蛋白不表达:常见原因及分析

蛋白不表达:常见原因及分析
蛋白不表达:常见原因及分析

蛋白不表达:常见原因及分析

根据自己体会和蛋白版的既往精华帖子,总结了没有发现蛋白质表达的原因,或者蛋白质不表达的原因,欢迎大家拍砖。

1.载体构建错误。这个屡见不鲜,很多克隆新人经常弄错读码框。比如Qiagen的pQE系列载体,其克隆位点常有一两个碱基的区别;另外有些酶产生粘端有些酶产生平端,这些都容易导致读码框错误,从而表达不出来。

2.宿主菌选择不当。不同的宿主菌其基因型是不一样的。有些经过特殊修饰的载体,或者特殊用途的载体,或者有特殊启动子的载体,必须选择合适的宿主菌进行表达。因此,当你的蛋白没有表达出来时,可以考虑更换宿主菌。见下图

3.密码子的使用频率低。有些基因其本身含有许多稀有密码子,尤其是起始密码之后的15个碱基之内的稀有密码子,对蛋白表达有着很重要的影响。优化密码子对原核表达似乎效果很好,对真核表达系统未见得有很好的效果。曾经有某人在毕赤酵母表达某蛋白两年未果,试图将密码子优化进行表达,结果还是没有表达。一气之下将该优化的基因序列克隆到原核表达载体,表达量居然出奇地高!这是一个辛酸的笑话,但是一个真实的故事。但是有一点我可以有很大把握的说:对于真核表达,密码子优化只能起锦上添花的作用(确认有表达,以此来提高表达量),而不能雪中送炭(没有表达出来,通过密码子优化极有可能不奏效)。

4、质粒不稳定或者质粒丢失。pET系统通常比较稳定。但是你选用带氨苄青霉素抗性的载体时,也许有可能产生β-lactamase降解了抗生素,使质粒丢失。还有一种情况是表达重组的毒素蛋白,对宿主细胞也有毒性,造成质粒丢失。这种情况多见于真核表达系统。

5、蛋白酶将蛋白降解了。这种情况常由重组蛋白本身的N-或C-端序列引起的。当蛋白N-端是Arg, Leu, Lys, Phe, Trp,或 Tyr这些氨基酸时,容易遭受蛋白酶降解,此即N-末端规则。N-端是Met时,大肠杆菌可以悄悄地把这个Met偷走,特别是Met后紧跟着一个带小侧链的氨基酸时。C-末端存在非极性氨基酸时,也容易导致蛋白被降解。C末端最后5个氨基酸是极性的或者带电荷的,则不易被降解。

6、二级翻译起始位点。这种情况见于你的序列里正好含有和核糖体结合位点完全一致的序列。那就怪不得人家了,核糖体会很高兴地找到这个位点,然后开始翻译,致使你的蛋白被截短,在电泳时看不到预期大小的片段。

7、SD序列。这个不陌生吧?考研时老师喜欢出名词解释,也难怪人家老是拿这个出题----SD序列和起始密码子序列(80%是AUG,也有GUG的)之间的距离,对蛋白表达的效率也有着非常重要的影响。SD序列本身的组成对翻译效率也有影响。有时为了减少包涵体的产生,还特别对S D序列进行修饰呢!

8、mRNA的二级结构。在克隆之前,你得看看你的序列里是否有和核糖体结合位点和/或翻译起始位点互补的序列。如然,你最好进行同义密码子替换。否则由此形成的mRNA二级结构,会让翻译嘎然而止的。

9、意外终止。这种情况见于PCR扩增序列时,会和你开个不大不小的玩笑。比如它会将序列中间TAC突变为TAA,让你的蛋白翻译刹车。所以在进行表达之前,一定要进行测序,避免这种情况的发生。

10、转录终止子。转录终止子的存在可以促进蛋白表达;但是缺少时就会造成“通读”,没完没了地读下去。这在pET系统里不成问题,因为它在靶基因的相反方向有个选择性的标记基因。

如果你的靶基因正好和这个标记基因方向一致,那么你得看看你的靶基因后是否有个转录终止子。如果没有的话,它们会竞争得天昏地暗,抢着生成m R N A和蛋白质。

11、mRNA的不稳定性。靶基因的mRNA常聚集于细胞内。但是大肠菌的mRNA及其不稳定。如果在mRNA的5'-非翻译区和3‘-rho非依赖性终止子处插入稳定结构序列,可以促进mRNA的稳定性。尤其是5'末端要是有个不带突出的发夹结构,能让mRNA在胞浆内无生命之虞。

12、检测方法的可行性。有时候,蛋白的确表达了,只是表达量特别低,或者和杂带靠得特别近,致使你错误地以为蛋白没有表达。这时候,你可千万别忘记了生物学实验的两大黄金准则:对照和重复。说到对照,有很多层意思。最基本的意思是,要设立空载体对照。在真核系统表达的蛋白,常常量特别低。因此你不要老是想着WB和SDS-PAGE去检测。这时候,你必须多看文献,另辟蹊径,从文献中找找看这个蛋白有米有很特别的性质----比如说如果它具有酶活性,那简直就是便宜你了。还比如说,某些蛋白具有异样性质,比如说流感病毒的HA,你拿表达的不同梯度稀释的蛋白

做个血凝。如果发生血凝,并且呈现一定的梯度关系,那简直就是板上钉钉的事情了。

总结起来,套用一句很经典的电影台词:能表达出来的蛋白,其原因都是一致的;表达不出来的蛋白,各有各的原因。我这个小帖子,就是给你一点启示:从哪里找原因。希望能抛砖引玉,得到更多有价值的建议。

