2020届高考数学一轮复习第七篇专题7.1空间几何体的结构特征及其表面积、体积练习(含解析)

2020届高考数学一轮复习第七篇专题7.1空间几何体的结构特征及其表面积、体积练习(含解析)
2020届高考数学一轮复习第七篇专题7.1空间几何体的结构特征及其表面积、体积练习(含解析)

专题7.1 空间几何体的结构及其表面积、体积

【考试要求】

1.利用实物、计算机软件等观察空间图形,认识柱、锥、台、球及简单组合体的结构特征,能运用这些特征描述现实生活中简单物体的结构;

2.知道球、棱柱、棱锥、棱台的表面积和体积的计算公式,能用公式解决简单的实际问题;

3.能用斜二测法画出简单空间图形(长方体、球、圆柱、圆锥、棱柱及其简单组合)的直观图.

【知识梳理】

1.空间几何体的结构特征

(1)多面体的结构特征

名称棱柱棱锥棱台

图形

底面互相平行且全等多边形互相平行且相似

相交于一点,但不一定相

延长线交于一点侧棱平行且相等

侧面形状平行四边形三角形梯形

(2)旋转体的结构特征

名称圆柱圆锥圆台球

图形

互相平行且相等,

相交于一点延长线交于一点

母线

垂直于底面

轴截面全等的矩形全等的等腰三角形全等的等腰梯形圆

侧面展开

矩形扇形扇环

2.直观图

空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴、y ′轴的夹角为45°(或135°),z ′轴与x ′轴、y ′轴所在平面垂直.

(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中变为原来的一半. 3.圆柱、圆锥、圆台的侧面展开图及侧面积公式

圆柱 圆锥 圆台

侧面展开图

侧面积公式

S 圆柱侧=2πrl S 圆锥侧=πrl

S 圆台侧=π(r 1+r 2)l

4.空间几何体的表面积与体积公式

名称

几何体

表面积

体积

柱 体

(棱柱和圆柱) S 表面积=S 侧+2S 底

V =S 底h

锥 体

(棱锥和圆锥) S 表面积=S 侧+S 底

V =13

S 底h

台 体

(棱台和圆台)

S 表面积=S 侧+S 上+S 下

V =13

(S 上+S 下+S 上S 下)h

球 S =4πR 2 V =43

πR 3

【微点提醒】

1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱延长后必交于一点.

2.正方体的棱长为a ,球的半径为R ,则与其有关的切、接球常用结论如下 : (1)若球为正方体的外接球,则2R =3a ; (2)若球为正方体的内切球,则2R =a ; (3)若球与正方体的各棱相切,则2R =2a .

3.长方体的共顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2

+b 2

+c 2

. 4.正四面体的外接球与内切球的半径之比为3∶1. 【疑误辨析】

1.判断下列结论正误(在括号内打“√”或“×”)

(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( )

(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( )

(3)用斜二测画法画水平放置的∠A时,若∠A的两边分别平行于x轴和y轴,且∠A=90°,则在直观图中,∠A=45°.()

(4)锥体的体积等于底面面积与高之积.( )

【答案】(1)×(2)×(3)×(4)×

【解析】(1)反例:由两个平行六面体上下组合在一起的图形满足条件,但不是棱柱.

(2)反例:如图所示的图形满足条件但不是棱锥.

(3)用斜二测画法画水平放置的∠A时,把x,y轴画成相交成45°或135°,平行于x轴的线段还平行于x 轴,平行于y轴的线段还平行于y轴,所以∠A也可能为135°.

(4)锥体的体积等于底面面积与高之积的三分之一,故不正确.

【教材衍化】

2.(必修2P10B1改编)如图,长方体ABCD-A′B′C′D′被截去一部分,其中EH∥A′D′.剩下的几何体是( )

A.棱台

B.四棱柱

C.五棱柱

D.六棱柱

【答案】 C

【解析】由几何体的结构特征,剩下的几何体为五棱柱.

3.(必修2P27练习1改编)已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为( )

A.1 cm

B.2 cm

C.3 cm

D.32

cm 【答案】

B

【解析】 由题意,得S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π,解得r 2

=4,所以r =2(cm). 【真题体验】

4.(2016·全国Ⅱ卷)体积为8的正方体的顶点都在同一球面上,则该球的表面积为( ) A.12π B.

32

3

π C.8π D.4π

【答案】 A

【解析】 设正方体的棱长为a ,则a 3

=8,解得a =2.设球的半径为R ,则2R =3a ,即R = 3.所以球的表面积S =4πR 2

=12π.

5.(2017·全国Ⅲ卷)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A.π B.3π4

C.π2

D.π4

【答案】 B

【解析】 如图画出圆柱的轴截面ABCD ,O 为球心.球半径R =OA =1,球心到底面圆的距离为OM =1

2

.

∴底面圆半径r =OA 2-OM 2=32,故圆柱体积V =π·r 2

·h =π·? ??

??322

×1=3π4.

6.(2019·菏泽一中月考)用斜二测画法画水平放置的矩形的直观图,则直观图的面积与原矩形的面积之比为________. 【答案】

2

4

【解析】 设原矩形的长为a ,宽为b ,则其直观图是长为a ,高为b 2sin 45°=24b 的平行四边形,所以

S 直观

S 矩形

=2

4ab ab =24.

【考点聚焦】

考点一空间几何体的结构特征

【例1】 (1)给出下列命题:

①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;

②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;

③棱台的上、下底面可以不相似,但侧棱长一定相等.

其中正确命题的个数是( )

A.0

B.1

C.2

D.3

(2)给出下列命题:

①棱柱的侧棱都相等,侧面都是全等的平行四边形;

②在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;

③存在每个面都是直角三角形的四面体;

④棱台的侧棱延长后交于一点.

其中正确命题的序号是________.

【答案】(1)A (2)②③④

【解析】(1)①不一定,只有当这两点的连线平行于轴时才是母线;②不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图所示,它是由两个同底圆锥组成的几何体;

③错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.

(2)①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;③正确,如图,正方体ABCD-A1B1C1D1中的三棱锥C1-ABC,四个面都是直角三角形;④正确,由棱台的概念可知.

【规律方法】 1.关于空间几何体的结构特征辨析关键是紧扣各种空间几何体的概念,要善于通过举反例对概念进行辨析,即要说明一个命题是错误的,只需举一个反例.

2.圆柱、圆锥、圆台的有关元素都集中在轴截面上,解题时要注意用好轴截面中各元素的关系.

3.既然棱(圆)台是由棱(圆)锥定义的,所以在解决棱(圆)台问题时,要注意“还台为锥”的解题策略. 【训练1】 下列命题正确的是( )

A.两个面平行,其余各面都是梯形的多面体是棱台

B.两个面平行且相似,其余各面都是梯形的多面体是棱台

C.以直角梯形的一条直角腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体是圆台

D.用平面截圆柱得到的截面只能是圆和矩形 【答案】 C

【解析】 如图所示,可排除A ,B 选项.只有截面与圆柱的母线平行或垂直,则截得的截面为矩形或圆,否则为椭圆或椭圆的一部分.

考点二 空间几何体的直观图

【例2】 已知正三角形ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( ) A.34

a 2

B.38

a 2

C.68

a 2

D.616

a 2 【答案】 D

【解析】 如图①②所示的实际图形和直观图.

由斜二测画法可知,A ′B ′=AB =a ,O ′C ′=12OC =3

4a ,在图②中作C ′D ′⊥A ′B ′于D ′,则C ′D ′

22O ′C ′=68a .所以S △A ′B ′C ′=12A ′B ′·C ′D ′=12×a ×68a =6

16

a 2.故选D. 【规律方法】

1.画几何体的直观图一般采用斜二测画法,其规则可以用“斜”(两坐标轴成45°或135°)和“二测”(平

行于y 轴的线段长度减半,平行于x 轴和z 轴的线段长度不变)来掌握.

2.按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积的关系S 直观图=

2

4

S 原图形. 【训练2】 如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ) A.2+ 2 B.1+2

2

C.

2+2

2

D.1+ 2

【答案】 A

【解析】 恢复后的原图形为一直角梯形, 所以S =1

2(1+2+1)×2=2+ 2.故选A.

考点三 空间几何体的表面积

【例3】 (1)若正四棱锥的底面边长和高都为2,则其全面积为________.

(2)圆台的上、下底面半径分别是10 cm 和20 cm ,它的侧面展开图的扇环的圆心角是180°,那么圆台的表面积为________(结果中保留π).

(3)如图直平行六面体的底面为菱形,若过不相邻两条侧棱的截面的面积分别为Q 1,Q 2,则它的侧面积为______.

