孔加工方法概述

孔加工方法概述
孔加工方法概述

孔加工方法

A.目的

B.熟悉常见孔加工工艺

C.对孔加工用刀具有大概印象

了解部分新的加工方法

D.概念

实体上的空腔称作孔。可能是圆的,方的,六角的等等。这里只讨论金属切削加工的范畴内的孔加工,即通过旋转的刀具(或工件)来获得孔的方法,所以讨论的对象局限于圆孔。

可用于孔加工的通用机床设备:车床、铣床、镗床、钻床。根据加工工件的外形,所需孔的直径,公差等级,孔深(通孔或圆孔),选择合适的设备和加工方法。

E.实体开孔

1.麻花钻

Φ20以下规格可以选择莫氏柄或者直柄,Φ20以上一般均为莫氏锥柄。

直柄可以选用钻夹头来夹持,三爪钻夹头本身可以在一定范围内调节,可以

适应不同规格的直柄钻头,但是夹持精度比较低。

装夹。

麻花钻材质有普通高速钢、钒高速钢、钴高速钢、粉末冶金高速钢、硬质合金等。高速钢类价格相对比较便宜,韧性好,可用于跳动比较大的场合。硬质合金切削速度快,效率高,但对装夹、冷却和断屑排屑要求很高,一般整体硬质合金装夹后跳动不能超过,否则钻尖容易折断,此外对于长铁屑材料,一般要求内冷,且冷却液压力在10bar以上。

钴高速钢是介于普通高速钢钻头和整体硬质合金钻头之间的一个比较好的解决方案,由于比普通钻头硬度高,更耐磨,所以刃口更耐用,不容易折断;同时与硬质合金钻头相比,又有很好的韧性,不需要保证严格的跳动。

PVD涂层也能提高高速钢钻头的切削速度和寿命,但是一旦重磨,涂层就不起作用。

由于普通钻头容易产生钻偏、钻斜的现象,所以很多时候需要用中心钻预钻引导孔。因为方便计算,所以一般选用90o锥角的中心钻。预钻的深度根据孔径计算,要求引导孔口部直径小于钻头直径,这样钻头的刃口先开始切削,而不是钻尖或外刃。

整体硬质合金的钻头不能使用预钻孔,因为整硬钻头均为自定心设计,预钻孔会导致孔质量下降甚至钻头损坏。

2.板钻

板钻由钢质刀体和可换刀片组成。刀片材料可以是高速钢或者硬质合金,并带有涂层。专业厂家生产的板钻一般带中心冷却孔,并且可换刀片形式比较多,有的用于钻孔,有的用于锪沉孔,也有用于锪锥孔。

板钻的效率介于高速钢钻头和机夹钻头之间,但同样需要机床的功率比较大,因此在近年来在钻孔方面逐步被机夹钻头取代。

3.机夹钻头(浅孔钻)

大批量条件下最经济最高效的孔加工方法。通常情况需要中心冷却,并却冷

却压力足够大。最初称之为浅孔钻是因为其加工孔深局限于5D以内,但是刀具厂家最新的产品能够用机夹钻头加工出9D的孔。

4.铣刀螺旋插补

Φ50以上的浅孔也可以通过铣刀螺旋插补的方式获得。这种方式要求的功率和扭矩比直接选用相应型号的钻头要小很多,因此可以在小型机床上加工大直径的孔,所以在小批量的情况下能减小刀具库存。

一般选用圆刀片铣刀或高进给铣刀(见下图),刀具外径介于D/2和D之间,并选用合适长度的刀杆。刀杆分整体只和模块化,整体式刚性最好,但长度固定。模块化的刀柄可以根据需要接长,比较灵活,常见的接长系统为山特维克的Capto系统和高迈特的ABS系统。

高进给铣刀的切入角度比较小,在45度以下,形成的铁屑比较薄,所以能承受很高的进给,同时因为主要力分布于轴向,所以震动相对来说比较小。在螺旋插补时,高进给铣刀的切削刃比圆刀片刀盘要小,同时侧面无切削刃,所以需要的功率要比圆刀片刀盘更小。

F.扩孔

1.扩孔钻

扩孔钻与铰刀一样,没有钻尖,不能实体上开孔。

扩孔也可以用普通钻头完成,但普通钻头为两刃,槽长比较大,刚性差。因此不适用于扩质量要求高的孔,而扩孔钻则不同,它可以是3刃、4刃甚至更多,排屑槽比较浅,刚性好很多,所以加工出的孔表面质量比麻花钻扩孔要好。

2.镗刀

一般意义上的镗刀是单刃加工刀具,镗孔等同于内圆车削。新的阶梯镗刀和三刃粗镗刀能大大提高镗孔的效率,但是仅用于粗镗工序。

镗削能精确控制孔的尺寸,并提高表面质量,同时得益于镗刀杆的刚性,镗削能修正斜孔,所以镗削经常作为钻孔的后续工序进行。

镗刀刀片归类于车刀片,但是因为是内孔加工,所以精镗时必须使用正前角刀片。通孔的话可以选用正方形刀片的镗刀,盲孔或阶梯孔则用三角形刀片。

3.铣刀插补

由于底孔的存在,更利于排屑。采用预钻孔+螺旋插补本身就是一种比较安全的加工方法。也可以在用圆弧插补的方式孔扩孔(见下图)。

在圆弧插补和螺旋插补均可的情况下,要优先选用螺旋插补,因为螺旋插补编程简单,而且在进给的时候始终保持切削,工况稳定,利于刀具。

出于效率考虑,选用圆刀片铣刀和高进给铣刀。

G.沉孔(正面)加工

1.沉孔锪刀(平底锪刀)

数控铣床各种孔加工方式说明

数控铣床各种孔加工方式说明 (1)高速深孔往复排屑钻G73指令 指令格式:G73 X_ Y_ Z_ R_ Q_ F_ 孔加工动作如图4.24左图所示。G73指令用于深孔钻削,Z轴方向的间断进给有利于深孔加工过程中断指令Q为每一次进给的加工深度(增量值且为正值),图示中退刀距离d由数控系统内部设定。 (2)深孔往复排屑钻G83指令 指令格式:G83 X_ Y_ Z_ R_ Q_ F_ 孔加工动作如下图右图所示。与G73指令略有不同的是每次刀具间歇进给后回退至R点平面,这种退刀畅通,此处的d表示刀具间断进给每次下降时由快进转为工进的那一点至前一次切削进给下降的点之间的由数控系统内部设定。由此可见这种钻削方式适宜加工深孔。 图4.24 G73循环与G83循环 (3)精镗孔G76指令 指令格式:G76 X_ Y_ Z_ R_ Q_ F_; 孔加工动作如图4.25所示。图中OSS表示主轴准停,Q表示刀具移动量(规定为正值,若使用了负值则略)。在孔底主轴定向停止后,刀头按地址Q所指定的偏移量移动,然后提刀,刀头的偏移量在G76指令采用这种镗孔方式可以高精度、高效率地完成孔加工而不损伤工件表面。 图4.25 精镗孔图 4.26 钻孔与锪孔 (4)钻孔G81指令与锪孔G82指令 G81的指令格式为:G81 X_ Y_ Z_ R_ F_; G82的指令格式为:G82 X_ Y_ Z_ R_ F_;

