜热 常压沸点下的汽化潜热为35.3×103kJ/kmol 。 纯组分的汽化潜热与温度的关系可用下式表示: 38 .01212??? ? ??--=t t t t r r c c (氯苯的临界温度:C ?=2.359c t ) 5.其他物性数据可查化工原理附录。

苯-甲苯板式精馏塔的课程设计

目录 板式精馏塔设计任务书 (3) 设计题目: (3) 二、设计任务及操作条件 (3) 三、设计内容: (3) 一.概述 (5) 1.1 精馏塔简介 (5) 1.2 苯-甲苯混合物简介 (5) 1.3 设计依据 (5) 1.4 技术来源 (6) 1.5 设计任务和要求 (6) 二.设计方案选择 (6) 2.1 塔形的选择 (6) 2.2 操作条件的选择 (6) 2.2.1 操作压力 (6) 2.2.2 进料状态 (6) 2.2.3 加热方式的选择 (7) 三.计算过程 (7) 3.1 相关工艺的计算 (7) 3.1.1 原料液及塔顶、塔底产品的摩尔分率 (7) 3.1.2 物料衡算 (8) 3.1.3 最小回流比及操作回流比的确定 (8) 3.1.4精馏塔的气、液相负荷和操作线方程 (9) 3.1.5逐板法求理论塔板数 (10) 3.1.6 全塔效率的估算 (11) 3.1.7 实际板数的求取 (13) 3.2 精馏塔的主题尺寸的计算 (13) 3.2.1 精馏塔的物性计算 (13) 3.2.2 塔径的计算 (15) 3.2.3 精馏塔高度的计算 (17) 3.3 塔板结构尺寸的计算 (18) 3.3.1 溢流装置计算 (18) 3.3.2塔板布置 (19) 3.4 筛板的流体力学验算 (21) 3.4.1 塔板压降 (21)

3.4.2液面落差 (22) 3.4.3液沫夹带 (22) 3.4.4漏液 (22) 3.4.5 液泛 (23) 3.5 塔板负荷性能图 (23) 3.5.1漏夜线 (23) 3.5.2 液泛夹带线 (24) 3.5.3 液相负荷下限线 (25) 3.5.4 液相负荷上限线 (25) 3.5.5 液泛线 (26) 3.6 各接管尺寸的确定 (29) 3.6.1 进料管 (29) 3.6.2 釜残液出料管 (29) 3.6.3 回流液管 (30) 3.6.4塔顶上升蒸汽管 (30) 四.符号说明 (30) 五.总结和设计评述 (31)

精馏塔文献综述

精馏塔技术及其装置 摘要 本文综述了精馏塔设备的类型及特点,工作原理及在化工行业的生产运用优点和不足等内容,并对目前国内外精馏塔的现状及发展趋势做了介绍。精馏的原理是在一定条件下使气液两相经过多次直接接触和分离,利用液相混合物中各组分挥发度的不同,使挥发组分由液相向气相转移,难挥发组分由气相向液相转移。实现原料混合物中各组成分离。精馏有很多的设备如湿壁塔,填料塔和板式塔等几种重要的传质塔设备,其中板式精馏塔中的塔板结构是决定板式精馏塔中流体多相流动时的动力学体系特性的最重要因素之一,而筛板塔节省了投资费用,改善了生产条件,因而还提高了产品(乙醇)的产量和质量。因此,对筛板精馏塔塔板的研究改进,掌握先进的精馏技术对化工企业经济效益提高和促进社会积极发展有着重要的意义。 关键词:精馏塔,设备,进展,发展趋势 引言 精馏塔设备是煤化工、炼油、石油化工等生产中最重要的设备之一,化工企业生产中所处理的原料,中间产物,粗产品几乎都是由若干组分组成的混合物,而且其中大部分都是均相物质。生产中为了满意储存,运输,加工和使用的需求,时常需要将这些混合物分离为较纯净或几乎纯态的物质。在化工生产中精馏是分离液体混合物最常用的一种单元操作,精馏塔设备的性能对于整个装置的产品产量、质量、生产能力和消耗定额,以及三废处理和环境保护等各个方面,都有非常重大的影响,