【答案】 (1)4+4 5 (2)1 100π cm 2

(3)2Q 2

1+Q 2

2

【解析】 (1)因为四棱锥的侧棱长都相等,底面是正方形,所以该四棱锥为正四棱锥,如图.

由题意知底面正方形的边长为2,正四棱锥的高为2, 则正四棱锥的斜高PE =22

+12

= 5.

所以该四棱锥的侧面积S =4×1

2

×2×5=45,

∴S 全=2×2+45=4+4 5.

(2)如图所示,设圆台的上底周长为C ,因为扇环的圆心角是180°,所以C =π·SA .

又C =2π×10=20π,所以SA =20. 同理SB =40. 所以AB =SB -SA =20.

S 表=S 侧+S 上底+S 下底

=π(r 1+r 2)·AB +πr 2

1+πr 2

2 =π(10+20)×20+π×102

+π×202

=1 100π(cm 2

).

故圆台的表面积为1 100π cm 2

.

(3)设直平行六面体的底面边长为a ,侧棱长为l ,则S 侧=4al ,因为过A 1A ,C 1C 与过B 1B ,D 1D 的截面都为

矩形,从而?

????Q 1=AC ·l ,

Q 2=BD ·l ,

则AC =Q 1

l ,BD =Q 2l

. 又AC ⊥BD ,

∴? ????

AC 22

+? ????

BD 22=a 2.∴? ????Q 12l 2+? ??

??Q 22l 2

=a 2

. ∴4a 2l 2

=Q 2

1+Q 2

2,2al =Q 2

1+Q 2

2, ∴S 侧=4al =2Q 2

1+Q 2

2.

【规律方法】 1.求解有关多面体侧面积的问题,关键是找到其特征几何图形,如棱柱中的矩形、棱台中的直角梯形、棱锥中的直角三角形,它们是联系高与斜高、边长等几何元素间的桥梁,从而架起求侧面积公式中的未知量与条件中已知几何元素间的联系.

2.多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.

3.旋转体的表面积问题注意其侧面展开图的应用.

【训练3】 (1)圆柱的侧面展开图是边长为6π和4π的矩形,则圆柱的表面积为( ) A.6π(4π+3)

B.8π(3π+1)

C.6π(4π+3)或8π(3π+1)

D.6π(4π+1)或8π(3π+2)

(2)(必修2P36A10改编)一直角三角形的三边长分别为6 cm ,8 cm ,10 cm ,绕斜边旋转一周所得几何体的表面积为________.

【答案】 (1)C (2)3365

π cm

2

【解析】 (1)分两种情况:①以长为6π的边为高时,4π为圆柱底面周长,则2πr =4π,r =2,所以S

=4π,S 侧=6π×4π=24π2,S 表=2S 底+S 侧=8π+24π2

=8π(3π+1);②以长为4π的边为高时,

6π为圆柱底面周长,则2πr =6π,r =3.所以S 底=9π,S 表=2S 底+S 侧=18π+24π2

=6π(4π+3). (2)旋转一周所得几何体为以245 cm 为半径的两个同底面的圆锥,其表面积为S =π×245×6+π×24

5×8=

3365

π(cm 2

). 考点四 空间几何体的体积

【例4】 (1)(必修2P27例4改编)圆柱的底面直径与高都等于球的直径,则球的体积与圆柱的体积比V 球∶V

为( )

A.1∶2

B.2∶3

C.3∶4

D.1∶3

(2)(2018·天津卷)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M -EFGH 的体积为________.

【答案】 (1)B (2)112

【解析】 (1)设球的半径为R ,则V 球V 柱=43πR 3πR 2×2R =2

3

.

(2)连接AD 1,CD 1,B 1A ,B 1C ,AC ,因为E ,H 分别为AD 1,CD 1的中点,所以EH ∥AC ,EH =1

2AC .因为F ,G 分

别为B 1A ,B 1C 的中点,所以FG ∥AC ,FG =1

2

AC .所以EH ∥FG ,EH =FG ,所以四边形EHGF 为平行四边形,又

EG =HF ,EH =HG ,所以四边形EHGF 为正方形.又点M 到平面EHGF 的距离为1

2

,所以四棱锥M -EFGH 的体积

为13×? ????222

×12=112

. 【规律方法】 1.(直接法)规则几何体:对于规则几何体,直接利用公式计算即可.

2.(割补法)不规则几何体:当一个几何体的形状不规则时,常通过分割或者补形的手段将此几何体变为一个或几个规则的、体积易求的几何体,然后再计算.经常考虑将三棱锥还原为三棱柱或长方体,将三棱柱还原为平行六面体,将台体还原为锥体.

3.(等积法)三棱锥:利用三棱锥的“等积性”可以把任一个面作为三棱锥的底面.(1)求体积时,可选择“容易计算”的方式来计算;(2)利用“等积性”可求“点到面的距离”,关键是在面中选取三个点,与已知点构成三棱锥.

【训练4】 (必修2P28A3改编)如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.

【答案】 1∶47

【解析】 设长方体的相邻三条棱长分别为a ,b ,c ,它截出棱锥的体积为V 1=13×12×12a ×12b ×12c =

1

48

abc ,剩下的几何体的体积V 2=abc -1

48abc =4748

abc ,所以V 1∶V 2=1∶47.

考点五 多面体与球的切、接问题

【例5】 (经典母题)(2016·全国Ⅲ卷)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,

AB =6,BC =8,AA 1=3,则V 的最大值是( )

A.4π

B.

2

C.6π

D.

32π

3

【答案】 B

【解析】 由AB ⊥BC ,AB =6,BC =8,得AC =10.

要使球的体积V 最大,则球与直三棱柱的部分面相切,若球与三个侧面相切,设底面△ABC 的内切圆的半径为r .

则12×6×8=1

2

×(6+8+10)·r ,所以r =2.

2r =4>3,不合题意.

球与三棱柱的上、下底面相切时,球的半径R 最大. 由2R =3,即R =3

2

.

故球的最大体积V =43πR 3=9

2

π.

【迁移探究1】 若本例中的条件变为“直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上”,若AB =3,

AC =4,AB ⊥AC ,AA 1=12,求球O 的表面积.

【答案】见解析

【解析】将直三棱柱补形为长方体ABEC -A 1B 1E 1C 1, 则球O 是长方体ABEC -A 1B 1E 1C 1的外接球. ∴体对角线BC 1的长为球O 的直径. 因此2R =32

+42

+122

=13. 故S 球=4πR 2=169π.

【迁移探究2】 若本例中的条件变为“正四棱锥的顶点都在球O 的球面上”,若该棱锥的高为4,底面边长为2,求该球的体积. 【答案】见解析

【解析】如图,设球心为O ,半径为r ,

则在Rt△AOF 中,(4-r )2

+(2)2

=r 2

, 解得r =9

4

则球O 的体积V 球=43πr 3=43π×? ??

??943=243π16.

【规律方法】1.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.

2.若球面上四点P ,A ,B ,C 中PA ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.

【训练5】 (2019·北京海淀区调研)三棱锥P -ABC 中,平面PAC ⊥平面ABC ,AB ⊥AC ,PA =PC =AC =2,AB =4,则三棱锥P -ABC 的外接球的表面积为( ) A.23π B.23

4

π C.64π

D.643

π 【答案】 D

【解析】 如图,设O ′为正△PAC 的中心,D 为Rt△ABC 斜边的中点,H 为AC 中点.由平面PAC ⊥平面ABC .则O ′H ⊥平面ABC .作O ′O ∥HD ,OD ∥O ′H ,则交点O 为三棱锥外接球的球心,连接OP ,又O ′P =23PH =

23×

32×2=233,OO ′=DH =12AB =2.∴R 2=OP 2=O ′P 2+O ′O 2

=43+4=163

. 故几何体外接球的表面积S =4πR 2

=643

π.

【反思与感悟】 1.几何体的截面及作用

(1)常见的几种截面:①过棱柱、棱锥、棱台的两条相对侧棱的截面;②平行于底面的截面;③旋转体中的轴截面;④球的截面.

(2)作用:利用截面研究几何体,贯彻了空间问题平面化的思想,截面可以把几何体的性质、画法及证明、计算融为一体.

2.棱台和圆台是分别用平行于棱锥和圆锥的底面的平面截棱锥和圆锥后得到的,所以在解决棱台和圆台的相关问题时,常“还台为锥”,体现了转化的数学思想.

3.转化与化归思想:计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法. 【易错防范】

1.求组合体的表面积时:组合体的衔接部分的面积问题易出错.

2.底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错. 【核心素养提升】

【直观想象与逻辑推理】——简单几何体的外接球与内切球问题

1.直观想象主要表现为利用几何图形描述问题,借助几何直观理解问题,运用空间想象认识事物,解决与

球有关的问题对该素养有较高的要求.