如图4.26所示,G82与G81指令相比,唯一不同之处是G82指令在孔底增加了暂停,因而适用于锪孔或提高了孔台阶表面的加工质量,而G81指令只用于一般要求的钻孔。 (5)精镗孔G85指令与精镗阶梯孔G89指令 G85的指令格式为:G85 X_ Y_ Z_ R_ F_; G89的指令格式为:G89 X_ Y_ Z_ R_ P_ F_; 如图4.27所示,这两种孔加工方式,刀具以切削进给的方式加工到孔底,然后又以切削进给的方式返回因此适用于精镗孔等情况,G89指令在孔底增加了暂停,提高了阶梯孔台阶表面的加工质量。 图 4.27 精镗孔与精镗阶梯孔 (6)镗孔G86指令 指令格式:G86 X_ Y_ Z_ R_ F_ 如图4.28所示,加工到孔底后主轴停止,返回初始平面或R点平面后,主轴再重新启动。采用这种方式续加工的孔间距较小,可能出现刀具已经定位到下一个孔加工的位置而主轴尚未到达指定的转速,为此可以作之间加入暂停G04指令,使主轴获得指定的转速。 图4.28 镗孔G86指令图4.29 反镗孔 (7)反镗孔G87指令 指令格式:G87 X_ Y_ Z_ R_ Q_ F_; 如图4.29所示,X轴和Y轴定位后,主轴停止,刀具以与刀尖相反方向按指令Q设定的偏移量偏移,并到孔底,在该位置刀具按原偏移量返回,然后主轴正转,沿Z轴正向加工到Z点,在此位置主轴再次停止后次按原偏移量反向位移,然后主轴向上快速移动到达初始平面,并按原偏移量返回后主轴正转,继续执行下段。采用这种循环方式,刀具只能返回到初始平面而不能返回到R点平面。 (8)镗孔G88指令 指令格式:G88 X_ Y_ Z_ R_ P_ F_;

机械制造及工艺——箱体孔系加工

箱体孔系加工和常用工艺装备 一、箱体零件孔系加工 箱体上一系列相互位置有精度要求的孔的组合,称为孔系。孔系可分为平行孔系「图8-35(a)〕、同轴孔系[图8-35(b)」和交叉孔系[图8-35(c)]。孔系加工不仅孔本身的精度要求较高,而且孔距精度和相互位置精度的要求也高,因此是箱体加工的关键。孔系的加工方法根据箱体批量不同和孔系精度要求的不同而不同,现分别予以讨论。 (一)平行孔系的加工 平行孔系的主要技术要求是各平行孔中心线之间及中心线与基准面之间的距离尺寸精度和相互位置精度。生产中常采用以下几种方法 1.找正法 找正法是在通用机床上借助辅助工具来找正要加工孔的正确位置的加工方法。这种方法加工效率低,一般只适用于单件小批生产。根据找正方法的不同,找正法又可分为以下几种: (l)划线找正法。加工前按照零件图在毛坯上划出各孔的位置轮廓线,然后按划线一一进行加工。划线和找正时间较长,生产率低,而且加工出来的孔距精度也低,一般在±0.5 mm 左右。为提高划线找正的精度,往往结合试切法进行。即先按划线找正镗出一孔再按线将主轴调至第二孔中心,试镗出一个比图样要小的孔,若不符合图样要求,则根据测量结果更新调整主轴的位置,再进行试镗、测量、调整,如此反复几次,直至达到要求的孔距尺寸。此法虽比单纯的按线找正所得到的孔距精度高,但孔距精度仍然较低且操作的难度较大,生产效率低,适用于单件小批生产。 (2)心轴和块规找正法。镗第一排孔时将心轴插人主轴孔内(或直接利用镗床主轴),然后根据孔和定位基准的距离组合一定尺寸的块规来校正主轴位置,如图8-36所示。校正时用塞尺测定块规与心轴之间的间隙,以避免块规与心轴直接接触而损伤块规。镗第二排孔时,分别在机床主轴和加工孔中插入心轴,采用同样的方法来校正主轴线的位置,以保证孔心距的精度。这种找

提高孔加工的精度的方法

提高孔加工的精度的方法 对于钳工专业而言,钻孔是其中最重要的加工操作,它是一种确定孔系和孔位置准确度的方式。钻削加工时,操作者可以利用理论联系实际的方法分析出孔的中心位置、确定钻床主轴线和被加工工件表面的垂直度以及做好麻花钻刃磨的质量提升工作,从而达到不断提升钻孔工艺以及提高钳工操作能力的目的,希望本文能够使更多的人掌握钳工孔加工精度的方法 在钳工专业的基本实习训练中,孔加工是相对比较难掌握的基本操作之一。在孔加工实习训练中反映问题最多的是单孔的直径控制和多孔的孔距精度控制,特别是对孔距的精度控制最为突出。在实践中,如果是成批量的生产加工,可以通过制做工卡具来实现对孔距的控制,这样不仅能满足产品的技术要求,还能极大地提高工作效率。但在小批量的生产加工中,对孔和孔距的形状和位置精度控制,则要通过划线、找正等方法来予以保证。? 一、钳工孔加工实习课题训练中容易出现的问题:? 1、钻孔时孔径超出尺寸要求,一般是孔径过大;? 2、孔的表面粗糙度超出规定的技术要求;? 3、孔的垂直度超出位置公差要求;? 4、孔距(包括边心距和孔距)超出尺寸公差的要求;? 二、孔加工中出现问题的主要原因分析:? 1、钻头刃磨时两个主切削刃不对称,在钻削过程中,使钻头的径向受力;? 2、对钻削的切削速度选择不当;? 3、钻削时工件未与钻头保持垂直;?

4、未对孔距尺寸公差进行跟踪控制;? 三、提高孔加工精度的方法:? 在孔加工的课题训练中,对于前三个问题,需要加强练习。比如主切削刃的不对称问题,在刃磨时,要对砂轮面进行检查,如果砂轮的磨削面不平整,应及时进行修整,刃磨的角度应保持一致。对于不同的孔径,要选择相应的切削速度。在钻孔过程中,自始至终都要避免钻头的径向受力。钻孔时,不仅要保证平口钳的上平面与钻头的垂直,也要保证夹持工件时夹持面与加工表面的垂直。夹持要牢固,避免在钻孔过程中,由于夹持不牢使工件发生滑陷。这些都需要在实习的过程中让学生慢慢体会和认真掌握的。? 最容易出现也是最难掌握的问题是孔距精度的控制问题,在这里作一下重点阐述。传统的孔的位置精度的检查是靠划出“检查圆”和“检查框”的方法。“检查圆”它是在钻孔划线完毕后,用划规以样冲眼为中心,划出比需要加工孔的直径大的“检查圆”,作为钻孔时检查位置是否准确的参照基准。由于划规在旋转中其确定圆心的脚尖与样冲眼的接触中会产生滑动,使划规划的“检查圆”容易产生误差。“检查框”是利用高度游标卡尺在孔的十字中心线上划出等距的方格,是在钻孔的初期样冲眼灭失时,用来替代样冲眼检查孔位置是否正确的依据,“检查框”确定的找正基准可以保证钻孔的中心与样冲眼定位的中心重合,保证划线精度,也避免了划“检查圆”的误差。这两种保证孔位置精度的做法在教学中很难被学生掌握。在多年的钳工实习教学实践中,对于孔距的控制我采用的是“跟踪控制法”。所谓“跟踪控制”,就是从划线开始,到加工结束,每一道加工工序都要通过认真的检查来保证孔距的精度要求在加工者的控制之中。做到前道加工工序是后一道加工工序的精度控制前提,后一道加工序是前一道加工工序的精度控制保证。一环扣一环,从