对精馏塔设备的设计和研究,已经受到化工行业的极大重视。实现原料混合物中各组成分离该过程是同时进行传质传热的过程。因此精馏塔操作弹性的好坏直接关系到化工企业的经济效益[1,2,3,4]。 1精馏塔概述 1.1 精馏的原理与意义[5] 精馏是分离液体混合物最常用的一种单元操作,在化工,炼油,石油化工等工业得到广泛应用。精馏塔是根据混合物中各组份挥发度的不同,在每层塔板上进行多级部分气化和部分冷凝,从而达到使混合物各组份分离的设备。与其它化工单元操作相比,精馏装置虽然比较简单,但生产运行中经常出现各种各样的问题而影响精馏装置的操作,从而导致塔顶或塔底产品不合格,严重制约生产装置的运行造成产品损失。因此精馏塔操作弹性的好坏直接关系到化工企业的经济效益。 1.2板式精馏塔的类型及特点[6] 精馏塔是化工生产中最重要的设备之一,精馏塔操作弹性的好坏直接关系到石油化工企业的经济效益,影响着企业未来的发展。所以说对精馏塔的研究越详细越好。精馏操作既可采用板式塔,也可采用填料塔,板式塔为逐级接触型气-液传质设备,其种类繁多,根据塔板上气-液接触元件的不同,可分为泡罩塔、浮阀塔、筛板塔、穿流多孔板塔、舌形塔、浮动舌形塔和浮动喷射塔等多种。板式塔在工业上最早使用的是泡罩塔(1813年)、筛板塔(1832年),其后,特别是在本世纪五十年代以后,随着石油、化学工业生产的迅速发展,相继出

板式精馏塔设计书.doc

板式精馏塔设计任务书4-3 一、设计题目: 苯―甲苯精馏分离板式塔设计 二、设计任务及操作条件 1、设计任务:生产能力(进料量) 6万吨/年 操作周期 7200 小时/年 进料组成 48.0%(质量分率,下同) 塔顶产品组成 98.0% 塔底产品组成 3.0% 2、操作条件 操作压力常压 进料热状态泡点进料 冷却水 20℃ 加热蒸汽 0.19MPa 3、设备型式筛板塔 4、厂址安徽省合肥市 三、设计内容: 1、概述 2、设计方案的选择及流程说明 3、塔板数的计算(板式塔) ( 1 ) 物料衡算; ( 2 ) 平衡数据和物料数据的计算或查阅; ( 3 ) 回流比的选择; ( 4 ) 理论板数和实际板数的计算; 4、主要设备工艺尺寸设计 ( 1 ) 塔内气液负荷的计算; ( 2 ) 塔径的计算; ( 3 ) 塔板结构图设计和计算; ( 4 )流体力学校核; ( 5 )塔板负荷性能计算; ( 6 )塔接管尺寸计算; ( 7 )总塔高、总压降及接管尺寸的确定。 5、辅助设备选型与计算 6、设计结果汇总 7、工艺流程图及精馏塔装配图 8、设计评述

目录 1、概述 (3) 1.1 精馏单元操作的简介 (3) 1.2 精馏塔简介 (3) 1.3 苯-甲苯混合物简介 (3) 1.4设计依据 (3) 1.5 技术来源 (3) 1.6 设计任务和要求 (4) 2、设计计算 (4) 2.1确定设计方案的原则 (4) 2.2操作条件的确定 (4) 2.2.1操作压力 (4) 2.2.2进料状态 (5) 2.2.3加热方式的选择 (5) 2.3设计方案的选定及基础数据的搜集 (5) 2.4板式精馏塔的简图 (6) 2.5常用数据表: (6) 3、计算过程 (8) 3.1 相关工艺的计算 (9) 3.1.1 原料液及塔顶、塔底产品的摩尔分率 (9) 3.1.2原料液及塔顶、塔底产品的平均摩尔质量 (9) 3.1.3 物料衡算 (9) 3.1.4 最小回流比及操作回流比的确定 (9) 3.1.5精馏塔的气、液相负荷和操作线方程 (10) 3.1.6逐板法求理论塔板数 (10) 3.1.7精馏塔效率的估算 (12) 3.1.8实际板数的求取 (12) 3.2精馏塔的工艺条件及有关物性数据的计算 (12) 3.2.1操作压力计算 (12) 3.2.2操作温度计算 (13) 3.2.3平均摩尔质量计算 (13) 3.2.4平均密度计算 (14) 3.2.5液体平均表面张力计算 (15) 3.2.6液体平均粘度计算 (16) 3.3 精馏塔的主要工艺尺寸的计算 (17) 3.3.1 塔内气液负荷的计算 (17) 3.3.2 塔径的计算 (17) 3.3.3 精馏塔有效高度的计算 (19) 3.4 塔板结构尺寸的计算 (19) 3.4.1 溢流装置计算- (19) 3.4.2塔板布置 (21) 3.5筛板的流体力学验算 (23) 3.5.1 塔板压降相当的液柱高度计算 (23) 3.5.2液面落差 (24)

