食工原理课程设计汇本甲苯-乙苯连续精馏塔设计

食工原理课程设计汇本甲苯-乙苯连续精馏塔设计
食工原理课程设计汇本甲苯-乙苯连续精馏塔设计

合肥学院

HEFEI UNIVERSITY

食工原理课程设计

题目:甲苯-乙苯连续精馏塔设计

系别: 生物与环境工程系

专业: 12食品科学与工程

学号: 1202061011

姓名: 方平

指导教师: 于宙

二零一四年十月二十七日

目录

第一部分设计任务书

1、设计题目 (5)

2、设计概述 (5)

3、设计容 (6)

第二部分精馏塔的设计

1 精馏塔的物料衡算 (7)

1.1原料液及塔顶、塔底产品的摩尔分率 (8)

1.2原料液及塔顶、塔底产品的平均摩尔质量 (8)

1.3物料衡算 (8)

2 塔板数的确定 (9)

2.1甲苯、乙苯的温度-组成 (10)

2.2确定操作的回流比R (11)

2.3求操作线方程 (12)

2.4图解法求理论塔板层数 (13)

3 塔的操作工艺条件及相关物性数据的计算 (14)

3.1操作压力计算 (14)

3.2操作温度计算 (14)

3.3平均摩尔质量计算 (15)

3.4平均密度计算 (15)

3.5液体平均表面力计算 (18)

3.6液体平均粘度计算 (20)

4 精馏塔的气、液相负荷计算 (22)

4.1精馏段气、液相负荷计算 (22)

4.2提馏段气、液相负荷计算 (22)

5 精馏塔的塔体工艺尺寸计算 (23)

5.1塔径的计算 (23)

5.2精馏塔有效高度的计算 (25)

6 塔板主要工艺尺寸的计算 (25)

6.1溢流装置计算 (25)

6.2塔板布置 (27)

7 筛板的流体力学验算 (30)

7.1塔板压降 (30)

7.2液面落差 (32)

7.3液沫夹带 (32)

7.4漏液 (33)

7.5液泛 (33)

8 塔板负荷性能图 (34)

8.1精馏段塔板负荷性能图 (35)

8.2提馏段塔板负荷性能图 (37)

9 精馏塔的设计计算结果汇总一览表 (41)

10 精馏塔接管尺寸计算 (42)

10.1塔顶进气管 (42)

10.2塔顶回流液管 (43)

10.3进料管 (43)

10.4塔釜出料管 (43)

10.5塔釜进气管 (43)

11 主要辅助设备的选型 (44)

11.1冷凝器的设计 (44)

11.1.1确定设计方案 (44)

11.1.2确定物性数据 (44)

11.1.3计算热负荷 (45)

(1)壳程液流量 (45)

(2)壳程流体的汽化潜热 (45)

(3)热负荷 (46)

11.1.4逆流平均温差 (46)

11.1.5冷却水用量 ........................................................................46 11.1.6估算传热面积 .....................................................................47 11.1.7换热器的工艺结构尺寸............................................................47 11.1.8换热器核算...........................................................................48 11.1.9换热器主要结构尺寸和计算结果................................................51 11.2再沸器的设计...........................................................................52 11.2.1有关物性的确定.....................................................................52 11.2.2估算传热面积、初选换热器型号................................................53 11.2.3传热能力核算 .....................................................................55 11.2.4循环流量的校核 (61)

(1)计算循环推动力D P ? (61)

(2)循环阻力f P ? (61)

(3)循环推动力D P ?与循环阻力f P ?的比值 ..........................................63 11.2.5再热器主要结构尺寸和计算结果 (63)

第三部分 其它

1 对设计过程的评述、有关问题的讨论和设计自我评价 ........................64 2 参考文献 .................................................................................65 3 致 .......................................................................................66 4 绘制工艺流程图、设备图 (66)

第一部分设计任务书

一、设计题目:甲苯-乙苯连续精馏塔的设计

二、设计概述

在化工、炼油、医药、食品及环境保护等工业部门,塔设备是一种重要的单元操作设备。其作用实现气—液相或液—液相之间的充分接触,从而达到相际间进行传质及传热的过程。它广泛用于蒸馏、吸收、萃取、等单元操作,在本世纪五十年代以后,随着石油、化学工业生产的迅速发展,相继出现了大批新型塔板,如S型板、浮阀塔板、多降液管筛板、舌形塔板、穿流式波纹塔板、浮动喷射塔板及角钢塔板等。筛板塔是传质过程常用的塔设备,是1932年提出的,当时主要用于酿造。它的主要优点有:

(1) 结构比浮阀塔更简单,易于加工,造价约为泡罩塔的60%,为浮阀塔的80%左右。

(2) 处理能力大,比同塔径的泡罩塔可增加10~15%。

(3) 塔板效率高,比泡罩塔高15%左右。

(4) 压降较低,每板压力比泡罩塔约低30%左右。

筛板塔的缺点是:

(1) 塔板安装的水平度要求较高,否则气液接触不匀。

(2) 操作弹性较小(约2~3)。

(3) 小孔筛板容易堵塞。

食品工程原理课程设计说明书11111

食品工程原理课程设计说明书 设计题目:板式加热器设计 设计者:班级 2012级食工(二)班 姓名学号20124061214 指导教师 设计成绩:日期 黑龙江八一农垦大学食品学院

一、设计题目 板式加热器设计 二、设计任务、操作条件及建厂地址 1、处理能力:见表1 2、设备型式:人字形板式换热器 3、操作条件: (1)牛乳:入口温度、出口温度,见表1; (2)加热介质:热水,入口温度、热水的流量见表1;(3)允许压降:不大于105Pa; (4)每年按300天计,每天24小时连续运行。 4、建厂地址:自选。 (牛乳在定性温度下的物性数据为ρc=1030kg/m3,μc=0.00305Pa?s,c ph=3893.9J/kg,λc=0.548W/(m?K)。)表1牛乳处理量、入口、出口温度及热水入口、出口 温度等 试选择一台板式换热器,用89℃的热水将牛乳由4℃加热至