各种孔加工技术介绍

2.1 微型硬质合金整体钻头的发展 随着宇航、电子工业、轻工业及医疗器械的发展,促进了整体硬质合金小钻头 的发展。微孔钻削常要求具备高达(1~12)×104r/min 的转速。为了提高钻头刚性, 这种小钻头多采用韧性高、抗弯强度高的细颗粒的硬质合金材料制成。在结构上, 小于Ф1mm 的钻头常制成粗柄的,而直径稍大些的,则制成短型整体硬质合金钻头。 整体硬质合金小钻头使用时应注意消振、对中、排屑及冷却问题,一般应采用传感 器进行监控。 如美国麻省理工学院就研制了整体硬质合金小钻头的同位素监控方法。 日本东芝钨株式会社的小直径钻头分为 UH(Ф0.1~0.3mm)、RH(Ф0.3~ 1.65mm)、COS(Ф1~6mm)三种系列。苏联 BHNN 也研制了Ф0.4~2mm 的粗柄硬质合 金钻头,比同种规格的高速钢钻头寿命提高 100 倍。试验说明,用Ф0.8~8mm 的直 柄硬质合金钻头加工难加工材料和耐热合金材料,效果很好。美国 Amplx 公司发展 了电镀金刚石整体小钻头系列产品,可钻削Ф0.13~0.51mm 的小孔。据国外报导, 最小的整体硬质合金钻头直径为Ф0.02~0.03mm。 随着印刷电路板向小型、轻型、高密度和高可靠性的要求发展和其用量的日趋 扩大,孔的精度也越来越高,孔径越来越小,孔的分布密度越来越大,这样就给这 些印刷电路板的微孔加工带来各种困难。作为印刷电路板专用钻头,钻头的材料和 形状也要随印刷电路板的种类和孔的深度而改变,一般说来,纸、酚醛树脂印刷电 路板或玻璃纤维、环氧树脂印刷电路板切削性能较好,而表面附有铜层的材料对切 削性能影响较大。在多层板的情况下,印刷电路板内部有铜层,一般说来,表面铜 层的厚度为 18~35μm,内部铜层的厚度为 35~70μm。这种铜层对钻头的磨损和折损 有很大的影响,铜层越厚,钻头折损率就越高。因而加工多层板要比加工两面附铜 板的切削用量小,特别是钻头的直径越小时,为减少钻头的折损,常用改变钻芯厚 度和钻槽的比值来增加钻头的横截面积,以提高钻头的刚性。最近开发了新型的 MD 类硬质合金可以减小钻孔时的摩擦,即减少污斑现象,并具有良好的耐磨性和较长 的寿命,因此能适应印刷电路板的高速、高效生产的需要。 2.2 中等尺寸硬质合金钻头 2.2.1 三刃整体硬质合金钻头

常用的内孔加工方法与特点解析

一、钻孔? 在模具零件上用钻头主要有两种方式:一种是钻头回转,零件固定不回转,如在普通台式钻床、摇臂钻、镗床上钻孔;另外一种方式零件回转而钻头不回转,如在车床上钻孔,这两种不同的钻孔方式所产生的误差不一样,在钻床或镗床上钻孔,由于钻头回转,使刚性不强的钻头易引偏,被加工孔的中心线偏移,但孔径不会发生变化。钻头的直径一般不超过75mm,若钻孔大于30mm以上,通过采用两次钻销,即先用直径较小的钻头(被要求加工孔径尺寸的0.5~0.7倍)先钻孔,再用孔径合适的钻头进行第二次钻孔直到加工到所要求的直径。以减小进给力。钻头钻孔的加工精度,一般可以达到IT11~IT13级,表面粗糙度Ra 为5.0~12.5um。 二、扩孔? 用扩孔钻扩大零件孔径的加工方法,既可以作为精加工(铰孔、镗孔)前的预加工,也可以作为要求不高的孔径最终加工。孔径的加工精度,一般可以达到IT10~IT13级,表面粗糙度Ra为0.3~3.2um。 三、铰孔? 是用铰刀对未淬火孔进行精加工的一种孔径的加工方法。铰孔的加工精度,一般可以达到IT6~IT10级,表面粗糙度Ra为0.4~0.2um。在模具制造加工中,一般用手工铰孔,其优点是切削速度慢,不易升温和产生积屑瘤,切削时无振动,容易控制刀具中心位置,因此当孔的精度要求很高时,主要用手工铰孔,或机床粗铰再用手工精铰。在铰孔时应主要以下几点:a. 合理选择铰孔销孔余量及切削和规范;b. 铰孔刃口平整,能提高刃磨质量;c. 铰销钢材时,要用乳化液作为切削液。 四、车孔? 在车床上车孔,主要特征是零件随主轴回转,而刀具做进给运动,其加工后的孔轴心线与零件的回转轴线同轴。孔的圆度主要取决于机床主轴的回转精度,孔的纵向几何形状误差主要取决于刀具的进给方向。这种车孔方式适用于加工外圆表面与孔要求有同轴度的零件。 五、镗孔? 在镗床上镗孔,主要靠刀具回转,而零件做进给运动。这种镗孔方式,其镗杆变形对孔的纵向形状精度无影响,而工作台进给方向的偏斜或不值会使孔中心线产生形状误差。镗孔也可以在车床、铣床、数控机床上进行,其应用范围广泛,可以加工不同尺寸和精度的孔,对直径较大的孔,镗孔几乎是唯一的方法。镗孔加工精度一般可以达到IT7~IT10级,表面粗糙度Ra为0.63~1.0um。

