电源接地标准

电源接地标准
电源接地标准

电源接地标准

一般规定

智能化系统设备的供电与接地应做到安全可靠、经济合理、技术先进。

设计要素

应对智能化系统设备进行分类,根据分类配置相应的电

为满足将来扩容的需要,电源设备机房应留有裕量。

供电电源质量应符合国家现行有关规范和产品使用的技术条件的规定。

根据智能化系统的规模大小、设备分布及对电源需求等因素,采取UPS分散供电方式或UPS集中供电方式。

电力系统与弱电系统的线路应分开敷设。

应采用总等电位联结,各楼层的智能化系统设备机房、楼层弱电间、楼层配电间等的接地应采用局部等电位联结。接地极当采用联合接地体时,接地电阻不应大于1Ω;当采用单独接地体时,陵地电阻不应大于4Ω。

智能化系统设备的供电系统应采取过电压保护等保护措施。

在智能化系统设备和电气设备的选择及线路敷设时应考虑电磁兼容问题。

设计标准

甲级标准应符合下列条件:

1 应有两路独立电源供电,并在末端自动切换。

2 重要的设备应配备UPS电源装置。

3 电源质量应符合下列规定:

1)稳态电压偏移不大于±2%;

2)稳态频率偏移不大于±0.2 Hz;

3)电压波形畸变率不大于5%;

4)允许断电持续时间为0~4ms。

当不能满足上述要求时,采用稳频稳压及不间断供电等措施。

4 重要设备应采用放射式专用回路供电,其他设备可采用树干式或链式供电。

5 电力干线与弱电干线应分别设置独立的楼层配电间和楼层弱电间,配电间和弱电间的大小及水平出线位置应留有裕量,其地坪宜高出本层地坪30mm。

6 智能化系统的总控制室(主机房)应设置专用配电箱,该专用配电箱的配出回路应留有裕量。

7 每层或每个承租单元内应设置专用的用户配电箱,从该用户配电箱引出的电源线路应与弱电线路分开敷设。

8 地面配线可采用架空地板配线方式或网络地板配线方式。

9 吊顶内应设线槽或穿管敷设。

10 电源插座:

容量:办公室宜按60V·A/m2以上考虑;

数量:办公室宜按20个/100m2以上设置(每个插座宜按300V·A计算);

类型:插座必须带有接地极的扁圆孔多用插座。

乙级标准应符合下列条件:

1 应有两路独立电源供电,并在末端自动切换。

2 重要设备可配备UPS电源装置。

3 供电电源质量应符合下列规定:

1)稳态电压偏移不大于±5%;

2)稳态频率偏移不大于±0.5Hz;

3)电压波形畸变率不大于8%;

4)允许断电持续时间为4~200ms。

当不能满足上述要求时,采用稳频稳压及不间断供电等措施。

4 重要设备应采用放射式专用回路供电,其他设备可采用树干式或链式供电。

5 电力干线与弱电干线应分别设置独立的楼层配电间和楼层弱电间,配电间和弱电间的大小及水平出线位置应留有裕量,其地坪宜高出本层地坪30mm。

6 智能化系统的总控制室(主机房)内应设置专用配电箱,该专用配电箱的配出回路应留有裕量。

7 每层或每个承租单元内应设置专用的用户配电箱,从该专用配电箱的配出回路应留有裕量。

8 地面配线可采用网络地板、地板线槽、地板配管等敷线方式。

9 吊顶内宜设线槽或穿管敷设。

10 电源插座:

容量:办公室宜按45V·A/m2以上考虑;

数量:办公室宜按15个/100m2以上设置(每个插座宜按300V·A计算);

类型:插座必须带有接地极的扁圆孔多用插座。

丙级标准应符合下列条件:

1 宜由两路电源供电,并在末端自动切换。

2 重要设备宜配备UPS电源装置。

3 供电电源质量应满足产品的使用要求。

4 智能化系统设备宜采用专用回路供电。

5 电力干线与弱电干线宜分别设置独立的楼层配电间和楼层弱电间,配电间和弱电间的大小及水平出线位置应留有裕量,其地坪宜高出本层地坪30mm。

6 智能化系统的总控制室(主机房)内宜设置专用配电箱,该专用配电箱的配出回路应留有裕量。

7 每层或每个承租单元的用户配电箱应集中设置在公共空间内,从该用户配电箱的配出回路应留有裕量。

8 地面配线可采用地板线槽、地板配管等敷线方式。

9 吊顶内应预留一定的空间供将来配线使用。

10 电源插座:

容量:办公室宜按30V·A/m2以上考虑;

数量;办公室宜按10个/100m2以上设置(每个插座宜按

300V·A计算);

类型:插座必须带有接地极的扁圆孔多用插座。

接地作用和接地原理方法

l)接地的作用 接地的作用总的步说只有两种:保护人和设备不受损害;抑制干扰;抑制干扰接地在有的书中又叫工作接地,而前者又叫保护接地。 ①保护接地 保护接地是将DCS中平时不带电的金属部分(机柜外壳,操作台外壳等)与地之间形成良好的导电连接,以保护设备和人身安全。原因是DCS的供电是强电供电(220V或11OV),通常情况下机壳等是不带电的,当故障发生(如主机电源故障或其它故障)造成电源的供电火线与外壳等导电金属部件短路时,这些金属部件或外壳就形成了带电体,如果没有很好的接地,那么这带电体和地之间就有很高的电位差,如果人不小心触到这些带电体,那么就会通过人身形成通路,产生危险。因此,必须将金属外壳和地之间作很好的连接,使机壳和地等电位。此外,保护接地还可以防止静电的积聚。 ②工作接地 工作接地是为了使DCS以及与之相连的仪表均能可靠运行并保证测量和控制精度而设的接地。它分为机器逻辑地、信号回路接地、屏蔽接地,在石化和其它防爆系统中还有本安接地。 ·机器逻辑地,也叫主机电源地,是计算机内部的逻辑电平负端公共地,也是+5V等电源的输出地。 ·信号回路接地,如各变送器的负端接地,开关量信号的负端接地等。 ·屏蔽接地(模人信号的屏蔽层的接地)。 ·本安接地,是本安仪表或安全栅的接地。这种接地除了抑制干扰外,还有使仪表和系统具有本质安全性质的措施之一。本安接地会因为采用的设备的本实措施不同而不同,下面以齐纳式安全栅为例,说明其接地内容,如图3.413所示:该图是一个齐纳式安全栅的接地原 理图。

安全栅的作用是保护危险现场端永远处于安全电源和安全电压范围之内。如果现场端短路,则由于负载电阻和安全栅电阻R的限流作用,会将导线上的电流限制在安全范围内,使现场端不至于产生很高的温度,引起燃烧。第二种情况,如果计算机一端产生故障,则高压电信号加入了信号回路,则由于齐纳二级的嵌位作用,也使电压位于安全范围。 值得提醒的是,由于齐纳安全栅的引入,使得信号回路上的电阻增大了许多,因此,在设计输出回路的负载能力时,除了要考虑真正的负载要求以外,还要充分考虑安全栅的电阻,留有余地。 除了上述几种接地外,在很多场合下容易引起混乱的还有一个供电系统地,也叫交流电源工作地,它是电力系统中为了运行需要设的接地(如中性点接地)。 (l)接地要求和方法: 上面介绍了六种接地:供电系统地、保护地、逻辑地、屏蔽地安全栅地、信号回路地。对这六种接地,各家有各家的要求,虽然大都强调一点接地,接地电阻必须小于1欧姆等,但具体内容上差别很大,下面给出几个例子介绍常遇到的接地要求和方法。 ①供电系统地:在很多企业,特别是电厂、冶炼厂等,其厂区内有一个很大的地线网,而通常供电系统的地是与地线网连在一起的。有的厂家强调计算机系统的所有接地必须和供电系统地以及其它(如避雷地)严格分开,而且之间至少应保持15m以上的距离。为了彻底防止供电系统地的影响,建议供电线线路用隔离变压器隔开。这对那些电力负荷很重,而且负荷经常启停的单位是应注意的。从抑制干扰的角度来看,将电力系统地和计算机系统的所有地分开是很有好处的,因为一般电力系统的地线是不太干净的。但从工程角度来看,在有些场合下单设计算机系统地并保证其与供电系统地隔开一定距离是很困难的,这时可以考虑能否将计算机系统的地和供电地共用一个,这要考虑几个因素: ·供电系统地上是否干扰很大,如大电流设备启停是否频繁,对地产生的干扰是否大;·供电系统地的接地电阻是否足够小,而且整个地网各个部分的电位差是否很小,即地网的各部分之间是否阻值很小(<1W) ·DCS的抗干扰能力以及所用到的传输信号的抗干扰能力,例如有无小信号(电偶,热电阻)的直接传输等。 ②所有计算机接线涉及到的接地采用一点接地方式,在这一点上,也有很多争议。有的厂 家系统提出几个地:逻辑地、屏蔽地(又叫模拟地)、信号地、保护地分别自己接地在地上打接地装置,而大部分系统则指出各种地在机柜内部自己分别接地,汇于一点,然后用较粗的导体(铜)将各汇地点朕起来,接到一个公共的接地体上。这里有几点需要注意:DCS 本身是由多台设备组成的,除了控制站以外,还包括很多外设,而且数据也不止一台,这就涉及到了多台设备,多种接地的问题。此外,一般的DCS的供电是各站(控制站,操作站等)用专门一条线单独供电,即彼此之间不相互供电。图3.4.14是一种常用的多站接地图。