71℃。已知牛乳年流量为5万吨,热水流量为8.5 m 3/h ,牛乳侧与水侧的允许压强不大于105Pa 。牛乳在定性温度下的物性数据为 ρh =1030kg/m 3 ,μc =0.00305Pa ?s,c ph =3893.9J/kg ,λc =0.548W/(m ? K )。 1.计算热负荷 Q=W h c ph (-1T 2T )=1.93×3893.9×(71-4)=5.03×10 5 (W) 2.计算平均温差 根据热量衡算计算水的出口温度: t 2=t 1+ pc c c W Q =89- 3 1018.436.2503000??=38.01(℃) 逆流平均温差: = '?m t 17 89401.38ln 17-89-4-01.38--) ()(=50.65(℃) 水的定性温度: t m = 2 01 .3889+=63.505(℃) 查出定性温度下的物性数据: ρc =978 3 m kg μc =4.1×104-Pa·s pc c =4.17)(k ℃?kg j c λ=0.665)m (℃?W 3.初估算热面积及初选版型 粘度大于1×10Pa·s 的牛乳与水换热时,列管式换热器的K 值大约为115~470℃)(?2m W ,而板式换热器的传热系数为

苯-甲苯精馏塔课程设计报告书

课程设计任务书 一、课题名称 苯——甲苯混合体系分离过程设计 二、课题条件(原始数据) 1、设计方案的选定 原料:苯、甲苯 年处理量:108000t 原料组成(甲苯的质量分率):0.5 塔顶产品组成:%99>D x 塔底产品组成:%2

设计容 摘要:精馏是分离液体混合物最常用的一种单元操作,在化工﹑炼油﹑石油化工等工业中得到广泛的应用。本设计的题目是苯—甲苯二元物系板式精馏塔的设计。在确定的工艺要求下,确定设计方案,设计容包括精馏塔工艺设计计算,塔辅助设备设计计算,精馏工艺过程流程图,精馏塔设备结构图,设计说明书。关键词:板式塔;苯--甲苯;工艺计算;结构图 一、简介 塔设备是炼油、化工、石油化工等生产中广泛应用的气液传质设备。根据塔气液接触部件的结构型式,可分为板式塔和填料塔。板式塔设置一定数目的塔板,气体以鼓泡或喷射形式穿过板上液层进行质热传递,气液相组成呈阶梯变化,属逐级接触逆流操作过程。填料塔装有一定高度的填料层,液体自塔顶沿填料表面下流,气体逆流向上(也有并流向下者)与液相接触进行质热传递,气液相组成沿塔高连续变化,属微分接触操作过程。 工业上对塔设备的主要要:(1)生产能力大;(2)传热、传质效率高;(3)气流的摩擦阻力小;(4)操作稳定,适应性强,操作弹性大;(5)结构简单,材料耗用量少;(6)制造安装容易,操作维修方便。此外,还要求不易堵塞、耐腐蚀等。 板式塔大致可分为两类:(1)有降液管的塔板,如泡罩、浮阀、筛板、导向筛板、新型垂直筛板、蛇形、S型、多降液管塔板;(2)无降液管的塔板,如穿流式筛板(栅板)、穿流式波纹板等。工业应用较多的是有降液管的塔板,如浮阀、筛板、泡罩塔板等。 苯的沸点为80.1℃,熔点为5.5℃,在常温下是一种无色、味甜、有芳香气味的透明液体,易挥发。苯比水密度低,密度为0.88g/ml,但其分子质量比水重。苯难溶于水,1升水中最多溶解1.7g苯;但苯是一种良好的有机溶剂,溶解有机分子和一些非极性的无机分子的能力很强。 甲苯是最简单,最重要的芳烃化合物之一。在空气中,甲苯只能不完全燃烧,火焰呈黄色。甲苯的熔点为-95 ℃,沸点为111 ℃。甲苯带有一种特殊的芳香味(与苯的气味类似),在常温常压下是一种无色透明,清澈如水的液体,密度为0.866克/厘米3,对光有很强的折射作用(折射率:1,4961)。甲苯

食工原理

第二章 1.根据使用的过滤设备、过滤介质及所处理的物系的性质和产品收集的要求,过滤操作分为间歇式与连续式两种主要方式。 2.当流体自上而下通过固体颗粒床层时,随着颗粒特性和气体速度的不同,存在着三种状态:固定床、流化床和气体输送。 3.食品乳化液通常有两种类型,即水包油与油包水型。 4.热传递的基本传递方式可以归纳为三种:热传导、热对流和热辐射。 5.以间壁式的热交换器为例,参与热交换的冷热流体被一固体壁隔开。这时,热冷流体之间的热量传递过程是: ①热流体与所接触的固体壁面之间进行对流传热; ②在固体壁内,高温的固体表面向低温的固体表面的热传导; ③固体壁面与其接触的冷流体之间的对流传热。 6.纯金属的热导率λ与电导率λe的关系:λ/λeT=L。热导率的单位为W/(m·K) 7.影响对流传热洗漱的因素很多,主要有: ①流体的状态:液体或气体,以及过程是否有相变,有相变时的对流传热系数比无相变时的对流传热系数大很多; ②流体的物理性质:影响较大的物性有密度、比热容、热导率和黏度等; ③流体的运动状态:层流、过渡流或湍流; ④流体的对流状态:自然对流或强制对流; ⑤传热表面的形状、位置及大小:如管、板、管束、管径、管子长度和排列、放置方式等。 8.冷凝的两种形式是:膜状冷凝和滴状冷凝。 9.影响冷凝传热的其他因素: ⑴蒸汽的流速和流动方向。 ⑵不凝性气体 ⑶过热蒸汽 ⑷冷凝面的高度、布置方式及结构。如在垂直壁面上开若干纵向沟槽,使冷凝水沿沟槽流下,以达到减薄冷凝液膜,提高对流传热系数的目的。 10.流化床中传热的特点: ①固体粒子的热容远较气体为大,因此,热惯性大; ②粒子剧烈运动,粒子与气体之间的热交换强度高; ③剧烈的沸腾运动所产生的对流混合,消灭了局部热点和冷点。 11.黑体:指能全部吸收辐射能的物体。 镜体:指能全部反射辐射能的物体。 透热体:指辐射能全部透过物体。 1.在列管式的换热器中用冷水将其工艺气体从180℃冷却到60℃,气体走壳程,对流传热系数为40W/(m2·K)。冷水走管程,对流传系数为3000W/( m2·K)。换热管束由φ25mm× 2.5mm的钢管组成,钢材的热导率为45W/(m·K)。若视为平面壁传热处理,气体侧的污垢热阻为0.00058 m2·K/W。问换热器的总传热系数是多少? 解:气体对流传的热阻R1=1/α1=1/40=0.025 m2·K/W 冷却水对流传的热阻R2=1/α2=1/3000=0.00033 m2·K/W 管壁导热热阻R=b/λ=0.0025/45=0.000056 m2·K/W 总传热系数为:

年处理量18万吨苯—甲苯混合液的连续精馏塔的设计

BeiJing JiaoTong University HaiBin College 化工原理课程设计 说明书 题目:年处理量18万吨苯—甲苯混合液的连续 精馏塔的设计 院(系、部):化学工程系 姓名: 班级: 学号: 指导教师签名: 2015 年4 月12 日

摘要 目前用于气液分离的传质设备主要采用板式塔,对于二元混合物的分离,应采用连续精馏过程。浮阀塔在操作弹性、塔板效率、压降、生产能力以及设备造价等方面都比较优越。其主要特点是在塔板的开孔上装有可浮动的浮阀,气流从浮阀周边以稳定的速度水平进入塔板上液层进行两相接触,浮阀可根据气体流量的大小上下浮动,自行调节。其中精馏塔的工艺设计计算包括塔高、塔径、塔板各部分尺寸的设计计算,塔板的布置,塔板流体力学性能的校核及绘出塔板的性能负荷图。 关键词:气液传质分离;精馏;浮阀塔

ABSTRACT Currently,the main transferring equipment that used for gas-liquid separation is tray column. For the separation of binary, we should use a continuous process. The advantages of the float value tower lie in the flexibility of operation, efficiency of the operation, pressure drop, producing capacity, and equipment costs. Its main feature is that there is a floating valve on the hole of the plate, then the air can come into the tray plate at a steady rate and make contract with the level of liquid, so that the flow valve can fluctuate and control itself according to the size of the air. The calculations of the distillation designing include the calculation of the tower height, the tower diameter, the size of various parts of the tray and the arrangement of the tray, and the check of the hydrodynamics performance of the tray. And then draw the dray load map. Key words:gas-liquid mass transfer;rectification;valve tower

食品工程原理课程设计

设计任务书 1、设计题目:年处理量为4400吨桃浆蒸发器装置的设计; 试设计一套三效并流加料的蒸发器装置,要求将固形物含量10%的桃浆溶液浓缩到42%,原料液沸点进料。第一效蒸发器的饱和蒸汽温度为103℃,冷凝器的绝对压强为20kPa。 2、操作条件: (1)桃浆固形物含量:入口含量10%,出口含量42%; (2)加热介质:温度为103℃的饱和蒸汽,各效的冷凝液均在饱和温度下排出,假设各效传热面积相等,并忽略热损失; (3)每年按330天计,每天24小时连续生产。 3、设计任务: (1)设计方案简介:对确定的工艺流程及蒸发器型式进行简要论述。 (2)蒸发器的工艺计算:确定蒸发器的传热面积。 (3)蒸发器的工艺计算:确定蒸发器的传热面积。 (4)蒸发器的主要结构尺寸设计。 (3)绘制蒸发装置的流程图,并编写设计说明书。

目录 设计任务书 (1) 第1章绪论 (3) 1.1蒸发技术概况 (3) 1.1.1蒸发 (3) 1.1.2发生条件 (3) 1.1.3蒸发的两个基本过程 (3) 1.1.4影响因素 (3) 1.1.5影响蒸发的主要因素 (4) 1.2蒸发设备 (4) 1.2.1蒸发器 (4) 1.2.2蒸发器分类 (4) 1.2.3蒸发器的特点 (5) 1.3蒸发操作的分类 (7) 1.4蒸发在工业生产中的应用 (8) 第2章设计方案 (9) 2.1蒸发器的选择 (9) 2.2蒸发流程的选择 (9) 2.3操作条件 (10) 第3章蒸发器的工艺计算 (11) 3.1估计各效蒸发量和完成液浓度 (11) 3.2估计各效溶液的沸点和有效总温度 (11) 3.3 加热蒸汽消耗量和各效蒸发器水量的初步计算 (13) 3.4蒸发器传热面积的估算 (14) 3.5有效温差的分配 (15) 3.6校正 (15) 3.7设计结果一览表 (17) 符号说明 (18) 参考文献 (20) 结束语 (21)

苯-甲苯板式精馏塔的课程设计

目录 板式精馏塔设计任务书 (3) 设计题目: (3) 二、设计任务及操作条件 (3) 三、设计内容: (3) 一.概述 (5) 1.1 精馏塔简介 (5) 1.2 苯-甲苯混合物简介 (5) 1.3 设计依据 (5) 1.4 技术来源 (6) 1.5 设计任务和要求 (6) 二.设计方案选择 (6) 2.1 塔形的选择 (6) 2.2 操作条件的选择 (6) 2.2.1 操作压力 (6) 2.2.2 进料状态 (6) 2.2.3 加热方式的选择 (7) 三.计算过程 (7) 3.1 相关工艺的计算 (7) 3.1.1 原料液及塔顶、塔底产品的摩尔分率 (7) 3.1.2 物料衡算 (8) 3.1.3 最小回流比及操作回流比的确定 (8) 3.1.4精馏塔的气、液相负荷和操作线方程 (9) 3.1.5逐板法求理论塔板数 (10) 3.1.6 全塔效率的估算 (11) 3.1.7 实际板数的求取 (13) 3.2 精馏塔的主题尺寸的计算 (13) 3.2.1 精馏塔的物性计算 (13) 3.2.2 塔径的计算 (15) 3.2.3 精馏塔高度的计算 (17) 3.3 塔板结构尺寸的计算 (18) 3.3.1 溢流装置计算 (18) 3.3.2塔板布置 (19) 3.4 筛板的流体力学验算 (21) 3.4.1 塔板压降 (21)

