牛顿环实验的拓展研究

牛顿环实验的拓展研究
牛顿环实验的拓展研究

牛顿环实验的拓展研究

摘要:牛顿环实验是本科物理学实验中十分重要的一个,同时它也是研究等厚干涉现象的重要手段。本文探讨了用牛顿环测透镜折射率的实验的原理,并用实验的方法讨论了变环现象对该实验测量结果的影响,得出实验结论。最后将理论结果推广用于判断透镜表面凹凸程度和测液体折射率,丰富了牛顿环实验的内容。

关键词:等厚干涉;牛顿环;曲率半径;应用

目录

引言 (1)

1 牛顿环的来历及原理 (1)

1.1 牛顿环的发现 (1)

1.2 牛顿环仪 (1)

1.3 产生牛顿环的光学原理 (2)

2 牛顿环测透镜的曲率半径实验介绍 (2)

2.1 牛顿环实验装置 (2)

2.2 理论原理分析 (3)

2.3 实际操作中的补充说明 (4)

2.4 实验数据处理 (4)

3实验中的变环现象的研究 (5)

3.1 牛顿环中心产生亮纹的形成 (5)

3.2 牛顿环中心产生亮纹对测量结果的影响 (6)

3.3 牛顿环内凹的形成 (6)

3.4 牛顿环内凹的形成对测量数据的影响 (6)

4 牛顿环实验的拓展应用 (7)

4.1 透镜表面凸凹的判断 (7)

4.2 光学元件表面质量的精确检验 (8)

5 结论及启示 (8)

引言

薄膜干涉在生活中随处可见,与我们的日常生活紧密相连,比如:肥皂泡在阳光的照射下显出彩色,水面上滴上几滴油会发现油的表面呈现彩色现象,等等,这些都是薄膜干涉现象。而本文要讲的牛顿环就是薄膜干涉现象的一种,因为最初是由牛顿发现的,因此就以他的名字命名。随着现代物理理论的发展,牛顿环现象已有了新的内含,而且在我们的生产生活中有重要的应用。研究古老的牛顿环,对我们认识大自然,发展现代光学理论,甚至以后人类的生存发展都有十分重要的意义。

1 牛顿环的来历及原理

牛顿对物理学的贡献最出名的莫过于牛顿三大运动定律的提出,奠定了经典力学的基础。而他光学领域取得的成就却鲜为人知。我们知道牛顿对光是什么一直坚持微粒学说,也由于当时物理学理论的发展,人们的看法有许多漏洞,当然牛顿也不例外。下文我们将用现代的光学理论来研究古老的牛顿环。

1.1 牛顿环的发现

1657年,牛顿正致力于研究许多光学现象,某天他把一个曲率半径已知的透镜压在玻璃镜上,在太阳下竟然观察到一圈一圈的彩色圆环!这在当时是没有过的!当他把装置拿到室内,用单色光源照射时,发现圆环不在是彩色的了,而是明暗相间的圆圈。牛顿就用当时的理论解释了这些现象。由于这个奇妙的光学现象是牛顿第一个发现的,因此就将之命名为“牛顿环”。

1.2 牛顿环仪

能产生牛顿环现象的仪器我们称之为“牛顿环仪”。如下图(1)所示,将一个平凸透镜放在平板玻璃上,平凸镜的平面朝上。把两玻璃压紧,用白光或者单色光源垂直照射平凸透镜的平面,在光源发出的方向观察现象。此时我们就会观测到如图(2)所示的图像,即中心是暗环的明暗相间的条纹。同时圆圈的颜色与入射光有关。

图1凸透镜干涉光路图图2 牛顿环干涉花样

1.3产生牛顿环的光学原理

牛顿环这是由于光的干涉造成的,牛顿用光的波动学说可以很好地解释该现象,因此牛顿环也是光的干涉现象的极好演示。

光具有粒子性,同时也具有波动性,即近代物理理论中的波粒二象性。单从波动的角度考虑,光波可以发生干涉、衍射等现象。而牛顿环实验是典型的等厚薄膜干涉现象,即薄膜上表面的反射波与薄膜下表面的反射波发生干涉,那么在实验中就可以观察到明暗相间的条纹。若实验光源是白光,则干涉图像是彩色的;若实验实验光源是单色光,则干涉图像是明暗相间的圈纹。

2 牛顿环测透镜的曲率半径实验介绍

在高等教育物理类本科的实验教学中,牛顿环测透镜曲率半径的实验是教学中的一个重点。该实验也是必做的基础性实验,在此我们将其作如下分析。

2.1 牛顿环实验装置

在实验室做牛顿环实验时,需要的装置以及装配方法如图3所示。

装置说明:

(1)玻璃片M与光轴的夹角为45度;

(2)玻璃片M的反射率与透射率各占50%;

(3)所有光学器件必须等高且共轴;

(4)牛顿环面和光轴垂直;

(5)干涉圆环的中心在牛顿环仪的中心。

图3牛顿环干涉装置示意图

2.2理论原理分析

结合图1,设透镜半径为R ,与接触点O 的距离为r 处的薄膜厚度为d ,从图1中可以得出如下几何关系:

()2

22222=R 2R R d r Rd d r =-+-++ ⑴

因为R

r ,上式中略去二阶小量2d ,有:

2

2r d R

= ⑵

考虑半波损失后,得光程差为:

22

d λ

δ=+

产生第k 级暗纹的条件为:

(21)2

k λ

δ=+ ⑷

联立(2)(3)(4)式,可得第k 级暗纹的半径为:

k r ⑸

这样,我们也可以用同样的道理得出第k 级明纹的半径为:

k r =

由式(5)或式(6),如果已知光波波长,只要测出暗纹半径或者明纹半径k r ,数出相应的级数k ,就可以求出曲率半径R 。然而在实验中,考虑到诸多因素的影响,暗纹更容易观测到,也更容易确定其位置,所以我们在实验中多选择暗纹来观察测量。

2.3实际操作中的补充说明

在实际操作中,平凸透镜和玻璃接触时会有微小形变,造成牛顿环的中心不是理想的一个圆点,而是比圆点要大得多的圆斑,致使圆斑的中心很难确定。进而影响到干涉级次的确定,那么,利用(6)式来测定 R 时,会难以测准,严重影响实验结果。 为了减小误差,需测距中心较远,较清晰的两个圆环半径。如测量1k 个和2k 个圆环半径,1k ,2k 只是环序数,不一定是干涉级数。(k +i)为干涉级数,i 为干涉修正值。则

21

22

211211[()()]()k k r r k i k i R n k k R n λλ-=+-+=-, 其中λ为光波在真空中的波长,1n 为空气的折射率,即

1

222

121()()k k R r r n k k λ=-- ⑺ 我们用测量直径1k d 和2k d 来代替环半径1k r 和2k r ,用来避免通过肉眼在实验中确定牛顿环中心,即:

2122121()4()k k R d d n k k λ=-- ⑻

由于是空气薄膜,那么上式中的1n 近似为1,则上式简化为:

1222124()k k d d R k k λ

-=

- ⑼

由(8)式知,只要测定两暗环的直径就可计算出曲率半径 R 。由于(8)式是直径平方差,牛顿环的圆心位置、附加厚度、绝对级次不影响测量结果,这就为实验的拓展提供了理论基础。下文将对这些理论结果提供实验数据支持。

2.4实验数据处理

已知入射光波波长λ,测量出干涉条纹第1k 、2k 级暗环直径1k D 、2k D ,即可由⑼式计算出 R .测量数据见表 1.