低压配电系统的接地方式及特点

编号:SM-ZD-97536 低压配电系统的接地方式 及特点 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

低压配电系统的接地方式及特点 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查 和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目 标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 1 低压配电系统中的接地类型 (1)工作接地:为保证电力设备达到正常工作要求的接地,称为工作接地。中性点直接接地的电力系统中,变压器中性点接地,或发电机中性点接地。 (2)保护接地:为保障人身安全、防止间接触电,将设备的外露可导电部分进行接地,称为保护接地。保护接地的形式有两种:一种是设备的外露可导电部分经各自的接地保护线分别直接接地;另一种是设备的外露可导电部分经公共的保护线接地。 (3)重复接地:在中性线直接接地系统中,为确保保护安全可靠,除在变压器或发电机中性点处进行工作接地外,还在保护线其他地方进行必要的接地,称为重复接地。 (4)保护接中性线:在380/220V低压系统中,由于中性点是直接接地的,通常又将电气设备的外壳与中性线相连,称为低压保护接中性线。此种方式也叫保护接零。

电源线与接地线安装

目录 第5章电源线与接地线安装..................................................................................................... 5-1 5.1 供电与接地系统简介 .......................................................................................................... 5-1 5.1.1 MSOFTX3000的供电系统 ...................................................................................... 5-1 5.1.2 MSOFTX3000的接地系统 ...................................................................................... 5-2 5.2 安装电源线与接地线 .......................................................................................................... 5-3 5.2.1 安装流程.................................................................................................................. 5-3 5.2.2 安装MSOFTX3000设备机柜内的电源线................................................................ 5-5 5.2.3 安装MSOFTX3000设备机柜内的接地线................................................................ 5-8 5.2.4 安装MSOFTX3000设备机柜间的接地线.............................................................. 5-10 5.2.5 安装MSOFTX3000设备机柜的电源进线及接地线 ............................................... 5-11 5.2.6 安装直流配电柜到直流配电屏的电源母线 ............................................................. 5-15

几种常见接地形式的简介与区别(带图)

建筑工程供电使用的基本供电系统有三相三线制三相四线制等,但这些名词术语内涵不是十分严格。 国际电工委员会(IEC)对此作了统一规定,称为TT系统、TN系统、IT系统。其中TN系统又分为TN-C、TN-S、TN-C-S系统。下面内容就是对各种供电系统做一个扼要的介绍。 (一)工程供电的基本方式 根据IEC规定的各种保护方式、术语概念,低压配电系统按接地方式的不同分为三类,即TT、TN和IT系统,分述如下。 (1)TT方式供电系统:TT方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称TT系统。第一个符号T表示电力系统中性点直接接地;第二个符号T表示负载设备外露不与带电体相接的金属导电部分与大地直接联接,而与系统如何接地无关。在TT系统中负载的所有接地均称为保护接地,如图1-1所示。这种供电系统的特点如下。 1)当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有接地保护,可以大大减少触电的危险性。但是,低压断路器(自动开关)不一定能跳闸,造成漏电设备的外壳对地电压高于安全电压,属于危险电压。 2)当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,困此TT系统难以推广。 3)TT系统接地装置耗用钢材多,而且难以回收、费工时、费料。 现在有的建筑单位是采用TT系统,施工单位借用其电源作临时用电时,应用一条专用保护线,以减少需接地装置钢材用量。 把新增加的专用保护线PE线和工作零线N开,其特点是: ①共用接地线与工作零线没有电的联系; ②正常运行时,工作零线可以有电流,而专用保护线没有电流; ③TT系统适用于接地保护占很分散的地方。 (2)TN方式供电系统这种供电系统是将电气设备的金属外壳与工作零线相接的保护系统,称作接零保护系统,用TN表示。它的特点如下。 1)一旦设备出现外壳带电,接零保护系统能将漏电电流上升为短路电流,