3.4.2液面落差 (22) 3.4.3液沫夹带 (22) 3.4.4漏液 (22) 3.4.5 液泛 (23) 3.5 塔板负荷性能图 (23) 3.5.1漏夜线 (23) 3.5.2 液泛夹带线 (24) 3.5.3 液相负荷下限线 (25) 3.5.4 液相负荷上限线 (25) 3.5.5 液泛线 (26) 3.6 各接管尺寸的确定 (29) 3.6.1 进料管 (29) 3.6.2 釜残液出料管 (29) 3.6.3 回流液管 (30) 3.6.4塔顶上升蒸汽管 (30) 四.符号说明 (30) 五.总结和设计评述 (31)

化工原理课程设计 苯-甲苯浮阀精馏塔共19页

3.课程设计报告内容 3.1 流程示意图 冷凝器→塔顶产品冷却器→苯的储罐→苯 ↑↓回流 原料→原料罐→原料预热器→精馏塔 ↑回流↓ 再沸器← → 塔底产品冷却器→甲苯的储罐→甲苯 3.2 流程和方案的说明及论证 3.2.1 流程的说明 首先,苯和甲苯的原料混合物进入原料罐,在里面停留一定的时间之后,通过泵进入原料预热器,在原料预热器中加热到泡点温度,然后,原料从进料口进入到精馏塔中。因为被加热到泡点,混合物中既有气相混合物,又有液相混合物,这时候原料混合物就分开了,气相混合物在精馏塔中上升,而液相混合物在精馏塔中下降。气相混合物上升到塔顶上方的冷凝器中,这些气相混合物被降温到泡点,其中的液态部分进入到塔顶产品冷却器中,停留一定的时间然后进入苯的储罐,而其中的气态部分重新回到精馏塔中,这个过程就叫做回流。液相混合物就从塔底一部分进入到塔底产品冷却器中,一部分进入再沸器,在再沸器中被加热到泡点温度重新回到精馏塔。塔里的混合物不断重复前面所说的过程,而进料口不断有新鲜原料的加入。最终,完成苯与甲苯的分离。 3.2.2 方案的说明和论证

本方案主要是采用浮阀塔。 精馏设备所用的设备及其相互联系,总称为精馏装置,其核心为精馏塔。常用的精馏塔有板式塔和填料塔两类,通称塔设备,和其他传质过程一样,精馏塔对塔设备的要求大致如下: 一:生产能力大:即单位塔截面大的气液相流率,不会产生液泛等不正常流 动。 二:效率高:气液两相在塔内保持充分的密切接触,具有较高的塔板效率或传质效率。 三:流体阻力小:流体通过塔设备时阻力降小,可以节省动力费用,在减压操作是时,易于达到所要求的真空度。 四:有一定的操作弹性:当气液相流率有一定波动时,两相均能维持正常的流动,而且不会使效率发生较大的变化。 五:结构简单,造价低,安装检修方便。 六:能满足某些工艺的特性:腐蚀性,热敏性,起泡性等。而浮阀塔的优点正是: 而浮阀塔的优点正是: 1.生产能力大,由于塔板上浮阀安排比较紧凑,其开孔面积大于泡罩塔板,生产能力比泡罩塔板大 20%~40%,与筛板塔接近。 2.操作弹性大,由于阀片可以自由升降以适应气量的变化,因此维持正常操作而允许的负荷波动范围比筛板塔,泡罩塔都大。

食品工程原理课程设计(换热器设计)

食品工程原理 课程设计说明书米糠油冷却用列管式换热器的设计 姓名:马坦 学号:201111010704 班级:食工1107 2013年12月13日

目录 一、设计依据及指导思想----------------------------------------------------------3 二、主要参数说明-------------------------------------------------------------------3 三、设计计算-------------------------------------------------------------------------5 1、确定设计方案------------------------------------------------------------------5 2、确定物性数据------------------------------------------------------------------5 3、计算总传热系数---------------------------------------------------------------6 4、计算传热面积------------------------------------------------------------------7 5、工艺结构尺寸------------------------------------------------------------------7 6、换热器核算---------------------------------------------------------------------9 1)热量核算--------------------------------------------------------------------9 2)换热器内流体的流动阻力-----------------------------------------------11 3)换热器主要结构尺寸和计算结果总表-------------------------------13 7、离心泵的选择------------------------------------------------------------------13 四、设计结果--------------------------------------------------------------------------16 五、参考文献--------------------------------------------------------------------------16

食品工程原理课程设计

华中农业大学HUAZHONG AGRICULTURAL UNIVERSITY 题目:食品工程原理课程设计 班级:食工1002班 姓名:张国秀 学号: 2010309200212 日期: 指导老师:

列管式换热器设计任务书 一、设计题目:列管式换热器的设计 二、设计任务及操作条件 1、处理能力:6000㎏/h 2、设备形式:列管式换热器 3、操作条件 ①油:进口温度140℃,出口温度40℃; ②冷却介质:循环水,进口温度30℃,出口温度40℃; ③允许压强降:不超过107 Pa; 4、确定物性数据: 定性温度:可取流体进出口温度的平均值。 壳程油品的定性温度T=(140+40)/2=90℃ 管程循环水的定性温度t=(30+40)/2=35℃ 根据定性温度分别查取壳程和管程流体的有关物性数据:油在90℃时密度ρ0=825㎏/m3 比热容Cp0 =2.22 kJ/(㎏·℃) 黏度μ0=0.000715Pa·s 导热系数λ0=0.140 W/(m·℃) 水在35℃时密度ρi=994㎏/m3 比热容Cp i=4.08 kJ/(㎏·℃) 黏度μi=0.000725Pa·s 导热系数λi=0.626W/(m·℃) 5、每年按330天计算,每天24小时连续运行。