蛋白质序列分析

蛋白质序列、性质、功能和结构分析 基于网络的蛋白质序列检索与核酸类似,从NCBI或利用SRS系统从EMBL 检索。 1、疏水性分析 ExPASy的ProtScale程序(https://www.360docs.net/doc/b412068871.html,/cgi-bin/protscale.pl)可用来计算蛋白质的疏水性图谱。输入的数据可为蛋白质序列或SWISS-PROT数据库的序列接受号。也可用BioEdit、DNAMAN等软件进行分析。 2、跨膜区分析 蛋白质跨膜区域分析的网络资源有: TMPRED:https://www.360docs.net/doc/b412068871.html,/software/TMPRED_form.html PHDhtm: http:www.embl-heidelberg.de/Services/sander/predictprotein/predictpro tein.html MEMSAT: ftp://https://www.360docs.net/doc/b412068871.html, 3、前导肽和蛋白质定位 一般认为,蛋白质定位的信息存在于该蛋白自身结构中,并且通过与膜上特殊受体的相互作用得以表达。这就是信号肽假说的基础。这一假说认为,穿膜蛋白质是由mRNA编码的。在起始密码子后,有一段疏水性氨基酸序列的RNA片段,这个氨基酸序列就称为信号序列(signal sequence)。 蛋白质序列的信号肽分析可联网到http://genome.cbs.dtu.dk /services/SignalP/或其二版网址 http://genome.cbs.dtu.dk/services/SignalP-2.0/。该服务器也提供利用 e-mail进行批量蛋白质序列信号肽分析的方案 (http://genome.cbs.dtu.dk/services /SignalP/mailserver.html),e-mail 地址为signalp@ genome.cbs.dtu.dk。 蛋白质序列中含有的信号肽序列将有助于它们向细胞内特定区域的移动,如前导肽和面向特定细胞器的靶向肽。在线粒体蛋白质的跨膜运输过程中,通过线粒体膜的蛋白质在转运之前大多数以前体形式存在,它由成熟蛋白质和N端延伸出的一段前导肽或引肽(leader peptide)共同组成。迄今有40多种线粒体蛋白质前导肽的一级结构被阐明,它们约含有20~80个氨基酸残基,当前体蛋白跨膜时,前导肽被一种或两种多肽酶所水解转变成成熟蛋白质,同时失去继续跨膜能力。前导肽一般具有如下性质:①带正电荷的碱性氨基酸(特别是精氨酸)含量较丰富,它们分散于不带电荷的氨基酸序列中间;②缺失带负电荷的酸性

原核蛋白表达常见问题解析

原核蛋白表达常见问题解析 1、为什么目的蛋白总是以包涵体的形式出现? 在原核蛋白表达纯化中目的蛋白经常发生错误的折叠,并聚集成为 包涵体。经过诱导,目的蛋白通常可达细胞总蛋白的50%以上。虽然有一定比例的蛋白以可溶的单体形式存在,而多达95%(甚至更多)的蛋白则在包涵体中。实验过程中,可以采取降低诱导温度,例如25–30°C,或降低IPTG浓度(0.01–0.1mM)并延长诱导时间,还有采用特别的 培养基等方法获得更多的可溶蛋白。 2、跨膜蛋白为什么很难表达? 跨膜蛋白的表达成功率相对较低是一个实验结果,究其原理,目前 众说纷纭很多种理论。以我们浅薄的理解层面来看,主要有以下几个 原因: 跨膜蛋白一般都是强疏水性的氨基酸分子和亲水性的分子跳跃式 的连接,形成的亲水疏水的一个最简单的跨膜化学结构,这种结构与 信号肽结构相似,对于原核细胞来说,简单的细胞器很难像真核细胞 一样完成信号肽识别及切除、引导内质网、高尔基体重新包装及分泌 这一复杂过程,有些蛋白是多次跨膜,对于原核细胞来说几乎是不可 能完成的任务。 另外,对于疏水性的片段,在原核细胞中极易形成包涵体,疏水 性多肽会抑制翻译过程,甚至与原核膜结构融合形成毒性,出于生物 自我保护的本能,所有的细胞器都会停止合成蛋白的过程。 3、如何选择蛋白表达宿主菌?

4、我们有哪些原核蛋白纯化方式?如何选择不同的纯化方式? 答:我们公司的蛋白纯化方法大致分为亲和纯化、离子交换、切胶 回收三类。 1、常规情况下,一般携带融合标签(His标签,GST标签,sumo标签,Fc标签),我们可以通过Ni柱、GST柱、Protein A等进行亲和纯化 获得融合蛋白,用亲和纯化的方法一般可以获得85%以上纯度的蛋白, 亲和纯化的方便快捷。 2、如果需要目的蛋白不含有任何标签,怎么选择纯化方式?。 (1)可表达融合蛋白,用蛋白工具酶切割融合蛋白,再进行纯化除去 工具酶。此方法能快速得到蛋白。 (2)可表达不含标签的蛋白,进行离子、分子筛、疏水等纯化,通过AKATA纯化设备获得蛋白。 3、如果需要获得蛋白作为抗原,可以直接通过切胶回收的方式,此方 法获得蛋白纯度较高,进行免疫动物后得到的抗体进行WB反应,灵敏 度较高。 5、表达得到的蛋白是有活性的么? 答:需要让蛋白有活性的条件很复杂,合适的缓冲液体系、盐浓度、蛋白的折叠状态甚至检测活性的方法的细微差别都可能导致活性 的强弱有无,一般情况下,上清表达的蛋白要比包涵体经过变复性纯 化后得到的蛋白活性要好,我们尽量从上清中获得蛋白,期许蛋白形 成的折叠最接近活性状态,这也是我们擅长的。但是在实际实验条件下,我们无法承诺表达纯化的蛋白一定具有客户期望的生理活性。