白话说电气_工作接地与保护接地的区别与详解(有图)

首先明确两个概念,工作接地和保护接地。 1什么是工作接地,什么是保护接地? 工作接地,在正常或故障情况下为了保证电气设备的可靠运行,而将电力系统中某一点接地称为工作接地。例如电源(发电机或变压器)的中性点直接(或经消弧线圈)接地,能维持非故障相对地电压不变,电压互感器一次侧线圈的中性点接地,能保证一次系统中相对低电压测量的准确度,防雷设备的接地是为雷击时对地泄放雷电流。 保护接地,将在故障情况下可能呈现危险的对地电压的设备外露可导电部分进行接地称为保护接地。电气设备上与带点部分相绝缘的金属外壳,通常因绝缘损坏或其他原因而导致意外带电,容易造成人身触电事故。为保障人身安全,避免或减小事故的危害性,电气工程中常采用保护接地。 接地保护与接零保护统称保护接地,是为了防止人身触电事故、保证电气设备正常运行所采取的一项重要技术措施。这两种保护的不同点主要表现在三个方面:一是保护原理不同。接地保护的基本原理

是限制漏电设备对地的泄露电流,使其不超过某一安全范围,一旦超过某一整定值保护器就能自动切断电源;接零保护的原理是借助接零线路,使设备在绝缘损坏后碰壳形成单相金属性短路时,利用短路电流促使线路上的保护装置迅速动作。二是适用范围不同。根据负荷分布、负荷密度和负荷性质等相关因素,《农村低压电力技术规程》将上述两种电力网的运行系统的使用范围进行了划分。TT系统通常适用于农村公用低压电力网,该系统属于保护接地中的接地保护方式;TN系统(TN系统又可分为TN-C、TN-C-S、TN-S三种)主要适用于城镇公用低压电力网和厂矿企业等电力客户的专用低压电力网,该系统属于保护接地中的接零保护方式。当前我国现行的低压公用配电网络,通常采用的是TT或TN-C系统,实行单相、三相混合供电方式。即三相四线制380/220V配电,同时向照明负载和动力负载供电。三是线路结构不同。接地保护系统只有相线和中性线,三相动力负荷可以不需要中性线,只要确保设备良好接地就行了,系统中的中性线除电源中性点接地外,不得再有接地连接;接零保护系统要求无论什么情况,都必须确保保护中性线的存在,必要时还可以将保护中性线与接零保护线分开架设,同时系统中的保护中性线必须具有多处重复接地。 低压配电系统中,按保护接地的形式,分为TN系统,TT系统,IT系统。

各种电源和接地符号区别

DCpower一般是指带实际电压的源,其他的都是标号(在有些仿真软件中默认的把标号和源相连的)~~~~~~ VDD:电源电压(单极器件);电源电压(4000系列数字电路);漏极电压(场效应管) VCC:电源电压(双极器件);电源电压(74系列数字电路);声控载波(Voice Controlled Carrier) VSS:地或电源负极 VEE:负电压供电;场效应管的源极(S) VPP:编程/擦除电压。 详解: 在电子电路中,VCC是电路的供电电压, VDD是芯片的工作电压: VCC:C=circuit 表示电路的意思, 即接入电路的电压,D=device 表示器件的意思, 即器件内部的工作电压,在普通的电子电路中,一般Vcc>Vdd ! VSS:S=series 表示公共连接的意思,也就是负极。 有些IC 同时有VCC和VDD,这种器件带有电压转换功能。 在“场效应”即COMS元件中,VDD乃CMOS的漏极引脚,VSS乃CMOS的源极引脚,这是元件引脚符号,它没有“VCC”的名称,你的问题包含3个符号,VCC / VDD /VSS,这显然是电路符号 除了正确进行接地设计、安装,还要正确进行各种不同信号的接地处理。控制系统中,大致有以下几种地线: (1)数字地:也叫逻辑地,是各种开关量(数字量)信号的零电位。 (2)模拟地:是各种模拟量信号的零电位。 (3)信号地:通常为传感器的地。

