小升初计算题整体复习B

小升初计算题整体复习B
小升初计算题整体复习B

六年级计算题综合复习B

一、小数的运算

1、口算

1-0.2= 3-2.25= 1.57+3.43= 286+199= 18.54-9.9= 3.6×0.5= 2.4÷2= 48÷0.6= 2.14-0.9= 0.5+7.6= 240÷48= 4200÷300= 0.75-0.38= 396+99= 90×30= 20×35=

2、竖式运算

5.6×2.9 3.77×1.8

69.6÷2.9 38.4÷0.8

3、递等式运算

2.7-2.7÷2.7= 4.2×(6.18–

3.03)+ 6.3

10-7.5×(6.4-5.9) 2.7÷4 + 6.3×0.25

二、分数的运算 1、 口算

2、分数的加减运算(递等式计算)

(1)259+52103- (2)12

54361++ (3)14376++214

(4)

167+21811- (5)127431-+ (6)

2

1

611211--

3、分数的乘除运算(递等式计算)

1113 -1113 ×1333 36×937 926 ÷ 813 ×8

27

21331÷+ 4

3513254÷+? 165)533(9?÷-

524 ×12 = 6×524 = 49 ×2710 = 23 +34 = 225 ×5

6

= 72÷89 = 617 -1351 = 56 ÷12= 1320 ÷91100 = 78 ÷4

7 = 14 ×15 ×10= 83÷169 = 130 ÷15 ÷15 = =215

6-

三、比例与方程 1、解方程 (1)656131=+-

x (2)8

3854=-x (3)

1437241=-+x (4)5

4)21107(=-+x

2、比例 求比值:

35140 0.4∶3

2

化简下列比值:

小升初数学应用题专题(带答案)

第一篇:应用题专题知识框架体系 一、和差倍问题 (一)和差问题:已知两个数的和及两个数的差,求这两个数。棵数总距离棵距; 总距离棵数棵距;棵距总距离棵数. 较大数方法①:(和-差)2较小数,和较小数四、方阵问题 在方阵问题中,横的排叫做行,竖的排叫做列,如果 较小数 方法②:(和差)2较大数,和较大数行数和列数都相等,则正好排成一个正方形,就是所 谓的“方阵”。 例如:两个数的和是15,差是5,求这两个数。方 法:(155) 25 ,(155) 210. (二)和倍问题:已知两个数的和及这两个数的倍数关 系,求这两个数。 方法:和(倍数1)1倍数(较小数) 1倍数(较小数)倍数几倍数(较大数) 或和1倍数(较小数)几倍数(较大数)例如:两个数的和为50,大数是小数的4 倍,求 这两个数。 方法:50(4 1) 10 10 440 (三)差倍问题:已知两个数的差及两个数的倍数关系, 求这两个数。 方法:差(倍数1)1倍数(较小数) 1倍数(较小数)倍数几倍数(较大数)或和1倍数(较小数)几倍数(较大数) 例如:两个数的差为80,大数是小数的5倍,求这两个数。 方法:80(5 1) 20 20 5100 二、年龄问题年龄问题的三大规 律:1.两人的年龄差是不变 的; 2.两人年龄的倍数关系是变化的量; 3.随着时间的推移,两人的年龄都是增加相等的 量.解答年龄问题的一般方法是: 几年后年龄大小年龄差倍数差小年龄,几年前年 龄小年龄大小年龄差倍数差. 三、植树问题 (一)不封闭型(直线)植树问题 3直线两端都不植树:棵数段数1全长株距1;株距全长(棵数1); (二)封闭型(圆、三角形、多边形等)植树问题 方阵的基本特点是: ①方阵不论在哪一层,每边上的人(或物)数 量都相同.每向里一层,每边上的人数就少 2,每层总数就少8. ②每边人(或物)数和每层总数的关系:每层 总数[ 每边人(或物)数1] 4 ;每 边人(或物)数=每层总数41. ③实心方阵:总人(或物)数=每边人(或 物)数×每边人(或物)数. 五、还原问题 已知一个数,经过某些运算之后,得到了一个新数,求原来的数是多少的应用问题,它的解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫做逆推法或还原法,这种问题就是还原问题. 还原问题又叫做逆推运算问题.解这类问题利用加减互为逆运算和乘除互为逆运算的道理,根据题意的叙述顺序由后向前逆推计算.在计算过程中采用相反的运算,逐步逆推. 在解题过程中注意两个相反:一是运算次序与原来相反;二是运算方法与原来相反. 六、盈亏问题 按不同的方法分配物品时,经常发生不能均分的情况.如果有物品剩余就叫盈,如果物品不够就 叫亏,这就是盈亏问题的含义. 一般地,一批物品分给一定数量的人,第一种 分配方法有多余的物品( 盈),第二种分配方法则不 足( 亏),当两种分配方法相差n个物品时,那就 有: 盈数亏数人数n,这是关于盈亏问题很重要的 一个关系式.解盈亏问题的窍门可以用下面的 公式来概括:(盈亏)两次分得之差人数或单位 数,(盈盈)两次分得之差人数或单位数,(亏亏) 两次分得之差人数或单位数. 解盈亏问题的关键是要找到:什么情况下会盈,盈多少?什么情况下“亏”,“亏”多少?找到盈亏的根源 和几次盈亏结果不同的原因. 1直线两端植树:棵数 全长段数 株距 1全长 (棵数 株距 1 ; 1 ); 株距全长(棵数1);2直线一端植树:全长株距棵数; 棵数全长株距; 株距全长棵数;