常用的内孔加工方法与特点解析修订稿

常用的内孔加工方法与 特点解析 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

一、钻孔? 在模具零件上用钻头主要有两种方式:一种是钻头回转,零件固定不回转,如在普通台式钻床、摇臂钻、镗床上钻孔;另外一种方式零件回转而钻头不回转,如在车床上钻孔,这两种不同的钻孔方式所产生的误差不一样,在钻床或镗床上钻孔,由于钻头回转,使刚性不强的钻头易引偏,被加工孔的中心线偏移,但孔径不会发生变化。钻头的直径一般不超过75mm,若钻孔大于30mm以上,通过采用两次钻销,即先用直径较小的钻头(被要求加工孔径尺寸的~倍)先钻孔,再用孔径合适的钻头进行第二次钻孔直到加工到所要求的直径。以减小进给力。钻头钻孔的加工精度,一般可以达到IT11~IT13级,表面粗糙度Ra为~。 二、扩孔? 用扩孔钻扩大零件孔径的加工方法,既可以作为精加工(铰孔、镗孔)前的预加工,也可以作为要求不高的孔径最终加工。孔径的加工精度,一般可以达到IT10~IT13级,表面粗糙度Ra为~。 三、铰孔? 是用铰刀对未淬火孔进行精加工的一种孔径的加工方法。铰孔的加工精度,一般可以达到IT6~IT10级,表面粗糙度Ra为~。在模具制造加工中,一般用手工铰孔,其优点是切削速度慢,不易升温和产生积屑瘤,切削时无振动,容易控制刀具中心位置,因此当孔的精度要求很高时,主要用手工铰孔,或机床粗铰再用手工精铰。在铰孔时应主要以下几点:a. 合理选择铰孔销孔余量及切削和规范;b. 铰孔刃口平整,能提高刃磨质量;c. 铰销钢材时,要用乳化液作为切削液。 四、车孔? 在车床上车孔,主要特征是零件随主轴回转,而刀具做进给运动,其加工后的孔轴心线与零件的回转轴线同轴。孔的圆度主要取决于机床主轴的回转精度,孔的纵向几何形状误差主要取决于刀具的进给方向。这种车孔方式适用于加工外圆表面与孔要求有同轴度的零件。 五、镗孔? 在镗床上镗孔,主要靠刀具回转,而零件做进给运动。这种镗孔方式,其镗杆变形对孔的纵向形状精度无影响,而工作台进给方向的偏斜或不值会使孔中心线产生形状误差。镗孔也可以在车床、铣床、数控机床上进行,其应用范围广泛,可以加工不同尺寸和精度的孔,对直径较大的孔,镗孔几乎是唯一的方法。镗孔加工精度一般可以达到IT7~IT10级,表面粗糙度Ra为~。

孔加工方法概述

孔加工方法 A.目的 熟悉常见孔加工工艺 对孔加工用刀具有大概印象 了解部分新的加工方法 B.概念 实体上的空腔称作孔。可能是圆的,方的,六角的等等。这里只讨论金属切削加工的范畴内的孔加工,即通过旋转的刀具(或工件)来获得孔的方法,所以讨论的对象局限于圆孔。 可用于孔加工的通用机床设备:车床、铣床、镗床、钻床。根据加工工件的外形,所需孔的直径,公差等级,孔深(通孔或圆孔),选择合适的设备和加工方法。 C.实体开孔 1.麻花钻 Φ20以下规格可以选择莫氏柄或者直柄,Φ20以上一般均为莫氏锥柄。 直柄可以选用钻夹头来夹持,三爪钻夹头本身可以在一定范围内调节,可以适应不同规格的直柄钻头,但是夹持精度比较低。 弹簧夹头也可以用来装钻头,但是每一种规格的钻头需要相应规格的卡簧来装夹。 麻花钻材质有普通高速钢、钒高速钢、钴高速钢、粉末冶金高速钢、硬质合金等。高速钢类价格相对比较便宜,韧性好,可用于跳动比较大的场合。硬质合金切削速度快,效率高,但对装夹、冷却和断屑排屑要求很高,一般整体硬质合金装夹后跳动不能超过0.02,否则钻尖容易折断,此外对于长铁屑材料,一般要求内冷,且冷却液压力在10bar以上。 钴高速钢是介于普通高速钢钻头和整体硬质合金钻头之间的一个比较好的解决方案,由于比普通钻头硬度高,更耐磨,所以刃口更耐用,不容易折断;同

时与硬质合金钻头相比,又有很好的韧性,不需要保证严格的跳动。 PVD涂层也能提高高速钢钻头的切削速度和寿命,但是一旦重磨,涂层就不起作用。 由于普通钻头容易产生钻偏、钻斜的现象,所以很多时候需要用中心钻预钻引导孔。因为方便计算,所以一般选用90o锥角的中心钻。预钻的深度根据孔径计算,要求引导孔口部直径小于钻头直径,这样钻头的刃口先开始切削,而不是钻尖或外刃。 整体硬质合金的钻头不能使用预钻孔,因为整硬钻头均为自定心设计,预钻孔会导致孔质量下降甚至钻头损坏。 2.板钻 板钻由钢质刀体和可换刀片组成。刀片材料可以是高速钢或者硬质合金,并带有涂层。专业厂家生产的板钻一般带中心冷却孔,并且可换刀片形式比较多,有的用于钻孔,有的用于锪沉孔,也有用于锪锥孔。 板钻的效率介于高速钢钻头和机夹钻头之间,但同样需要机床的功率比较大,因此在近年来在钻孔方面逐步被机夹钻头取代。 3.机夹钻头(浅孔钻) 大批量条件下最经济最高效的孔加工方法。通常情况需要中心冷却,并却冷却压力足够大。最初称之为浅孔钻是因为其加工孔深局限于5D以内,但是刀具厂家最新的产品能够用机夹钻头加工出9D的孔。 4.铣刀螺旋插补 Φ50以上的浅孔也可以通过铣刀螺旋插补的方式获得。这种方式要求的功率和扭矩比直接选用相应型号的钻头要小很多,因此可以在小型机床上加工大直径的孔,所以在小批量的情况下能减小刀具库存。 一般选用圆刀片铣刀或高进给铣刀(见下图),刀具外径介于D/2和D之间,并选用合适长度的刀杆。刀杆分整体只和模块化,整体式刚性最好,但长度固定。模块化的刀柄可以根据需要接长,比较灵活,常见的接长系统为山特维克的Capto系统和高迈特的ABS系统。 高进给铣刀的切入角度比较小,在45度以下,形成的铁屑比较薄,所以能

数控车床加工件内孔表面加工方法怎么选择

数控车床加工件内孔表面加工方法怎么选择? 数控车床加工件内孔表面加工方法怎么选择?数控车床加工件内孔表面加工方法较多,常用的有钻孔、扩孔、铰孔、镗孔、车孔、磨孔、拉孔、研磨孔、珩磨孔、滚压孔等。 数控车床加工件内孔加工适用方法: 扩孔:扩孔是用扩孔钻对已钻出的孔做进一步加工,以扩大孔径并提高精度和降低表面粗糙度值。扩孔可达到的尺寸公差等级为IT11~IT10,?表面粗糙度值为~μm,属于孔的半精加工方法,常作铰削前?的预加工,也可作为精度不高的孔的 终加工。