(4)交流地:交流供电电源的地线,这种地通常是产生噪声的地。 (5)直流地:直流供电电源的地。 (6)屏蔽地:也叫机壳地,为防止静电感应和磁场感应而设。 以上这些地线处理是系统设计、安装、调试中的一个重要问题。下面就接地问题提出一些看法: (1)控制系统宜采用一点接地。一般情况下,高频电路应就近多点接地,低频电路应一点接地。在低频电路中,布线和元件间的电感并不是什么大问题,然而接地形成的环路的干扰影响很大,因此,常以一点作为接地点;但一点接地不适用于高频,因为高频时,地线上具有电感因而增加了地线阻抗,同时各地线之间又产生电感耦合。一般来说,频率在1MHz以下,可用一点接地;高于10MHz时,采用多点接地;在1~10MHz之间可用一点接地,也可用多点接地。 (2)交流地与信号地不能共用。由于在一段电源地线的两点间会有数mV甚至几V电压,对低电平信号电路来说,这是一个非常重要的干扰,因此必须加以隔离和防止。 (3)浮地与接地的比较。全机浮空即系统各个部分与大地浮置起来,这种方法简单,但整个系统与大地绝缘电阻不能小于50MΩ。这种方法具有一定的抗干扰能力,但一旦绝缘下降就会带来干扰。还有一种方法,就是将机壳接地,其余部分浮空。这种方法抗干扰能力强,安全可靠,但实现起来比较复杂。 (4)模拟地。模拟地的接法十分重要。为了提高抗共模干扰能力,对于模拟信号可采用屏蔽浮技术。对于具体模拟量信号的接地处理要严格按照操作手册上的要求设计。 (5)屏蔽地。在控制系统中为了减少信号中电容耦合噪声、准确检测和控制,对信号采用屏蔽措施是十分必要的。根据屏蔽目的不同,屏蔽地的接法也不一样。电场屏蔽解决分布电容问题,一般接大地;电磁场屏蔽主要避免雷达、电台等高频电磁场辐射干扰。利用低阻金属材料高导流而制成,可接大地。磁场屏蔽用以防磁铁、电机、变压器、线圈等磁感应,其屏蔽方法是用高导磁材料使磁路闭合,一般接大地为好。当信号电路是一点接地时,低频电缆的屏蔽层也应一点接地。如果电缆的屏蔽层地点有一个以上时,将产生噪声电流,形成噪声干扰源。当一个电路有一个不接地的信号源与系统中接地的放大器相连时,输入端的屏蔽应接至放大器的公共端;相反,当接地的信号源与系统中不接地的放大器相连时,放大器的输入端也应接到信号源的公共端。

各类接地系统优缺点及其应用

各类接地系统优缺点及其应用 系统接地型式以拉丁字母作代号,低压系统接地型式以拉丁字母作代号,其意义如下:第一个字母表示电源端与地的关系: T-电源端有一点直接接地; I-电源端所有带电部分不接地或有一点通过高阻抗接地。第二个字母表示电气装置的外露可电导部分与地的关系: T-电气装置的外露可电导部分直接接地,此接地点在电气上独立于电源端的接地点; N-电气装置的外露可电导部分与电源端接地点有直接电气连接。-后的字母用来表示中性导体与保护导体的组合情况: S-中性导体和保护导体是分开的; C-中性导体和保护导体是合一的:TN-S系统TN-C系统特点:-PEN线兼有N线和PE线的作用,节省一根导线;-重复接地,减小系统总的接地电阻;-PEN线产生电压降,外露导电部分对地有电压;-PEN线在系统内传导故障电压;-过电流保护兼作接地故障保护。使用场所:三相负载均衡,并有熟练的维修技术人员。 TN-S系统特点-PE 线与N线分开,PE线非故障时不流过电流,外露可电导部分不带电压,比较安全,但多一根导线;-PE线在系统内传导故障电压。使用场所:防电击要求高,爆炸和有火灾危险场所,建筑物内装有大量信息技术设备。 TT系统特点-外露可电导部分有独立的接地保护,不传导故障电压;-由于电源系统有两个独立接地体,发生接地故障时接地故障电流较小,不能采用过电流保护兼作接地故障保护,而采用剩余电流保护器;-因采用剩余电流保护器保护线路,双电源(双变压器、变压器与柴油发电机组)转换时采用四极开关:-易产生工频过电压。使用场所:等电位联结有效范围外的户外用电场所,城市公共用电,高压中性点经低电阻接地的变电所。 IT系统特点(不引出中性线)-发生第一次接地故障时,接地故障电流仅为非故障相对地的电容电流,其值很小,外露导电部分对地电压不超过50V,不需要立即切断故障回路,保证供电的连续性;-发生接地故障时,对地电压升高1.73倍;-220V负载需配降压变压器,或由系统外电源专供;-安装绝缘监察器。 使用场所:供电连续性要求较高,如应急电源、医院手术室等。 同意2楼的看法,还要补充一点 对于TT系统的应用场所,主要应用于输电线路较长的城市用电和农村用电,特别是农村用电。因为输电距离远,如果采用TN-S系统,则PE线上有较大的电压降,失去了它做接地保护的意义,而且还浪费有色金属,同理TN-C系统也不适 合在输电距离较远的场合