目录 第一节概述及设计方案简介 (5) 1 概述 (5) 1.1 换热器 (5) 1.2换热器的选择 (5) 1.3 流动空间的选择 (7) 1.4 流速的确定 (7) 1.5 材质的选择 (7) 1.6 管程结构 (8) 1.7 壳程结构 (9) 1.8 壳程接管 (10) 2 设计方案 (10) 3 主要符号参考说明 (11) 第二节工艺计算及主体设备设计计算 (12) 2.1 计算传热系数 (12) 2.1.1 计算管程对流传热系数 (12) 2.1.2 计算壳程对流传热系数 (12) 2.1.3 计算总传热系数 (12)

食工原理课程设计指导书

食工原理课程设计指导书 《食工原理课程设计》指导书 一、课程设计的目的及意义: 现代食品工业要求相关工程技术人员不仅应是一名工艺师,还应当具备按工艺要求进行生产设备的选型配套,生产线的相关工程设计能力。可见,食品科学与工程专业的学生有必要进行工程设计能力的培养和训练。特别是对于本专业毕业时只作毕业论文而不作毕业设计的绝大多数学生来说,这种培养和训练显得尤为重要。 食品工程原理课程设计(以下简称课程设计)是在学完《食品工程原理》后的一个阶段性、实践性教学环节。通过完成某一工程设计任务,培养学生综合运用《食品工程原理》及相关先修课程的基础知识和解决实际问题的工作能力。课程设计要求学生按设计任务书的要求,在规定时间内完成某一涉及食品工程单元项目的设计任务。应予指出,课程设计不象平时做的练习题有一个共同的答案。设计本意上应含有创新思维成分,设计结果以优劣予以评价。课程设计任务书不象习题题目那样给出充分的条件和数据。设计计算中的很多数据往往需要设计者查阅相关手册和资料,进行系统的收集、分析比较和选用,任何一个数据的选定均要说明理,这就需要综合运用所学的各类知识,经过全面、细致地分析和

思考方能确定。课程设计不是一个单纯的解题过程,而应是一个含有创作成分的实践过程。课程设计中不仅要通过调查研究,确定工艺流程及设计方案,所确定的流程和方案应能保证日后的设计、施工和投入运行都能得到完全地实施,即工程的可行性。还要对工艺设备进行选型配套设计计算,编制设计计算说明书,并用工程图将设计结果表达出来,以便指导工程施工。 在课程设计中着重以下几种能力的训练和培养: 1. 培养正确、系统的设计思想,全盘考虑工程设计任务,兼顾技术上的先进性、可行性和经济合理性,以人为本,注意操作者安全及劳动条件的改善和环境的保护,并用这种设计思想去分析和解决实际问题。 2. 培养从生产现场和文献资料中进行调查研究的能力。通过现场调查,参考和分析已建工程的经验和教训,结合本设计的客观实际,确定设计方案。通过查阅资料,选用公式,收集数据,进行具体设计计算。 3. 培养熟练、准确的工程计算能力。 4. 培养用简洁的文字、规范清晰的图表来表达自己设计思想和结果的能力。二、课程设计题目:果汁饮料蒸发浓缩工艺与设备设计 利用双效顺流蒸发器浓缩桔子汁,进料流量为20XXkg/h,固形物质量分数14%,沸点进料,第一效沸点

苯与甲苯精馏塔课程设计

《化工原理课程设计》报告 年处理5.4万吨苯-甲苯精馏装置设计 学院:化学化工学院 班级:应用化学101班 姓名:董煌杰 学号:10114308(14) 指导教师:陈建辉 完成日期:2013年1月17日

序言 化工原理课程设计是化学工程与工艺类相关专业学生学习化工原理课程必 修的三大环节之一,起着培养学生运用综合基础知识解决工程问题和独立工作能力的重要作用。 综合运用《化工原理》课程和有关先修课程(《物理化学》,《化工制图》等)所学知识,完成一个单元设备设计为主的一次性实践教学,是理论联系实际的桥梁,在整个教学中起着培养学生能力的重要作用。通过课程设计,要求更加熟悉工程设计的基本内容,掌握化工单元操作设计的主要程序及方法,锻炼和提高学生综合运用理论知识和技能的能力,问题分析能力,思考问题能力,计算能力等。 精馏是分离液体混合物(含可液化的气体混合物)最常用的一种单元操作,在化工,炼油,石油化工等工业中得到广泛应用。精馏过程在能量剂驱动下(有时加质量剂),使气液两相多次直接接触和分离,利用液相混合物中各组分的挥发度的不同,使易挥发组分由液相向气相转移,难挥发组分由气相向液相转移,实现原料混合液中各组分的分离。根据生产上的不同要求,精馏操作可以是连续的或间歇的,有些特殊的物系还可采用衡沸精馏或萃取精馏等特殊方法进行分离。本设计的题目是苯-甲苯连续精馏筛板塔的设计,即需设计一个精馏塔用来分离易挥发的苯和不易挥发的甲苯,采用连续操作方式,需设计一板式塔将其分离。

目录 一、化工原理课程设计任书 (1) 二、设计计算 (3) 1)设计方案的选定及基础数据的搜集 (3) 2) 精馏塔的物料衡算 (7) 3) 塔板数的确定 (9) 4) 精馏塔的工艺条件及有关物性数据的计算 (15) 5) 精馏塔的塔体工艺尺寸计算 (21) 6) 塔板主要工艺尺寸的计算 (23) 7) 塔板负荷性能图 (27) 三、个人总结 (36) 四、参考书目 (37)