1、钻孔:用钻头在工件实体部位加工孔称为钻孔。钻孔属粗加工,可达到?的尺寸公差等级为IT13~IT11,表面粗糙度值为Ra50~μm。是由于?麻花钻长度较长,钻芯直径小而刚性差,又有横刃的影响。 2、铰孔:铰孔是在半精加工(扩孔或半精镗)的基础上对孔进行的一种精加工方法。铰孔的尺寸公差等级可达IT9~IT6,表面粗糙度值可~μm。铰孔的方式有机铰和手铰两种。在机床上进行铰削?称为机铰,用手工进行铰削的称为手铰。 3、车孔:车床上车孔是工件旋转、车刀移动,孔径大小可由车刀的切深量?和走刀次数予以控制,操作较为方便。车床车孔多用于加工盘套类和小?型支架类零件的孔。 4、镗孔:镗孔是用镗刀对已钻出、铸出或锻出的孔做进一步的加工。可在?车床、镗床或铣床上进行。镗孔是常用的孔加工方法之一,可分为粗镗、半精镗和精镗。粗镗的尺寸公差等级为IT13~IT12,表面粗糙度值为~μm;半精镗的尺寸公差等级为IT10~IT9,表面粗糙度值为~μm;精镗的尺寸公差等级为IT8~IT7,表面粗糙度值为~μm。 上海市松江丰远是在原松江县骏马五金厂(1995年成立)的基础上成立的,位于国际大都市上海的西郊。工厂是由三线建设大型军工企业回沪人员创建。二十多年来先后成为几十家内外资企业的配套厂家。以合理的价格、可靠的质量多次成为年度先锋供应商。配套产品远销十多个国家和地区。“合作共赢”是我厂宗旨。

高精度深长孔的精密加工方法

高精度深长孔的精密加工法 一、历史背景 枪钻与内排屑深孔钻两种加工孔的刀具分别出现于20世纪30年代初和40年代初的欧洲兵工厂,这并非历史的偶然。其主要历史背景是: 一次世界大战(1914?1918年)首次使战争扩大到世界规模。帝国主义列强为瓜分殖民地而需要大量现代化的枪炮(特别是枪械和小口径火炮的需求量极大)。而继 续使用传统的扁钻、麻花钻、单刃炮钻,已经完全不能满足大量生产新式武器的要求,迫切需要进行根本性的技术更新。于是高精度深长孔的制造就成为了一个摆在制造者 面前的一个首要问题,并且一直延续到了现今。 第一次世界大战中的火炮 二、传统加工工艺及存在的问题 在现代机械加工中,也经常会遇到一些深孔的加工,例如长径比(L/D)≥10,精度 要求高,内孔粗糙度一般为Ra0.4~0.8的典型深孔零件,过去我们采用的传统工艺路线一般是:钻孔(加长标准麻花钻)→扩孔(双刃镗扩孔刀)→铰孔(标准六刃铰刀)→研磨

此工艺虽可达到精度要求,但也存在诸多缺点,特别是在最初工序采用加长麻花钻钻孔时,切削刃越靠近中心,前脚就越大。若钻头刚性差,则震动更大,表面形状误差难以控制,加工后孔的直线度误差,钻头易产生不均匀的磨损等现象,生产效率和产品合格率低,而且研磨抛光时,工作环境比较脏,由于钻孔工序的缺点,而带来的影响难以在后面的工序中克服,形状误差不能得以修正,因此加工质量差。 传统深孔的加工流程 三、工艺路线与刀具的改进 本着提高生产效率提高产品合格率的原则,结合深孔加工的一些特性,对加工工艺及刀具进行了改进,改进后的工艺路线是:钻孔(BTA钻)→扩孔(BTA扩)→铰孔(单刃铰刀)→研磨 1、钻孔与扩孔刀具及工艺的改进 单管内排屑深孔钻的由来 单管内排屑深孔钻产生于枪钻之后。其历史背景是:枪钻的发明,使小深孔加工中自动冷却润滑排屑和自导向问题获得了满意的解决,但由于存在钻头与钻杆难于快速拆装更换和钻杆刚性不足、进给量受到严格限制等先天缺陷,而不适用于较大直径深孔的加工。如能改为内排屑,则可以保持钻头和枪杆为中空圆柱体,使钻头快速拆装和提高刀具刚性问题同时得到解决。 20世纪内排屑深孔钻的发展,可概括出以下6项里程碑式的成果: ①单出屑口单管内排肩深孔钻基本结构的形成。 ②用硬质合金取代工具钢和高速钢做切削刃及导向条,使加工效率大幅度提髙。

中心孔工艺

确定加工中孔的工艺方法如下: (1)零件标准公差等级要求为IT10- IT12时,其标准公差值在0.04-0.012mm之间。中心孔的工艺为:车外圆—车端面—钻中心孔。 (2)零件标准公差等级要求为IT8-IT 9,其标准公差值在0.014-0.036mm之间,中心孔的工艺为:车外圆—车端面—钻中心孔—车端面—钻中心孔—热处理—研中心孔圆锥面。( 3)零件标准公差等级要求为IT6- IT7,其标准公差值在0.006-0.012,中心孔的工艺为:粗车—热处理—(调质)—车外圆—车端面—钻中心孔—车端面—钻中心孔—粗研中心孔圆锥面—热处理—研中心孔圆锥面。 以上加工中心的工艺方法:一方面确保零件两端中心孔轴线同轴度误差控制在公差要求范围之内,另一方面确保中心孔圆锥面的几何形状误差和表面粗糙度控制在允许的范围之内,达到提高加工效率。降低加工成本的目的。四.加工中心孔几何精度和降低表面粗糙度的方法中心孔的质量主要由几何精度、表面粗糙度中心孔圆锥面来影响的,加工中心孔圆锥面的加工方法有很多,常用的加工方法有下面6种方法: (1)中心钻直接加工出圆锥面 (2)用硬质合金激光圆锥面 (3)用铸铁棒研圆圆锥面 (4)用橡皮砂轮研圆圆锥面 (5)用万能磨床磨削圆锥面 (6)用中心孔磨床磨削圆锥面 零件两端中心孔轴线的同轴度是由车加工中心孔来保证的,中心孔圆锥面几何形状和表面粗糙度也是由车工加工中心孔来打基础的,而研中心孔圆锥面而则是提高圆锥几何精度和降低表面粗糙度的辅助方法。 五.常用中心孔类型的改进中心孔共有10种类型,但是常用的是国际 GB145—1985A 型中心孔和B 型, A型中心孔主要用于零件的加工后,中心孔不在继续使用;B型中心孔主要用于零件加工后,中心孔还要继续使用,所以120锥面是保护60度锥面的,为了提高工艺性和加工精度。将圆锥面改成如图所示,这样也同样起到保护60度的作用。 60度B 型中心孔是用60度B型中心钻加工出来的(见图3),所以 L1 的长度由中心钻L1来决定来决定的。(中心孔 L1 的长度由零件的精度和自重来决定,而不能由B

平行孔系的加工方法

平行孔系的加工方法 平行孔系的主要技术要求是各平行孔中心线之间及中心线与基准面之间的距离尺寸精度和相互位置精度。生产中常采用以下几种方 法。 1.找正法 找正法是在通用机床上,借助辅助工具来找正要加工孔的正确位置的加工方法。这种方法加工效率低,一般只适用于单件小批生产。 根据找正方法的不同。找正法又可分为以下几种: (l) 划线找正法加工前按照零件图在毛坯上划出各孔的位置轮廓线,然后按划线一一进行加工。划线和找正时间较长,生产率低,而且加工出来的孔距精度也低,一般在±0.5mm左右。为提高划线找正的精度,往往结合试切法进行。即先按划线找正镗出一孔,再按线将主轴调至第二孔中心,试镗出一个比图样要小的孔,若不符合图样要求,则根据测量结果更新调整主轴的位置,再进行试镗、测量、调整,如此反复几次,直至达到要求的孔距尺寸。此法虽比单纯的按线找正所得到的孔距精度高,但孔距精度仍然较低,且操作的难度较大,生产效率低,适用于单件小批生产。 (2) 心轴和块规找正法镗第一排孔时将心轴插入主轴孔内(或直接利用镗床主轴),然后根据孔和定位基准的距离组合一定尺寸的块规来校正主轴位置,如图8-36。校正时用塞尺测定块规与心轴之间的间隙,以避免块规与心轴直接接触而损伤块规。镗第二排孔