小结:已知589.3nm λ=(钠光灯);取12()5k k -=

计算得出凸透镜曲率半径 R=890.970 nm 用一样的方法多次测量,取 R 平均值:R =

(890.970+890.462+889.950+889.542+889.320)/5 =890.0488mm .由此可得,测量的平凸透镜的曲率半径为890.0488n m ,与厂家提供的凸透镜曲率半径 R =855.000mm 很接近,误差百分比为 4.0993%.

实验中可能遇到的问题及其排除方法:

(1)肉眼可分辨的干涉圆环数目少,一般是20个左右,并且干涉圆环多为左右两边相对环心不对称,一边清楚一边模糊,这主要是由于各光学元件没有达到共轴等高要求,并且牛顿环面和光轴不垂直。 (2)视场模糊暗淡,主要原因是玻璃片M 的反射率低,也有可能是玻璃片M 与光轴夹角不是45,造成各光学器件没有达到共轴等高要求,没有反射光线进入显微物镜。

(3)视场中根本找不着干涉圆环,主要原因是干涉圆环在目镜视场之外(干涉圆环中心不在牛顿环仪中心),或者安排光路时出现明显错误。

3实验中的变环现象的研究

我们在做实验时观察到的现象若和图2相同,那么我们就找到了正确的实验图像。但我们在实验中也有可能观察到如图 4,5所示几种变形的牛顿环,即:中心变成亮纹、牛顿环内凹。

图4 中心出现亮纹 图5 牛顿环内凹

3.1 牛顿环中心产生亮纹的形成

按照如图3所示,安装好装置,用钠黄光垂直照射照射。空气薄膜的是平凸透镜的下表面和平板玻璃的上表面形成。光在这空气薄膜上发生干涉,进而产生“牛顿环”。薄膜厚度相同的地方,光线在通过时产生的光程差也相同,那么干涉图样就是一系列同心圆。由于12n n >,两束反射光的光程 差附加项为2

λ

δ'=

,则

2,2e m λδλ=+=1,2,3,

m = ……………明纹

2(2),

22e m λλδ=+=+1,2,3,

m = ……………暗纹

对于圆环中心e=0,为暗纹。

可见,附加光程差的产生是牛顿环发生变形的根本原因,造成这一结果的实验因素可以是玻璃磨毛,或者是由于玻璃接触的地方有灰尘等,那么下面我们来研究牛顿环中心是亮纹这种变形牛顿环对实验测量结果的影响。

3.2 牛顿环中心产生亮纹对测量结果的影响

牛顿环中心产生亮纹时,得到的实验结果如表2所示:

小结:已知 590.3 nm λ=;取()125k k -=计算得出凸透镜曲率半径R 值为890.0668mm ,与凸透镜曲率半径测量值890.0488mm 很接近,误差百分比为 0.03%.因此,我们用实验事实说明牛顿环中心产生亮纹时,对测量透镜的曲率半径无影响。

3.3 牛顿环内凹的形成

在实际实验中也有可能观察到牛顿环环线发生变形的现象,且多为环线内凹的现象,如图 4 所示.

由上文的讨论可知,牛顿环发生变形的根本原因是附加光程差的差生。当平板玻璃和平凸透镜接触面上有灰尘等杂质时,会引起附加光程差,因为,灰尘等杂质的折射率大于空气的折射率,光线在通过时发生的偏折不同,导致干涉环线发生变化。如图6所示。

图6牛顿环内凹示意图

3.4 牛顿环内凹的形成对测量数据的影响

牛顿环内凹时,测量的实验结果如表3所示:

小结:已知 589.3nm λ=;取12()5k k -=

计算凸透镜曲率半径 R 平均值为 890.9110mm ,对比凸透镜曲率半径测量值 890.0488mm 很接近,误差百分比约为 0.08%。因此在实验数据的基础上,我们就初步证明了实验中出现内凹的牛顿环不会影响最终的测量结果。

4 牛顿环实验的拓展应用

如图7,牛顿环仪中平面玻璃和透镜之间的接触点处未紧密接触,产生空气间隙,当光线通过时由此将产生了附加光程差。则由⑶式可知,此时光程差为02()2k n d d δλ=++。由相消条件

(21)2k k δλ=+和2

(2)r d R =可得,k 级暗环半径为

k r '=⑽

联立(5)式和(9)式,可得k 级暗环半径为k r '=

由以上讨论可知,牛顿环的变形的根本原因就是光程差发生变化。我们通过改变外界条件,改变光程差从而使观察到的实验图像发生变化。

图7 牛顿环的附加光程差

4.1 透镜表面凸凹的判断

通过以上讨论,我们可以知道当附加光程差改变时,牛顿环将发生改变。由⑽式可知,当0d 减小时,牛顿环半径将增大,表现为光圈由内向外涌出,并且观测视野内的光圈数量将减少;反之,当0d 增加时,牛顿环半径将减小,表现为光圈由外向里吞入,并且观测视野内的光圈数量将增加。

图8 利用牛顿环检验测透镜表面的质量

4.2 光学元件表面质量的精确检验

在光学冷加工车间中经常利用牛顿圈快速检测工件(透镜)表面曲率是否合格,并作出判断,进一步应该如何研磨。做法大致如下:

将标准件样板覆盖于待检透镜上,两者之间形成空气膜,因而出现牛顿环。环数越多,说明公差越大,工件就越不合格。用手轻轻按压装置,若看到有环涌出,说明待检透镜为凸面;同理,若观察到有环向中心收缩,则待检透镜为凹面。通过此原理我们便可以指导生产。

4.3 测量液体折射率

当平透镜与平板玻璃之间形成的薄膜不再是空气薄膜,而是其他介质的薄膜,如,水等液体“薄膜”时,可以用以上得出的结论测量液体“薄膜”的折射率。

设在厚度为d 的地方,牛顿环的半径公式由k r '=

n 为介质的折射率,λ为光

在真空中的波长)对于空气n=1,则上式变为k r '=

()2

k k n D D ''= 。由此可知,只需测出透镜与玻璃之间为空气或为液体时,某级牛顿环相应的直径k

D 和k D ',即可求出液体的折射率。

5 结论及启示

牛顿无意中发现了牛顿环,他却没有深入研究,而是用旧的理论含糊的解释观察到的实验现象。因此他没能在光学上更进一步得到像他在力学上的成就。牛顿环实验让我们体会到科学的严谨性,启示我们在遇到类似的问题后需以严谨之态度处之,秉承科学之精神,倘能亲历亲为,相信定可在未来的物理学的发展中写下浓墨重彩的一笔。 参考文献:

[1] 母国光,战元令.光学教材[M].北京:人民教育出版社, 1979: 190-223. [2] 姚启钧,光学教程[M].北京:高等教育出版社,2002: 12-88.