精馏塔设计指导书

简单填料精馏塔设计 设计条件与任务: 已知F 、xF 、xD 、xw 或F 、xF 、xD 和η,塔顶设全凝器,泡点回流,塔底间接(直接)蒸汽加热。 1 全塔物料衡算求产品流量与组成 (1)常规塔 全塔总物料衡算 总物料 F = D + W 易挥发组分 F χF = D χD + W χW 若以塔顶易挥发组分为主要产品,则回收率η为 D F Dx Fx η= 式中 F 、D 、W ——分别为原料液、馏出液和釜残液流量,kmol/h ; χF 、χD 、χW ——分别为原料液、馏出液和釜残液中易挥发组分的摩尔分率。 由(3-1)和(3-2)式得: W D W F x x x x F D --= (2) 直接蒸汽加热 总物料 * 0F S D W +=+ 易挥发组分 ** 00F D W Fx S y Dx W x +=+ 式中 V 0 ——直接加热蒸汽的流量,kmol/h ; У0 ——加热蒸汽中易挥发组分的摩尔分率,一般У0=0; W * ——直接蒸汽加热时釜液流量,kmol/h ; χ*W ——直接蒸汽加热时釜液中易挥发组分的摩尔分率。 2 计算最小回流比 设夹紧点在精馏段,其坐标为(xe,ye)则 min D e e e x y R y x -= - 设夹紧点在提馏段,其坐标为(xe,ye) min min (1)(1)e W e W y x R D qF L V R D q F x x -+==+--- 基础数据:气液相平衡数据

3 确定操作回流比 min (1.1~2.0)R R = 4 计算精馏段、提馏段理论板数 ① 理想溶液 图解法或求出相对挥发度用逐板计算法求取。 ② 非理想溶液 相平衡数据为离散数据,用图解法或数值积分法求取 精馏段 1 1 R D f N x R x n n dx N dN x x += =-? ? 因 111 D n n x R y x R R += +++ 所以 ()/D f x R x n n D n dx N y x x y R = ---? (4) 提馏段 1 1 S f W N x S x n n dx N dN x x += =-? ? 因 11 W n n x R y x R R +'+= -'' 蒸汽回流比(1)(1)(1)(1)V R D q F D F R R q W W W W +--'= ==+-- 所以 ()/(1) f w x S x n n n w dx N y x y x R = '---+? (5) 式(4)、(5)中塔板由下往上计数。 5 冷凝器和再沸器热负荷 冷凝器的热负荷 ()C DV DL Q V I I =- 再沸器的热负荷 B C D W F Q Q DI WI FI =++- 待求量:进料温度t F 、塔顶上升蒸汽温度t DV (与x D 对应的露点温度)、回流温度t DL (与x D 对应的泡点温度)、再沸器温度tw (与x W 对应的泡点温度)。 物性数据: ① 各组分在平均温度下的液相热容、气相热容或汽化热。 ② 各组分的热容方程常数 如 2 3 p c A BT CT DT =+++ ③ 由沃森公式计算汽化热 21 0.38211( )1r V V r T H H T -?=?-