2.简单几何体外接球问题是立体几何中的难点和重要的考点,此类问题实质是解决球的半径长或确定球心O的位置问题,其中球心的确定是关键.

一、知识要点

1.外接球的问题

(1)必备知识:

①简单多面体外接球的球心的结论.

结论1:正方体或长方体的外接球的球心是其体对角线的中点.

结论2:正棱柱的外接球的球心是上下底面中心的连线的中点.

结论3:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点.

②构造正方体或长方体确定球心.

③利用球心O与截面圆圆心O1的连线垂直于截面圆及球心O与弦中点的连线垂直于弦的性质,确定球心.

(2)方法技巧:几何体补成正方体或长方体.

2.内切球问题

(1)必备知识:

①内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等.

②正多面体的内切球和外接球的球心重合.

③正棱锥的内切球和外接球球心都在高线上,但不一定重合.

(2)方法技巧:体积分割是求内切球半径的通用做法.

二、突破策略

1.利用长方体的体对角线探索外接球半径

【例1】已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( )

A.16π

B.20π

C.24π

D.32π

【答案】 C

【解析】设正四棱柱的底面边长为a,高为h,球半径为R,则正四棱柱的体积为V=a2h=16,a=2,4R2=a2+a2+h2=4+4+16=24,所以球的表面积为S=24π.

【评析】若几何体存在三条两两垂直的线段或者三条线有两个垂直,可构造墙角模型(如下图),直接用公式(2R)2=a2+b2+c2求出R.

2.利用长方体的面对角线探索外接球半径

【例2】三棱锥中S-ABC,SA=BC=13,SB=AC=5,SC=AB=10.则三棱锥的外接球的表面积为______.

【答案】14π

【解析】如图,在长方体中,设AE=a,BE=b,CE=c.

则SC=AB=a2+b2=10,

SA=BC=b2+c2=13,

SB=AC=a2+c2= 5.

从而a2+b2+c2=14=(2R)2,可得S=4πR2=14π.故所求三棱锥的外接球的表面积为14π.

【评析】三棱锥的相对棱相等,探寻球心无从着手,注意到长方体的相对面的面对角线相等,可在长方体中构造三棱锥,从而巧妙探索外接球半径.

3.利用底面三角形与侧面三角形的外心探索球心

【例3】平面四边形ABCD中,AB=AD=CD=1,BD=2,BD⊥CD.将其沿对角线BD折成四面体A′BCD,使平面A′BD⊥平面BCD.若四面体A′BCD的顶点在同一球面上,则该球的体积为( )

A.

3

2

π B.3π C.

2

3

π D.2π

【答案】 C

【解析】如图,设BD,BC的中点分别为E,F.因点F为底面直角△BCD的外心,知三棱锥A′-BCD的外接球球心必在过点F且与平面BCD垂直的直线l1上.又点E为底面直角△A′BD的外心,知外接球球心必在过点E且与平面A′BD垂直的直线l2上.因而球心为l1与l2的交点.又FE∥CD,CD⊥BD知FE⊥平面A′BD.

从而可知球心为点F.又A′B=A′D=1,CD=1知BD

=2,球半径R=FD=

BC

2

3

2

.

故V=

4

3

π

?

?

?

?

?3

3

3

3

2π.

【评析】三棱锥侧面与底面垂直时,可紧扣球心与底面三角形外心连线垂直于底面这一性质,利用底面与侧面的外心,巧探外接球球心,妙求半径.

4.利用直棱柱上下底面外接圆圆心的连线确定球心

【例4】一个正六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为

9

8

,底面周长为3,则这个球的体积为________.

【答案】

3

【解析】设正六棱柱底面边长为a,正六棱柱的高为h,底面外接圆的半径为r,则a=

1

2

,底面积为S=6·

3

4

·

?

?

??

?1

2

2

33

8

,V柱=Sh=

33

8

h=

9

8

,∴h=3,R2=

?

?

?

?

?3

2

2

?

?

??

?1

2

2

=1,R=1,球的体积为V=

3

. 【评析】直棱柱的外接球、圆柱的外接球模型如下图

其外接球球心就是上下底面外接圆圆心连线的中点.

5.锥体的内切球问题

(1)题设:如图①,三棱锥P-ABC是正三棱锥,求其内切球的半径.

图①

第一步:先画出内切球的截面图,E ,H 分别是两个三角形的外心; 第二步:求DH =1

3CD ,PO =PH -r ,PD 是侧面△ABP 的高;

第三步:由△POE ∽△PDH ,建立等式:OE DH =

PO

PD

,解出r . (2)题设:如图②,四棱锥P -ABC 是正四棱锥,求其内切球的半径.

图②

第一步:先画出内切球的截面图,P ,O ,H 三点共线; 第二步:求FH =1

2BC ,PO =PH -r ,PF 是侧面△PCD 的高;

第三步:由△POG ∽△PFH ,建立等式:OG HF =

PO

PF

,解出r . (3)题设:三棱锥P -ABC 是任意三棱锥,求其的内切球半径.

方法:等体积法,三棱锥P -ABC 体积等于内切球球心与四个面构成的四个三棱锥的体积之和; 第一步:先画出四个表面的面积和整个锥体体积;

第二步:设内切球的半径为r ,球心为O ,建立等式:V P -ABC =V O -ABC +V O -PAB +V O -PAC +V O -PBC ?V P -ABC =1

3S △ABC ·r

+13S △PAB ·r +13S △PAC ·r +13S △PBC ·r =1

3(S △ABC +S △PAB +S △PAC +S △PBC )·r ; 第三步:解出r =

3V P -ABC

S O -ABC +S O -PAB +S O -PAC +S O -PBC

6.柱体的内切球问题

【例5】 体积为4π

3的球与正三棱柱的所有面均相切,则该棱柱的体积为________.

【答案】 6 3

【解析】 设球的半径为R ,由4π3R 3=4π

3,得R =1,所以正三棱柱的高h =2.

设底面边长为a ,则13×3

2a =1,所以a =2 3.

所以V =

34

×(23)2

×2=6 3. 【分层训练】

【基础巩固题组】(建议用时:40分钟) 一、选择题

1.下列说法中,正确的是( ) A.棱柱的侧面可以是三角形

B.若棱柱有两个侧面是矩形,则该棱柱的其他侧面也是矩形

C.正方体的所有棱长都相等

D.棱柱的所有棱长都相等 【答案】 C

【解析】 棱柱的侧面都是平行四边形,选项A 错误;其他侧面可能是平行四边形,选项B 错误;棱柱的侧棱与底面边长并不一定相等,选项D 错误;易知选项C 正确.故选C. 2.一个球的表面积是16π,那么这个球的体积为( ) A.16

3

π B.32

3

π C.16π

D.24π

【答案】 B

【解析】 设球的半径为R ,则S =4πR 2=16π,解得R =2,则球的体积V =43πR 3

=323

π.

3.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北,现在沿该正方体的一些棱将正方体剪开,外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位是( )

A.南

B.北

C.西

D.下

【答案】 B

【解析】 将所给图形还原为正方体,如图所示,最上面为△,最左面为东,最里面为上,将正方体旋转后让东面指向东,让“上”面向上可知“△”的方位为北.

4.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )

A.14斛

B.22斛

C.36斛

D.66斛

【答案】 B

【解析】 设米堆的底面半径为r 尺,则π2r =8,所以r =16π.

所以米堆的体积为V =14×13π·r 2

·5=π12·? ????16π2

·5≈3209(立方尺).

故堆放的米约有320

9

÷1.62≈22(斛).

5.如图所示,正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A -B 1DC 1的体积为( )

A.3

B.32

C.1

D.32

【答案】 C

【解析】 如题图,在正△ABC 中,D 为BC 中点,则有AD =

3

2

AB =3,又∵平面BB 1C 1C ⊥平面ABC ,AD ⊥BC ,AD ?平面ABC ,由面面垂直的性质定理可得AD ⊥平面BB 1C 1C ,即AD 为三棱锥A -B 1DC 1的底面B 1DC 1

上的高,

∴VA -B 1DC 1=13S △B 1DC 1·AD =13×1

2×2×3×3=1.

二、填空题

6.一水平放置的平面四边形OABC ,用斜二测画法画出它的直观图O ′A ′B ′C ′如图所示,此直观图恰好是一个边长为1的正方形,则原平面四边形OABC 面积为________.

【答案】 2 2

【解析】 因为直观图的面积是原图形面积的

2

4

倍,且直观图的面积为1,所以原图形的面积为2 2. 7.现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________. 【答案】

7

【解析】 设新的底面半径为r ,由题意得13πr 2·4+πr 2·8=13π×52×4+π×22

×8,解得r =7.