食品工程原理课程设计

食品工程原理课程设计 ---管壳式冷凝器设计

目录 食品工程原理课程设计任务书 (2) 流程示意图 (3) 设计方案的确定 (4) 冷凝器的造型计算 (6) 核算安全系数 (8) 管壳式冷凝器零部件的设计 (10) 设计概要表 (12) 主要符号表 (13) 主体设备结构图 (14) 设计评论及讨论 (14) 参考文献 (15) (一)食品科学与工程设计任务书 一、设计题目: 管壳式冷凝器设计 二、设计任务:

将制冷压缩机压缩后制冷剂(如F-22、氨等)过热蒸汽冷却、冷凝为过冷液体,送去冷库蒸发器使用。 三、设计条件: 1、冷库冷负荷Q0=1700KW; 2、高温库,工作温度0~4℃,采用回热循环; 3、冷凝器用河水为冷却剂,取进水温度为26~28℃; 4、传热面积安全系数5~15%。 四、设计要求: 1.对确定的设计方案进行简要论述; 2.物料衡算、热量衡算; 3.确定列管壳式冷却器的主要结构尺寸; 4.计算阻力; 5. 编写设计说明书(包括:①.封面;②.目录;③.设计题目;④.流程示意图;⑤.流程及方案的说明和论证;⑥设计计算及说明;⑦主体设备结构图;⑧设计结果概要表;⑨对设计的评价及问题讨论;⑩参考文献。) 6.绘制工艺流程图、管壳式冷凝器的的结构(3号图纸)、花板布置图(3号或4号图纸)。 (二)流程示意图

流程图说明: 本制冷循环选用卧式管壳式冷凝器,选用氨作制冷剂,采用回热循环,共分为4个阶段,分别是压缩、冷凝、膨胀、蒸发。 1 2 由蒸发器内所产生的低压低温蒸汽被压缩机吸入压缩机气缸,经压缩后温度升高; 2 3 高温高压的F—22蒸汽进入冷凝器;F—22蒸汽在冷凝器中受冷却水的冷却,放出热量后由气体变成液态氨。 4 4’ 液态F—22不断贮存在贮氨器中; 4’ 5 使用时F—22液经膨胀阀作用后其压力、温度降低,并进入蒸发器; 5 1 低压的F—22蒸汽在蒸发器中不断的吸收周围的热量而汽化,然后又被压缩机吸入,从而形成一个循环。 5’1是一个回热循环。 本实验采用卧式壳管式冷凝器,其具有结构紧凑,传热效果好等特点。所设计的卧式管壳式冷凝器采用管内多程式结构,冷却水走管程,F—22蒸汽走壳程。采用多管程排列,加

化工原理课程设计-苯-甲苯精馏塔设计

资料 前言 化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形。在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性、经济合理性。 化工生产常需进行液体混合物的分离以达到提纯或回收有用组分的目的,精馏是利用液体混合物中各组分挥发度的不同并借助于多次部分汽化和部分冷凝达到轻重组分分离的方法。塔设备一般分为阶跃接触式和连续接触式两大类。前者的代表是板式塔,后者的代表则为填料塔。 筛板塔和泡罩塔相比较具有下列特点:生产能力大于%,板效率提高产量15%左右;而压降可降低30%左右;另外筛板塔结构简单,消耗金属少,塔板的造价可减少40%左右;安装容易,也便于清理检修。本次课程设计为年处理含苯质量分数36%的苯-甲苯混合液4万吨的筛板精馏塔设计,塔设备是化工、炼油生产中最重要的设备之一。它可使气(或汽)液或液液两相之间进行紧密接触,达到相际传质及传热的目的。 在设计过程中应考虑到设计的精馏塔具有较大的生产能力满足工艺要求,另外还要有一定的潜力。节省能源,综合利用余热。经济合理,冷却水进出口温度的高低,一方面影响到冷却水用量。另一方面影响到所需传热面积的大小。即对操作费用和设备费用均有影响,因此设计是否合理的利用热能R等直接关系到生产过程的经济问题。 |

'

目录 第一章绪论 (1) 精馏条件的确定 (1) 精馏的加热方式 (1) 精馏的进料状态 (1) 精馏的操作压力 (1) 确定设计方案 (1) 工艺和操作的要求 (2) 满足经济上的要求 (2) 保证安全生产 (2) 第二章设计计算 (3) 设计方案的确定 (3) 精馏塔的物料衡算 (3) 原料液进料量、塔顶、塔底摩尔分率 (3) 原料液及塔顶、塔底产品的平均摩尔质量 (3) 物料衡算 (3) 塔板计算 (4) 理论板数NT的求取 (4) 全塔效率的计算 (6) 求实际板数 (7) 有效塔高的计算 (7) 精馏塔的工艺条件及有关物性数据的计算 (8) 操作压力的计算 (8) 操作温度的计算 (8) 平均摩尔质量的计算 (8) 平均密度的计算 (10) 液体平均表面张力的计算 (11) 液体平均黏度的计算 (12) 气液负荷计算 (13)

苯-甲苯连续精馏浮阀塔课程设计

设计任务书 设计题目: 苯-甲苯连续精馏浮阀塔设计 设计条件: 常压: 1p atm = 处理量: 100Kmol h 进料组成: 0.45f x = 馏出液组成: 98.0=d x 釜液组成: 02.0=w x (以上均为摩尔分率) 塔顶全凝器: 泡点回流 回流比: min (1.1 2.0)R R =- 加料状态: 0.96q = 单板压降: 0.7a kp ≤ 设 计 要 求 : (1) 完成该精馏塔的工艺设计(包括物料衡算、热量衡算、筛板塔的设计算)。 (2) 画出带控制点的工艺流程图、塔板负荷性能图、精馏塔工艺条件图。 (3) 写出该精馏塔的设计说明书,包括设计结果汇总和设计评价。