小升初应用题重点考查内容

小升初应用题重点考查内容 计算专题 (一)抵消思想——裂项 (二)抵消思想——约分 (三)数学基本功——四则混合运算 (四)初中基本功——解方程 (五)计算技巧综合——重要公式、常用结论、经典方法等等。如循环小数与分数互化、等比数列求和、平方和公式等等 计数专题 (一)尝试性探索思维——枚举法 (二)计数两大原理——加乘原理 (三)排列组合——盘点排列组合最常见的三个考点 (四)容斥原理——总结容斥原理中最常考的几种题型 (五)计数方法综合(1)——标数法、递推法等 (六)计数方法综合(2)——对应法、整体法等 (七)概率与统计——两个知识点:古典概型与概率可乘性 应用题专题 (一)分数、比例应用题 (二)经济利润问题 (三)工程问题 (四)浓度问题 (五)牛吃草问题 几何专题 (一)五大模型(1)——共高定理、蝴蝶模型与燕尾定理 (二)五大模型(2)——梯形蝴蝶与相似简单知识 (三)常用结论总结——一半模型、勾股定理等等 (四)几何常用解题方法总结——特值法、比例法求面积、加减法求面积 (五)曲线形面积问题——基本公式及曲面型面积问题三部曲 (六)立体几何——立体几何表面积与体积常用方法总结:三视图法、切片法等等 (六)立体几何——立体几何表面积与体积常考题型:液体浸物问题、卷纸问题、旋转问题等等 数论专题 (一)整除特征——整除特征的3个系列及其特点 (二)约数与倍数——完全平方数 (三)约数与倍数——约数三定律与短除模型 (四)质数与合数——分解质因数考点、质数的快速判断、质数明星的考察等等 (五)余数问题——余数的3条性质及3中常见求法 (六)余数问题——带余除式与同余定理 (七)余数问题——中国剩余定理 (八)数论综合——综合性数论题目

小升初数学专项题第五讲 立体图形应用题_通用版

第五讲 立体图形应用题 【基础概念】:在小学阶段学过的立体图形有长方体、正方体、圆柱、圆锥,与这些图形有关的问题叫作立体图形应用题;有关的公式:长方体:表面积公式:S=(ab+ah+bh )×2,体积公式:V=abh=Sh ;正方体:表面积公式:S=6a 2,体积公式:V=a 3;圆柱:侧面积:S 侧=Ch=2πrh=πdh ,表面积:S=S 侧+2S 底,体积:V=S 底h ;圆锥:体积:V=13 S 底h 。 【典型例题1】:李力爱好手工制作,用一根长48分米的铁丝做了一个长方体框架,使它的长、宽、高的比是5:4:3.在这个长方体框架外面糊了一层彩色的纸,至少需要多少平方分米的彩纸?它的体积是多少立方分米? 【思路分析】:用一根长48分米的铁丝做了一个长方体框架也就是长方体的棱长总和是48分米,首先用棱长总和除以4求出长、宽、高的和,再利用按比例分配的方法分别求出长、宽、高,然后根据长方体的表面积公式:s=(ab+ah+bh )×2,体积公式:v=abh ,把数据代入公式解答即可。 解答:长:48÷4×55+4+3 =12×55+4+3 =5(分米) 宽:48÷4×45+4+3 =12×45+4+3 =4(分米) 高:48÷4×35+4+3 =12×35+4+3 =3(分米); (5×4+5×3+4×3)×2 =(20+15+12)×2 =47×2 =94(平方分米) 5×4×3=60(立方分米) 答:至少需要94平方分米的彩纸,它的体积是60立方分米。

【小结】:解决这类问题要先计算出棱长,再利用表面积公式与体积公式计算。 【巩固练习】 1.用一根长48分米的铁丝做一个长方体框架,长和宽的比是4:1,宽和高长度相等,在这个长方体框架外面糊一层纸,至少需要多少平方分米的纸?这个框架的体积是多少立方分米? 2.用铁丝焊一个长方体框架,长1.8米,宽14分米,高100厘米,至少需要铁丝多少米?焊成的长方体体积是多少? 【典型例题2】:一个圆柱体,底面半径是7厘米,表面积是1406.72平方厘米.这个圆柱的高是多少? 【思路分析】:已知底面半径是7厘米,那么可以求得这个圆柱的底面积和底面周长;这里要求圆柱的高,根据已知条件,需要求得这个圆柱的侧面积,根据圆柱的表面积公式可得:侧面积=表面积-2个底面积,再利用圆柱的侧面积公式即可求得这个圆柱的高。 解答:(1406.72-3.14×72×2)÷(2×3.14×7) =(1406.72-307.72)÷43.96 =1099÷43.96 =25(厘米) 答:这个圆柱的高是25厘米。 【小结】:解决这类问题要先计算出底面积,再利用表面积减去底面积得到侧面积,最后利用底面积公式计算出高即可。 【巩固练习】 3. 一个圆柱,底面周长是25.12厘米,高是5厘米,这个圆柱体的表面积是多少平方厘米? 4. 一个圆柱体沿底面直径和高切开后,切面是一个边长为6厘米的正方形,这个圆柱体的表面积是多少平方厘米? 答案及解析: 1.【解析】长方体的12条棱分为互相平行的3组,每组4条棱的长度相等,已知棱长总和是48分米,先求出长、宽、高的和,再利用按比例分配分别求出它的长、宽、高;再根据长方体的表面积和体积公式解答即可。 【答案】:(1)长、宽、高的和是: 48÷4=12(分米) 总份数是:

小升初应用题专项练习

数学分类练习——应用题专项练习 班级:六年级( )班 姓名: 成绩: 1.王大爷购得年利率3.18%的三年期国库券2000元,三年后他可得利息多少元? 2.有一堆化肥已运走37.5%,正好运走72 1 吨,这堆化肥还剩下多少吨? 3.小玲把3000元钱存入银行,按年利率3.18%计算,三年后可取回本息多少元? 4.一种皮衣现在每件售价640元,比原价降低了20%,原价是多少元? 5.育才小学在今年植树中,四年级植树560棵,五年级植树的棵数比四年级多4 1 ,五年级植树多 少棵? 6.某项工程,甲乙两队合做20天完成,甲队单独做30天完成。现在两队合做15天后,余下的由甲队完成,还要多少天? 7.一个环形的机器零件垫片,外半径是3厘米,内半径是1.5厘米。这个垫片的面积是多少? 8.一桶汽油,第一次取出5 1 ,第二次取出的比第一次的25%还多22.5千克,两次正好取完。 这桶汽油重多少千克?

9.如右图,正方形边长是6cm 。求阴影部分的面积。 10.如图,这是一个圆柱的平面展开图,圆的半径是2cm 。根据图中数据求圆柱的体积。(单位:cm ) 11.佳乐服饰连锁店20XX 年11月份的营业额是42万元,比10月份增加了5万元。 11月份营业额比10月份增加了百分之几?(百分号前保留两位小数) 12.李伯伯骑车去泰山旅游,从家出发走到现在,行了全程的5 2 ,离中点还有80km 。那么李伯 伯从家到泰山一共要行驶多少千米? 13.一项工作,甲单独做需要20天完成,乙单独做需要15天完成。如果甲、乙合作,几天可 以完成这项工作的10 7 ?

小升初数学应用题大全

工程问题 【数量关系】解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。 工作量=工作效率×工作时间 工作时间=工作量÷工作效率 工作时间=总工作量÷(甲工作效率+乙工作效率) 例1 一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成,现在两队合作,需要几天完成? 例2 一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成。现在甲先做2小时,余下的由乙丙二人合做,还需几小时才能完成? 正反比例问题 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。反比例应用题是反比例的意义和解比例等知识的综合运用。 【数量关系】判断正比例或反比例关系是解这类应用题的关键。许多典型应用题都可以转化为正反比例问题去解决,而且比较简捷。 例1 张晗做4道应用题用了28分钟,照这样计算,91分钟可以做几道应用题? 例2 孙亮看《十万个为什么》这本书,每天看24页,15天看完,如果每天看36页,几天就可以看完? 按比例分配问题 【数量关系】从条件看,已知总量和几个部分量的比;从问题看,求几个部分量各是多少。 总份数=比的前后项之和 例1 学校把植树560棵的任务按人数分配给五年级三个班,已知一班有47人,二班有48人,三班有45人,三个班各植树多少棵? 例4 某工厂第一、二、三车间人数之比为8∶12∶21,第一车间比第二车间少80人,三个车间共多少人?

小升初数学典型应用题专项练习

小升初数学典型应用题专项练习 1、两桶油共重45千克,把A桶的1/6 倒入B桶后,这时A桶与B桶油重量相等,求A、B两桶原来各有多少千克油? 2、一批零件,师傅单独加工需要12小时,徒弟单独加工需要15小时。师徒二人合作,完成任务时,师傅比徒弟多加工20个。问这批零件共有多少个? 3、一段路两队合修15天能完成。甲队单独修6天,乙队单独修7天,共完成全部工程的。①乙队单独修完这段路需要多少天?②甲队单独修完这段路的需要多少天? 4、一列快车从甲地开往乙地需要10小时,一列慢车从乙地开往甲地需要12小时。快车和慢车同时开出,快车开出后因修车在路上停了2小时,多少小时后两才车相遇?

5、一根圆柱形水管,外直径是32厘米,管壁厚1厘米,水在管内的流速是每秒4.5米。这根水管每秒钟能流出多少千克水?(1立方厘米水重1克) 6、堆煤共有1680千克。第一堆用去1/3,第二堆用去1/4 后,两堆煤所余下的相等。问原来这两堆煤各有多少千克? 7、一份稿件,甲独抄10小时抄完,乙独抄12小时抄完。现在由甲乙两人合抄2小时,抄完这份稿件的3/4 还差20页,这份稿件有多少页? 8、甲乙两辆汽车同时从两地相向而行。甲车每小时行56千米,乙车每小时行48千米,两车在距中点32千米处相遇。求两地间的路程是多少千米? 9、加工一批零件,甲乙合做12小时完成,乙单独做20小时完成。甲乙合做完成任务时,乙给甲87个零件,两人零件的个数相等。这批零件有多少个?

10、甲、乙两车从A、B两地同时出发7小时相遇后,甲车每小时比乙车快6千米,两车的速度比是5:6,求A、B两地相距多少千米? 11、一项工程,甲乙两队合做12天可以完成。如果要甲队先做6天,乙队接着做8天,只能完成全部工作的2/3 。这项工程由乙单独做,多少天可以完成? 12、一项工程,甲独做要10天,乙独做要20天,现在由甲、乙两人合做2天,余下的由乙独做,还要多少天可以完成全工程的一半? 13、一辆客车到某站有7/10的乘客下车,又有10人上车,这时车上人数是原来的2/5,原来这辆车上有乘客多少人? 14、有两袋米,甲袋装米10千克,如果从乙袋倒入1/3给甲袋两袋米一样重,乙袋原来装米多少千克?