蛋白Western blot电泳——试验中常见问题及解答

蛋白质电泳与western blot1 Western免疫印迹(Western Blot)是将蛋白质转移到膜上,然后利用抗体进行检测。对已知表达蛋白,可用相应抗体作为一抗进行检测,对新基因的表达产物,可通过融合部分的抗体检测。该文主要通过以下几个方面来详细地介绍一下Western Blot技术。 (1)原理 (2)分类 ①放射自显影②底物化学发光ECL ③底物荧光ECF ④底物DAB呈色 (3)主要试剂 (4)主要程序 (5)实验常见的问题指南 1. 参考书推荐 2. 针对样品的常见问题 3. 抗体 4. 滤纸、胶和膜的问题 5. Marker 的相关疑问 6. 染色的选择7. 参照的疑问8. 缓冲液配方的常见问题 9. 条件的摸索10. 方法的介绍 11. 结果分析(1)原理:与Southern或Northern杂交方法类似,但Western Blot采用的是聚丙烯酰胺凝胶电泳,被检测物是蛋白质,“探针”是抗体,“显色”用标记的二抗。经过PAGE分离的蛋白质样品,转移到固相载体(例如硝酸纤维素薄膜)上,固相载体以非共价键形式吸附蛋白质,且能保持电泳分离的多肽类型及其生物学活性不变。以固相载体上的蛋白质或多肽作为抗原,与对应的抗体起免疫反应,再与酶或同位素标记的第二抗体起反应,经过底物显色或放射自显影以检测电泳分离的特异性目的基因表达的蛋白成分。该技术也广泛应用于检测蛋白水平的表达。 (2)分类 ①放射自显影②底物化学发光ECL ③底物荧光ECF ④底物DAB呈色 现常用的有底物化学发光ECL和底物DAB呈色,体同水平和实验条件的是用第一种方法,目前发表文章通常是用底物化学发光ECL。只要买现成的试剂盒就行,操作也比较简单,原理如下(二抗用HRP标记):反应底物为过氧化物+鲁米诺,如遇到HRP,即发光,可使胶片曝光,就可洗出条带。 (3)主要试剂 1、(以利于溶解双丙稀酰胺)的去离子水配制含有29%(w/v)丙稀酰胺和 1%(w/v)N,N’-亚甲双丙烯酰胺储存液丙稀酰胺29g,N,N-亚甲叉双丙稀酰胺1g,加H2O至100ml。)储于棕色瓶,4℃避光保存。严格核实PH不得超过7.0,因可以发生脱氨基反应是光催化或碱催化的。使用期不得超过两个月,隔几个月须重新配制。如有沉淀,可以过滤。 2、,1mlH2O去离子水配制,室温保存。 3、分离胶缓冲液:1.5mmol/L Tris-HCL(pH8.8):18.15gTris和48ml1mol/LHCL混合,加水稀释到100ml终体积。过滤后40C 保存。 4、浓缩胶缓冲液:0.5mmol/LTris-HCL(pH6.8):6.05g Tris溶于40mlH2O中,用约48ml 1mol/L HCL调至pH6.8加水稀释到100ml终体积。过滤后40C保存。这两种缓冲液必须使用Tris碱制备,再用HCL调节PH值,而不用Tris.CL。 5,N,N’N’四甲基乙二胺催化过硫酸铵形成自由基而加速两种丙稀酰胺的聚合。PH太低时,聚合反应受到抑制。10%(w/v)过硫酸胺溶液。提供两种丙稀酰胺聚合所必须的自由基。去离子水配制数ml,临用前配制. 6.1g过硫酸铵,加超纯水溶解并定容至10ml,分装到1.5ml微量离心管中,冻存。 7缓冲液8ml,甘油6.4ml,10%SDS 12.8ml,巯基乙醇3.2ml,0.05%溴酚蓝1.6ml,H2O 32ml混匀备用。按1:1或1:2比例与蛋白质样品混合,在沸水终煮3min混匀后再上样,一般为20-25ul,总蛋白量100μg。

蛋白表达不同检测方式的比较和分析(仅供参照)

蛋白表达不同检测方式的比较和分析 免疫组化法(immunohistochemistry) 原理:免疫组化,是应用免疫学基本原理——抗原抗体反应,即抗原与抗体特异性结合的原理,通过化学反应使标记抗体的显色剂(荧光素、酶、金属离子、同位素)显色来确定组织细胞内抗原(多肽和蛋白质),对其进行定位、定性及定量的研究,称为免疫组织化学技术(immunohistochemistry)或免疫细胞化学技术(immunocytochemistry)。 特点:是融合了免疫学原理(抗原抗体特异性结合)和组织学技术(组织的取材、固定、包埋、切片、脱蜡、水化等),通过化学反应使标记抗体的显色剂(荧光素、酶、金属离子、同位素)显色,来对组织(细胞)内抗原进行定位、定性及定量的研究(主要是定位)。样本是细胞或组织,要在显微镜下观察结果,可能出现膜阳性、质阳性和核阳性。 蛋白免疫印迹( Western Blot) 原理:蛋白质印迹法是将电泳分离后的细胞或组织总蛋白质从凝胶转移到固相支持物NC 膜或PVDF膜上,然后用特异性抗体检测某特定抗原的一种蛋白质检测技术。 特点:先要进行SDS-PAGE,然后将分离开的蛋白质样品用电转仪转移到固相载体上,而后利用抗原-抗体-标记物显色来检测样品,可以用于定性和半定量。 ELISA检测 原理:酶联免疫吸附剂测定法,简称酶联免疫法,或者ELISA法,它的中心就是让抗体与酶复合物结合,然后通过显色来检测。 特点:用到了免疫学原理和化学反应显色,待测的样品多是血清、血浆、尿液、细胞或组织培养上清液,因而没有用到组织包埋、切片等技术,这是与免疫组化的主要区别,操作上开始需要将抗原或抗体结合到固相载体表面,从而使后来形成的抗原-抗体-酶-底物复合物粘附在载体上,这就是“吸附”的含义。 免疫组化和elisa所用到的原理大致相同,只是因为所检测的样品不同,从而在操作方法上有所不同。Elisa多用于定量分析,其灵敏度非常高。

SDS-PAGE电泳常见问题

SDS-PAGE电泳问题总结 蛋白质条带为什么走到下面逐渐变宽发散? 回答:多数情况是因为小分子在胶里的运动不规律,这种情况常发生在高浓度胶或凝固不一致的胶里,你可以加大阴极的缓冲液浓度,可能会有点改善 胶凝的快慢不在于TEMED多少,在于APS的量,APS提供自由基,TEMED帮助自由基作用, 是催化剂,对凝固速度影响不是太大,可以试试加大APS的量 丙烯酰胺在凝胶中的百分比分离胶的分辨范围 15 % 15~45 kDa 12.5% 15~60 kDa 10 % 18~75 kDa 7.5% 30~120kDa 5 % 60~212kDa 来源于《蛋白质技术手册》汪家政 每种浓度的变性胶的分离范围不是指能跑出哪个范围分子量的蛋白质,而是指在这个区 间内,蛋白质迁移率基本和分子量成正比,也就是线性关系,为了数据的可靠性,大家 尽量根据这个来选择自己配胶的浓度。 下层也就是阳极缓冲液的作用当然是导电,用普通TRIS缓冲液做阳极缓冲液,一样跑得好,阴极就不一样了,需要提供离子强度和SDS环境,而在电泳过程中,阴极缓冲液的一些离子损失,而且与样品接触,不适合再次使用
至于有些时候跑太大浓度的胶,因 为药品,BUFFER配制过程的一些问题,导致会出现蛋白带无法电泳到分离胶的最下方,胶跑得难看情况比较多,一般来说,15%的胶已经能够跑出大约15KDa左右的蛋白,对于普通 SDS-PAGE已经几乎到了极限,还跑不出来的MARK带,就不必去追究商品的问题了 SDS-PAGE胶的凝结速度受温度影响很大,随着温度的升高,凝结速度越来越快,温度降低则反之。所以,夏天时胶凝结的比较快,而冬天脚的凝结速度则变慢,甚至不能凝结,解决此类问题较可行的方法是:冬天在原配方的基础上加倍过硫酸铵和TEMED的使用量,可很好的解决胶凝结速度过慢的问题。 做SDS-PAGE的时候,除了蛋白量上样一致,最好体积也一致,这样跑出来的胶各个泳道之间的band能做到一样宽,方便后面的比较,特别是WB。做法就是拿1X的上样缓冲补全要加的样做到体积一致,否则跑出来会有的宽有的窄,特别是上样体积相差较大的 加入染色液后,先放入微波炉里加热5-10秒,使染色液微热即可(千万不要加热太久, 否则冰醋酸就挥发了)。然后放水平摇床上摇20分钟,最多半小时就染好了。脱色也很 简单,不用脱色液,直接用去离子水,放微波炉里煮沸5分钟左右,然后将水倒掉,再换上新的去离子水煮,这样反复几次,就可以了。效果可能比正常的脱色稍差一点点,不 如那样清楚,只要电泳时比平时多上1/5的样品就可以了,关键是这样省时省材料(用不