8.(2019·济南调研)祖暅(公元前5~6世纪),祖冲之之子,是我国齐梁时代的数学家.他提出了一条原理:“幂势既同,则积不容异.”这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.该原理在西方直到十七世纪才由意大利数学家卡瓦列利发现,比祖暅晚一千一百多年.椭球体是椭圆绕其轴旋转所成的旋转体.如图将底面直径皆为2b ,高皆为a 的椭半球体及已被挖去了圆锥体的圆柱体放置于同一平面β上.以平行于平面β的平面于距平面β任意高d 处可横截得到S 圆及S 环两截面,可以证明S 圆=S 环总成立.据此,短轴长为4 cm ,长轴为6 cm 的椭球体的体积是________ cm 3

.

【答案】 16π

【解析】 因为总有S 圆=S 环,

所以椭半球体的体积等于V 柱-V 锥=πb 2

a -13π

b 2a =23

πb 2a ,

椭球体的体积为V =43πb 2

a .因为2

b =4,2a =6,所以b =2,a =3,

所以,该椭球体的体积是43×22×3π=16π(cm 3

).

三、解答题

9.如图所示,正四棱台的高是17 cm ,两底面边长分别为4 cm 和16 cm ,求棱台的侧棱长和斜高.

【答案】见解析

【解析】设棱台两底面的中心分别为O ′和O ,B ′C ′,BC 的中点分别为E ′,E ,连接O ′B ′,O ′E ′,

O ′O ,OE ,OB ,EE ′,则四边形O ′E ′EO ,OBB ′O ′均为直角梯形.

在正方形ABCD 中,BC =16 cm , 则OB =8 2 cm ,OE =8 cm ,

在正方形A ′B ′C ′D ′中,B ′C ′=4 cm , 则O ′B ′=2 2 cm ,O ′E ′=2 cm , 在直角梯形O ′OBB ′中,

BB ′=OO ′2+(OB -O ′B ′)2=19(cm);

在直角梯形O ′OEE ′中,

EE ′=OO ′2+(OE -O ′E ′)2=513(cm).

所以这个棱台的侧棱长为19 cm ,斜高为513 cm.

10.现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P -A 1B 1C 1D 1,下部的形状是正四棱柱ABCD -A 1B 1C 1D 1(如图所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍,若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?

【答案】见解析

【解析】由PO 1=2 m ,知O 1O =4PO 1=8 m.因为A 1B 1=AB =6 m ,所以正四棱锥P -A 1B 1C 1D 1的体积

空间几何体的结构特征及表面积与体积

空间几何体的结构特征及表面积与体积 A级——夯基保分练 1.下列说法中正确的是() A.各个面都是三角形的几何体是三棱锥 B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥 C.棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是六棱锥 D.圆锥的顶点与底面圆周上的任一点的连线都是母线 解析:选D当一个几何体由具有相同的底面且顶点在底面两侧的两个三棱锥构成时,尽管各面都是三角形,但它不是三棱锥,故A错误;若三角形不是直角三角形或是直角三角形但旋转轴不是直角边所在直线,所得几何体就不是圆锥,故B错误;由几何图形知,若以正六边形为底面,且侧棱长相等正六棱锥棱长必然要大于底面边长,故C错误.选D. 2.如图是水平放置的某个三角形的直观图,D′是△A′B′C′中 B′C′边的中点且A′D′∥y′轴,A′B′,A′D′,A′C′三条线段 对应原图形中的线段AB,AD,AC,那么() A.最长的是AB,最短的是AC B.最长的是AC,最短的是AB C.最长的是AB,最短的是AD D.最长的是AD,最短的是AC 解析:选C由题中的直观图可知,A′D′∥y′轴,B′C′∥x′轴,根据斜二测画法的规则可知,在原图形中AD∥y轴,BC∥x轴,又因为D′为B′C′的中点,所以△ABC 为等腰三角形,且AD为底边BC上的高,则有AB=AC>AD成立. 3.(2019·吉林调研)已知圆锥的高为3,底面半径长为4.若一球的表面积与此圆锥的侧面积相等,则该球的半径长为() A.5 B. 5 C.9 D.3 解析:选B∵圆锥的底面半径R=4,高h=3,∴圆锥的母线l=5,∴圆锥的侧面积S=πRl=20π.设球的半径为r,则4πr2=20π,∴r= 5.故选B. 4.(2020·山东省实验中学模拟)我国古代《九章算术》里,记载了一个 “商功”的例子:今有刍童,下广二丈,袤三丈,上广三丈,袤四丈,高 三丈.问积几何?其意思是:今有上下底面皆为长方形的草垛(如图所示), 下底宽2丈,长3丈,上底宽3丈,长4丈,高3丈.问它的体积是多少? 该书提供的算法是:上底长的2倍与下底长的和与上底宽相乘,同样下底长的2倍与上底长

空间几何体的结构特征测试题

第一章空间几何体的结构特征测试题 001 一、选择题: 1.有一个几何体的三视图如下图所示,这个几何体应是一个( A ) A.棱台B.棱锥C.棱柱D 答 案: A 从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断是棱台. 2.棱长都是1的三棱锥的表面积为(A ) A.B.C.D. 答案:A 因为四个面是全等的正三角形,则S 表面积 =4S 底面积44 =?=. 3.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( B ) A.25πB.50πC.125πD.都不对 答案:B 长方体的对角线是球的直径, 4.底面是菱形的棱柱,其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( D ) A.130 B.140 C.150 D.160 答案:D 设底面边长是a,底面的两条对角线分别为 12 l l ,,而222222 12 15595 l l =-=- ,, 而222 12 4 l l a +=,即22222 1559548485160 a a S ch -+-====??= ,,. 5.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是(D )A.9πB.10π C.11πD.12π 答案:D 解析:从三视图可以看出该几何体是由一个球和一个圆柱组合而成的,其表面积为22 411221312 Sππππ =?+??+??=. 002 6.下列几何体各自的三视图中,有且仅有两个视图相同的是(D )主视图左视图俯视图 俯视图正(主)视图侧(左)视图

A .①② B .①③ C .①④ D .②④ 答案:D 解析:从选项看只要判断正方体的三视图都相同就可以选出正确答案. 003 二、填空题 7.若三个球的表面积之比是1︰2︰3 ,则它们的体积之比是1:. 答案:1: 333333123123123:: ::::1::1:r r r V V V r r r ====. 004 8.设某几何体的三视图如下(尺寸的长度单位为m ),则该几何体的体积为 3 m 3. 解析:这是一个三棱锥,高为2,底面三角形一边为4,这边上的高为3, 1 2436V =???. 005 9.若某几何体的三视 cm )如图所示,则此几何体的 体积是 18 cm 3. 答案:18 解析:该几何体是由二个长方体组成,下面体积为1339??=,上面的长方体体积为 3319??=,因此其几何体的体积为18. 006 10.一个正方体的各顶点均在同一球的球面上,若该球的体积为,则该正方体的表面积为 24 . 答案:24 正方体的体对角线就是球的直径 解析:由 3 43 R π=得R ,2R =,所以2a =,表面积为2624a =. 007 三、解答题: 11.长方体的全面积为11,所有棱长之和之和为24,求长方体的对角线长; 解:设长方体同一顶点出发的三条棱长分别为a 、b 、c ,则 所以,对角线长5)(2)(2222=++-++=++=ca bc ab c b a c b a l .

52知识讲解_空间几何体结构及其三视图(提高)

空间几何体结构及其三视图 编稿:孙永钊审稿: 【考纲要求】 (1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. (2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图表示的立体模型,会用材料(如纸板)制作模型,并会用斜二测法画出它们的直观图. (3)通过观察用平行投影与中心投影这两种方法画出的视图与直观图,了解空间图形的不同表示形式. (4)了解球、棱柱、棱锥、台的表面积和体积的计算公式. 【知识网络】 【考点梳理】 考点一、空间几何体的结构及其三视图和直观图 1、多面体的结构特征 (1)棱柱(以三棱柱为例) 如图:平面ABC与平面A1B1C1间的关系是平行,ΔABC与 ΔA1B1C1的关系是全等。 各侧棱之间的关系是:A1A∥B1B∥C1C,且A1A=B1B=C1C。 (2)棱锥(以四棱锥为例) 如图:一个面是四边形,四个侧面是有一个公共顶点的三 角形。

(3)棱台 棱台可以由棱锥截得,其方法是用平行于棱锥底面的平面截棱锥,截面和底面之间的部分为棱台。 2、旋转体的结构特征 旋转体都可以由平面图形旋转得到,画出旋转出下列几何体的平面图形及旋转轴。 3、空间几何体的三视图 空间几何体的三视图是用正投影得到,在这种投影下,与投影面平行的平面图形留下的影子与平面图形的开关和大小是完全相同的,三视图包括正视图、侧视图、俯视图。 4、空间几何体的直观图