小升初数学应用题综合训练含答案

1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地? 总棵数是900+1250=2150棵,每天可以植树24+30+32=86棵 需要种的天数是2150÷86=25天 甲25天完成24×25=600棵 那么乙就要完成900-600=300棵之后,才去帮丙 即做了300÷30=10天之后即第11天从A地转到B地。 2. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天? 这是一道牛吃草问题,是比较复杂的牛吃草问题。 把每头牛每天吃的草看作1份。 因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份 所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份 因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份 所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份 所以45-30=15天,每亩面积长84-60=24份 所以,每亩面积每天长24÷15=1.6份 所以,每亩原有草量60-30×1.6=12份 第三块地面积是24亩,所以每天要长1.6×24=38.4份,原有草就有24×12=288份 新生长的每天就要用38.4头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=3.6头牛 所以,一共需要38.4+3.6=42头牛来吃。 两种解法: 解法一: 设每头牛每天的吃草量为1,则每亩30天的总草量为:10*30/5=60;每亩45天的总草量为:28*45/15=84那么每亩每天的新生长草量为(84-60)/(45-30)=1.6每亩原有草量为60-1.6*30=12,那么24亩原有草量为12*24=288,24亩80天新长草量为24*1.6*80=3072,24亩80天共有草量3072+288=3360,所有3360/80=42(头) 解法二:10头牛30天吃5亩可推出30头牛30天吃15亩,根据28头牛45天吃15木,可以推出15亩每天新长草量(28*45-30*30)/(45-30)=24;15亩原有草量:1260-24*45=180;15亩80天所需牛180/80+24(头)24亩需牛:(180/80+24)*(24/15)=42头 3. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少? 甲乙合作一天完成1÷2.4=5/12,支付1800÷2.4=750元 乙丙合作一天完成1÷(3+3/4)=4/15,支付1500×4/15=400元 甲丙合作一天完成1÷(2+6/7)=7/20,支付1600×7/20=560元 三人合作一天完成(5/12+4/15+7/20)÷2=31/60, 三人合作一天支付(750+400+560)÷2=855元 甲单独做每天完成31/60-4/15=1/4,支付855-400=455元 乙单独做每天完成31/60-7/20=1/6,支付855-560=295元 1 / 6

小升初数学应用题专题(带答案)

应用题专题 一、和差倍问题 (一)和差问题:已知两个数的和及两个数的差,求这两个数。 方法①:(和—差)2 较小数,和较小数较大数 方法②:(和差)2 较大数,和较大数较小数 例如:两个数的和是15,差是5,求这两个数。 方法:(15 5) 2 5 ,(15 5) 2 10. (二)和倍问题:已知两个数的和及这两个数的倍数关系,求这两个数。 方法:和(倍数1)1倍数(较小数) 1 倍数(较小数)倍数几倍数(较 大数) 或和1倍数(较小数)几倍数(较大数)例如:两个数的和为50,大数是小数的 4 倍,求这两个数。 方法:50 (4 1) 10 10 4 40 (三)差倍问题:已知两个数的差及两个数的倍数关系,求这两个数。 方法:差(倍数1)1倍数(较小数) 1 倍数(较小数)倍数几倍数(较大 数) 或和1倍数(较小数)几倍数(较大数)例如:两个数的差为80,大数是小数的 5 倍,求这两个数。 方法:80 (5 1) 20 20 5 100 二、年龄问题 年龄问题的三大规律:1.两人的年龄差是不变的; 2.两人年龄的倍数关系是变化的量;3.随着时间的推移,两人的年龄都是增加相等的量. 解答年龄问题的一般方法是: 几年后年龄大小年龄差倍数差小年龄,几年前年 龄小年龄大小年龄差倍数差. 三、植树问题 (一)不封闭型(直线)植树问题 1 直线两端植树:棵数段数1 全长株距1; 全长株距(棵数 1 ) 株距全长(棵数 1 ) 2 直线一端植树:全长株距棵数; 棵数全长株距; 株距全长棵数; 3 直线两端都不植树:棵数段数1 全长距1 ; 株距全长(棵数1); (二)封闭型(圆、三角形、多边形等)植树问题 棵数总距离棵距; 总距离棵数棵距; 棵距总距离棵数. 四、方阵问题在方阵问题中,横的排叫做行,竖的排 叫做列,如果行数和列数都相等,则正好排成一个正方形,就是所谓的“方阵” 。 方阵的基本特点是: ①方阵不论在哪一层,每边上的人(或物)数量 都相同.每向里一层,每边上的人数就少2, 每层总数就少8. ②每边人(或物)数和每层总数的关系: 每层总数[ 每边人(或物)数1] 4; 每边人(或物)数=每层总数 4 1. ③实心方阵:总人(或物)数=每边人 (或物)数X每边人(或物)数. 五、还原问题已知一个数,经过某些运算之后,得到了 一个新 数,求原来的数是多少的应用问题,它的解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫做逆推法或还原法,这种问题就是还原问题. 还原问题又叫做逆推运算问题.解这类问题利用加减互为逆运算和乘除互为逆运算的道理,根据题意的叙述顺序由后向前逆推计算.在计算过程中采用相反的运算,逐步逆推. 在解题过程中注意两个相反:一是运算次序与原来相反;二是运算方法与原来相反. 六、盈亏问题按不同的方法分配物品时,经常发生不能均分的情况.如果有物品剩余就叫盈,如果物品不够就叫亏,这就是盈亏问题的含义. 一般地,一批物品分给一定数量的人,第一种分 配方法有多余的物品(盈),第二种分配方法 则不足(亏),当两种分配方法相差n 个

小升初数学应用题专项测试卷(含答案)