差异蛋白word版

SELDI蛋白质芯片筛选差异蛋白分子 的二级鉴定

摘要 目的探讨以SELDI蛋白质芯片筛选后的细胞差异表达蛋白的分离和鉴定方法及其意义。方法以经体外培养及10JAM褪黑素药物干预的内皮祖细胞差异表达蛋白质为研究对象,分别采用Tricine—SDS—PAGE和双向凝胶电泳方法进行差异蛋自分离及结果比较,以FTICR—MS二级质谱鉴定。结果经Tricine—SDS—PAGE分离后,选取的分子量为53kDa左右的趋势性的差异表达蛋白进行FTICR—MS分析,质谱鉴定为微管蛋白一a3(吻合度评分为87)。经双向凝胶电泳分离后,于凝胶近酸性端、分子量在72—95kD之间区域,选取蛋白表达量较高的一点,质谱鉴定其为人热休克蛋白90一Q(吻合度评分为91)。结论在本文结果中,Tricine —SDS—PAGE对于大致35—70kDa范围的蛋白分离较清晰、重复性好,且样品用量少。2-DE 对最低上样量有较严格要求,但它能提供分子量、等电点双重参数来更准确定位所感兴趣蛋自点,且对较大分子量蛋白的分离效果更佳。电喷雾傅立叶变换离子回旋共振高分辨质谱分辨率高且质量稳定性较好。 关键词:SELDI;Tricine—SDS—PAGE;双向凝胶电泳;质谱 SELDI蛋白质芯片技术,即表面增强激光解吸离子化飞行时间质谱(surface—enhanced laser desorption/ionization—time of flight—massspectromet巧),是蛋白质组学研究中的一项新兴技术,在识别特定蛋白质表达物、蛋自质差异分析、测定血清中小分子物质含量方面提供了新的思路与方法。该技术已经逐渐应用与临床,目前已见其应用于传染病、肿瘤等疾病诊断筛选的临床报道【1,2】。本课题组前文‘3,41研究建立了SELDI蛋白质芯片技术检测体外培养细胞蛋白质差异表达方法,发现与传统方法比较,SELDI技术对于5kDa 以下的低分子量差异蛋白和低丰度的差异蛋白质的检出效果较佳,而且该技术具有高通量、上样量低和灵敏度高等优势。但经SELDI技术检出的差异蛋自质仅具有分子量特征,需进一步进行分离和准确鉴定。本研究在前文基础上进一步以内皮祖细胞(endothelial progenitor cells,EPCs)细胞培养及褪黑素药物干预为研究对象,探讨以SELDI蛋白质芯片筛选后的细胞差异表达蛋白的进一步分离和鉴定方法及其意义。 1.1研究对象 采用10μM褪黑素作用于培养至第7天并经免疫组化鉴定人脐血来源的EPCs,37℃、5%CO2条件下培养24小时后,经细胞裂解提取的细胞总蛋自(样品于一80。C贮存),分别采用Tricine—SDS—PAG双向凝胶电泳方法进行分离蛋自及结果比较,采用二级质谱鉴定。 2方法 2.1差异蛋白质电泳方法选择 2.1.1 Tricine—SDS—PAGE分离蛋白 (1)溶液的配制:Tricine—SDS—PAGE的凝胶由不同分子组成的丙烯酰胺和甲叉双丙烯酰胺混合液聚合而成。其中浓缩胶由3C丙烯酰胺储存液配成4%的丙烯酰胺溶液聚合而成,夹层胶由3C丙烯酰胺储存液配成10%的丙烯酰胺溶液聚合而成,致密胶由5C丙烯酰胺储存液或6C丙烯酰胺储存液配成16.5%的丙烯酰胺溶液(添加或不添加36.5%尿素)聚合而成。凝胶配方如下表。

蛋白质结构分析原理及工具-文献综述

蛋白质结构分析原理及工具 (南京农业大学生命科学学院生命基地111班) 摘要:本文主要从相似性检测、一级结构、二级结构、三维结构、跨膜域等方面从原理到方法再到工具,系统地介绍了蛋白质结构分析的常用方法。文章侧重于工具的列举,并没有对原理和方法做详细的介绍。文章还列举了蛋白质分析中常用的数据库。 关键词:蛋白质;结构预测;跨膜域;保守结构域 1 蛋白质相似性检测 蛋白质数据库。由一个物种分化而来的不同序列倾向于有相似的结构和功能。物种分化后形成的同源序列称直系同源,它们通常具有相似的功能;由基因复制而来的序列称为旁系同源,它们通常有不同的功能[1]。因此,推测全新蛋白质功能的第一步是将它的序列与进化上相关的已知结构和功能的蛋白质序列比较。表一列出了常用的蛋白质序列数据库和它们的特点。 表一常用蛋白质数据库 网址可能有更新 氨基酸替代模型。进化过程中,一种氨基酸残基会有向另一种氨基酸残基变化的倾向。氨基酸替代模型可用来估计氨基酸替换的速率。目前常用的替代模型有Point Accepted Mutation (PAM)矩阵、BLOck SUbstitution Matrix (BLOSUM)矩阵[2]、JTT模型[3]。 序列相似性搜索工具。序列相似性搜索又分为成对序列相似性搜索和多序列相似性搜索。成对序列相似性搜索通过搜索序列数据库从而找到与查询序列相似的序列。分为局部联配和全局联配。常用的局部联配工具有BLAST和SSEARCH,它们使用了Smith-Waterman 算法。全局联配工具有FASTA和GGSEARCH,基于Needleman-Wunsch算法。多序列相似性搜索常用于构建系统发育树,这里不阐述。表二列举了常用的成对序列相似性比对搜索工具