时,分别在机床主轴和加工孔中插入心轴,采用同样的方法来校正主轴线的位置,以保证孔心距的精度。这种找正法的孔心距精度可达±0.3mm。 (3) 样板找正法用10~20mm厚的钢板制造样板,装在垂直于各孔的端面上(或固定于机床工作台上),如图8-37。样板上的孔距精度较箱体孔系的孔距精度高(一般为±0.1mm~±0.3mm),样板上的孔径较工件孔径大,以便于镗杆通过。样板上孔径尺寸精度要求不高,但要有较高的形状精度和较细的表面粗糙度。当样板准确地装到工件上后,在机床主轴上装一千分表,按样板找正机床主轴,找正后,即换上镗刀加工。此法加工孔系不易出差错,找正方便,孔距精度可达±0.05mm。这种样板成本低,仅为镗模成本的1/7~1/9,单件小批的大型箱体加工常用此法。

(完整版)铰孔加工方法

铰孔加工方法 1.铰孔加工概述 钻孔是在实体材料中钻出一个孔,而铰孔是扩大一个已经存在的孔。铰孔和钻孔、扩孔一样都是由刀具本身的尺寸来保证被加工孔的尺寸的,但铰孔的质量要高得多。铰孔时,铰刀从工件孔壁上切除微量金属层,以提高其尺寸精度和减小其表面粗糙度值,铰孔是孔的精加工方法之一,常用作直径不很大、硬度不太高的工件孔的精加工,也可用于磨孔或研孔前的预加工。机铰生产率高,劳动强度小,适宜于大批大量生产。 铰孔加工精度可达IT9~IT7级,表面粗糙度一般达Ra1.6~0.8μm。这是由于铰孔所用的铰刀结构特殊,加工余量小,并用很低的切削速度工作的缘故。 直径在100 mm以内的孔可以采用铰孔,孔径大于100 mm时,多用精镗代替铰孔。在镗床上铰孔时,孔的加工顺序一般为:钻(或扩)孔一镗孔一铰孔。对于直径小于12 mm的孔,由于孔小镗孔非常困难,一般先用中心钻定位,然后钻孔、扩孔,最后铰孔,这样才能保证孔的直线度和同轴度。 如图6-6-1所示的工件,加工6×φ20H7均布孔,孔面有Ra1.6的表面质量要求,适合用铰孔方法进行孔的精加工。 一般来说,对于IT8级精度的孔,只要铰削一次就能达到要求;IT7级精度的孔应铰两次,先用小于孔径0.05~0.2 mm的铰刀粗铰一次,再用符合孔径公差的铰刀精铰一次;IT6级精度的孔则应铰削三次。 铰孔对于纠正孔的位置误差的能力很差,因此,孔的有关位置精度应由铰孔前的预加工工序予以保证,在铰削前孔的预加工,应先进行减少和消除位置误差。如,对于同轴度和位置公差有较高要求的孔,首先使用中心钻或点钻加工,然后钻孔,接着是粗镗,最后才由铰刀完成加工。另外铰孔前,孔的表面粗糙度应小于Ra3.2μm。 铰孔操作需要使用冷却液,以得到较好的表面质量并在加工中帮助排屑。切削中并不会产生大量的热,所以选用标准的冷却液即可。 2.铰刀及选用 ⑴铰刀结构 在加工中心上铰孔时,多采用通用的标准机用铰刀。通用标准铰刀,有直柄、锥柄和套式三种。直柄铰刀直径为φ6mm~φ20mm,小孔直柄铰刀直径为φ1 mm~φ6mm,锥柄铰刀直径为φ10mm~φ32mm,套式铰刀直径为φ25mm~φ80mm。分H7、H8、H9三种精度等级 如图6-6-2(a),整体式铰刀工作部分包括切削部分与校准部分。

正确的选择孔加工方法

正确的选择孔加工方法 大多数人都同意,目前钻削仍然是在各种工件材料上大批量加工孔最常用的加工方法。当然,对于每一特定尺寸的孔,就需要一种其直径与被加工孔径相差不到千分之几英寸的钻头。这就意味着,为了加工各种不同尺寸的孔,加工车间必须预备大量钻头。 当被加工的孔径较大,如大于11/2″(38.1mm)时,对孔加工机床的功率和稳定性要求就变得十分重要。还有一个必须考虑的因素:是需要高效率加工大量的孔,还是仅仅需要加工少量的孔。此外,机床的加工能力和适用刀具的供货能力也是加工车间必须考虑的重要问题。 瓦尔特美国公司的产品经理Patrick Nehls指出:“在钻削孔径44.45mm以下的孔时,采用可转位钻头将非常经济和高效,但超过这一尺寸的孔则很少采用可转位钻头加工,甚至很少采用钻削方式加工。” 在确定采用何种孔加工策略时,山特维克可乐满公司建议考虑以下5个要素:①孔径、孔深、公差、表面光洁度和孔的结构;②工件的结构特点,包括夹持的稳定性、悬伸量和回转性;③机床的功率、转速、冷却液系统和稳定性;④加工批量(10个孔或上百万个孔);⑤加工成本。 一旦确定了需要加工的孔径和孔深,接下来的问题就是完成这些孔加工所需要的机床加工能力和刀具供货能力,这取决于加工车间拥有机床的刀库和自动换刀装置,以及刀具制造商提供的适用刀具。 本文讨论的孔加工范围不包括采用套料钻加工3″~6″(76.2~152.4mm)的大直径孔(如用枪钻加工深孔)以及镗孔加工。除非另有说明,假定孔深一般不超过5倍孔径(5D)。 可钻削加工孔的尺寸上限取决于机床驱动钻头钻入工件材料所需要的功率和稳定性。山特维克可乐满公司的旋转刀具产品经理Bruce Carter解释说:“钻削加工的限制一般取决于机床加工能力,包括机床的尺寸、功率、安装、进给力和扭矩。例如,在考虑机床功率时,确定机床所能提供的整个马力和扭矩范围是非常重要的。” 随着刀具技术、机床技术的发展以及可方便地实现固定路径编程,螺旋插补铣削(即螺旋铣削)、圆周插补铣削和插铣(即Z轴铣削)正成为制造商加工大直径孔和凹腔的有效选择。对于此类加工,钻削可能并非最佳加工方式。 (1)螺旋插补铣削是用铣刀斜向铣入工件毛坯或已加工出的预孔,然后在作X/Y向圆周运动的同时沿Z 轴螺旋向下铣削,以实现扩孔加工。 (2)圆周插补铣削是铣刀围绕已加工预孔的外径或内径以全齿深进行走刀铣削,以实现扩孔加工。 (3)插铣(或Z轴铣削)通过沿着工件的肩壁逐次进行插切,在粗铣出凹腔的同时加工(钻削)出一个新的孔。 “螺旋和圆周插补铣削能够利用有限的机床功率(如10马力[7.5kW]或15马力[11.2kW])加工出采用普通