小升初数学应用题专项测试卷(含答案)应用题在小升初考试中占很大比重,并且需要明确解题思路,不论哪一步出问题都会丢分。小编为大家准备了小升初数学应用题专项测试卷,希望对大家今后的学习有所帮助。 以题中的等量为等量关系建立方程 例题:有两桶油,甲桶油重量是乙桶油的2倍,现在从甲桶中取出25.8千克,从乙桶中取出剩下的两桶油重量相等,两桶油原来各有多少千克? 解设:乙桶油为X千克,那么甲桶油为2X千克 甲桶剩下的油=乙桶剩下的油 2X一25.8=X一5.2 2X一X=25.8一5.2 X=20.6 2X=20.62=41.2 答:甲桶油重4102千克,乙桶油重20.6千克, 练一练: ①甲厂有钢材148吨,乙厂有112吨,如果甲厂每天用18吨,乙厂每天用12吨,多少天后两厂剩下的钢材相等? ②一个两层的书架,上层放的书是下层的3倍,如果把上层的书放90本到下层,则两层的书相等,原来上下层各有书多少本?

③甲车间有54人,乙车间有48人,在式作时,为了使两车间人数相等,甲车间应调多少人去乙车间? ④超市存有大米的袋数是面粉的3倍,大米买掉180袋,面粉买掉50袋后,大米、面粉剩下的袋数相等,大米、面粉原各多少袋? ⑤某校有苦于人住校。若每一间宿舍住6人,则多出34人;若每一间宿舍住7人,则多出4间宿舍。问有多少人住校?有几间宿舍? ⑥甲仓所存的面粉是乙仓的3倍,如果从甲仓运走900千克,从乙仓运出80千克,则两仓所存的面粉相等,两仓原有面粉各多少千克? ⑦有箱桔子,甲箱的重量是乙箱的1.8倍,如果从甲箱中取出1.2千克放篱乙箱,那么两箱的重量相等了,原来甲乙两箱各多少千克? ⑧一个通讯员骑自行车要在规定的时间内把信件送到某地,他每小时15千米查以早到24分钟,每小时骑12千米要迟到15分钟,规定时间是多少?他去某地的路程有多远? ⑨一列火车从甲地开往乙地每小时50千米,一小时后另一列火车也从甲地开往乙地每小时行60千米,结果两列火车同时到达乙3地,甲、乙两地相距多少千米? ⑩甲级糖每千克16.60元,乙级糖每千克8.80元。商店用80千克甲级糖和若干乙级糖混合后平均每千克售价14.00元,

六年级下册数学-小升初应用题专项练习及答案-f0-人教版

六年级下册数学-小升初应用题专项练习及答案-人教版 命题人:周辉 一、解答题(题型注释) 12根用了12分,这个老人如果走24分,应走到第几根? 2.某沙漠通讯班接到紧急命令,让他们火速将一份情报送过沙漠。现在已知沙漠通讯班成员只有靠步行穿过沙漠,每个人步行穿过沙漠的时间均为12天,而每个人最多只能带8天的食物,请问,在假定每个人饭量大小相同,且所能带的食物相同的情况下,沙漠通讯班能否完成任务?如果能,那么最少需要几人才能将情报送过沙漠,怎么送? 3.在共有100匹马跟100块石头,马分3种,大型马;中型马跟小型马。其中一匹大马一次可以驮3块石头,中型马可以驮2块,而小型马2头可以驮一块石头。问需要多少匹大马,中型马跟小型马?(问题的关键是刚好必须是用完100匹马) 4.3年前父子的年龄和是49岁,今年父亲的年龄是儿子年龄的4倍,父子今年各多少岁? 5.某校二年级师生共230人,准备秋游。怎样租车合适?大客车每辆限坐40人,每天200元;中巴车每辆限坐30人,每天150元。 6.天天旅行社推出A、B两种优惠方案。 团体10人以上(含10人)每位100元 大人每位120元,小孩每位60元 有5位老师,带着10名小朋友去旅游,按哪种方案买票便宜?相差多少钱? (2)有11位家长,带着4个小孩去旅游,按哪种方案买票便宜?相差多少钱?7.修路队修一条公路,前4天修了全长的25%,第五天用同样的工作效率一天修路80千米,这条路长多少千米? 8.每瓶饮料3元,买5送一,45名学生每人一瓶,要买多少瓶饮料?需要多少钱? 9.客车和货车分别从AB两地同时出发,往返于AB两地之间。客车的速度是74千米/时,货车的速度是64千米/时,经过5小时两车第二次相遇。AB两地相距多少千米?

小升初数学应用题重点题型

六年级数学应用题汇总 1.某儿童商店全场8折优惠,一件商品原价80元,打折后便宜多少元? 2.小明家投保了家庭财产保险,保险金额为300000元,保险期限为5年,按每年保险费率为0.5%计算,共需缴纳保险费多少元? 3.小明妈妈将20000元人民币存入银行,定期3年,年利率为3%,3年后取得本息多少钱? 4.商场打折促销,衣服打8折,小明买一件衣服原价300元,现价多少元?? 5.学校有篮球,足球,排球共240个,已知篮球,足球,排球的比是5:4:3,排球有多少只? 6.白水湖学校图书馆有2000册文学书,科技书比文学书多14,科技书 有多少本?

7.六年级3班有学生48人,占全年级的15,六年级学生占全校总数的 29,全校有多少名学生? 8.一个小队中,男同学占全队人数的59,女同学有20人,全队有多少 人? 9.一本故事书360页,小红4天看来全书的13,平均每天看多少页? 10.小明读一本书,第一天读了全书的15,第二天读了全书的27,第三 天全部读完,第三天读了这本书的几分之几?如果这本书70页,第三天应该从第几页看起? 11.一个圆柱形水池,池深2米周长6.28米,求水池的容积?