针刺抗哮喘差异表达蛋白的生物信息学分析

文章编号:1005-0957(2014)09-0875-04 ·综 述· 针刺抗哮喘差异表达蛋白的生物信息学分析 冉君1,尹磊淼2,王宇2,徐玉东2,刘艳艳2,杨永清1 (1.上海中医药大学,上海 201203;2.上海市针灸经络研究所,上海 200030) 【摘要】 目的 对针刺抗哮喘差异表达蛋白的生物学功能和分子网络进行分析,探讨生物信息学方法在针灸研究中的应用和思路。方法 利用分类系统(PANTHER)、信号通路交互作用数据库(Pathway Interaction Database,PID)、分子网络作用软件(Ingenuity Pathway Analysis,IPA)分别对针刺抗哮喘差异表达蛋白进行分子生物功能注释、信号通路、蛋白相互作用和分子调控网络分析。结果 多个针刺抗哮喘差异表达蛋白与免疫系统功能密切相关,涉及了RhoA信号通路、Toll样受体信号通路、嗜酸性粒细胞Ccr3信号通路、T细胞IL-2R beta活化通路等生物通路,通过调控下游细胞因子,影响CD4分子的功能,发挥免疫调节作用。结论 通过对针刺抗哮喘差异表达蛋白的生物信息学分析获得了针刺抗哮喘作用免疫相关分子通路和调控靶点,为进一步研究针刺抗哮喘的免疫相关分子机制奠定基础。 【关键词】 针刺;哮喘;差异表达蛋白;生物信息学 【中图分类号】 R2-03 【文献标志码】 A DOI:10.13460/j.issn.1005-0957.2014.09.0875 Bioinformatic Analysis of Differentially Expressed Proteins in Anti-asthma Acupuncture RAN Jun1, YIN Lei-miao2, WANG Yu2, XU Yu-dong2, LIU Yan-yan2, YANG Yong-qing1. 1.Shanghai University of Traditional Chinese Medicine,Shanghai 201203,China; 2. Shanghai Research Institute of Acupuncture and Meridian,Shanghai 200030,China [Abstract] Objective To analyze the biological functions and molecular networks of differentially expressed proteins in anti-asthma acupuncture and explore the application of bioinformatic methods to and ideas for acupuncture research. Methods PANTHER classification system, Pathway Interaction Database (PID) and Ingenuity Pathway Analysis (IPA) software were used for molecular biological function annotation of differentially expressed proteins in anti-asthma acupuncture and analyses of signaling pathways, protein-protein interactions and molecular regulatory networks. Results Several differentially expressed proteins in anti-asthma acupuncture were closely related to immune system function and involved in biological pathways including RhoA signaling pathway, Toll-like receptor signaling pathway, eosinophils Ccr3 signaling pathway and T cell IL-2R beta activation pathway. They produced an immunoregulatory effect by modulating downstream cytokines and influencing CD4 molecule function). Conclusion Immune-related molecular pathways and regulation targets involved in the anti-asthma effect of acupuncture are obtained by bioinformatic analysis of differentially expressed proteins in anti-asthma acupuncture, which provides a basis for further research on the immune-related molecular mechanisms of acupuncture treatment for asthma. [Key words] Acupuncture; Asthma; Differentially expressed protein; Bioinformatics 支气管哮喘是世界范围内严重影响人类身心健康的呼吸道慢性变态反应性疾病,全球约有3亿人罹患哮喘,我国大约有3 000万哮喘患者,其发病率和死亡率在世界范围内呈逐年增高趋势[1-2]。针灸在防治哮喘的过程中发挥了积极作用[3-5],我们采用河南中医学院邵经明教授60余年经验总结的“三穴五针”方法治疗哮喘[6],取得了良好的临床疗效。临床和动物实验研究均证实针刺治疗具有免疫调节作用。本课题组前期开展了针刺抗哮喘差异蛋白质组学研究,鉴定了针刺抗哮喘血清和肺组织中的差异表达蛋白[7-8]。本次研究采用生物信息学分析方法,利用PANTHER、PID、IPA 等在线分析工具对这些针刺抗哮喘差异表达蛋白进行生物功能和分子网络作用分析,为进一步研究针刺抗哮喘分子机制和调节靶点提供科学依据。 1 资料与方法 1.1 针刺抗哮喘差异表达蛋白 针刺抗哮喘差异表达蛋白来自课题组前期通过蛋白质组学技术鉴定的针刺治疗哮喘特异性差异表达蛋白[7-8],见表1。 1.2 生物信息学分析方法 1.2.1 GO(基因本体)分子生物功能注释 在线分类系统PANTHER(http://www.pantherdb. org/)采用基因本体分类方法,可以从分子功能、生物学过程、生物通路3方面对蛋白质、基因及转录物进行分类。该研究主要是通过PANTHER分析针刺抗哮喘差异表达蛋白所涉及的生物学过程。

蛋白质组学常见问题

HPLC 篇 1 . HPLC 灵敏度不够的主要原因及解决办法 样品量不足:解决办法为增加样品量 样品未从柱子中流出:可根据样品的化学性质改变流动相或柱子 样品与检测器不匹配:根据样品化学性质调整波长或改换检测器 检测器衰减太多:调整衰减即可。 检测器时间常数太大:解决办法为降低时间参数 检测器池窗污染:解决办法为清洗池窗。 检测池中有气泡:解决办法为排气。 记录仪测压范围不当:调整电压范围即可。 流动相流量不合适:调整流速即可。 检测器与记录仪超出校正曲线:解决办法为检查记录仪与检测器,重作校正曲线。 2 .做 HPLC 分析时,柱压不稳定,原因何在? 如何解决? 原因可能有: ? 泵内有空气,解决的办法是清除泵内空气,对溶剂进行脱气处理; 比例阀失效,更换比例阀即可。 泵密封垫损坏,更换密封垫即可。 溶剂中的气泡,解决的办法是对溶剂脱气,必要时改变脱气方法; 系统检漏,找出漏点,密封即可。 梯度洗脱,这时压力波动是正常的。 3 .我购买的 HPLC 柱验收测试时柱压过高,请问为什么? 柱压过高是 HPLC 柱用户最常碰到的问题。其原因有多方面,而且常常并不是柱子本身的问题,您可按下面步骤检查问题的起因。