目录 摘要 ........................................................................................................................................................................... I 绪论 (1) 设计方案的选择和论证 (3) 第一章塔板的工艺计算 (5) 1.1基础物性数据 (5) 1.2精馏塔全塔物料衡算 (5) 1.2.1已知条件 (5) 1.2.2物料衡算 (5) 1.2.3平衡线方程的确定 (6) 1.2.4求精馏塔的气液相负荷 (7) 1.2.5操作线方程 (7) 1.2.6用逐板法算理论板数 (7) 1.2.7实际板数的求取 (8) 1.3精馏塔的工艺条件及有关物性数据的计算 (9) 1.3.1进料温度的计算 (9) 1.3.2操作压力的计算 ................................................................................................ 错误!未定义书签。 1.3.3平均摩尔质量的计算 (9) 1.3.4平均密度计算 (10) 1.3.5液体平均表面张力计算 (11) 1.3.6液体平均粘度计算 (12) 1.4 精馏塔工艺尺寸的计算 (12) 1.4.1塔径的计算 (12) 1.4.2精馏塔有效高度的计算 (14) 1.5 塔板主要工艺尺寸的计算 (14) 1.5.1溢流装置计算 (14) 1.6浮阀数目、浮阀排列及塔板布置 (15) 1.7塔板流体力学验算 (16) 1.7.1计算气相通过浮阀塔板的静压头降h f (16) 1.7.2计算降液管中清夜层高度Hd (17) 1.7.3计算雾沫夹带量e V (18) 1.8塔板负荷性能图 (19) 1.8.1雾沫夹带线 (19) 1.8.2液泛线 (19) 1.8.3 液相负荷上限线 (21) 1.8.4漏液线 (21) 1.8.5液相负荷下限线 (21) 1.9小结 (22) 第二章热量衡算 (23) 2.1相关介质的选择 (23) 2.1.1加热介质的选择 (23) 2.1.2冷凝剂 (23) 2.2热量衡算 (23) 第三章辅助设备 (28)

食工原理课程设计 甲苯-乙苯连续精馏塔设计

合肥学院 HEFEI UNIVERSITY 食工原理课程设计 题目:甲苯-乙苯连续精馏塔设计 系别: 生物与环境工程系 专业: 12食品科学与工程 学号: 1202061011 姓名: 方平 指导教师: 于宙 二零一四年十月二十七日

目录 第一部分设计任务书 1、设计题目 (5) 2、设计概述 (5) 3、设计内容 (6) 第二部分精馏塔的设计 1 精馏塔的物料衡算 (7) 1.1原料液及塔顶、塔底产品的摩尔分率 (8) 1.2原料液及塔顶、塔底产品的平均摩尔质量 (8) 1.3物料衡算 (8) 2 塔板数的确定 (9) 2.1甲苯、乙苯的温度-组成 (10) 2.2确定操作的回流比R (11) 2.3求操作线方程 (12) 2.4图解法求理论塔板层数 (13) 3 塔的操作工艺条件及相关物性数据的计算 (14) 3.1操作压力计算 (14) 3.2操作温度计算 (14) 3.3平均摩尔质量计算 (15) 3.4平均密度计算 (15) 3.5液体平均表面张力计算 (18) 3.6液体平均粘度计算 (20) 4 精馏塔的气、液相负荷计算 (22) 4.1精馏段气、液相负荷计算 (22) 4.2提馏段气、液相负荷计算 (22) 5 精馏塔的塔体工艺尺寸计算 (23) 5.1塔径的计算 (23)

5.2精馏塔有效高度的计算 (25) 6 塔板主要工艺尺寸的计算 (25) 6.1溢流装置计算 (25) 6.2塔板布置 (27) 7 筛板的流体力学验算 (30) 7.1塔板压降 (30) 7.2液面落差 (32) 7.3液沫夹带 (32) 7.4漏液 (33) 7.5液泛 (33) 8 塔板负荷性能图 (34) 8.1精馏段塔板负荷性能图 (35) 8.2提馏段塔板负荷性能图 (37) 9 精馏塔的设计计算结果汇总一览表 (41) 10 精馏塔接管尺寸计算 (42) 10.1塔顶进气管 (42) 10.2塔顶回流液管 (43) 10.3进料管 (43) 10.4塔釜出料管 (43) 10.5塔釜进气管 (43) 11 主要辅助设备的选型 (44) 11.1冷凝器的设计 (44) 11.1.1确定设计方案 (44) 11.1.2确定物性数据 (44) 11.1.3计算热负荷 (45) (1)壳程液流量 (45) (2)壳程流体的汽化潜热 (45) (3)热负荷 (46) 11.1.4逆流平均温差 (46)

食品工程原理课程设计 列管式换热器的设计

目录 1 食品工程原理课程设计任务书 (1) 2 概述与设计方案的选择 (3) 2.1 概述 (3) 2.1.1 换热器 (3) 2.1.2 换热器的选择 (3) 2.1.3 流动空间的选择 (5) 2.1.4 流速的确定 (5) 2.1.5 材质的选择 (6) 2.1.6 管程结构 (6) 2.1.7 壳程结构 (7) 2.2 设计方案简介 (8) 2.2.1选择换热器的类型 (8) 2.2.2 流体流动空间及流速的确定 (8) 3 工艺及设备设计计算 (9) 3.1 确定物性数据 (9) 计算总传热系数 (9) 3.1.1 热流量 (9) 3.1.2平均传热温差 (9) 3.1.3 冷却水用量 (10) 3.1.4 总传热系数K (10) 3.2传热面积的计算 (10) 3.3工艺结构尺寸 (11) 3.3.1 管径和管内流速 (11) 3.3.2 管程数和传热管数 (11) 3.3.3 平均传热温差校正及壳程数 (11) 3.3.4 传热管排列和分程方法 (11) 3.3.5壳体内径 (12) 3.3.6 折流板数 (12) 3.3.7 接管 (12) 3.4 换热器核算 (12) 3.4.1 热量核算 (12) 3.4.2 换热器内流体的流动阻力 (14) 4 设计结果汇总表 (16)

5 讨论 (17) 参考资料 (18) 结束语 (19) 附录(主要符号说明) (20)