空间几何体的直观图常用斜二测画法来画,其规则是: (1)原图形中x轴、y轴、z轴两两垂直,直观图中,x’轴、y’轴的夹角为45o(或135o),z’轴与x’轴和y’轴所在平面垂直; (2)原图形中平行于坐标轴的线段,直观图中仍平行。平行于x轴和z轴的线段长度在直观图不变,平行于y轴的线段长度在直观图中减半。 5、平行投影与中心投影 平行投影的投影线互相平行,而中心投影的投影线相交于一点。 要点诠释:空间几何体的三视图和直观图在观察角度和投影效果上的区别是:(1)观察角度:三视图是从三个不同位置观察几何体而画出的图形;直观图是从某一点观察几何体而画出的图形;(2)投影效果:三视图是正投影下的平面图形,直观图是在平行投影下画出的空间图形。 考点二、空间几何体的表面积和体积 1、旋转体的表面积 名称图形表面积 圆柱S=2πr(r+l) 圆锥S=πr(r+l)

空间几何体的结构的教学设计

人教版必修2“空间几何体的结构(一)”的教学设计 一、设计思想 立体几何初步是几何学的重要组成部分,也是新课程改动较大的内容之一.《空间几何体的结构》是新课程立体几何部分的起始课程,是立体几何课程的重要内容,根据新课程的要求,这一部分的教学,就是加强几何直观的教学,适当进行思辨论证,引入合情推理.基于这样的要求,《空间几何体的结构》一课的设计,笔者以培养学生的几何直观能力,抽象概括,合情推理能力,空间想象能力为指导思想,运用建构主义教学原理,用观察实物抽象出空间图形----用文字描述空间图形-----用数学语言定义空间图形这三部曲来构建课堂主框架.每一个概念的得出都与实物相结合,让学生经历观察、归纳、分类、抽象、概括这一过程.整个设计从增强学生参与数学学习的意愿入手,在学生明确学习任务的基础上,在有序列地解决问题中展开学习,运用激活、展示、应用、和整合策略,以师、生、文本三者间的多维对话为手段,最终达到提高学生参与数学学习能力的目标,取得教学的实效性.过程中让学生体验有关的数学思想,提高学生自主学习、分析问题和解决问题的能力,培养学生合作学习的意识. 二、教材分析 本节课《空间几何体的结构》选自普通高中课程标准实验教科书《数学》人教A版必修2第一章的第一节,课标对空间几何体的结构的教学要求为:认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构,发展几何直观能力.教材首先让学生观察现实世界中实物的图片,引导学生将观察到的实物进行归纳、分类、抽象、概括,得出柱体、锥体、台体的结构特征,在此基础上给出由它们组合而成的简单几何体的结构特征.《省学科教学指导意见》将这一节内容安排为两课时,笔者的设计的是第一课时,本节内容在义务教育数学课程“空间与图形”已有所涉及,但要求不同,素材更为丰富,即区别在于学习的深度和概括程度.笔者认为教学时,不能认为这部分的要求是降低了,讲课时一带而过,要领会新课标的意图,加强几何直观的训练,在引导学生直观感受空间几何体结构特征的同时,学会类比,学会推理,学会说理. 三、学情分析 学生在义务教育阶段学习“空间与图形”时,已经认识了一些具体的棱柱(如正方体、长方体等),对圆柱、圆锥和球的认识也比较具体,能从具体的物体抽象出相应的几何体模型,但没有学习柱体、锥体的定义,只停留在“看”的层面.本节课对它们的研究的更为深入,给出了它们的结构特征.同时,还学习了棱台的有关知识,比义务教育阶段数学课程“空间与图形”部分呈现的组合体多,复杂程度也加大.学生在学习本课时,通过观察实物抽象出空间图形是容易的,但要上升到用数学语言定义空间图形就比较困难.所以笔者让学生在课前先做一些柱体、锥体、台体的模型,教学过程中,每一个空间图形的定义,都通过学生观察他们自己所做的模型,结合教师、教材提供的图片,再讨论得出.

§8.1 空间几何体的结构及其三视图和直观图

§8.1空间几何体的结构及其三视图和直观 图 1.多面体的结构特征 (1)棱柱的上下底面________,侧棱都________且____________,上底面和下底面是 ________的多边形. (2)棱锥的底面是任意多边形,侧面是有一个____________的三角形. (3)棱台可由________________________的平面截棱锥得到,其上下底面的两个多边 形________. 2.旋转体的结构特征 (1)圆柱可以由矩形绕其________________旋转得到. (2)圆锥可以由直角三角形绕其________________________________旋转得到. (3)圆台可以由直角梯形绕直角腰所在直线或等腰梯形绕上下底中点的连线旋转得 到,也可由______________________的平面截圆锥得到. (4)球可以由半圆或圆绕其________旋转得到. 3.空间几何体的三视图 空间几何体的三视图是用__________得到,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是____________的,三视图包括____________、__________、________. 4.空间几何体的直观图 画空间几何体的直观图常用________画法,基本步骤是: (1)在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画

成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=__________. (2)已知图形中平行于x轴、y轴的线段,在直观图中分别平行于____________. (3)已知图形中平行于x轴的线段,在直观图中长度____________,平行于y轴的线段,长度变为______________. (4)在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度________. [难点正本疑点清源] 1.画空间几何体的三视图的两个步骤 第一步,确定三个视图的形状;第二步,将这三个视图摆放在平面上.在绘制三视图时,分界线和可见轮廓线都用实线画出,被遮挡的部分的轮廓线用虚线表示出来,即“眼见为实、不见为虚”. 2.三视图与空间几何体中的几何量的关系 空间几何体的数量关系也体现在三视图中,正视图和侧视图的“高平齐”,正视图和俯视图的“长对正”,侧视图和俯视图的“宽相等”.其中,正视图、侧视图的高就是空间几何体的高,正视图、俯视图中的长就是空间几何体的最大长度,侧视图、俯视图中的宽就是空间几何体的最大宽度.要尽量按照这个规则画空间几何体的三视图. 1.利用斜二测画法得到的以下结论,正确的是__________.(写出所有正确的序号) ①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观 图是正方形;④圆的直观图是椭圆;⑤菱形的直观图是菱形. 2.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角) 是________. 3.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号). ①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥; ⑥圆柱. 4.以下命题: ①直角三角形绕一边所在直线旋转得到的旋转体是圆锥; ②夹在圆柱的两个平行截面间的几何体还是圆柱; ③圆锥截去一个小圆锥后剩余部分是圆台; ④棱锥截去一个小棱锥后剩余部分是棱台. 其中正确的命题序号是________.

空间几何体的结构特征

空间几何体的结构特征 一、知识要点 1.多面体的概念 一般地,由若干个平面多边形围成的几何体叫做多面体。围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点。 2、旋转体的概念 由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体,这条定直线叫做旋转体的轴. 温馨提示:同一个平面图形绕它所在平面内不同的轴旋转所形成的旋转体不同. 3、简单的旋转体——圆柱、圆锥、圆台、球 旋转体结构特征图形表示法 圆柱以矩形的一边所在直线为旋转 轴,其余三边旋转形成的面所围 成的旋转体叫做圆柱,旋转轴叫 做圆柱的轴;垂直于轴的边旋转 而成的圆面叫做圆柱的底面;平 行于轴的边旋转而成的曲面叫做 圆柱的侧面;无论旋转到什么位 置,不垂直于轴的边都叫做圆柱 侧面的母线 圆柱用表示它的轴的 字母表示,左图中圆 柱表示为圆柱OO′ 圆锥以直角三角形的一条直角边所在 直线为旋转轴,其余两边旋转形 成的面所围成的旋转体叫做圆锥 圆锥用表示它的轴的 字母表示,左图中圆 锥表示为圆锥SO 圆台用平行于圆锥底面的平面去截圆 锥,底面与截面之间的部分叫做 圆台.与圆柱和圆锥一样,圆台 也有轴、底面、侧面、母线 圆台用表示轴的字母 表示,左图中圆台表 示为圆台OO′ 球以半圆的直径所在直线为旋转 轴,半圆面旋转一周形成的旋转 体叫做球 球常用表示球心的字 母表示,左图中的球 表示为球O. 温馨提示:(1)几何体都是由表面及其内部构成. (2)球的常用性质 用一个平面去截球,截面是圆面,而且球心和截面圆心的连线垂直于截面,球心到截面的距离d与球的半径R及截面的半径r有下面的关系:r=R2-d2,当d=0,截面过圆心,叫做大圆,其圆周上两点劣弧的长叫球面上两点间的距离. 4、简单组合体 (1)概念:由简单几何体组合而成的几何体叫做简单组合体.常见的简单组合体大多是由具有柱、锥、台、球等几何结构特征的物体组成的. (2)基本形式:一种是由简单几何体拼接而成,另一种是由简单几何体截去或挖去一部分而成. 二、例题讲练 例1、根据下列关于空间几何体的描述,说出几何体的名称。 (1)由6个平行四边形围成的几何体; (2)由7个面围成,其中一个面是六边形,其余6个面都是有一个公共顶点的三角形。 (3)由5个面围成的几何体,其中上、下两个面试相似三角形,其余三个面都是梯形,并且这些梯形的腰延长后交于一点。 【活学活用1】