拆去保护柱,看柱压是否还高,否则是保护柱的问题,若柱压仍高,再检查; 把色谱柱从仪器上取下,看压力是否下降,否则是管路堵塞,需清洗,若压力下降,再检查。 将柱子的进出口反过来接在仪器上,用 10 倍柱体积的流动相冲洗柱子, ( 此时不要连接检测器,以防固体颗粒进入流动性 ) 。这时,如果柱压仍不下降,再检查; 更换柱子入口筛板,若柱压下降,说明你的溶剂或样品含有颗粒杂质,正是这些杂质将筛 板堵塞引起压力上升。若柱压还高,请与厂商联系。一般情况下,在进样器与保护柱之间 接一个在线过滤器便可避免柱压过高的问题, SGE 提供的Rheodyne 7315 型过滤器就是解 决这一问题的最佳选择。 4 .液相色谱中峰出现拖尾或出现双峰的原因是什么? 筛板堵塞或柱失效,解决办法是反向冲洗柱子,替换筛板或更换柱子。 存在干扰峰,解决办法为使用较长柱子,改换流动相或更换选择性好的柱子。 双向电泳篇 1. 重泡胀后的胶可以不用转移到另一个电泳槽,直接跑 2D 的一向吗? 一般情况下是可以的。但当上样量特别大时,可能会有一部分蛋白质没有被胶条吸收,这 样跑完 1D 和 2D 胶后,会有很多横向条纹。所以在这种情况下,最好在重泡胀后,将胶条 转移到另外一个电泳漕中进行电泳。 2. 为什么我在等电聚焦前加的矿物油在聚焦后会减少,暴露出了胶条的背面? 这是因为BioRad的电泳槽有个盖子。为了固定电泳槽中的胶条,这个盖子上设计了对应 的突起,以便压住胶条。由于虹吸作用,这个突起会导引矿物油到相邻的空电泳槽,从而 降低有胶条的电泳槽中的矿物油液面。如果由此把胶条暴露在空气中,那对等电聚焦的影 响将是毁灭性的。为了防止这个现象的发生,可以在相邻的空电泳槽里,也加入适量 ( 80 %满)的矿物油。 3. 跑第一向时,为什么要设定一个电流的最大值电压(50 μ A/ 胶)? 电流的平方和功率成正比。电流增大,功率增大,放出的热量也随之增大,就会导致胶条 的温度增加。当温度超过30 摄氏度时,缓冲液里的尿素就容易解离,产生一些极性分子,从而对等电聚焦产生影响。

His蛋白纯化原理、方法和问题分析

组氨酸(His)标签蛋白的纯化 His-Tag融合蛋白是目前最常见的表达方式,而且很成熟,它的优点是表达方便而且基本不影响蛋白的活性,无论是表达的蛋白是可溶性的或者包涵体都可以用固定金属离子亲和色谱(IMAC)纯化。 IMAC(Immobilized Metal-ion affinity chromatography)是Porath et al.1975年用固定IDA作为配基的填料螯合过渡金属铜、镍、钴或锌离子,可以吸附纯化表面带组氨酸、色氨酸或半胱氨酸残基的蛋白,1987年Smith et al. 发现带有几个组氨酸或色氨酸小肽和螯合金属离子的IDA-sephadex G-25作用力更强,此前在1986年他和他的合作者用Ni2+-IDA-sephadex G-25亲和纯化在氨基端带组氨酸和色氨酸的胰岛素原。同年1987年Hochuli et al.发现带有相连组氨酸的多肽和Ni2+-NTA填料作用力更强于普通的肽,1988年他第一次用这样的方法纯化了带六个组氨酸标签的多肽,无论是在天然还是变性条件下一次亲和纯化都得到很好效果,此后表达带六个组氨酸标签的蛋白配合IMAC变得非常普遍,相对而言,不带标签的蛋白纯化就非常困难,所以表达带六个组氨酸标签的蛋白配合IMAC纯化变成最常用而且最有效的研究蛋白结构和功能的有力手段。1986年Porath et al.还发现Fe3+-IDA-sephadex G-25可以用于磷酸化蛋白的纯化,而后发现Ga3+-IDA也有同样的效果,这样螯合这两种金属离子的填料就有效用于磷酸化多肽的富集和纯化,同时IMAC也可以用于纯化各种和金属离子结合的多肽,应用非常广泛。 Ni柱中的氯化镍可以与有HIs(组蛋白)标签的蛋白结合,也可以与咪唑结合。 步骤是:过柱子前可以选择Ni柱重生,也就是往柱子里倒氯化镍,一个柱长体积就行了,然后平衡柱子,拿你自己的buffer,给蛋白提供最适的环境,我一般平衡4个柱长,然后蛋白上样,你可以让他自己挂,这样挂柱子的效果好一些,如果流速太慢,可以加个恒流泵,但是一定不能太快,太快挂柱效果差,当然你也可以选择循环挂柱,就是恒流泵的一头接你装蛋白的烧杯,从柱子中留下来的液体还用同一个烧杯接回去。挂完之后,按理想来讲,你的蛋白在Ni柱中与Ni就结合了,杂蛋白多数在烧杯里,留下来了,当然肯定有少量杂蛋白也挂上了,这时候你要梯度洗脱,拿咪唑和你的buffer配,一般从0 20mM 40mM。。。。100mM这样洗脱(当你不知道你的蛋白大概在什么时候出来的时候)我指的是咪唑的终浓度。咪唑加入之后,会和蛋白争夺与Ni的结合位点,杂蛋白、你的目的蛋白,会在不同的浓度被洗脱下来,洗完之后,你可以用400mM咪唑洗柱子,清理一切蛋白,然后平衡几次,是否选择重生你自己定咯~然后放上20%乙醇保存柱子就可以咯~过的蛋白用不同的管子收下,然后SDS-page检测在哪个管子里。 市面常见的商品化IMAC用于带六个组氨酸标签蛋白的配基有以下几种: 一、组氨酸(His)标签蛋白的纯化步骤: 大肠杆菌的破碎方法: 1)收集培养发酵液,4度7000-8000g离心10分钟,收集沉淀的菌体(如果不是马上破碎可以放-70度冷冻,但是最好能保存成小块或者薄片,这样好用。) 2)取1-2克菌体加10ml破碎缓冲液(pH7.4的50mM磷酸缓冲液含0.5M NaCl,0.5mg/ml溶菌酶,1mM PMSF,1mM MgCl2,1.7units/ml Benzonase,其中的菌酶,1mM PMSF,1.7units/ml Benzonase现加)在冰上混合45分钟,如果pH不在7-8,需要用0.5M NaOH一边搅拌一边滴加.如果溶菌酶10mg/ml混合时间可以缩短到