孔加工方法概述

孔加工方法 A.目的 B.熟悉常见孔加工工艺 C.对孔加工用刀具有大概印象 了解部分新的加工方法 D.概念 实体上的空腔称作孔。可能是圆的,方的,六角的等等。这里只讨论金属切削加工的范畴内的孔加工,即通过旋转的刀具(或工件)来获得孔的方法,所以讨论的对象局限于圆孔。 可用于孔加工的通用机床设备:车床、铣床、镗床、钻床。根据加工工件的外形,所需孔的直径,公差等级,孔深(通孔或圆孔),选择合适的设备和加工方法。 E.实体开孔 1.麻花钻

Φ20以下规格可以选择莫氏柄或者直柄,Φ20以上一般均为莫氏锥柄。 直柄可以选用钻夹头来夹持,三爪钻夹头本身可以在一定范围内调节,可以 适应不同规格的直柄钻头,但是夹持精度比较低。 装夹。

麻花钻材质有普通高速钢、钒高速钢、钴高速钢、粉末冶金高速钢、硬质合金等。高速钢类价格相对比较便宜,韧性好,可用于跳动比较大的场合。硬质合金切削速度快,效率高,但对装夹、冷却和断屑排屑要求很高,一般整体硬质合金装夹后跳动不能超过,否则钻尖容易折断,此外对于长铁屑材料,一般要求内冷,且冷却液压力在10bar以上。 钴高速钢是介于普通高速钢钻头和整体硬质合金钻头之间的一个比较好的解决方案,由于比普通钻头硬度高,更耐磨,所以刃口更耐用,不容易折断;同时与硬质合金钻头相比,又有很好的韧性,不需要保证严格的跳动。 PVD涂层也能提高高速钢钻头的切削速度和寿命,但是一旦重磨,涂层就不起作用。 由于普通钻头容易产生钻偏、钻斜的现象,所以很多时候需要用中心钻预钻引导孔。因为方便计算,所以一般选用90o锥角的中心钻。预钻的深度根据孔径计算,要求引导孔口部直径小于钻头直径,这样钻头的刃口先开始切削,而不是钻尖或外刃。 整体硬质合金的钻头不能使用预钻孔,因为整硬钻头均为自定心设计,预钻孔会导致孔质量下降甚至钻头损坏。 2.板钻

铰孔工艺

6. 6铰孔工艺、编程 材料:45#钢,正火处理 图6-6-1圆周均布孔加工零件 6. 6. 1铰孔加工工艺 1?铰孔加工概述 钻孔是在实体材料中钻出一个孔,而铰孔是扩大一个已经存在的孔。铰孔和钻孔、扩孔 一样都是由刀具本身的尺寸来保证被加工孔的尺寸的,但铰孔的质量要高得多。铰孔时,铰 刀从工件孔壁上切除微量金属层,以提高其尺寸精度和减小其表面粗糙度值,铰孔是孔的精 加工方法之一,常用作直径不很大、硬度不太高的工件孔的精加工,也可用于磨孔或研孔前 的预加工。机铰生产率高,劳动强度小,适宜于大批大量生产。 铰孔加工精度可达IT9?IT7级,表面粗糙度一般达Ra1.4 0.8 ^m。这是由于铰孔所用的铰刀结构特殊,加工余量小,并用很低的切削速度工作的缘故。 直径在100 mm以内的孔可以采用铰孔,孔径大于100 mm时,多用精镗代替铰孔。在镗 床上铰孔时,孔的加工顺序一般为:钻(或扩)孔一镗孔一铰孔。对于直径小于12 mm的孔,由于孔小镗孔非常困难,一般先用中心钻定位,然后钻孔、扩孔,最后铰孔,这样才能保证孔的直线度和同轴度。 如图6-6-1所示的工件,加工6XQ20H7均布孔,孔面有Ra1.6的表面质量要求,适合用铰孔方法进行孔的精加工。 一般来说,对于IT8级精度的孔,只要铰削一次就能达到要求;IT7级精度的孔应铰两次,先用小于孔径0.05?0.2 mm的铰刀粗铰一次,再用符合孔径公差的铰刀精铰一次;IT6级精度的孔则应铰削三次。 铰孔对于纠正孔的位置误差的能力很差,因此,孔的有关位置精度应由铰孔前的预加工 工序予以保证,在铰削前孔的预加工,应先进行减少和消除位置误差。如,对于同轴度和位

箱体类零件孔系的精加工方法

箱体类零件孔系的精加工方法 摘要:本文介绍了箱体类零件孔系精加工的一种新方法,解决了在普通卧式镗床上加工高精度同轴和垂直孔系的问题,并在生产中取得了良好效果。 关键词:孔系精加工垂直度同轴度 0 引言 箱体类零件是机械零件中的典型零件,是机械设备重要的基础件之一。箱体上轴承孔的尺寸精度和几何形状精度超差,会使轴承与箱体孔配合不好,引起振动和噪声。支承孔之间的孔距尺寸精度和相互位置精度超差,会影响装配和齿轮的啮合精度,产生噪声和振动。箱体上这样一系列的有相互位置精度要求的孔的组合,称为孔系。在普通卧式镗床上加工这些有垂直度和同轴度要求的孔系时,由于工作台回转精度较低,很难满足图纸的精度要求,我们采用了一种简单且容易操作的加工方法,解决了由回转精度低而引起的误差影响。 1 零件的分析 本文以某机械产品支承件(见图1零件示意图)为例,介绍孔系精加工时工艺方法。 1.1. 零件图纸的简要分析 图示典型的箱体类零件,结构复杂、尺寸精度要求高,并且属于单件小批量生产零件,材料为HT200铸铁。这些标出的较高精度要求的孔系成为加工中的重点和难点。需精镗加工孔系的精度主要有: 1、φ115H6孔与基准A面的平行度0.015 2、φ100H6孔与基准B(φ115H6孔轴线)的同轴度0.015 3、φ60 H6孔与基准B-C(φ115H6孔和φ100H6孔公共轴线)的垂直度0.015 4、φ50H6孔与基准D(φ60H6孔轴线)的同轴度0.015 5、各孔与相对应孔口端面及孔底面垂直度要求(图中未标出) 6、各孔及端面的表面粗糙度Ra1.6 经过对该零件图纸的分析,针对零件的批量、图纸精度要求和现有设备,我们选择在普通卧式镗床上,使用工作台进给镗削加工各孔及孔系。

高精度孔加工方法初探(1)

高精度孔加工方法初探 摘要:本文重点介绍了高位置度、高同轴度要求的孔组的加工与测量方法。 关键词:位置度、同轴度 一、引言 在机械加工中,有时会面对一些位置精度及同轴度要求极高的零件。如图1、2、3,这类零件的加工精度受机床自身精度、装夹定位误差、被加工材料及加工刀具等多种因素的影响而难以满足设计要求。一般来讲,位置精度要求小于φ0.03,同轴度要求小于φ0.03的零件,均属于形位精度要求极高的零件。在加工时若不能及时排除上述各种因素的影响,加工质量则无法保证。 图1