12.做一个无盖的圆柱形铁皮桶,底面直径4分米,高8分米,需要多少平方米的铁皮?得数保留整数 13.做一个圆锥形容器,从里面量的底面直径是2米,高为2.8米,这个容器的最大容积多少升? 14一堆稻谷成圆锥形,底面半径是1.5米,高是1.2米,如果每立方米稻谷约重5.2吨,求这堆稻谷的重量? 15一个圆锥形的煤堆,底面半径为4米,高0.9米,如果每立方米煤重1.5吨,这堆煤约重多少吨?(保留整数) 16.一本数学书,每天看12页,18天可以看完,如果每天看27页,多少天可以看完? 17白水湖学校教室装修地板,用同样的砖铺地,学校教师面积24平方米,用去288快地砖,照这样计算,学校篮球场面积为180平方米,至少需要准备多少块方砖?

小升初数学40道应用题专项练习(含答案)

40道应用题专项练习 1.王爷爷家养的4头奶牛每个星期产奶896千克,平均1头奶牛每天产多少奶呢? 2.4辆汽车3次运水泥960袋,平均每辆汽车每次运水泥多少袋? 3.水波小学每间教室有3个窗户,每个窗户安装12块玻璃,9间教室一共安装多少块玻璃? 4.小红买了2盒绿豆糕,一共重1千克.每盒装有20块,平均每块重多少克? 5.一辆大巴车从张村出发,如果每小时行驶60千米,4小时就可以到达李庄.结果只用了3个小时就到达了.这辆汽车实际平均每小时行驶多少千米? 6.白塔村计划修一条水渠,如果每天修16米,18天就能修完.第一天修了24米,照第一天 的进度,几天能修完? 7.虹光宾馆购进100条毛巾,每条6元.如果用这些钱购买8元一条的毛巾,可以买多少条? 8.一包A4复印纸,每天用25张,20天正好用完.如果每天少用5张,那么可以用多少天? 9.一个养蜂专业户,今年饲养蜜蜂24箱.去年5箱蜜蜂酿了375千克蜂蜜,照去年的酿蜜量 计算,今年可以酿多少千克蜂蜜? 10.冬冬家在15平方米的土地上共育苗135棵,照这样计算,要育苗990棵,需要多大面积的土地? 11.园林工人沿公路的一侧植树,每隔6米种一棵,一共种了36棵。从第一棵到最后一棵的 距离有多远? 12.在一条全长2千米的街道两旁安装路灯(两端都要装),每隔50米安一座,一共要安装 多少座路灯? 13.一根木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟? 14.48名学生在操场上做游戏。大家围成一个正方形,每边人数相等。四个顶点都有人,每 边各有几名学生? 15.要在五边形的水池边上摆上花盆,要使每一边都有4盆花,最少需要几盆花? 16.为迎接六一儿童节,学校举行团体操表演。四年级学生排成方阵,最外层每边站了15人,最外层一共有多少名学生?整个方阵一共有多少人? 17.广场上的大钟5时敲5下,8秒种敲完。12时敲12下,需要多长时间?

小升初数学专项题-应用已专题第四讲平面图形应用题通用版

第四讲平面图形应用题 【基础概念】:在小学阶段学过的平面图形有线段、射线、直线、三角形、长方形、正方形、平行四边形、梯形、圆、组合图形,与这些图形有关的问题叫作平面图形应用题;解决这些问题常用到的公式有:、长方形:周长公式:C=(a+b)×2,面积公式:S=ab;正方形:周长公式:C=4a,面积公式:S=a2;平行四边形:面积公式:S=ab;三角形:面积公式:S=ab ÷2;梯形:面积公式:(a+b)×h×2;圆:周长公式:C=2πr或C=πd, 面积公式:S=πr2。 【典型例题1】:把一个直径10厘米的圆,削成一个最大的正方形,这个正方形的面积是多少平方厘米? 【思路分析】:在一个直径10厘米的圆中截取一个最大的正方形,这个正方形的对角线的长度等于圆的直径,正方形两条对角线把整个正方形分成了4个相等的等腰直角三角形,正方形的对角线的一半等于这个圆的半径,所以正方形对角线的一半是10÷2=5厘米,即每个等腰直角三角形的底和高都是5厘米,根据三角形的面积公式:s=ah÷2,把数据代入公式解答。 【解答】:10÷2=5(厘米) 由分析知:正方形两条对角线把整个正方形分成了4个相等的等腰直角三角形,每个等腰直角三角形的底和高都是5厘米, 所以正方形的面积是: 5×5÷2×4 =12.5×4 =50(平方厘米) 答:这个正方形的面积是50平方厘米。 【小结】:解决此类问题的关键是要明确:正方形两条对角线把整个正方形分成了4个相等的等腰直角三角形,根据三角形的面积公式解答。 【巩固练习】 1.一张正方形纸板,周长是12厘米,把它剪成一个最大的圆,这个圆的面积是多少平方厘米?