[3] 赵凯华,钟锡华.光学(上册) [M]. 北京:北京大学出版社,1989:291 - 298. [4] 杨述武,赵立竹,沈国土,普通物理实验3光学部分[M].高等教育出版社,2009 [5] 曹春梅.简析变形牛顿环 [J].大学物理实验,2004,17(1):32–33.

[6] 宋淑珍,张永利,王教方.牛顿环中心暗斑大小对测量结果影响的研究 [J].大学物理实验,2006,

19(3):33–35.

[7] 陈殿伟,盖啸尘,王显德,等.牛顿环试验测量结果不确定度的评价[J].大学物理实验,2007,

20(3):72–74.

[8] 王建岭.牛顿环实验误差的探讨[J].大学物理实验,2009(1):84 - 88.

[9] Jenkins F A, While H E. Fundamentals of Optics.4th ed. New York: McGraw Hill, Inc., 1976.

[10] Nelson D F. Electric, Optic, & Acoustic Interactions in Dielectrics .New York: John Wiley & Sons,

\1979.

致谢:

从开始搜集毕业论文的资料到完成这篇论文,整个过程我收获了很多。毕业论文不仅是对大学所学知识的总结,更是对自己所达到的专业水平的检测,通过此次毕业设计,我感觉到经过四年的大学学习,我的专业知识和能力都有了很大的进步,视野开阔了很多。

在本次论文的整个设计的过程中,我得到了许多老师和同学的帮助,特别是得到了刘炎松老师的悉心指导,才使我顺利完成了论文。在论文的选题、研究方法、具体实现、任务分配等方面,刘老师都给了我们许多宝贵的建议和指导,我们论文中的每一点都凝聚着刘老师的心血。

在此衷心感谢刘老师对我们付出的一切心血!同时感谢在大学里教导过我们的所有老师们。

Abstract:Newton rings experiment is the typical experiment for equal thickness interference phenomenon in college physics. This paper discusses how to apply the principle of experiment into measuring the refractive index of optical lens, and researches whether the changed rings phenomenon affects the result of the experiment measurement through experimental method. Finally we get the experiment conclusion. At the last of the paper, the theory results are applied to identifying optical lens surface and liquid refractive index, enriching the content of Newton ring experiment.

Key words:equal thickness interference;Newton rings;radius of curvature;application

牛顿环干涉汇总

实验六、牛顿环干涉 光的干涉现象是光波动性的基本特征之一。牛顿环干涉是属于用分振幅的方法产生的定域干涉现象,亦是典型的等厚干涉条纹。“牛顿环”是牛顿在1675年制做天文望远镜时,偶然将一个望远镜的物镜放在平板玻璃上发现的。在实际工作中,利用牛顿环干涉来测定光波的波长、透镜的曲率半径或检查光学元件表面的光洁度、平整度和加工精度等。 实验目的 1. 观察等厚现象,考察其特点; 2. 掌握一种测量透镜曲率半径的方法; 3. 学习使用读数显微镜。 实验仪器 JXD3型读数显微镜(一套),钠光灯,牛顿环 实验原理 把一块曲率半径相当大的平凸透镜A的凸面放在一块很平的平玻璃B上, 那么在两者之间就形成类似劈尖形的空气薄层。如图(a) 。如果将一束单色光垂直地投射上去,则入射光

在空气层上下两表面反射且在上表面相遇将产生干涉。在反射光中形成一系列以接触点O 为中心的明暗相间的光环叫牛顿圈。各明圈(或暗圈)处空气薄层的厚度相等,故称为等厚干涉。 明、暗环的干涉条件分别是: λλ δk e =+=2 2 ??????=,3,2,1k (1) 2 ) 12(2 2λ λ δ+=+ =k e ??????=,2,1,0k (2) 其中 2 λ 一项是由于二束相干光线中,其中一束光从光疏媒质(空气)到光密媒质(玻璃)交界面上反射时,发生“半波损失”引起的。 由图(b )可得环半径r 与厚度e 的关系:2 22)(e R r R -== 即: 2 2 2e eR r -= R 系透镜A 的曲率半径。由于e R ??,所以上式近似为: R r e 22 = (3) 将(3)带入(1)、(2)明、暗环公式分别有 2 )12(2 λ R k r +=(明环) ??????=,3,2,1k (4) R k r λ=2 (暗环) ??????=,2,1,0k (5) 由(4)、(5)式可看出:以一定波长λ的光入射到牛顿环上形成干涉条纹后,只要测出某一级明环或暗环的半径,即可测出透镜的曲率半径。但在实际测量中,暗环较易对准,故以测量暗环为宜。还有一个要注意的问题是,在实验中利用暗环公式(5),来测定透镜曲率半径R 时是认为接触点O 处(r=0)是点接触,且接触处无脏东西或灰尘存在,但是,实际上由于存在脏物或灰尘及玻璃的弹性形变,接触点是很小的面接触,看到的是一个暗斑。在

等厚干涉--牛顿环实验报告

等厚干涉——牛顿环 等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一. 实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二. 实验仪器 读数显微镜钠光灯牛顿环仪

三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在一块光学玻璃平板(平镜)上构成的,如图。平凸透镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 2222222)(r d Rd R r d R R ++-=+-= 由于r R >>,可以略去d 2得

R r d 22 = (1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来2λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中 3,2,1,0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环的几何中心。实际测量时,我们可以通过测量距中心较远的两个暗环半径r m 和r n 的平方差来计算曲率半径R 。因为 λMR r m =2 λnR r n =2 两式相减可得 λ)(22n m R r r n m -=-

大学物理仿真实验报告牛顿环法测曲率半径

大学物理仿真实验报告-牛顿环法测曲率半径

————————————————————————————————作者: ————————————————————————————————日期:

大学物理仿真实验报告 实验名称 牛顿环法测曲率半径 班级: 姓名: 学号: 日期:

牛顿环法测曲率半径 实验目的 1.学会用牛顿环测定透镜曲率半径。 2.正确使用读书显微镜,学习用逐差法处理数据。 实验原理 如下图所示,在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。分别从膜的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上表面相遇而产生干涉,干涉后的强度由相遇的两条光线的光程差决定,由图可见,二者的光程差等于膜厚度e的两倍。此外,当光在空气膜的上表面反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差π,与之对应的光程差为λ/2 ,所以相干的两条光线还具有λ/2的附加光程差,总的光程差为 (1) 当?满足条件(2) 时,发生相长干涉,出现第K级亮纹,而当 (k = 0,1,2…) (3) 时,发生相消干涉,出现第k级暗纹。因为同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。可以想见,干涉条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。 如图所示,设第k级条纹的半径为,对应的膜厚度为,则

(4) 在实验中,R的大小为几米到十几米,而的数量级为毫米,所以R>> ek,ek 2相对于2Re 是一个小量,可以忽略,所以上式可以简化为 k (5) 如果rk是第k级暗条纹的半径,由式(1)和(3)可得 (6) 代入式(5)得透镜曲率半径的计算公式 (7) 对给定的装置,R为常数,暗纹半径 (8) 和级数k的平方根成正比,即随着k的增大,条纹越来越细。 同理,如果r k是第k级明纹,则由式(1)和(2)得 (9) 代入式(5),可以算出 (10)