精馏塔设备简介

精馏塔的简要概述 精馏塔是用液体混合物中各组分挥发度的不同来分离其各液体组分的操作称为蒸馏,反复多次的蒸馏过程称为精馏,实现精馏操作的塔设备称为精馏塔,如常减压装置中的常压塔、减压塔等,可将原油分离为汽油、煤油、柴油及润滑油等;铂重整装置中的各种精馏塔,可以分离出苯、甲苯、二甲苯等。 化工生产对精馏塔设备的基本要求: 1、生产能力大,在较大的气、液负荷或波动时,仍能维持较高的传质速率。 2、流体阻力小,运转费用低。 3、能提供足够大的相间接触面积,使气、液两相在充分接触的情况下进行传质,达 到高分离效率。 4、结构合理,安全可靠,金属消耗量少,制造费用低。 5、不易堵塞,容易操作,便于安装、调节、检修。 精馏塔设备的工作过程: 1、溶液的沸腾。不同性质的液体在同一压力条件下沸点是不同的,所以两种以上相互溶解 的液体组成的溶液,在同一压力下各组分的沸点自然也是不相同的。沸点低的组分挥发度高,因此同一压力温度下,其在溶液中所形成的分子比例大于它在溶液中的分子比例,而沸点高的组分由于挥发度底,故在溶液蒸汽中的比例小于其在溶液中的比例,利用溶液的这一特性,通过在一定压力下加热的方式,可将溶液中各组分相互分离。 2、溶液的相平衡,在气液系统中,单位时间内液相汽化的分子数与气相冷凝的分子数相当 时,气、液两相达到一种动态平衡,这种状态称为气液的相平衡状态。这时候其系统内各状态参数,如温度、压力及组成等都是一定的,不随时间的改变而改变。 3、传质。在炼油、化工生产中,将物质借助于分子扩散的作用从一相转为另一相的过程称 为传质过程。液体混合物的蒸馏分离,利用液体溶剂的选择作用吸收气体混合物的某一组分,利用萃取等方法分离液体混合物的过程等,都属于传质过程。 4、蒸馏。通过加热、汽化、冷凝、冷却等过程使得液体混合物中不同沸点的组分相互分离 的方法称为蒸馏,若液体混合物中各组分沸点相差较大,加热时低沸点的组分优于高沸点的组分而大量汽化,则易于分离。精馏就是多次汽化与冷凝的一种复杂的蒸馏过程,也可以看成是蒸馏的串联使用。 5、原油的馏程。原油是烃类和非烃类组成的复杂的混合物,每一种成分都有其自身的特性, 但许多成分有沸点、密度等物理特性都很相近,若要将其逐一分离出来是很困难的,也是没有必要的。在实际生产中是将原油分为几个不同的沸点范围,加以利用,,如原油中沸点在40-205度之间的组分称为汽油;180-300度之间的组分称为煤油;250-350度之间的组分称为柴油,350-520度之间的组分称为润滑油,520度以上的组分为重质燃料油。这些温度范围称为馏程。 在化工生产中,无论是精馏还是吸收、解析或萃取,其目的都是为了使得混合液中不同馏程的组分得以分离。 精馏塔中板式塔的塔盘形式及特点: 目前板式塔的形式已有一百多种,在化工生产中最广泛应用的是泡罩塔、浮阀塔及筛板塔。 泡罩塔盘 泡罩塔盘是工业上应用最早的一种塔盘,它在塔盘板上开许多圆孔,每个孔上焊接一个短管,称为升气管,管上再罩一个帽子,称为泡罩,泡罩周围开有许多条形孔。工作时,液体从上层塔盘经过降液管流入本层塔盘,然后横向流过塔盘板,流入下一层塔盘。气体从下层塔盘上升进入升气管,通过环形通道再经过泡罩的条形孔流散的泡罩间的液层中。