SDS-PAGE电泳过程中常见问题以及解决方法

SDS-PAGE电泳过程中常见问题以 及解决方法 几乎所有蛋白质电泳分析都在聚丙烯酰胺凝胶上进行,而所有条件总要确保蛋白质解离成单个多肽亚基并进可能减少其相互间的聚集,最常用的就是SDS-PAGE电泳技术,关于大家在此过程中经常遇到的问题进行一些讨论: Q:SDS-PAGE电泳的基本原理 A:SDS-聚丙烯酰胺凝胶电泳,是在聚丙烯酰胺凝胶系统中引进SDS (十二烷基硫酸钠),SDS会与变性的多肽,并使蛋白带负电荷,由于多肽结合SDS的量几乎总是与多肽的分子量成正比而与其序列无关,因此SDS多肽复合物在丙稀酰胺凝胶电泳中的迁移率只与多肽的大小有关,在达到饱和的状态下,每克多肽可与1.4g去污剂结合。当分子量在15KD到200KD之间时,蛋白质的迁移率和分子量的对数呈线性关系,符合下式:logMW=K-bX,式中:MW为分子量,X为迁移率,k、b均为常数,若将已知分子量的标准蛋白质的迁移率对分子量对数作图,可获得一条标准曲线,未知蛋白质在相同条件下进行电泳,根据它的电泳迁移率即可在标准曲线上求得分子量。 Q:配胶缓冲液系统对电泳的影响 A:在SDS-PAGE不连续电泳中,制胶缓冲液使用的是Tris-HCL缓冲系统,浓缩胶是,分离胶;而电泳缓冲液使用的Tris-甘氨酸缓冲系统。在浓缩胶中,其pH环境呈弱酸性,因此甘氨酸解离很少,其在电场的作用下,泳动效率低;而CL离子却很高,两者之间形成导

电性较低的区带,蛋白分子就介于二者之间泳动。由于导电性与电场强度成反比,这一区带便形成了较高的电压剃度,压着蛋白质分子聚集到一起,浓缩为一狭窄的区带。当样品进入分离胶后,由于胶中pH的增加,呈碱性,甘氨酸大量解离,泳动速率增加,直接紧随氯离子之后,同时由于分离胶孔径的缩小,在电场的作用下,蛋白分子根据其固有的带电性和分子大小进行分离。所以,pH对整个反应体系的影响是至关重要的,实验中在排除其他因素之后仍不能很好解决问题的情况,应首要考虑该因素。 Q:样品如何处理 A:根据样品分离目的不同,主要有三种处理方法:还原SDS处理、非还原SDS处理、带有烷基化作用的还原SDS处理。 1、还原SDS处理:在上样buffer中加入SDS和DTT(或Beta巯基乙醇)后,蛋白质构象被解离,电荷被中和,形成SDS与蛋白相结合的分子,在电泳中,只根据分子量来分离。一般电泳均按这种方式处理,样品稀释适当浓度,加入上样Buffer,离心,沸水煮5min,再离心加样。 2、带有烷基化作用的还原SDS处理:碘乙酸胺的烷基化作用可以很好的并经久牢固的保护SH基团,得到较窄的谱带;另碘乙酸胺可捕集过量的DTT,而防止银染时的纹理现象。100ul样品缓冲液中10ul 20%的碘乙酸胺,并在室温保温30min。 3、非还原SDS处理:生理体液、血清、尿素等样品,一般只用1%SDS沸水中煮3min,未加还原剂,因而蛋白折叠未被破坏,不可作

蛋白质组学常见问题及解答

蛋白质组学常见问题及解答 作者:未知来源:华大中生科技公司点击:129 时间:2006-9-12 Q: 重泡胀后的胶可以不用转移到另一个电泳槽,直接跑2D 的一向吗? A: 一般情况下是可以的。但当上样量特别大时,可能会有一部分蛋白质没有被胶条吸收,这样跑完1D 和2D 胶后,会有很多横向条纹。所以在这种情况下,最好在重泡胀后,将胶条转移到另外一个电泳漕中进行电泳。 Q: 为什么我在等电聚焦前加的矿物油在聚焦后会减少,暴露出了胶条的背面? A: 这是因为BioRad 的电泳槽有个盖子。为了固定电泳槽中的胶条,这个盖子上设计了对应的突起,以便压住胶条。由于虹吸作用,这个突起会导引矿物油到相邻的空电泳槽,从而降低有胶条的电泳槽中的矿物油液面。如果由此把胶条暴露在空气中,那对等电聚焦的影响将是毁灭性的。为了防止这个现象的发生,可以在相邻的空电泳槽里,也加入适量( 80 %满)的矿物油。 Q: 跑第一向时,为什么刚开始的电压比较低,而后逐渐增高? A: 刚开始时,体系内的带电小分子比较多(比如无机盐和双极性分子)。所以在这个阶段,电流主要是由这些小分子的移动所产生的。由于这些分子质量小,移动他们不需要很高的电压。当这些小分子移动到他们的目的地时(无机盐移动到极性相反的电极;两性分子移动到对应的 pH 条带),体系内的蛋白质才开始肩负起运载电流的任务,逐渐向所对应的pH 区域移动。Q: 跑第一向时,为什么会产生一条蓝色的条带,并逐渐向酸性端移动? A: 蓝色条带是缓冲液中痕量的溴酚蓝被聚焦所产生的。溴酚蓝也是pH 指示剂,当它移动到酸性区时(pH4 ),颜色会变成黄色。溴酚蓝的这个移动过程大体上发生在极性小分子的聚焦之后,蛋白质大分子聚焦之前。 Q: 跑第一向时,为什么电压总达不到预定值? A: 当上样量比较大时或体系内盐分比较多时,聚焦的电压有可能达不到所设定的数值。Q: 跑第一向时,在电压达到预定值后,电流为什么会降低? A: 当上样量比较少时,所有蛋白在较短的时间内就移动到所对应的pH 值区域值,从而变成中性分子。这样,体系的电阻越来越大,在恒定的电压下,电流就会越来越小。 Q: 跑第一向时,为什么在两个电极丝附近有气泡产生? A: 等电聚焦完成后,所有的蛋白质都移动到了相应的pI 值区域,而成为中心分子。这是加在体系上的电压就开始电解水分子,在阳极产生氧气,在阴极产生氢气。 Q: 重泡胀缓冲液(rehydration buffer)中的硫脲的作用是什么,双极性分子的作用是什么?A: 硫脲的作用是增加蛋白质的溶解性,特别是碱性蛋白的溶解性。双极性分子的作用也是增加蛋白质的溶解性。当蛋白移动到相应的pH 值后,就变成了中性分子。而不带电荷的蛋白质分子容易聚集,从而降低其在随后的二向胶时的迁移效率,可能会造成竖的脱尾。而硫脲和双极性小分子则会鉴定中性蛋白质之间的相互作用,防止它们的聚集。 Q: 怎样估计2D 胶上蛋白质点的分子量和pI 值? A: 可以用BioRad 生产的2D 胶标准蛋白来校准。也可以用体系内已知蛋白来做比对。

蛋白不表达:常见原因及分析

蛋白不表达:常见原因及分析 根据自己体会和蛋白版的既往精华帖子,总结了没有发现蛋白质表达的原因,或者蛋白质不表达的原因,欢迎大家拍砖。 1.载体构建错误。这个屡见不鲜,很多克隆新人经常弄错读码框。比如Qiagen的pQE系列载体,其克隆位点常有一两个碱基的区别;另外有些酶产生粘端有些酶产生平端,这些都容易导致读码框错误,从而表达不出来。 2.宿主菌选择不当。不同的宿主菌其基因型是不一样的。有些经过特殊修饰的载体,或者特殊用途的载体,或者有特殊启动子的载体,必须选择合适的宿主菌进行表达。因此,当你的蛋白没有表达出来时,可以考虑更换宿主菌。见下图 3.密码子的使用频率低。有些基因其本身含有许多稀有密码子,尤