空间几何体的结构(教学设计)

图 1.1-7 1.1(2)空间几何体的结构(教学设计) 一、教学设计理念的背景及教学目标: (一)、教学背景: 作为一线数学教师,我们不仅只是参加整合教材的实验,在日常教学中摸索和体会信息技术与数学教学整合的经验,更重要的是要合理运用现代信息技术,身体力行地去优化数学课堂教学并不断从中获益。在信息技术与高中数学教学整合的实践中,我们在了解学生的基础上,首先确定哪些内容最适宜整合,然后考虑采用怎样的形式与方式整合,探索最佳整合点,寻找最佳切入口,为学生学习建构高中数学知识创设情境,搭建舞台。 (二)、教学目标 1.知识与技能 (1)通过图片观察和实物操作,增强学生的直观感知。 (2)能根据几何结构特征对空间物体进行分类。 (3)会用语言概述圆柱、圆锥、圆台、球的结构特征。 (4)会表示有关于几何体以及柱、锥、台的分类。 2.过程与方法 (1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。 (2)让学生观察、讨论、归纳、概括所学的知识。 3.情感态度与价值观 (1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。 (2)培养学生的空间想象能力和抽象括能力。 二、教学重点、难点 重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。 难点:柱、锥、台、球的结构特征的概括。 三、教学过程 (一)复习回顾: 1、棱柱、棱锥、棱台的结构特征 面、顶点、棱等。 (二)创设情境,新课引入: 上节课我们学习了两类几何体:多面体、旋转体.也研究了几种具体的多面体的结构特征,本节课我们再来研究几种旋转体的结构特征. (三)师生互动,讲解新课: 1.圆柱的结构特征 如书上图1-1的(1),让学生思考它是由什么旋转而得到的。 它的平面图如下(图1) ,我们可以发现这个旋转体是以矩形的一边所在的直线为旋转轴,其余三

空间几何体的结构及其表面积与体积

第一课时空间几何体的结构及表面积与体积 【学习目标】 ①认识柱,锥,台,球及其简单组合体的结构特征。 ②了解柱,锥,台,球的表面积与体积的计算公式 【考纲要求】 ①空间几何体的结构及其表面积与体积的计算公式是A级要求 【自主学习】 1.棱柱的定义: 2.棱锥的定义: 3.棱台的定义: 4.圆柱的定义: 5.圆锥的定义: 6圆台的定义: 7球的定义:

[课前热身] 1下列不正确的命题的序号是

①有两个面平行,其余各面都是四边形的几何体叫棱柱 ②有两个面平行,其余各面都是平行四边形的几何体叫棱柱 ③有一个面是多边形,其余各面都是三角形的几何体叫棱锥 ④有一个面是多边形,其余各面都是有一个公共顶点的三角形的几何体叫棱锥 2如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是 3若一个球的体积为4忑花,则它的表面积为 4 一张长宽分别是8cm和6cm的矩形硬纸板,将这硬纸板折成正四棱柱的 侧面,则此四棱柱的对角线长为 5—圆锥的侧面展开图的中心角为年母线长为2,则此圆锥的底面半径 6 一圆锥的轴截面面积等于它的侧面积的1,则其母线与底面所成角的正弦 4 值为 [典型例析] 例1 下列结论不正确的是(填序号).

①各个面都是三角形的几何体是三棱锥 ②以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆 锥 ③棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥 ④圆锥的顶点与底面圆周上的任意一点的连线都是母线 例2如图所示,等腰L|ABC D的底边AB=6A/6,高CD=3点E是线段BD上异于B,D的动点。 点F在BC边上,且EF丄AB.现沿EF将L BEF折起到L PEF的位置,使PE丄AE . 记BE=x V(X)表示四棱锥P-ACEF的体积。 [当堂检测] 1. 一个平面四边形的斜二测画法的直观图是一个边长为a的正方形,则原平面四边形的面积等于. 2.___________________________ 如果四棱锥的四条侧棱都相等,就称它为“等腰四棱

空间几何体的三视图经典例题

一、教学目标 1. 巩固空间几何体的结构及其三视图和直观图 二、上课内容 1、回顾上节课内容 2、空间几何体的结构及其三视图和直观图知识点回顾 3、经典例题讲解 4、课堂练习 三、课后作业 见课后练习 一、上节课知识点回顾 1.奇偶性 1)定义:如果对于函数f(x)定义域内的任意x都有f(-x)=-f(x),则称f(x)为奇函数;如果对于函数f(x)定义域内的任意x都有f(-x)=f(x),则称f(x)为偶函数。 如果函数f(x)不具有上述性质,则f(x)不具有奇偶性.如果函数同时具有上述两条性质,则f(x)既是奇函数,又是偶函数。 2)利用定义判断函数奇偶性的格式步骤:

○1首先确定函数的定义域,并判断其定义域是否关于原点对称;○2确定f(-x)与f(x)的关系;○3作出相应结论: 若f(-x) = f(x) 或f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或f(-x)+f(x) = 0,则f(x)是奇函数 3)简单性质: ①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y轴对称; 2.单调性 1)定义:一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量x1,x2,当x1f(x2)),那么就说f(x)在区间D上是增函数(减函数); 2)如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。 3)设复合函数y= f[g(x)],其中u=g(x) , A是y= f[g(x)]定义域的某个区间,B是映射 g : x→u=g(x) 的象集: ①若u=g(x) 在A上是增(或减)函数,y= f(u)在B上也是增(或减)函数,则函数y= f[g(x)]在A上是增函数; ②若u=g(x)在A上是增(或减)函数,而y=f(u)在B上是减(或增)函数,则函数y= f[g(x)]在A上是减函数。 4)判断函数单调性的方法步骤 利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤: ○1任取x1,x2∈D,且x1

空间几何体的结构特征教学设计

空间几何体的结构教学设计 一、教学内容解析 本节课选自人民教育出版社普通高中课程标准实验教科书数学2(必修)第一章《空间几何体》第1节《空间几何体的结构》。 几何学是研究现实世界中物体的形状、大小与位置关系的数学学科。空间几何体是几何学的重要组成部分,它在土木建筑、机械设计、航海测绘等大量实际问题中都有广泛的应用。三维空间是人类生存的现实空间,认识空间图形,培养和发展学生的几何直观能力、运用图形语言进行交流的能力、空间想象能力与一定的推理论证能力是高中阶段数学必修课程的一个基本要求。在本章,学生将从对空间几何体的整体观察入手,通过直观感知、操作确认、思辨论证、度量计算等方法认识和探索几何图形及其性质。 柱、锥、台、球的结构特征在立体几何教学中起着承上启下的作用。承上——承接小学和初中阶段学生对几何图形的直观认识,先整体、进而局部认识空间图形,用语言精确地描述空间几何体的结构特征;启下——认识清楚了空间几何体的结构特征,就可以利用这些特征进一步认识几何体的大小和位置关系,进行定量计算。柱体、锥体、台体、球体都是简单的几何体,复杂的几何体大都是由这些简单的几何体组合而成的。有关柱体、锥体、台体、球体的研究是研究比较复杂的几何体的基础。把现实世界中的物体抽象成几何图形,体现了数学模型以及数学建模的基本思想,同时,多个几何体具有同样的结构特征,则体现了特殊问题一般化的思想,利用不同的结构特征概括现实世界的物体,体现了分类讨论的基本方法。教学中,通过建立现实世界中的物体和空间几何体的对应关系,并从细节上认识空间几何体的结构特征,对培养学生数学建模的思想和方法、发展学生的抽象思维能力和空间想象能力具有重要意义。 二、教学目标设置 1.知识与技能 了解柱、锥、台、球的定义,掌握柱、锥、台、球的结构特征及其关系。 2.过程与方法 在描述和判断几何体结构特征的过程中,通过观察大量实例,运用课堂活动和合作学习的方式,培养观察能力、空间想象能力、抽象思维能力、几何直观能力、合情推理能力和运用图形进行交流的能力,渗透分类思想和类比方法,逐步培养自主探究的学习习惯。 3.情感、态度与价值观 通过对具体事物的抽象,培养探索能力、钻研精神和科学态度。在对空间几何体进行分类的过程中,培养团结协作的精神。通过探索、质疑、讨论感受数学探索的成就感,从而激发学习数学的热情,培养学习数学的兴趣,增强学习数学的信心。 三、教学重点和难点 教学重点:从数学角度合理对空间几何体进行分类,准确描述各类几何体的结构特征,并能运用这些结构特征判断几何体的形状。 教学难点:准确理解空间几何体尤其是棱柱的概念,学会换角度看问题,透过现象看本质,准确判断“放倒”几何体的结构特征。 四、学生学情分析 本节课的教学对象为福建省厦门双十中学(福建省一级达标学校)高一实验班学生,他们都是初中阶段的优秀学生,具有很好的形象思维能力和扎实的数学基本功,经过半个学期的高中数学学习,班级学生思维活跃,学习积极性强,学习兴趣浓厚,形成了良好的学习习惯,基本能做到课前预习、课后复习;有较强的课堂参与意识和思维能力,课堂上能积极思考,踊跃发言,具有较强的分析问题和解决问题的能力,抽象思维能力在不断增强。 学生在初中已经对空间图形进行直观认识,能在实物和抽象图形以及抽象图形和概念之间建立对应关系,对柱体、锥体和球有较为深刻的直观认识。细节上,学生已初步明确点、线、面、体等几何对象及其关系,并且能够根据长方体等的平面展开图描述基本几何体或其实物原型。本节课主要通过直观感知、操作确认来描述空间几何体的概念和基本特征,主要用到分类思想和类比方法,从思维的角度考虑,本节课是在形象思维的基础上发展抽象思维,学生在初中对几何图形的认识主要以直观感知为主,这与本节课的做法基本一致,同时,分类思想和类比方法在初中也有涉及,高中阶段必修1的教材中也有很