北师大版完整版新精选小学数学小升初应用题专项练习及答案

北师大版完整版新精选小学数学小升初应用题专项练习及答案 一、北师大小学数学解决问题六年级下册应用题 1.沙漏又称沙钟,是我国古代一种计量时间的仪器,它是根据流沙从一个容器到另一个容器的数量来计算时间的。图10展示了一个沙漏记录时间的情况。 (1)求出沙漏此时上部沙子的体积。 (2)现在沙漏下部沙子的体积是62.8cm,如果再过1分钟,沙漏上部的沙子可以全部漏到下部,那么现在下部的沙子已经计量了多少分钟? 2.计算下面图形的表面积和体积。(单位:cm) 3.如下图,圆柱形钢柱有多高?(单位:cm,结果保留整数) 4.操作题

(1)在下面的方格图中画出一个三角形,3个顶点的位置分别A(3,3)、B(1,4)、C (1,3)。 (2)画出三角形按2:1放大后的图形。 (3)放大后的三角形与原三角形面积之比是________ 5.向阳小学食堂买来1800千克面粉,5天吃了150千克。照这样计算,这些面粉共能吃多少天?(用比例的知识解答) 6.求下列立体图形的体积。 7.修建一个圆柱形的沼气池,底面直径是3m,深2m.在池的内壁与下底面抹上水泥,抹水泥部分的面积是多少平方米? 8.小明骑行去奶奶家,下表是他记录的已走路程和剩余路程情况。 已走路程/千米246810 剩余路程/千米1816141210 9.新民小区有个圆柱形喷泉池,喷泉池底面半径10米,深0.8米。 (1)这个喷泉池的容积是多少立方米? (2)喷泉池的侧面与底面粉刷了水泥,粉刷水泥的面积是多少平方米? 10.工人师傅要给停车位铺地砖,若用边长为4dm的方砖铺地,则需要540块。若改用边长为3dm的方砖铺地,需要多少块?(用比例知识解答) 11.操作实践,动手动脑。

北师大版数学小升初试题∶解答应用题训练带答案解析(1)

北师大版数学小升初试题∶解答应用题训练带答案解析(1) 一、北师大小学数学解决问题六年级下册应用题 1.一个近似圆锥形的小麦堆,量得底面直径4米,高1.5米,这堆小麦大约有多少立方米? 2.一个盛有水的圆柱形容器,水面距容器口6厘米,从里面量这个容器底面半径为5厘米,现把一个底面半径为3厘米的圆锥形金属铸件完全浸没在水中,这时水面距容器口4.8厘米,求这个圆锥形金属铸件的高是多少? 3.操作题 (1)在下面的方格图中画出一个三角形,3个顶点的位置分别A(3,3)、B(1,4)、C (1,3)。 (2)画出三角形按2:1放大后的图形。 (3)放大后的三角形与原三角形面积之比是________ 4.装订一批练习本,如果每本用纸24页,可以装订250本;如果每本用纸30页,可以装订多少本?(用比例知识解答) 5.求下列立体图形的体积。

6. (1)用数对表示图中三角形顶点A、O的位置:A________,O________。(2)将图中的三角形绕点O顺时针旋转90°,并画出旋转后的图形。 (3)将旋转后的三角形按2:1放大并画出图形。 7.小明骑行去奶奶家,下表是他记录的已走路程和剩余路程情况。 已走路程/千米246810 剩余路程/千米1816141210 8.按要求作图或填空。 (1)请你自己选定一个比,把图形A缩小后得到图形B,并画出来。 (2)你选定的比是________,缩小后的三角形面积是________。 9.如图是校园一角的平面图,过A点有一根水管与长方形草坪的长边平行.

(1)请在平面图中用直线画出这根水管. (2)从A点到下水道挖一条排水沟,要使其长度最短.请在平面图中用线段画出这条水沟. (3)草坪长边的实际长度是________米. 10.沙漏又称沙钟,是我国古代一种计量时间的仪器,它是根据流沙从一个容器到另一个容器的数量来计算时间的。图10展示了一个沙漏记录时间的情况。 (1)求出沙漏此时上部沙子的体积。 (2)现在沙漏下部沙子的体积是62.8cm,如果再过1分钟,沙漏上部的沙子可以全部漏到下部,那么现在下部的沙子已经计量了多少分钟? 11.在一张长方形彩纸上摆满小正方形,每个小正方形面积与所需小正方形的数量如表:每个小正方形的面积/cm24916 所需小正方形的数量/个2169654 ________比例关系. (2)如果采用面积是36cm2的小正方形来摆满这张长方形彩纸,需要多少个小正方形?(用比例方法解答) 12.求圆锥的体积(单位:厘米)

小升初数学试卷:常见应用题

xx数学试卷:常见应用题 一、以总量为等量关系建立方程 例题两列火车同时从距离536千米的两地相向而行,4小时相遇,慢车每小时行60千米,快车每小时行多少小时?解法一:快车4小时行的+慢车4小时行的=总路程解设:快车小时行X千米 4X+60×4=536 4X+240=536 4X=296 X=74 解法二:(X+60)×4=536 X+60=536÷4 X=134一60 X=74 答:快车每小时行驶74千米。 xx ①降落伞以每秒10米的速度从18000米高空下落,与此同时有一热汽球从地面升起,20分钟后伞球在空中相遇,热汽球每秒上升多少米? ②甲、乙两个进水管往一个可装8吨水的池里注水,甲管每分钟注水400千克,要想在8分钟注满水池,乙管每分钟注水多少千克? ③两城相距600千米,客货两车同时从两地相向而行,客车每小时行70 千米,货车每小时行80千米,几小时两车相遇? ④两地相距249千米,一列火车从甲地开往乙地,每小时行55。5千米,行了多少小时还离乙地有27千米?