课程设计:牛顿环干涉实验

探究外部因素对牛顿环干涉的影响 10级物本:周晨、陈杨华、许英磊 指导老师:尹真 摘要:本实验利用移测显微镜对牛顿环仪在不同条件下显示出的牛顿环进行观察,求出各种条件下所测得透镜的曲率半径,并分析这些条件对牛顿环测定透镜曲率半径的影响情况。关键词:牛顿环、曲率半径、牛顿环仪、移测显微镜 1 引言: 运用钠灯发出的光线作为实验的入射光线,光线经过牛顿环仪后,在牛顿环仪表面发生干涉现象,形成了一系列同心圆圈,运用移测显微镜进行测量,可以求得牛顿环仪中透镜的曲率半径。 2实验仪器及用具:移测显微镜、牛顿环仪、钠灯等 3实验原理: 牛顿环仪是由待测平凸透镜L和磨光的平玻璃板P叠合安装在金属框架F中构成的(图1).框架边上有三个螺旋H,用以调节L和P之间的接触,以改变干涉环纹的形状和位置.调节H时,不可旋得过紧,以免接触压力过大引起透镜 弹性形变,甚至损坏透镜。

当一曲率半径很大的平凸透镜的凸面与一平玻璃板相接触时,在透镜的凸面与平玻璃板之间形成一空气薄膜.薄膜中心处的厚度为零,愈向边缘愈厚,离接触点等距离的地方,空气膜的厚度相同,如图2所示,若以波长为λ的单色平行光投射到这种装置上,则由空气膜上下表面反射的光波将在空气膜附近互相干涉,两束光的光程差将随空气膜厚度的变化而变化,空气膜厚度相同处反射的两束光具有相同的光程差,形成的干涉条纹为膜的等厚各点的轨迹,这种干涉是一种等厚干涉。 在反射方向观察时,将看到一组以接触点为中心的亮暗相间的圆环形干涉条纹,而且中心是一暗斑[图3(a)];如果在透射方向观察,则看到的干涉环纹与反射光的干涉环纹的光强分布恰成互补,中心是亮斑,原来的亮环处变为暗环,暗环处变为亮环[图3(b) ],这种干涉现象最早为牛顿所发现,故称为牛顿环。

牛顿环实验报告

北京师范大学珠海分校大学物理实验报告 实验名称:牛顿环实验测量 学院工程技术学院 专业测控技术与仪器 学号 1218060075 姓名钟建洲 同组实验者 1218060067余浪威 1218010100杨孟雄 2013 年 1 月 17日

实验名称 牛顿环实验测量 一、实验目的 1.观察牛顿环干涉现象条纹特征; 2.学习用光的干涉做微小长度的测量; 3.利用牛顿环干涉测量平凸透镜的曲率半径; 4.通过实验掌握移测显微镜的使用方法 二、实验原理 在一块平面玻璃上安放上一焦距很大的平凸透镜,使其凸面与平面相接触,在接触点 o 附近就形成一层空 气膜。当用一平行的准单色光垂直照射时,在空气膜上表面反射的光束和下表面反射的光束在膜上表面相遇相干,形成以 o 为圆心的明暗相间的环状干涉图样,称为牛顿环。如果已知入射光波长,并测得第 k 级 暗环的半径 r k ,则可求得透镜的曲率半径 R 。但 实际测量时,由于透镜和平面玻璃接触时,接触点有压力产生形变或有微尘产生附加光程差,使得干涉条纹的圆心和环级确定困难。第m 环与第n 环 用直径 D m 、 D n 。 () λ n m n D m D R +-= 42 2此为计算 R 用的公式,它与附加厚度、

圆心位置、绝对级次无关,克服了由这些因素带来的系统误差,并且D m 、 D n 可以是弦长。 三、实验内容与步骤 用牛顿环测量透镜曲率半径 (1).按图布置好实验器材,使用单色扩展光源,将牛顿环装置放在读数显微镜工作台毛玻璃中央,并使显微镜筒正对牛顿环装置中心。 (2).调节读数显微镜。 1.调节目镜,使分划板上的十字刻度线清晰可见,并转动目镜,使十字刻度线的横线与显微镜筒的移动方向平行。 2.调节45度反射镜,使显微镜视觉中亮度最大,这时基本上满足入射光垂直于待测量透镜的要求。 1.转动手轮A,使显微镜平移到标尺中部,并调节调焦手轮B,使物镜接近牛顿环装置表面。 2.对显微镜调焦。缓慢地转动调焦手轮B,使显微镜筒由下而上移动进行调焦,直到从目镜中清楚地看到牛顿环干涉条纹且无视差为止;然后移动牛顿环装置,使目镜中十字刻度线交点与牛顿环中心重合 (1).观察条纹的特征。 观察各级条纹的粗细是否一致,其间距有无差异,并做出解释。观察牛顿环中心是亮斑还是暗斑? (2).测量暗环的直径 转动读数显微镜的读数鼓轮,同时在目镜中观察,使十字刻度线由牛顿环中心缓慢地向一侧移动到43环;然后再回到第42环。自42环起,单方向移动十字刻度,每移3环读数一——直到测量完成另一侧的第42环。并将所测量的第42环到第15环各直径的左右两边的读数记录在表格内。 四、数据处理与结果 1.求透镜的曲率半径。 测出第15环到第42环暗环的直径,取m-n=15,用逐差法求出暗环的直径平方 差的平均值,按算出透镜的曲率半径的平均值R。 R1=(d422-d272)/[4(42-27]λ= 895.85 mm R2=(d392-d242)/[4(39-24]λ= 896.97 mm R3=(d362-d212)/(4(36-21)λ= 887.94mm R4=(d332-d182)/(4(33-18)λ= 893.30mm

大学物理仿真实验报告牛顿环分析

大学物理仿真实验报告 实验名称:牛顿环法测曲率半径实验日期: 专业班级: 姓名:学号: 教师签字:________________ 一、实验目的 1.学会用牛顿环测定透镜曲率半径。 2.正确使用读书显微镜,学习用逐差法处理数据。 二、实验仪器 牛顿环仪,读数显微镜,钠光灯,入射光调节架。 三、实验原理 如图所示,在平板玻璃面DCF上放一个曲率半径很大的平 凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形 成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到 透镜上,透过透镜,近似垂直地入射于空气膜。分别从膜 的上下表面反射的两条光线来自同一条入射光线,它们满 足相干条件并在膜的上表面相遇而产生干涉,干涉后的强 度由相遇的两条光线的光程差决定,由图可见,二者的光 程差等于膜厚度e的两倍,即 此外,当光在空气膜的上表面反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差π,与之对应的光程差为λ/2 ,所以相干的两条光线还具有λ/2的附加光程差,总的光程差为(1) 当?满足条件(2)时,发生相长干涉,出现第K级亮纹,而当(k = 0,1,2…)(3)时,发生相消干涉,出现第k级暗纹。因为同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。可以想见,干涉条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。