其是起始密码之后的15个碱基之内的稀有密码子,对蛋白表达有着很重要的影响。优化密码子对原核表达似乎效果很好,对真核表达系统未见得有很好的效果。曾经有某人在毕赤酵母表达某蛋白两年未果,试图将密码子优化进行表达,结果还是没有表达。一气之下将该优化的基因序列克隆到原核表达载体,表达量居然出奇地高!这是一个辛酸的笑话,但是一个真实的故事。但是有一点我可以有很大把握的说:对于真核表达,密码子优化只能起锦上添花的作用(确认有表达,以此来提高表达量),而不能雪中送炭(没有表达出来,通过密码子优化极有可能不奏效)。 4、质粒不稳定或者质粒丢失。pET系统通常比较稳定。但是你选用带氨苄青霉素抗性的载体时,也许有可能产生β-lactamase降解了抗生素,使质粒丢失。还有一种情况是表达重组的毒素蛋白,对宿主细胞也有毒性,造成质粒丢失。这种情况多见于真核表达系统。 5、蛋白酶将蛋白降解了。这种情况常由重组蛋白本身的N-或C- 端序列引起的。当蛋白N-端是Arg, Leu, Lys, Phe, Trp,或Tyr 这些氨基酸时,容易遭受蛋白酶降解,此即N-末端规则。N-端是Met时,大肠杆菌可以悄悄地把这个Met偷走,特别是Met后紧跟着一个带小侧链的氨基酸时。C-末端存在非极性氨基酸时,也容易导致蛋白被降解。C末端最后5个氨基酸是极性的或者带电荷的,则不易被降解。

最新21差异蛋白

21差异蛋白

SELDI蛋白质芯片筛选差异蛋白分 子的二级鉴定 摘要

目的探讨以SELDI蛋白质芯片筛选后的细胞差异表达蛋白的分离和鉴定方法及其意义。方法以经体外培养及10JAM褪黑素药物干预的内皮祖细胞差异表达蛋白质为研究对象,分别采用Tricine—SDS—PAGE和双向凝胶电泳方法进行差异蛋自分离及结果比较,以FTICR—MS二级质谱鉴定。结果经Tricine—SDS —PAGE分离后,选取的分子量为53kDa左右的趋势性的差异表达蛋白进行FTICR—MS分析,质谱鉴定为微管蛋白一a3(吻合度评分为87)。经双向凝胶电泳分离后,于凝胶近酸性端、分子量在72—95kD之间区域,选取蛋白表达量较高的一点,质谱鉴定其为人热休克蛋白90一Q(吻合度评分为91)。结论在本文结果中,Tricine—SDS—PAGE对于大致35—70kDa范围的蛋白分离较清晰、重复性好,且样品用量少。2-DE对最低上样量有较严格要求,但它能提供分子量、等电点双重参数来更准确定位所感兴趣蛋自点,且对较大分子量蛋白的分离效果更佳。电喷雾傅立叶变换离子回旋共振高分辨质谱分辨率高且质量稳定性较好。 关键词:SELDI;Tricine—SDS—PAGE;双向凝胶电泳;质谱 SELDI蛋白质芯片技术,即表面增强激光解吸离子化飞行时间质谱(surface—enhanced laser desorption/ionization—time of flight—massspectromet巧),是蛋白质组学研究中的一项新兴技术,在识别特定蛋白质表达物、蛋自质差异分析、测定血清中小分子物质含量方面提供了新的思路与方法。该技术已经逐渐应用与临床,目前已见其应用于传染病、肿瘤等疾病诊断筛选的临床报道【1,2】。本课题组前文‘3,41研究建立了SELDI蛋白质芯片技术检测体外培养细胞蛋白质差异表达方法,发现与传统方法比较,SELDI技术对于5kDa以下的低分子量差异蛋白和低丰度的差异蛋白质的检出效果较佳,而且该技术具有高通量、上

SDS-PAGE电泳的常见问题解析(FAQ)

活性蛋白整体方案SDS-PAGE电泳的常见问题解析(FAQ) 1.关于凝胶的一些问题 1.胶的凝结不好,例如有花纹特别是浓度高的胶在冬天温度较低的情况下,在分离胶的下部有波浪样的花纹,凝 胶不均匀。解决方法:加大TEMED和过硫酸胺的量,使其凝结速度加快。同时洗干净玻璃板,防止有残留的胶干结在玻璃板上。 2.胶不凝,解决方法:温度较低时加大TEMED和过硫酸胺的量,过硫酸胺必须新鲜配制。如若还是不行重新配 制一下缓冲溶液。 3.胶易碎,例如浓度较高的胶在染色和脱色过程以及扫描过程中破裂。解决方法:首先在上述过程中一定要动作 轻缓,其次在室温较高的情况下可以适当减少TEMED和过硫酸胺的量。 4.电泳完后胶上有很多长条纹的杂带,解决方法:建议电泳缓冲液不要回收利用。配制胶的溶液一定要纯。 2.凝胶时间不对 通常胶在30分钟到1小时内凝。如果凝的太慢,可能是TEMED,AP剂量不够。如果凝的太快,可能是APS和TEMED用量过多,此时胶太硬易裂,电泳时易烧胶。 3.浓缩胶与分离胶断裂、板间有气泡对电泳的影响 前者主要原因是拔梳子用力不均匀或过猛所致;后者是由于在解除制胶的夹子后,板未压紧而致空气进入引起的,一般对电泳结果不会有太大的影响。 4.样品的处理 根据样品分离目的不同,主要有三种处理方法:还原SDS处理、非还原SDS处理、带有烷基化作用的还原SDS 处理。 1.还原SDS处理:在上样buffer中加入SDS和DTT(或Beta巯基乙醇)后,形成SDS与蛋白相结合的分子。 2.带有烷基化作用的还原SDS处理:碘乙酸胺的烷基化作用可以很好的保护SH基团,得到较窄的谱带;另碘 乙酸胺可捕集过量的DTT,而防止纹理现象的产生。100uL样品缓冲液中加入10uL20%的碘乙酸胺,并在25℃下保藏30min。 3.非还原SDS处理:生理体液、血清、尿素等样品,一般只用1%SDS沸水中煮3min,未加还原剂,因而蛋白 折叠未被破坏,不可作为测定分子量来使用。

相关文档
最新文档