空间几何体的结构、表面积与体积

2021年新高考数学总复习第八章《立体几何与空间向量》空间几何体的结构、表面积与体积 1.空间几何体的结构特征 (1)多面体的结构特征 名称棱柱棱锥棱台 图形 底面互相平行且全等多边形互相平行 侧棱平行且相等相交于一点但不 一定相等 延长线交于一点 侧面形状平行四边形三角形梯形 (2)旋转体的结构特征 名称圆柱圆锥圆台球图形 母线平行、相等且垂直 于底面 相交于一点延长线交于一点 轴截面全等的矩形全等的等腰三角形全等的等腰梯形圆侧面 展开图 矩形扇形扇环 2.圆柱、圆锥、圆台的侧面展开图及侧面积公式 圆柱圆锥圆台侧面展开图

侧面积公式 S 圆柱侧=2πrl S 圆锥侧=πrl S 圆台侧=π(r 1+r 2)l 3.空间几何体的表面积与体积公式 名称 几何体 表面积 体积 柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =S 底·h 锥体(棱锥和圆锥) S 表面积=S 侧+S 底 V =1 3 S 底·h 台体(棱台和圆台) S 表面积=S 侧+S 上+S 下 V =1 3 (S 上+S 下+S 上S 下)h 球 S =4πR 2 V =43 πR 3 概念方法微思考 1.底面是正多边形的棱柱是正棱柱吗?为什么? 提示 不一定.因为底面是正多边形的直棱柱才是正棱柱. 2.如何求不规则几何体的体积? 提示 求不规则几何体的体积要注意分割与补形,将不规则的几何体通过分割或补形转化为规则的几何体求解. 题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( × ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( × ) (3)棱台是由平行于底面的平面截棱锥所得的平面与底面之间的部分.( √ ) (4)锥体的体积等于底面积与高之积.( × ) (5)已知球O 的半径为R ,其内接正方体的边长为a ,则R = 3 2 a .( √ ) (6)圆柱的一个底面积为S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS .( × ) 题组二 教材改编 2.已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为( ) A .1 cm B .2 cm C .3 cm D.32 cm 答案 B 解析 S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π,

空间几何体的结构特征教案 人教课标版(优秀教案)

空间几何体的结构(柱、锥)教学设计 一,教学设计理念 立体几何这部分内容过去常从研究点、直线和平面开始,再研究由它们组成的几何体,遵循部分到整体的原则;现在先从对空间几何体的整体感受入手,再研究组成空间几何体的点、直线和平面。这种从整体到局部、由具体到抽象的安排遵循人类认识世界的过程,也符合学生的认知特点。它有助于发展学生的空间观念、培养学生的空间想象能力、几何直观能力,降低立体几何学习入门难的门槛,提高学生学习立体几何学习的兴趣。 二,教学内容 1、教材内容的地位、作用与意义 本节内容是立体几何的入门教学,是初中阶段“空间与图形”课程的延续与提高,通过本节内容的学习可帮助学生逐步形成空间想象能力。 2、教材的编排特点、重点和难点 本着新课程标准,在吃透教材的基础上,我感到在内容的编选及内容的呈现方式上,为了符合学生的认知发展规律,培养学生对几何学习的兴趣,增进学生对几何本质的理解,与以往的处理有较大的变化。本章内容的设计遵循从整体到局部,从具体到抽象的原则,强调借助实物模型,通过整体观察,直观感知,引导学生多角度、多层次地揭示空间图形的本质。重视合情推理与逻辑推理的结合,注意适度形式化。倡导学生积极主动,勇于探索的学习方式。帮助学生完善思维结构,发展空间想象能力。 本节教学重点是让学生认识柱、锥的结构特征、帮助学生逐步形成空间想像能力。难点是通过空间图形,培养和发展学生的空间想象能力。 三,教学目标 本节的主要内容是认识空间图形,通过对空间几何体的整体把握,培养和发展空间想象能力。从学生熟悉的物体入手,使学生对物体形状的认识由感性上升到理性,通过本章的学习,要使学生达到下列目标: 3、知识目标:利用实物模型、计算机软件观察大量空间图形,认识棱柱、 圆柱和圆锥,棱锥的结构特征,并能运用这些特征描述现实生活中简单物 体的结构。 4、能力目标:通过直观感知的方式让学生认识人类生存的现实空间,通过 空间图形,培养和发展学生的空间想象能力。 5、情感态度与价值观 、能积极参与数学学习活动,对数学有好奇心与求知欲。 、在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心。 、认识数学与人类生活的密切联系,体验数学活动充满着探索与创造 四,教学对象 6、学生已有的知识和经验 学生对正方体、长方体、圆柱、圆锥、球等都有了直观认识;会画直棱柱、圆 柱、圆锥与球的三视图,会判断简单物体的三视图,能根据展开图描述基本

1空间几何体的结构练习题

1.1空间几何体的结构练习题 1、在棱柱中() A.只有两个面平行B.所有的棱都平行 C.所有的面都是平行四边形D.两底面平行,且各侧棱也互相平行 2、下列说法错误的是() A:由两个棱锥可以拼成一个新的棱锥B:由两个棱台可以拼成一个新的棱台 C:由两个圆锥可以拼成一个新的圆锥D:由两个圆台可以拼成一个新的圆台 3、下列说法正确的是() A:以直角三角形的一边为轴旋转而成几何体是圆锥B:圆柱、圆锥、圆台的底面都是圆面 C:以直角梯形的一腰为轴旋转成的是圆台 D:圆锥的侧面展开图为扇形,这个扇形所在的圆的半径等于圆锥底面圆的半径 4、下列关于长方体的叙述不正确的是() A:长方体的表面共有24个直角B:长方体中相对的面都互相平行 C:长方体中某一底面上的高的长度就是两平行底面间的距离: D;两底面间的棱互相平行且相等的六面体是长方体 5、将图1所示的三角形线 直线l旋转一周,可以得到 如图2所示的几何体的是哪 一个三角形() 6、如图一个封闭的立方体,它6个表面各标出1、 2、3、4、5、6这6个数字,现放成下面3个不同 的位置,则数字l、2、3对面的数字是() A.4、5、6 B.6、4、5 C.5、4、6 D.5、6、4 7、如图,能推断这个几何体可能是三棱台的是() A.A1B1=2,AB=3,B1C1=3,BC=4 B.A1B l=1,AB=2,B l C l=1.5,BC=3,A1C1=2,AC=3 C.A l B l=1,AB=2,B1C l=1.5,BC=3,A l C l=2,AC=4 D.AB=A1B1,BC=B1C1,CA=C1A1 8、有下列命题(1)在圆柱的上、下底面的圆周上各取一点,则这两点 的连线是圆柱的母线;(2)圆锥顶点与底面圆周上任意一点的连线是圆 锥的母线;(3)在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;(4)圆柱的任意两条母线所在的直线是互相平行的;其中正确的是() A.(1)(2) B.(2)(3) C.(1)(3) D.(2)(4) 9、下列命题中错误的是() A.圆柱的轴截面是过母线的截面中面积最大的一个 B.圆锥的轴截面是所有过顶点的截面中面积最大的一个C.圆台的所有平行于底面的截面都是圆面 D.圆锥所有的轴截面是全等的等腰三角形 10、图1是由图2中的哪个平面图旋转而得到的()

《空间几何体的结构》教案.