如图所示,设第k级条纹的半径为,对应的膜厚度为,则 (4) 在实验中,R的大小为几米到十几米,而的数量级为毫米,所以R >> e k,e k2相对于2Re k是一个小量,可以忽略,所以上式可以简化为 (5) 如果r k是第k级暗条纹的半径,由式(1)和(3)可得 (6) 代入式(5)得透镜曲率半径的计算公式 (7) 对给定的装置,R为常数,暗纹半径 (8) 和级数k的平方根成正比,即随着k的增大,条纹越来越细。 同理,如果r k是第k级明纹,则由式(1)和(2)得 (9) 代入式(5),可以算出(10)由式(8)和(10)可见,只要测出暗纹半径(或明纹半径),数出对应的级数k,即可算出R。

大学物理实验讲义实验牛顿环.docx

实验09用牛顿环测曲率半径 光的干涉现象证实了光在传播过程中具有波动性。光的干涉现象在工程技术和科学研究方面有着广 泛的应用。获得相干光的方法有两种:分波阵面法(例如杨氏双缝干涉、菲涅尔双棱镜干涉等)和 分振幅法(例如牛顿环等厚干涉、迈克尔逊干涉仪干涉等)。本实验主要研究光的等厚干涉中的两个典型 干涉现象,即牛顿环和劈尖干涉,它们都是用分振幅方法产生的干涉,其特点是同一条干涉条纹 处两反射面间的厚度相等,故牛顿环和劈尖都属于等厚干涉。在实际工作中,通常利用牛顿环来测量 光波波长,检查光学元件表面的光洁度、平整度和加工精度,利用劈尖来测量微小长度、薄膜的厚度 和固体的热膨胀系数等。 【实验目的】 1.观察光的干涉现象及其特点。 2.学习使用读数显微镜。 3.利用牛顿环干涉测量平凸透镜的曲率半径R 。入射光 4.利用劈尖干涉测量微小厚度。 【仪器用具】 R 读数显微镜、钠光灯、牛顿环装置、劈尖 r K d K 【实验原理】O (a) 1.牛顿环 牛顿环干涉现象是 1675 年牛顿在制作天文望远镜时,偶 然地将一个望远镜的物镜放在平面玻璃上而发现的。 如图 8-1 所示,将一个曲率半径为R(R很大)的平凸 透镜的凸面放在一块平面玻璃板上,即组成了一个牛 顿环装置。在透镜的凸面与平面玻璃板上表面间,构成了 一个空气薄层,其厚度从中心触点O (该处厚度为零) 向外逐渐增加,在以中心触点O 为圆心的任一圆周上的各点,薄空气层的厚度都相等。因此,当波长为的单色 光垂直入射时,经空气薄层上、下表面反射的两束相干光 形成的干涉图象应是中心为暗斑的宽窄不等的明暗相间 的同心圆环。此圆环即被称之为牛顿环。由于这种干涉条 纹的特点是在空气薄层同一厚度处形成同一级干涉条纹,因 此牛顿环干涉属于等厚干涉。 D 1 X (左)X(右 ) 11 D 4 X 4(左)X 4(右 ) (b) 图8-1 牛顿环的产生 设距离中心触点O 半径为 r K的圆周上某处,对应的空气薄层厚度为 d K,则由空气薄层上、下表面反射的两束相干光的光程差为 K 2d K 2 ( 8-1)

牛顿环干涉实验的相关问题及研究

牛顿环干涉实验的相关问题及研究 第一作者:王梓兆 学号:14051134 院系:航空科学与工程学院 第二作者:左冉东 学号:14051132 院系:航空科学与工程学院

牛顿环干涉实验的相关问题及研究 【摘要】 在判断透镜表面凸凹、精确检验光学元件表面质量、测量透镜表面曲率半径和液体折射率等方面,牛顿环干涉是一种非常常用的方法。通过观察牛顿环并进行计算,可以较为准确地得出结果,但同时,现实中是无法达到完美的理想效果的,所以实验中一定会出现一系列问题,本文对牛顿环干涉实验中出现的若干问题进行了研究。 【关键词】 牛顿环、光的干涉、一元线性回归 【实验原理】 牛顿环是一种光的干涉图样。是牛顿在1675年首先观察到的。将一块曲率半径较大的平凸透镜放在一块玻璃平板上,用单色光照射透镜与玻璃板,就可以观察到一些明暗相间的同心圆环。圆环分布是中间疏、边缘密,圆心在接触点O。从反射光看到的牛顿环中心是暗的,从透射光看到的牛顿环中心是明的。若用白光入射.将观察到彩色圆环。牛顿环是典型的等厚薄膜干涉。凸透镜的凸球面和玻璃平板之间形成一个厚度均匀变化的圆尖劈形空气簿膜,当平行光垂直射向平凸透镜时,从尖劈形空气膜上、下表面反射的两束光相互叠加而产生干涉。同一半径的圆环处空气膜厚度相同,上、下表面反射光程差

相同,因此使干涉图样呈圆环状。这种由同一厚度薄膜产生同一干涉条纹的干涉称作等厚干涉。 分析光路:将一大曲率半径的平凸玻璃透镜 A放在平板玻璃上即构成牛顿环仪。光源S 通过透镜L产生平行光束,再经倾角为450的 平板玻璃M反射后,垂直照射到平凸透镜上。 入射光分别在空气层的两表面反射后,穿过 M进入读数显微镜下,在显微镜中可以观察 到以接触点为中心的圆环形干涉条纹——牛顿环。 推导公式:根据光的干涉条件,在空气厚度为d的地方,有 2d+λ 2 =kλ(k=1,2,3...)明条纹 2d+λ 2=(2k+1)λ 2 (k=1,2,3...)暗条纹 式中左端的λ 2 为“半波损失”。令r为条纹半径,由右图可知: R2=r2+(R?d)2 化简后得r2=2Re?d2 当R>>d时,上式中的d2可以略去,因此 d=r2 将此式代入上述干涉条件,并化简,得r2=2k?1Rλ 2 k=1,2,3…明环 r2=kλR(k=1,2,3…)暗环 由上式可以看出,若测出了明纹或暗

牛顿环测量曲率半径实验报告

实验名称:牛顿环测量曲率半径实验 1.实验目的: 1 观察等厚干涉现象,理解等厚干涉的原理和特点 2 学习用牛顿环测定透镜曲率半径 3 正确使用读数显微镜,学习用逐差法处理数据 2.实验仪器: 读数显微镜,钠光灯,牛顿环,入射光调节架 3.实验原理 图1 如图所示,在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。分别从膜的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上表面相遇而产生干涉,干涉后的强度由相遇的两条光线的光程差决定,由图可见,二者的光 程差等于膜厚度e的两倍,即