1 食品工程原理课程设计任务书 1.1 设计题目 年处理量为 7.4 万吨花生油换热器的设计; 1.2 操作条件 (1)花生油:入口温度110℃,出口温度40℃; (2)冷却介质:采用循环水,入口温度20℃,出口温度30℃;井水,入口压强0.3MPa 。 (3)每年按330天计,每天24小时连续生产。 (4)花生油定性温度下的物性数据: (5)允许压强降:不大于30kPa 。 (6)换热器热损失:以总传热量的5%计。 (7)油侧污垢热阻0.000176 m 2·K /W ,水侧污垢热阻0.00026 m 2·K /W. 1.3 设计任务 (1)设备型式:列管式换热器; (2)选择适宜的列管式换热器并进行核算; (3)绘制设备工艺条件图,并编写设计说明书。 (4)工艺设计计算包括:选择适宜的换热器并进行核算,主要包括物料衡算和热量衡算、热负荷及传热面积的确定、换热器主要尺寸的确定、总传热系数的校核等。(注明公式及数据来源) (5)结构设计计算:选择适宜的结构方案,进行必要的结构设计计算。主要包括管程和壳 程分程、换热管尺寸确定、换热管的布置、折流板的设置等。(注明公式及数据来源) (6)绘制工艺流程图 绘制工艺流程图一张; CAD 绘制。 (7)编写设计说明书 设计说明书的撰写应符合规范与要求。 1.4 参考书 (1)贾绍义,柴诚敬.《化工原理课程设计》,天津大学出版社; c) w/(m. 14.0c) /(kg. k 22.2c S .a 1015.7kg/m 8450 c 0 pc 4-c 3 c ==?=λμρJ P =

苯甲苯精馏塔课程设计说明书

西北师大学 化工原理课程设计 学院: 化学化工学院 专业: 化学工程与工艺年级:2011 题目: 苯—甲苯精馏塔设计

前言 课程设计是化工原理课程的一个重要的实践教学容,是在学习过基础课程和化工原理理论与实践后,进一步学习化工设计的基础知识、培养化工设计能力的重要环节。通过该设计可初步掌握化工单元操作设计的基本程序和方法、得到化工设计能力的基本锻炼,更能从实践中培养工程意识、健全合理的知识结构。 此次化工原理设计是精馏塔的设计。精馏塔是化工生产中十分重要的设备,它是利用两组分挥发度的差异实现连续的高纯度分离。在精馏塔中,料液自塔的中部某适当位置连续的加入塔,塔顶设有冷凝器将塔顶蒸汽冷凝为液体。冷凝液的一部分(称回流液)回入塔顶,其余作为塔顶产品(称馏出液)连续排出。塔釜产生的蒸汽沿塔板上升,来自塔顶冷凝器的回流液从塔顶逐渐下降,气液两相在塔实现多次接触,进行传质传热过程,使混合物达到一定程度的分离。精馏塔的分离程度不仅与精馏塔的塔板数及其设备的结构形式有关,还与物料的性质、操作条件、气液流动情况等有关。该过程是同时进行传热、传质的过程。为实现精馏过程,必须为该过程提供物流的贮存、输送、传热、分离、控制等的设备、仪表。由这些设备、仪表等构成精馏过程的生产系统,即本次所设计的精馏装置。 课程设计是让同学们理论联系实践的重要教学环节,是对我们进行的一次综合性设计训练。通过课程设计能使我们进一步巩固和加强所学的专业理论知识,还能培养我们独立分析和解决实际问题的能力。更能培养我们的创新意识、严谨认真的学习态度。当代大学生应具有较高的综合能力,特别是作为一名工科学生,还应当具备解决实际生产问题的能力。课程设计是一次让我们接触实际生产的良好机会,我们应充分利用这样的时机认真去对待每一项任务,为毕业论文等奠定基础。更为将来打下一个稳固的基础。 虽然为此付出了很多,但在平常的化工原理课程学习中总是只针对局部进行计算,而对参数之间的相互关联缺乏认识,所以难免有不妥之处,望垂阅者提出意见,在此表示深切的意。 作者 2013年12月

食工原理课后习题与答案第1-2章

第一章 1-1 烟道气的组成约为N275%,CO215%,O25%,H2O5%(体积百分数)。试计算常压下400℃时该混 合气体的密度。 解:M m =M i y i=×28+×44+×32+×18= m= pM m/RT=×103××103×673)=0.545kg/m3 1-2 已知成都和拉萨两地的平均大气压强分别为和。现有一果汁浓缩锅需保持锅内绝对压强为。 问这一设备若置于成都和拉萨两地,表上读数分别应为多少 解:成都p R=95-8=87kPa(真空度) 拉萨p R=62-8=54kPa(真空度) 1-3 用如附图所示的U型管压差计测定吸附器内气体在A点处的压强以及通过吸附剂层的压强 降。在某气速下测得R1为400mmHg,R2为90mmHg,R3为40mmH2O,试求上述值。 解:p B=R3H2O g+R2Hg g=×1000×+×13600×=(表) p A=p B+R 1Hg g=+×13600×=(表) p=p A-p B=(表) 1-4 如附图所示,倾斜微压差计由直径为D的贮液器和直径为d的倾斜管组成。若被测流体密 度为0,空气密度为,试导出用R1表示的压强差计算式。如倾角为30o时,若要忽略贮液器内 的液面高度h的变化,而测量误差又不得超过1%时,试确定D/d比值至少应为多少 D α d R 1 R 1 p 2 p h ρ 解:由静力学方程p=R(0-)g=R1sin(0-)g=R1(0-)g/2 (1) 若忽略贮液器内液面高度的变化,则斜管内液位为:R’=R-h 液柱长度:R1’=R1-h/sin=R1-2h p’=R ’(0-)g=R1’(0-)g/2=(R1/2-h)(0-)g 又D2h/4=d2R1’/4 即h=R1(d/D)2/[1+2(d/D)2] 所以p’=R1(0-)g/[2+4(d/D)2] (2) 相对误差为 (p-p’)/p≤ 代入式(1)和(2): (p-p’)/p=1-1/[1+2(d/D)2]≤

相关文档
最新文档