1.1空间几何体的结构 第一章:空间几何体 第一课时 §1.1. 柱、锥、台、球的结构特征 一、教学目标 1.知识与技能 (1)通过实物操作, 课件展示,增强学生的直观感知. (2)能根据几何结构特征对空间物体进行分类. (3)会用语言概述棱柱、棱锥、棱台、(圆柱、圆锥、圆台、球)的结构特征. (4)会表示有关于几何体以及柱、锥、台的分类. 2.过程与方法 (1)让学生通过直观感受空间物体, 从实物中概括出棱柱、棱锥、棱台、的几何 结构特征. (2)让学生观察、讨论、归纳、概括所学的知识. 3.情感态度与价值观 (1)使学生感受空间几何体存在于现实生活周围, 增强学生学习的积极性,同时 提高学生的观察能力. (2)培养学生的空间想象能力和抽象括能力. 二、教学重点、难点

重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。 难点:柱、锥、台、球的结构特征的概括. 三、教学用具 (1)学法:观察、思考、交流、讨论、概括. (2)课件 四、教学过程 (一)课题导入 1. 展示世界经典建筑,教师提出问题: 经典的建筑给人以美的享受, 你知道其中的奥秘吗?引出几何学, 空间几 何体的概念. 2.所举的建筑物由哪些几何体组合而成?(展示具有柱、锥、台、球结构 特征的空间物体),你能通过观察, 根据某种标准对这些空间物体进行分类吗?这 是我们所要学习的内容. (二)新知探研 (1)多面体、旋转体: 1. 引导学生总结多面体及多面体的面、棱、顶点的定义; 旋转体及旋转体的 轴的定义. 给出实物图片让学生按多面体、旋转体给几何体分类, 老师评价. (2)棱柱 :

立体几何(空间几何体的结构特征)

立体几何 第一讲:空间几何体的结构特征一.基础知识 1.多面体的结构特征

2.旋转体的结构特征 3.三视图与直观图

直观图 斜二测画法:(1)原图形中x 轴、y 轴、z 轴两两垂直,直观图中x ′轴、y ′轴的夹角为45°或135°,z ′轴与x ′轴和y ′轴所在平面垂直. (2)原图形中平行于坐标轴的线段在直观图中仍平行于坐标轴,平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段在直观图中长度为原来的一半. 二.经典案例 案例一:直观图画法(斜二测画法) ①如图,直观图所表示的平面图形是( )

A .正三角形 B .锐角三角形 C .钝角三角形 D .直角三角形 解析 由直观图中,A ′C ′∥y ′轴,B ′C ′∥x ′轴,还原后AC ∥y 轴,BC ∥x 轴. 所以△ABC 是直角三角形.故选D. ②已知等腰梯形ABCD ,上底CD =1,腰AD =CB =2,下底AB =3,以下底所在直线为x 轴, 则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________. 解析 如图所示,作出等腰梯形ABCD 的直观图. 因为OE =(2)2 -1=1,所以O ′E ′=12,E ′F =2 4, 则直观图A ′B ′C ′D ′的面积S ′=1+32×24=2 2. 案例二:三视图的识别 ① (2018·全国Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,

则咬合时带卯眼的木构件的俯视图可以是() 解析由题意可知带卯眼的木构件的直观图如图所示,由直观图可知其俯视图应选A.

1.1 空间几何体的结构 第1课时 教案

第一章 空间几何体 §1.1空间几何体的结构 §1.1.1柱、锥、台、球的结构特征(1) 学习目标 1.感受空间实物及模型,增强直观感知;能根据几何结构特征对空间几何体进行分类; 2.理解多面体的有关概念;会用语言概述棱柱、棱锥、棱台的结构特征及其关系; . 一、课前准备 (预习教材P 2 ~ P 4 ,找出疑惑之处) 复习:初中学过哪些空间图形? 二、新课导学——学习探究 【探究任务1】:空间几何体的分类 活动情境:欣赏图片 1. 空间几何体的定义: 叫做空间几何体. 问题1:若只考虑几何体的表面形状特征可将几何体分为两类,该如何分? 2. 3.多面体的相关概念(1)多面体:(2)多面体的面:(3 )多面体的棱:(44.旋转体的相关概念 旋转体 旋转体的轴 【探究任务2】:棱柱的结构特征 问题2:你能归纳下列图形共同的几何特征吗? 共同特征:(1) (2)

(3) 棱柱的定义:一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做_______. 棱柱的基本概念:棱柱中,两个互相平行的面叫做棱柱的_______,简称_______;其余各面叫做棱柱的_______;相邻侧面的公共边叫做棱柱的_______;侧面与底面的公共顶点叫做棱 柱的 _______. 棱柱的分类:按底面多边形的边数来分,底面是三角形、四边形、五边形…的棱柱分别叫做_______ 棱柱的表示:我们用表示底面各顶点的字母表示棱柱,如四棱柱表示为棱柱ABCD—A B C D ''''.动手试试:1.观察下面两个的棱柱,分别有多少对平行平面?能作为棱柱的底面的有几对? 2.判断下面几何体是不是棱柱 【探究任务3】:棱锥的结构特征 问题3:类比棱柱的研究方法,右图的几何体具有什么样的几何特征呢? 特征:(1) (2) 棱锥的定义:有一个面是多边形,而其余各面都是有一个_________的三角形,由这些面围成的几何体叫做棱锥。 棱锥的基本概念:多边形叫做___________;棱锥中有公共顶点的各三角形,叫做___________;各侧面的公共顶点叫做___________;相邻两侧面的公共边叫做___________。 棱锥的分类:棱锥按____________是三角形、四边形、五边形……分别叫做三棱锥、四棱锥、五棱锥…… 棱锥的表示:棱锥用表示__________和___________的字母来表示,如四棱锥表示为棱锥S-ABCD. 辨析:下面明矾晶体是不是棱锥? 【探究任务4】:棱台的结构特征 问题4:假设用一把大刀能把棱锥的上部分平行地切掉,则切掉的部分是什么形状?剩余的部分呢? A D B1 A1 D1

高考冲刺 空间几何体结构及其三视图(基础)

空间几何体结构及其三视图 【考纲要求】 (1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. (2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图表示的立体模型,会用材料(如纸板)制作模型,并会用斜二测法画出它们的直观图. (3)通过观察用平行投影与中心投影这两种方法画出的视图与直观图,了解空间图形的不同表示形式. (4)了解球、棱柱、棱锥、台的表面积和体积的计算公式. 【知识网络】 【考点梳理】 考点一、空间几何体的结构及其三视图和直观图 1、多面体的结构特征 (1)棱柱(以三棱柱为例) 如图:平面ABC与平面A1B1C1间的关系是平行,ΔABC与 ΔA1B1C1的关系是全等。 各侧棱之间的关系是:A1A∥B1B∥C1C,且A1A=B1B=C1C。 (2)棱锥(以四棱锥为例) 如图:一个面是四边形,四个侧面是有一个公共顶点的三 角形。

(3)棱台 棱台可以由棱锥截得,其方法是用平行于棱锥底面的平面截棱锥,截面和底面之间的部分为棱台。 2、旋转体的结构特征 旋转体都可以由平面图形旋转得到,画出旋转出下列几何体的平面图形及旋转轴。 3、空间几何体的三视图 空间几何体的三视图是用正投影得到,在这种投影下,与投影面平行的平面图形留下的影子与平面图形的开关和大小是完全相同的,三视图包括正视图、侧视图、俯视图。 4、空间几何体的直观图

空间几何体的直观图常用斜二测画法来画,其规则是: (1)原图形中x轴、y轴、z轴两两垂直,直观图中,x’轴、y’轴的夹角为45o(或135o),z’轴与x’轴和y’轴所在平面垂直; (2)原图形中平行于坐标轴的线段,直观图中仍平行。平行于x轴和z轴的线段长度在直观图不变,平行于y轴的线段长度在直观图中减半。 5、平行投影与中心投影 平行投影的投影线互相平行,而中心投影的投影线相交于一点。 要点诠释:空间几何体的三视图和直观图在观察角度和投影效果上的区别是:(1)观察角度:三视图是从三个不同位置观察几何体而画出的图形;直观图是从某一点观察几何体而画出的图形;(2)投影效果:三视图是正投影下的平面图形,直观图是在平行投影下画出的空间图形。 考点二、空间几何体的表面积和体积 1、旋转体的表面积 名称图形表面积 圆柱S=2πr(r+l) 圆锥S=πr(r+l)

相关文档
最新文档