此外,当光在空气膜的上表面反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差π,与之对应的光程差为λ/2 ,所以相干的两条光线还具有λ/2的附加光程差,总的光程差为 (1) 当?满足条件 (2) 时,发生相长干涉,出现第K级亮纹,而当 (3) 时,发生相消干涉,出现第k级暗纹。因为同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。可以想见,干涉条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。 如图所示,设第k级条纹的半径为,对应的膜厚度为,则 (4) 在实验中,R的大小为几米到十几米,而的数量级为毫米,所以R >> e k, e k 2相对于2Re k 是一个小量,可以忽略,所以上式可以简化为 (5) 如果r k是第k级暗条纹的半径,由式(1)和(3)可得 (6)代入式(5)得透镜曲率半径的计算公式

等厚干涉牛顿环实验报告

等厚干涉牛顿环实验报告 This manuscript was revised on November 28, 2020

等厚干涉——牛顿环 等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一. 实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二. 实验仪器 读数显微镜钠光灯牛顿环仪 三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在一块光 学玻璃平板(平镜)上构成的,如图。平凸透镜的凸面与玻 璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的

一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 由于r R >>,可以略去d 2得 R r d 22 = (1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中 3,2,1, 0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环

等厚干涉牛顿环实验报告

等厚干涉——牛顿环示范报告 【实验目的】 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; (3)学会使用读数显微镜测距。 【实验原理】 在一块平面玻璃上安放上一焦距很大的平凸透镜,使其凸面与平面相接触,在接触点附近就形成一层空气膜。当用一平行的准单色光垂直照射时,在空气膜上表面反射的光束和下表面反射的光束在膜上表面相遇相干,形成以接触点为圆心的明暗相间的环状干涉图样, 称为牛顿环,其光路示意图如图。 如果已知入射光波长,并测得第k 级暗环的半径k r ,则可求得透镜的曲率半径R 。但实际测量时,由于透镜和平面玻璃接触时,接触点有压力产生形变或有微尘产生附加光程差,使得干涉条纹的圆心和环级确定困难。用直径 m D 、n D ,有 λ)(42 2 n m D D R n m --= 此为计算R 用的公式,它与附加厚光程差、圆心位置、绝对级次无 关,克服了由这些因素带来的系统误差,并且 m D 、 n D 可以是弦长。 【实验仪器】 JCD3型读数显微镜,牛顿环,钠光灯,凸透镜(包括三爪式透镜夹和固定滑座)。 【实验内容】 1、调整测量装置 按光学实验常用仪器的读数显微镜使用说明进行调整。调整时注意: (1)调节450玻片,使显微镜视场中亮度最大,这时,基本上满足入射光垂直于透镜的要求(下部反光镜不要让反射光到上面去)。 (2)因反射光干涉条纹产生在空气薄膜的上表面,显微镜应对上表面调焦才能找到清晰的干涉图像。 (3)调焦时,显微镜筒应自下而上缓慢地上升,直到看清楚干涉条纹时为止,往下移动显微镜筒时,眼睛一定要离开目镜侧视,防止镜筒压坏牛顿环。 (4)牛顿环三个压紧螺丝不能压得很紧,两个表面要用擦镜纸擦拭干净。 2、观察牛顿环的干涉图样 (1)调整牛顿环仪的三个调节螺丝,在自然光照射下能观察到牛顿环的干涉图样,并将干涉条纹的中心移到牛顿环仪的中心附近。调节螺丝不能太紧,以免中心暗斑太大,甚至损坏牛顿环仪。 (2)把牛顿环仪置于显微镜的正下方,使单色光源与读数显微镜上45?角的反射透明玻璃片等高,旋转反射透明玻璃 ,直至从目镜中能看到明亮均匀的光照。 (3)调节读数显微镜的目镜,使十字叉丝清晰;自下而上调节物镜直至观察到清晰的干涉图样。移动牛顿环仪,使中心暗斑(或亮斑)位于视域中心,调节目镜系统,使叉丝横

大学物理实验讲义实验14牛顿环

实验 09 用牛顿环测曲率半径 光的干涉现象证实了光在传播过程中具有波动性。光的干涉现象在工程技术和科学研究方面有着广泛的应用。获得相干光的方法有两种:分波阵面法(例如杨氏双缝干涉、菲涅尔双棱镜干 涉等)和分振幅法(例如牛顿环等厚干涉、迈克尔逊干涉仪干涉等)。本实验主要研究光的等厚干涉中的两个典型干涉现象,即牛顿环和劈尖干涉,它们都是用分振幅方法产生的干涉,其特点 是同一条干涉条纹处两反射面间的厚度相等,故牛顿环和劈尖都属于等厚干涉。在实际工作中, 通常利用牛顿环来测量光波波长,检查光学元件表面的光洁度、平整度和加工精度,利用劈尖来 测量微小长度、薄膜的厚度和固体的热膨胀系数等。 【实验目的】 1.观察光的干涉现象及其特点。 2.学习使用读数显微镜。 3.利用牛顿环干涉测量平凸透镜的曲率半径R 。入射光 4.利用劈尖干涉测量微小厚度。 【仪器用具】 读数显微镜、钠光灯、牛顿环装置、劈尖 R 【实验原理】 1.牛顿环 牛顿环干涉现象是1675 年牛顿在制作天文望远镜时,偶然地将一个望远镜的物镜放在平面玻璃上而发现 的。 如图8-1 所示,将一个曲率半径为R ( R 很大)的平凸透镜的凸面放在一块平面玻璃板上,即组成了一个牛 顿环装置。在透镜的凸面与平面玻璃板上表面间,构成了一个空气薄层,其厚度从中心触点O (该处厚度为零) r K O (a) D 1 d K 向外逐渐增加,在以中心触点O 为圆心的任一圆周上的各点,薄空气层的厚度都相等。因此,当波长为的单色光垂直入射时,经空气薄层上、下表面反射的两束相干 光形成的干涉图象应是中心为暗斑的宽窄不等的明暗相 间的同心圆环。此圆环即被称之为牛顿环。由于这种干涉 条纹的特点是在空气薄层同一厚度处形成同一级干涉条 X 1(左)X 1(右) D 4 X 4(左)X 4(右 ) (b) 图8-1 牛顿环的产生

牛顿环实验报告

等厚干涉——牛顿环 【实验目的】 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; (3)学会使用读数显微镜测距。 【实验原理】 在一块平面玻璃上安放上一焦距很大的平凸透镜,使其凸面与平面相接触,在接触点附近就形成一层空气膜。当用一平行的准单色光垂直照射时,在空气膜上表面反射的光束和 下表面反射的光束在膜上表面相遇相干,形成以接触点为圆心的明暗相间的环状干涉图样,称为牛顿环,其光路示意图如图。 如果已知入射光波长,并测得第k 级暗环的半径 k r ,则可求得透镜 的曲率半径R 。但实际测量时,由于透镜和平面玻璃接触时,接触点有压力产生形变或有微尘产生附加光程差,使得干涉条纹的圆心和环级确定困难。用直径 m D 、n D ,有 λ)(42 2n m D D R n m --= 此为计算R 用的公式,它与附加厚光程差、圆心位置、绝对级次无关,克服了由这些因素带来的系统误差,并且 m D 、n D 可以是弦长。 【实验仪器】 JCD3型读数显微镜,牛顿环,钠光灯,凸透镜(包括三爪式透镜夹和固定滑座)。 【实验内容】 1、调整测量装置 按光学实验常用仪器的读数显微镜使用说明进行调整。调整时注意: (1)调节450玻片,使显微镜视场中亮度最大,这时,基本上满足入射光垂直于透镜的要求(下部反光镜不要让反射光到上面去)。 (2)因反射光干涉条纹产生在空气薄膜的上表面,显微镜应对上表面调焦才能找到清