精馏塔装配图

1、本设备按GB150-1998《钢制压力容器》和HG20652-95《钢制化工容器制造技术要求》进行 制造、试验和验收,并接受劳动部颁发《压力容器安全技术监察规程》的监督;2、焊条采用电弧焊,焊条牌号E4301; 3、焊接接头型式及尺寸,除图中标明外,按HG20583-1998规定,角焊缝的焊接尺寸按较薄板 厚度,法兰焊接按相应法兰中的规定; 4、容器上A、B类焊缝采用探伤检查,探伤长度20%; 5、设备制造完毕后,卧立以0.2MPa进行水压试验; 6、塔体直线允许度误差是H/1000,每米不得超过3mm,塔体安装垂直度允差是最大30mm; 7、裙座螺栓孔中心圆直径允差以及相邻两孔或任意两弦长允差为2mm; 8、塔盘制造安装按JB1205《塔盘技术条件》进行; 9、管口及支座方位见接管方位图。 1 23 45 k 86 79 j1 10 1112 i n 1 13 14 2 3 4 5 30 11l Ⅰ 41 40 39 审核审定批准 1:5 Ⅲ 设计制图校核职务件号 12345 6 9 7810 34 Ⅱ j3 Ⅲ 35 38 3736g h Ⅳ 33 3231 27 Ⅴ 1:5 19151312 141716 1823212022 252426ⅤI 1:5 292830 3133 323534363738 39 40 41Ⅵ 18 15 16Ⅴ f 33 m5 31 32 34 35 17 50 51m7 19 20b c a 30 29e 28 2726 a f k 1:2 Ⅵ 1:2 A、B类焊缝 j1 管口方位示意图 m1-7j4 d 25 24 2322 21b c e l g d n i j2h j3 HG20594-971 1.03设计项目设计阶段 重量(Kg) 总重322.7 94.2374.19140.62.97 5.382.364.67 0.41 精馏塔 1∶20 比例 图幅 A1 版次 引出孔 φ159×4.5法兰 PN1.0,DN40接管 DN20,L=250日期 姓名 图号或标准号 名称 基础环 筋板JB4710-92 GB/T3092-93HG20594-97JB4710-92GB/T3092-93静电接地板盖板垫板引出管 DN40排气管 φ80材料Q235-A Q235-A 数量 148单件6.72Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A 2424114111 3.931.551.17毕业设计施工图 备注 21.9376181210.692.02380370.70.411.0382.3248.10.411.031.874.150.962.36118.3 310.10.411.03370.738021.032.612.2442.54总质量:27685 Kg 2901 1Q235-A GB/T3092-93回流管 DN45法兰 PN1.0,DN20筒体 φ1600×16法兰 PN1.0,DN32上封头DN1600×16接管 DN20,L=250法兰 PN1.0,DN20法兰 PN1.0,DN600接管 DN20,L=250法兰 PN1.0,DN20GB/T3092-93GB/T3092-93JB4710-92 HG20594-97HG5-1373-80JB/T4737-95进料管 DN32塔釜隔板液封盘 吊柱 GB/T3092-93HG20594-97HG20594-97HG8162-87HG20594-97GB/T3092-93GB704-88出气管 DN600扁钢 8×16气体出口挡板1Q235-A Q235-A Q235-A·F 16MnR Q235-A Q235-A·F Q235-A 组合件16MnR 1111111Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A·F 1111311450.6 法兰 PN1.0,DN45接管 DN20,L=250法兰 PN1.0,DN20下封头DN1600×16法兰 PN1.0,DN20地脚螺栓M42×4.5HG20594-97JB/T4736-95HG21515-95HJ97403224-3HG20594-97GB/T3092-93HJ97403224-7JB/T4734-95补强圈 DN450×8人孔 DN450塔盘裙座筒体 HG20594-97GB/T3092-93JB4710-92JB4710-92HG20652-1998JB/ZQ4363-86引出管 DN20引出孔 φ133×4检查孔 排净孔Q235-A Q235-A Q235-A 组合件Q235-A Q235-A 16MnR Q235-A 71751111116.944.357 Q235-A Q235-A Q235-A Q235-A Q235-A 1111224δ=8 技术特性表 连接尺寸标准 HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG21515-95h 20l 20m1-7 n 40 450j1-4k i 204020公称尺寸 d 20f g e 322045符号b c 20600凹液面计口凹凹凹凹凹凹 出料口人孔再沸器返回口 温度计口排气管口至再沸器口紧密面 型式凹凹凹凹凹凹压力计口回流口进料口液面计口用途或名称温度计口气相出口管口表 7许用应力 MPa 焊缝接头系数腐蚀裕量 mm 全容积 m 容器类别 11 109 83设计压力 MPa 设计温度 ℃工作压力 MPa 工作温度 ℃工作介质主要受压元件65 43 序号 21项 目0.5857.93271170指 标0.11500.027筒体、封头、法兰102 技术要求