⑤买5个本子和3支铅笔一共用去10.4元,已知铅笔每支 0.9元,每本子多少元? ⑥服装厂要做984套衣服,已经做了120套,剩下的要在12天内完成平均每天做多少套? ⑦某生产小组9个工人要生产1926个零件,每人每小时可生产20个,工作5.5小时后,要求剩下的任务必须在4小时内完成,每人每小时必须生产多少? ⑧电机厂计划生产1980台电动机,已经生产了4天,每天生产45台,由于改进了技术,以后每天比原来增产15台,实际完成任务需几天? 二、以总量为等量关系建立方程 例题甲、乙两个粮仓一共有粮6800包,甲是乙的3倍,两仓各有多少包? 解设:乙xx有粮X包,那么甲xx有粮3X包 甲粮仓的包数+乙粮仓的包数=总共的包数 X+3X=6800 4X=6800 X=1700 3X=3×1700=5100 检验:1700+5100=6800包(甲乙两仓总共的包数) 或5100÷1700=3(甲仓是乙仓的3倍) 答:甲原有粮5100包,乙原有粮1700包。 xx ①学校买来乒乓球和蓝球一共135个,买来的乒乓球是蓝球的8倍,两种球各多少个?

小升初数学应用题专项综合训练试题

小升初数学应用题专项综合训练试题 1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地? 总棵数是900+1250=2150棵,每天可以植树24+30+32=86棵 需要种的天数是2150÷86=25天 甲25天完成24×25=600棵 那么乙就要完成900-600=300棵之后,才去帮丙 即做了300÷30=10天之后即第11天从A地转到B地。 2. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天? 这是一道牛吃草问题,是比较复杂的牛吃草问题。 把每头牛每天吃的草看作1份。 因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份 所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份 因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份 所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份 所以45-30=15天,每亩面积长84-60=24份 所以,每亩面积每天长24÷15=1.6份 所以,每亩原有草量60-30×1.6=12份 第三块地面积是24亩,所以每天要长1.6×24=38.4份,原有草就有 24×12=288份 新生长的每天就要用38.4头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=3.6头牛 所以,一共需要38.4+3.6=42头牛来吃。 两种解法:

(完整版)人教版小升初数学应用题归纳

小升初数学应用题归纳 3 3 1、果园里桃树的棵数相当于梨树棵数的3,相当于苹果树棵数的-。如果梨树 5 7 比苹果树少180棵,这个果园里有桃树、梨树、苹果树多少棵?(用方程思想解 题) 4 2、小明在商店买了苹果和梨,苹果的个数是梨的 -,小明吃了10个苹果,8个 5 梨,则剩下的苹果个数是剩下的梨的-。求小明买的苹果核梨各有多少个?(用 7 方程思想解题) 3、顺风运输队包运1万只瓷碗,每100只运费1.5元,如果损坏一只碗,不但不给运费,还要赔偿0.2元,完成包运任务后,这个运输队共得运费146.56元求运输中损坏了几只碗?(用方程思想解题)

4、一件玩具,第一天按原价出售,没人来买,第二天降价20%出售,仍没人来买,第三天再降价20 元,仍没人来买,第四天在第三天价格的基础上再降价20%,终于售出,已知售出价格是原价的48%。问原价是多少?(用方程思想解题) 5、王飞到山上图书馆借书,他上山每小时行 3 千米,从原路返回,每小时行 6 千米。求他上、下山的平均速度。(路程速度时间问题) 6、某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣 1 分.小华参加了这次竞赛,得了64 分.问:小华做对几道题?(鸡兔同笼问题)

7、两列火车从甲、乙两地同时开始相对开出,4小时后在距离中点48千米处相遇。已知慢车速度是快车的5,快车和慢车的速度各是多少?甲、乙两地相距多 7 少米?(相遇问题)(用方程思想解题) 8、A车和B车同时从甲、乙两地相向开出,经过5小时相遇。然后,它们又各自按照原速度方向继续行驶3小时,这时A车离乙地还有135千米,B车离甲地还有165千米。甲、乙两地相距多少千米?(相遇问题) 9、A、B两地相距1000米,甲、乙两人分别从A、B两地同时出发,在A、B 两地间往返散步。两人第一次相遇时距离AB中点100米,那么两人第二次相遇时距离第一次相遇的地点多少米?(相遇问题)

2020年小升初数学专项练习:应用题

2020年小升初数学专项练习 应用题(无答案) 班级 姓名 得分 一、填空。 1.某班女生相当于男生人数的 3 2,女生人数占全班人数的( )%,男生比女生多 ( )%。 2.40米减少25%后是( )米,( )米比60米少3 1。 3.两个工程队,甲队的人数是乙队的1.2倍,甲队有60人,乙队有( )人;如果乙队有60人,甲队有( )人。 4.甲乙两地相距430千米,一辆汽车从甲地到乙地,每小时行72千米,5小时后,汽车离乙地( )千米,离甲地( )千米。 5.甲、乙两数的平均数是80,甲、乙两数的比是3∶5,甲数是( ),乙数是( )。 6.一本书80页,先看了全书的41,又看了15页,还剩下全书的( )。 7.某班今天的出勤率为92.5%,请病假2人,事假1人,今天出勤( )人。 8.一项工程,甲独做30天完成,乙独做20天完成,两队合做4天,还剩下这项工程的( )。 二、选择题。 1.种一批树,活了100棵,死了1棵,求成活率的正确算式是( )。 A. 1001100-×100% B. 1100100+×100% C. 11001100+-×100% D. 1 1001+×100% 2.一个数的 53比它的54少( )。 A. 25% B. 30% C. 20% D. 33.3% 3.20米减去它的41后,再减去4 1米,还剩( )。 A. 10米 B. 19 21米 C. 1443米 D. 443米 4.甲、乙两班学生的平均人数是43人,甲班比乙班多4人,甲、乙两班各有多少人?设乙班有x 人,列出的方程是( )。 A. 43×2-x=4 B. 43×2+4=2x C. x +(x +4)=43×2 三、根据不同的算式,补出相应的条件。 某村今年植树1200棵 ,去年植树多少棵? 补充条件: 1. ,算式:1200-200

相关文档
最新文档