晰的干涉图像。 (3)调焦时,显微镜筒应自下而上缓慢地上升,直到看清楚干涉条纹时为止,往下移动显微镜筒时,眼睛一定要离开目镜侧视,防止镜筒压坏牛顿环。 (4)牛顿环三个压紧螺丝不能压得很紧,两个表面要用擦镜纸擦拭干净。 2、观察牛顿环的干涉图样 (1)调整牛顿环仪的三个调节螺丝,在自然光照射下能观察到牛顿环的干涉图样,并将干涉条纹的中心移到牛顿环仪的中心附近。调节螺丝不能太紧,以免中心暗斑太大,甚至损坏牛顿环仪。 (2)把牛顿环仪置于显微镜的正下方,使单色光源与读数显微镜上45角的反射透明玻璃片等高,旋转反射透明玻璃,直至从目镜中能看到明亮均匀的光照。 (3)调节读数显微镜的目镜,使十字叉丝清晰;自下而上调节物镜直至观察到清晰的干涉图样。移动牛顿环仪,使中心暗斑(或亮斑)位于视域中心,调节目镜系统,使叉丝横丝与读数显微镜的标尺平行,消除视差。平移读数显微镜,观察待测的各环左右是否都在读数显微镜的读数范围之内。 3、测量牛顿环的直径 (1)选取要测量的m和n(各5环),如取m为55,50,45,40,35,n为30,25,20,15,10。 (2)转动鼓轮。先使镜筒向左移动,顺序数到55环,再向右转到50 环,使叉丝尽量对准干涉条纹的中心,记录读数。然后继续转动测微鼓轮,使叉丝依次与45,40,35,30,25,20,15,10,环对准,顺次记下读数;再继续转动测微鼓轮,使叉丝依次与圆心右10,15,20,25,30,35,40,45,50,55环对准,也顺次记下各环的读数。注意在一次测量过程中,测微鼓轮应沿一个方向旋转,中途不得反转,以免引起回程差。 4、算出各级牛顿环直径的平方值后,用逐差法处理所得数据,求出 直径平方差的平均值代入公式求出透镜的曲率半径,并算出误差。.注意: (1)近中心的圆环的宽度变化很大,不易测准,故从K=lO左右开始比较好; (2)m-n应取大一些,如取m-n=25左右,每间隔5条读一个数。 (3)应从O数到最大一圈,再多数5圈后退回5圈,开始读第一个数据。 (4)因为暗纹容易对准,所以对准暗纹较合适。,

物理研究性报告牛顿环干涉实验

基础物理实验研究性报告 牛顿环干涉 院系名称:宇航学院 专业名称:飞行器设计与工程(航天工程) 第一作者:隋婷婷11151147 第二作者:罗通11151021 二零一二年十一月

摘要 本文根据光的干涉原理,将一曲率半径相当大的平凸玻璃透镜放在一平面玻璃上,构成牛顿环仪。通过测量圆环形干涉条纹——牛顿环的半径和级数算出平凸玻璃透镜的曲率半径。最后,根据光的折射和反射定律,通过精确计算两干涉光束的光程差,给出了牛顿环干涉较严格的条纹半径公式,对误差来源进行了进一步定量分析。 关键词:干涉,牛顿环,光程差,曲率半径 Abstract Based on the principle of interference of light, there is a large radius of curvature of plano-convex glass lens on a flat glass constituting Newton's rings instrument. By measuring the annular interference fringes - the radius of the Newton's rings and progression calculates the radius of curvature of the plano-convex glass lenses. Finally, according to the refraction of light and the law of reflection, the accurate calculation of two interference of the optical path of the light beam given Newton ring interference the more stringent fringes radius formula further quantitative analysis of the error sources. Keywords:interference, Newton's rings, optical path difference, radius of curvature 一、实验原理 如图所示,自光源S发出的光经过 透镜后成为平行光束,再经过倾斜为 45度的平面玻璃反射后,进入读数显 微镜T,在读数显微镜中可以观察到以 接触点为中心的圆环形干涉条纹—— 牛顿环。当光源发出的光是单色光,则 牛顿环是明暗相间的条纹。

牛顿环测量曲率半径---大学物理仿真实验报告

牛顿环测量曲率半径---仿真实验报告 实验日期:教师审批签字: 实验人:审批日期: 一.实验目的: 1.观察等厚干涉现象,了解等厚干涉的原理及特点; 2.学习使用利用干涉法测量平凸透镜的曲率半径的方法; 3.正确使用读数显微镜镜,学习用逐差法处理实验数据。 二.实验仪器及其使用方法: (一)实验仪器: ○1读数显微镜(测微鼓轮的分度值为0.01mm);○2钠光灯,入射光调节架;○3牛顿环仪。 (二)使用方法: 1.将牛顿环放置在读数显微镜镜筒和入射光调节架下方,打开钠灯,调节玻璃片的角 度,使通过显微镜目镜观察时视场最亮。 2用鼠标点区域的入射光调节架,按住鼠标左键不放,调节架作顺时针旋转(从观察者角度),点右键则作相反动作。当目镜观察窗中的条纹最明亮(未必清晰)时结束调整 3.打开标尺窗口。用鼠标点击标尺窗口调整镜身的横向移动,左键点击时镜身向 左移动(所以目镜观察窗口中牛顿环向右移),右键则相反。使显微镜十字叉丝交点和牛顿环中心重合,并使水平方向的叉丝和标尺平行(与显微镜移动方向平行),此时不要关闭标尺窗口;记录标尺读数。 4.转动显微镜微调鼓轮,使显微镜沿一个方向移动,同时数出十字叉丝竖丝移过的暗 环数,从第16环开始直到竖丝与第50环相切为止;记录标尺读数。

5.重复步骤2测得一组牛顿环半径值,利用逐差法处理得到的数据,得到牛顿环半径R 和R的标准差。 三、实验原理: 如图所示,在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。分别从膜的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上表面相遇而产生薄膜干涉。在实验中选择两个离中心较远的暗环,假定他们的级数为m和n,分别测出它们的直径d m、d n,由薄膜干涉 原理可推知平凸透镜的曲率半径 22 4m n m n d d R λ + = - () 四、测量内容及数据处理: 将牛顿环按要求放置,调节好玻璃片的角度、显微镜镜筒、牛顿环,目镜观察窗中的横向叉丝经过牛顿环圆心观测到以下干涉图样: 仿真实验提供了自动计算R值的工具,把所实验测得的数据录入表格,得到下表:

等厚干涉牛顿环实验报告

等厚干涉——牛顿环等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一. 实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二. 实验仪器 读数显微镜钠光灯牛顿环仪 三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在 一块光学玻璃平板(平镜)上构成的,如图。平凸透 镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光