精馏塔设备设计及选型

第四章设备设计及选型 4.1 设备设计标准 《钢制压力容器》GB150-98 《压力容器用钢板》GB6654-96 《化工装置用不锈钢大口径焊接钢管技术要求》HG20537.4-92 《安全阀的设置和选用》HG/T20570.2-95 《设备进、出管口压力损失计算》HG/T20570.9-95 《钢制化工容器设计基础规定》HG20580-98 《钢制化工容器材料选用规定》HG20581-98 《钢制化工容器强度计算规定》HG20582-98 《钢制化工容器结构设计规定》HG20583-98 《钢制化工容器制造技术规定》HG20584-98 《化工设备设计基础规定》HG/T20643-98 《压力容器无损检测》JB4730-2005 《钢制压力容器焊接工艺评定》JB4708-2000 《钢制压力容器焊接规程》JB/T4709-2000 《钢制压力容器产品焊接试板的力学性能检验》JB4744-2007 《压力容器用钢锻件》JB4726-2000 《石油化工塔型设备设计规范》SH 3030-1997 4.2 设备设计及选型 塔设备是化工、石油化工和炼油等生产中最重要的设备之一,塔可以使气液相或者液液相之间进行紧密接触,达到较为良好的相际传质及传热的目的。 在塔设备中常见的单元操作有:吸收、精馏、解吸和萃取等。此外工业气体的冷却与回收、气体的湿法净制和干燥,以及兼有气液两相传质和传热的增湿和减湿等效果。

4.2.1 塔设备设计原则 具有适宜的流体力学条件,可使气液两相良好接触; 结构简单,处理能力大,压降低; 强化质量传递和能量传递。 4.2.2 塔设备的设计目标 作为主要用于传质过程的塔设备,首先必须使气液两相能充分接触,以获得较高的传质效率。此外,为满足工业生产的需要,塔设备还得考虑下列各项要求:(1)生产能力大。在较大的气(汽)液流速下,仍不致发生大量的雾沫夹带、拦液、或液泛等破坏正常操作的现象; (2)操作稳定、弹性大。当塔设备的气(汽)液负荷量有较大波动时,仍能在较高的传质效率下进行稳定的操作,并且塔设备应保证能长期稳定操作; (3)流体流动的阻力小,即流体通过塔设备的压降小。这将大大节省生产中的动力消耗,以降低正常操作费用。对于减压蒸馏操作,较大的压力降还将使系统无法维持必要的真空度; (4)结构简单、材料耗用量小,制造和安装容易。这可以减少基建过程中的投资费用; (5)耐腐蚀和不易堵塞,方便操作、调节和检修。 事实上,对于现有的任何一种塔器,都不可能完全满足上述所有要求,但是我们可以在某些方面做到独特之处。以此来达到较大的生产效率,提高企业的生产效益。 4.2.3 塔设备类型及选择 为了便于研究和比较,人们从不同角度对塔设备进行了分类。例如:按操作压力的不同可分为加压塔、常压塔、减压塔;按单元操作可分为精馏塔、吸收塔、解吸塔、萃取塔、反应塔和干燥塔;但最常用的分类是按塔的内件结构进行划分,分为板式塔和填料塔。 塔型的合理选择是做好塔设备设计的首要环节,选择时应考虑的因素有:物料性质、操作条件、塔设备性能,以及塔设备的制造、安装、运转、维修等。

板式精馏塔实验报告

板式精馏塔实验报告 学院:广州大学生命科学学院 班级:生物工程121班 分组:第一组 姓名: 其他组员: 学号:

指导老师:尚小琴吴俊荣 实验时间2014.11.15 摘要:此次实验是对筛板精馏塔的性能进行全面的测试,实验主要对乙醇正丙醇精馏过 程中的研究不同条件下改变参量时的实验结果,根据实验数据计算得出塔釜浓度、回流比、进料位置等与全塔效率的关系,确定该筛板精塔的最优实验操作条件。 关键词:精馏;回流比;全塔效率;塔釜浓度 Abstract:The sieve plate distillation column performance comprehensive testing, mainly on ethanol isopropyl alcohol distillation process in the different experimental conditions were discussed, the reactor concentration, reflux ratio, feed location and the entire towerThe relationship between the efficiency of sieve plate tower, determine the optimal experimental conditions of fine. Key words: Distillation;reflux ratio;the tower efficiency 引言:精馏是利用混合液中两种液体的沸点差异来分离两种液体的过程。精馏装置有精馏塔、原料预热器、再沸器、冷凝器、釜液冷却器和产品冷却器等设备。热量自塔釜输入,物料在塔内经多次部分气化与部分冷凝进行精馏分离,由冷凝器和冷却器中的冷却介质将余热带走。精馏过程的节能措施一直是人们普遍关注的问题。精馏操作是化工生产中应用非常广泛的一种单元操作,也是化工原理课程的重要章节[2]。分析运行中的精馏塔,当某一操作条件改变时的分离效果变化,属于精馏的操作型问题[4]。本研究从塔釜浓度、回流比、进料位置、全回流和部分回流等操作因素对数字型筛板精馏塔进行全面考察[1],得出一系列可靠直观的结果,加深对精馏操作中一些工程概念的理解,对工业生产有一定的指导意义通过本实验我们得出了大量的实验数据,由计算机绘图找出最优一组实验参数,在这组参数下进行提纯将会节约大量能源,同时为今后开出的设计型、综合型、研究型的实验项目,为学生的创新性科研项目具有重要的教改意义[3]。 1.实验部分