图2

图3 二、高精度位置孔的加工方法 1、影响高精度位置孔加工的因素 材料的性能及内部应力的消除情况,基准面的加工精度,如圆度、粗糙度、圆柱度,数控机床的定位精度和重复定位精度,主轴的刚性及旋转圆度,刀具的锋利程度、工件材料刚性、机床几何精度、零件装夹方法、切削速度、润滑冷却方式等有关。 2、具备有大型三坐标机测量方法的厂家,采用如下方法,如图4。

图4 例如某个公司,采用如图将零件装夹在龙门五面加工中心上面,工件找正方法是采用将千分表把2个φ196孔打正,将千分表从4处φ196孔穿进去,以相同直径大小打表检测基准φ660h7的4处外圆弧面,X、Y方向分中设定程序坐标原点。 首先将φ195孔加工到φ194h6,送三坐标机检测,数据如下:位置度为0.0022、0.0556、0.0223、0.0556;半径为434.9403、434.9788、435.0190、434.9656;弦长为615.1653、615.1444、615.1656、615.1363。 分析半径和弦长与理论值偏小,将加工程序多加大0.01,第二次将φ196孔加工到φ195h6,送三坐标机检测,数据如下:位置度为0.0647、0.0564、0.0917、0.0859;半径为434.9677、435.0045、434.9671、434.9760;弦长为615.1682、615.1435、615.1599、615.1400。 分析半径和弦长与理论值还是偏小,将加工程序再多加大0.01,第三次φ196孔精加工到位,送三坐标机检测,数据如下:位置度为0.0264、0.0458、0.0436、0.0305;半径为434.9868、435.0028、435.0172、435.0229;弦长为615.208、615.2、615.1912、615.2060。 通过三次加工,基本达到零件设计要求。这个例子说明加工中心不是万能的,要达到这么高的精度,需要反复试切,逐步逼近达到高精度要求。 3、对于没有大型三坐标机测量方法的,采用如图5方法。

孔加工方法简介-钻孔、扩孔、锪孔、铰孔

孔加工方法简介-钻孔、扩孔、锪孔、铰 孔 一、钻孔 用麻花钻在实体材料上加工孔的方法称为钻孔。一般加工可达尺寸公差等级为IT14~IT11,表面粗糙度Ra值为50~12.5μm。 常用的钻床有:台式钻床、立式钻床和摇臂钻床。 1、钻床 1)台式钻床简称台钻(图1),是一种小型机床,安放在钳工台上使用。其钻孔直径一般在12mm以下。主要用于加工小型工件上的各种孔,钳工中用得最多。 图1 台式钻床 1—工作台2—进给手柄3—主轴4—带罩5—电动机 6—主轴架7—立柱8—机座 2)立式钻床简称立钻(图2),一般用来钻中型工件上的孔,其规格用最大钻孔直径表示。常用的有25mm、35mm、40mm、50mm等几种。

图2 立式钻床 1—工作台2—主轴3—进给箱4—主轴变速箱 5—电动机6—立柱7—进给手柄8—机座 3)摇臂钻床摇臂钻床有一个能绕立柱旋转的摇臂(图3)。主轴箱可在摇臂上作横向移动,并可随摇臂沿立柱上下作调整运动,因此,操作时能很方便地调整到需钻削的孔的中心,而工件不需移动。摇臂钻床加工范围广,可用来钻削大型工件的各种螺钉孔、螺纹底孔和油孔等。 图3 摇臂钻床 1—立柱2—主轴箱3—摇臂4—主轴5—工作台6—机座 2、麻花钻

麻花钻是钻孔的主要工具,它是由切削部分、导向部分和柄部组成,如图4所示。直径小于12mm时一般为直柄钻头,大于12mm时为锥柄钻头。 图4 麻花钻 麻花钻有两条对称的螺旋槽,用来形成切削刃,且作输送切削液和排屑之用。前端的切削部分(图5)有两条对称的主切削刃,两刃之间的夹角2φ称为锋角。两个顶面的交线叫作横刃。导向部分上的两条刃带在切削时起导向作用,同时又能减小钻头与工件孔壁的摩擦。 图5 麻花钻的切削部分 3、钻孔操作 1)钻头的装夹钻头的装夹方法,按其柄部的形状不同而异。锥柄钻头可以直接装入钻床主轴孔内,较小的钻头可用过渡套筒安装(图6);直柄钻头一般用钻夹头安装(图7)。

微孔加工方法

微孔加工方法 在孔加工过程中,应避免出现孔径扩大、孔直线度过大、工件表面粗糙度差及钻头过快磨损等问题,以防影响钻孔质量和增大加工成本,应尽量保证以下的技术要求:①尺寸精度:孔的直径和深度尺寸的精度;②形状精度:孔的圆度、圆柱度及轴线的直线度;③位置精度:孔与孔轴线或孔与外圆轴线的同轴度;孔与孔或孔与其他表面之间的平行度、垂直度等。 同时,还应该考虑以下5个要素: 1.孔径、孔深、公差、表面粗糙度、孔的结构; 2.工件的结构特点,包括夹持的稳定性、悬伸量和回转性; 3.机床的功率、转速冷却液系统和稳定性; 4.加工批量; 5.加工成本。 深孔加工:一般把长径比L(孔深与孔径比)大于5的孔称为深孔。深孔加工比一般孔的加工要困难和复杂,其原因是: 1.由于孔深与孔径比较大,刀具细而长、刚性差,所以在钻孔时容易偏斜,产生振动,使得孔的表面粗糙度和尺寸精度不易保证。 2.钻削时排屑困难。 3.热量不易排出,钻头散热条件差,使得刀具磨损加剧,甚至丧失切削能力。

机械钻削加工 一、HSS-E(高性能高速钢)钻头 由于长钻头本身的稳定度不好,因此在加工过程中必须采用较低的切削参数,而HSS较低的红硬性也要求进一步降低其切削速度。因此,在深孔加工中,外部的冷却液很难到达刀具的切削刃上,钻尖处实际进行着干加工,所有这些因素的综合导致了深孔加工需要很长的加工周期。 二、枪钻 硬质合金头枪钻可以实现精确而安全的孔加工,即使是在进行超常深孔的加工情况下也是如此。切削液被加压泵打入钻杆内(压力约为3MPa-8MPa),然后流过切削刃,当切削液沿着刀具和零件孔壁间的V形截面空间流出时,将切屑带走。由于钻杆是空心轴,刚性差,不能采用较大的进给量,因此生产效率较低;同时,切屑必须保持小而薄的形状,才能保证被冷却液冲出;此外,由于枪钻加工中高压冷却液的使用,因此要求使用专用机床。由于枪钻钻杆为非对称形,故其抗扭刚性差,只能传递有限的扭矩,因此枪钻只适用于加工小直径孔的零件。 枪钻是一种有效的深孔加工刀具,其加工范围很广,从模具钢材,玻璃纤维、特氟龙(Teflon)等塑料到高强度合金(如P20和铬镍铁合金)的深孔加工。在公差和表面粗糙度要求较严的深孔加工中,枪钻

相关文档
最新文档