束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 由于r R >>,可以略去d 2得 R r d 22 =(1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来2λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中K 3,2,1, 0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2(4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或

大学物理实验报告思考题部分答案

实验十三 拉伸法测金属丝的扬氏弹性摸量 【预习题】 1.如何根据几何光学的原理来调节望远镜、光杠杆和标尺之间的位置关系?如何调节望远镜? 答:(1)根据光的反射定律分两步调节望远镜、光杠杆和标尺之间的位置关系。第一步:调节来自标尺的入射光线和经光杠杆镜面的反射光线所构成的平面大致水平。具体做法如下:①用目测法调节望远镜和光杠杆大致等高。②用目测法调节望远镜下的高低调节螺钉,使望远镜大致水平;调节光杠杆镜面的仰俯使光杠杆镜面大致铅直;调节标尺的位置,使其大致铅直;调节望远镜上方的瞄准系统使望远镜的光轴垂直光杠杆镜面。第二步:调节入射角(来自标尺的入射光线与光杠杆镜面法线间的夹角)和反射角(经光杠杆镜面反射进入望远镜的反射光与光杠杆镜面法线间的夹角)大致相等。具体做法如下:沿望远镜筒方向观察光杠杆镜面,在镜面中若看到标尺的像和观察者的眼睛,则入射角与反射角大致相等。如果看不到标尺的像和观察者的眼睛,可微调望远镜标尺组的左右位置,使来自标尺的入射光线经光杠杆镜面反射后,其反射光线能射入望远镜内。 (2)望远镜的调节:首先调节目镜看清十字叉丝,然后物镜对标尺的像(光杠杆面镜后面2D 处)调焦,直至在目镜中看到标尺清晰的像。 2.在砝码盘上加载时为什么采用正反向测量取平均值的办法? 答:因为金属丝弹性形变有滞后效应,从而带来系统误差。 【思考题】 1.光杠杆有什么优点?怎样提高光杠杆测量微小长度变化的灵敏度? 答:(1)直观 、简便、精度高。 (2)因为 D x b L 2?=?,即b D L x 2=??,所以要提高光杠杆测量微小长度变化的灵敏度L x ??,应尽可能减小光杠杆长度b (光杠杆后支点到两个前支点连线的垂直距离),或适当增大D (光杠杆小镜子到标尺的距离为D )。 2.如果实验中操作无误,得到的数据前一两个偏大,这可能是什么原因,如何避免? 答:可能是因为金属丝有弯曲。避免的方法是先加一两个发码将金属丝的弯曲拉直。 3.如何避免测量过程中标尺读数超出望远镜范围?

用牛顿环测透镜的曲率半径实验报告

用牛顿环测透镜曲率半径 [实验目的] 1.观察光的等厚干涉现象,了解干涉条纹特点。 2.利用干涉原理测透镜曲率半径。 3.学习用逐差法处理实验数据的方法。 [实验原理] 牛顿环条纹是等厚干涉条纹。 由图中几何关系可得 22222)(k k k k d Rd d R R r -=--= 因为R>>d k 所以 k k Rd r 22= (1) 由干涉条件可知,当光程差 ??? ???? =+=+=?==+=?暗条纹 明条纹 )0,1,2(k 2)12(22 )1,2,(k 22 λλλλk d k d k k (2) 其干涉条纹仅与空气层厚度有关,因此为等厚干涉。由(1)式和(2)式可得暗条纹其环的半径

R k r k λ=2 (3) 由式(3)可知,若已知入射光的波长λ,测出k 级干涉环的半径r k ,就可计算平凸透镜的曲率半径。 所以 λ m D D R k m k 422-=+ (4) 只要测出D k 和D k+m ,知道级差m ,并已知光的波长λ,便可计算R 。 [实验仪器] 钠光灯,读数显微镜,牛顿环。 [实验内容] 1.将牛顿环置于读数显微镜载物合上,并调节物镜前反射玻璃片的角度,使显微镜的视场中充满亮光。 2.调节升降螺旋,使镜筒处于能使看到清晰干涉条纹的位置,移动牛顿环装置使干涉环中心在视场中央。并观察牛顿环干涉条纹的特点。 3.测量牛顿环的直径。由于中心圆环较模糊,不易测准,所以中央几级暗环直径不要测,只须数出其圈数,转动测微鼓轮向右(或左)侧转动18条暗纹以上,再退回到第18条,并使十字叉丝对准第18条暗纹中心,记下读数,再依次测第17条、第16条…至第3条暗纹中心,再移至左(或右)侧从第3条暗纹中心测至第18条暗纹中心,正式测试时测微鼓轮只能向一个方向转动,只途不能进进退退,否则会引起空回测量误差。 4.用逐差法进行数据处理及第18圈对第8圈,第17圈对第7圈…。其级差m=10,用

牛顿环-等厚干涉标准实验报告

实验报告 学生姓名: 学 号: 指导教师: 实验地点: 一、实验室名称: 、实验项目名称:牛顿环测曲面半径和劈尖干涉 三、实验学时: 四、实验原理: 1等厚干涉 如图1所示,在C 点产生干涉,光线11'和22'的光程差为 △ =2d+入 12 式中入/2是因为光由光疏媒质入射到光密媒质上反射时, 有一相位突 当光程差 △ =2d+入/2=(2k+1)入12, 即d=k 入/2时 产生暗条纹; 当光程差 △ =2d+入/2=2k 入/2, 即d=(k — 1/2)入/2时 产生明条纹 因此,在空气薄膜厚度相同处产生同一级的干涉条纹 ,叫等厚干涉条 2、用牛顿环测透镜的曲率半径 将一个曲率半径较大的平凸透镜的凸面置于一块光学平板玻璃上则 实验时间: 变引起的附加光程差

可组成牛顿环装置。如图2所示。 这两束反射光在AOB 表面上的某一点E 相遇,从而产生E 点的干涉。由于AOB 表面是球面,所产生的条纹是明暗相间 的圆环,所以称为牛顿环,如图3所示。 将两块光学平玻璃重叠在一起,在一端插入一薄纸 片,则在两玻璃板 间形成一空气劈尖,如图4所示。K 级干涉暗条纹对应的薄膜厚度为 d=k 入/2 k=0时,d=0, 即在两玻璃板接触处为零级暗条纹;若在 薄纸处呈现k=N 级条纹,则薄纸片厚度为 d ' =N 入12 若劈尖总长为L,再测出相邻两条纹之间的距离为△ x,则暗条纹总数 为N =L/A x , 即 d ' =L 入 12 △ x 。 五、实验目的: 深入理解光的等厚干涉及其应用,学会使用移测显微镜 六、实验内容: 1、 用牛顿环测透镜的曲率半径 2、 用劈尖干涉法测薄纸片的厚度 七、实验器材(设备、元器件): 牛顿环装置,移测显微镜,两块光学平玻璃板,薄纸片,钠光灯及电 八、实验步骤: 1.用牛顿环测透镜的曲率半径 O 牛顿环 图2 ---- L

相关文档
最新文档