浮阀板式精馏塔设计方案

浮阀板式精馏塔设计方案 第1章设计条件与任务 1.1设计条件 在常压操作的连续板式精馏塔分离乙醇-水混合物。塔釜直接蒸汽加热,生产能力和产品的质量要求如下: 生产能力:年处理乙醇-水混合液35 000吨(300天/年) 原料:乙醇含40%(质量分数,下同)的常温液体 分离要求:塔顶乙醇含量为93% 塔底乙醇含量为0.35% 操作条件:①塔顶压力:4kPa(表压);②进料热状态:自选;③回流比:自选;④单板压降≤0.7kPa。 建厂地址: 1.2设计任务 1 全塔物料衡算、操作回流比和理论塔板数的确定。 2 计算冷凝器和再沸器热负荷。 3 计算精馏段、提馏段的塔板效率,确定实际塔板数。 4 估算塔径。 5 板式塔的工艺尺寸计算,包括溢流装置与塔板的设计计算。 6 塔板的流体力学性能校核,包括板压力降、液面落差、液沫夹带、漏液及液泛的校核。 7 绘制塔板的负荷性能图。塔板的负荷性能图由液相负荷下限线、液相负荷上限线、漏液线、液沫夹带线和溢流液泛线确定。 8 塔的结构确定,包括塔体结构与塔板结构。 塔体结构:塔顶空间,塔底空间,人孔(手孔),支座,封头,塔高等。 塔板结构:采用分块式塔板还是整块式塔板。 9 塔的附属设备选型,包括塔顶冷凝器、塔底(蒸馏釜的换热面积,原料预热器的换热面积与泵的选型(视情况而定)。 10 精馏塔各接管尺寸的确定。 11 绘制精馏塔系统工艺流程图。 12 绘制精馏塔装配图。 13 编写设计说明书。 14计算机要求:编写程序、CAD绘图等。 15 英语要求:撰写英文摘要。 16 设计说明书要求:逻辑清楚,层次分明,书写工整,独立完成。

第2章设计方案的确定图2.1 板式精馏塔的工艺流程简图

精馏塔计算方法

目录 1 设计任务书 (1) 1.1 设计题目……………………………………………………………………………………………………………………………………………………………………… 1.2 已知条件……………………………………………………………………………………………………………………………………………………………………… 1.3设计要求………………………………………………………………………………………………………………………………………………………………………… 2 精馏设计方案选定 (1) 2.1 精馏方式选择………………………………………………………………………………………………………………………………………………………………… 2.2 操作压力的选择………………………………………………………………………………………………………………………………………………………………… 2.4 加料方式和加热状态的选择…………………………………………………………………………………………………………………………………………………… 2.3 塔板形式的选择………………………………………………………………………………………………………………………………………………………………… 2.5 再沸器、冷凝器等附属设备的安排…………………………………………………………………………………………………………………………………………… 2.6 精馏流程示意图………………………………………………………………………………………………………………………………………………………………… 3 精馏塔工艺计算 (2) 3.1 物料衡算………………………………………………………………………………………………………………………………………………………………………… 3.2 精馏工艺条件计算……………………………………………………………………………………………………………………………………………………………… 3.3热量衡算………………………………………………………………………………………………………………………………………………………………………… 4 塔板工艺尺寸设计 (4) 4.1 设计板参数………………………………………………………………………………………………………………………………………………………………………

相关文档
最新文档