通信电源的接地包括

通信电源接地要求 通信电源的接地包括:交流零线复接地、机架保护接地和屏蔽接地、防雷接地、直流工作地接地 通信电源的接地系统通常采用联合地线的接地方式。联合地线的标准连接方式是将接地体通过汇流条(粗铜缆等)引入电力机房的接地汇流排,防雷地、直流工作地和保护地分别用铜芯电缆连接到接地汇流排上。交流零线复接地可以接入接地汇流排入地,但对于相控设备或电机设备使用较多(谐波严重)的供电系统,或三相严重不平衡的系统,交流复接地最好单独埋设接地体,或从直流工作接地线以外的地方接入地网,以减小交流对直流的污染。 一个基站的防雷接地的原则是:均压等电位。其包括三部分:防雷地、工作地、保护地。防雷地:1、天馈线部分少于60米的做3点接地,大于等于60米的必须在天馈线中部增加一处接地。2、馈线窗接地。3、380伏交流电必须地埋进入机房地埋长度不得少于15米,地埋前必须接地。4、室外信号线进机房前必须接地。5、交直流配电屏中的避雷器必须接地。保护地:1、机房内所有的走线架必须等电位连通且接地。2、机房内所有的铁架、机架必须作保护接地。工作地:开关电源的工作地线接到室内工作地排上。要注意的是在做防雷接地时保护地线禁止作接零保护。 防雷地-防雷器的接地 工作地-直流正母排接地 保护地-电源的机壳接地 一般华为的电源采用三地合一的接地方式 基站接地有工作地,保护地,另外还有防雷地,但地排仅有两个:市内接地排,是工作地和保护地公用的;室外接地排,是用于防雷的。 规范上是工作地与保护地不能共用的,正如楼上所说工作地是电池的正极。保护地是设备的接地保护。数值范畴上都是0V,但如果存在电压落差(微小的)设备可能就运行不正常。所以保护地是很重要的 工作地分为直流工作地和交流工作地,前者系计算机电路的逻辑地,即直流公共连接点地报电阻就小于1殴,后者系交流电源的中性线接地,地极电阻就小于4殴.保护地分为安全保护地和防雷保护地。安全保护地系设备外壳的安全接地,电阻就小于4殴,防雷保护地系在有防雷设施的建筑体中可不另设此地,在没有防雷设施的建筑体中应该做出防雷地线,其接地电阻小于10殴

通信电源基础知识

通信电源基础知识 通信电源通常称为通信设备的“心脏”。任何通信设备都离不开电源, 电源设备维护的好坏,直接关系到通信的质量。如果电源系统不能可 靠工作,就会造成通信中断或设备损坏,企业就会受至经济损失,服 务质量也不能达到要求。因而掌握电源设备的基本性能,做好电源设 备的维护工作,是每个通信局(所)代办人员的重要职责。 1、 通信电源系统的组成 交流供电系统 直流供电系统 接地系统 通信电源系统的组成图 市电 市电油机转换一发电机组 rPS 系列高频开关电源 1. 2直流供电系统 由整流器、蓄电池、直流变换器、直流配电屏等部分组成,我们 采用的直流供电方式是:并联浮充供电,整流输出端通过直流配电屏 与蓄电池并联后对通信设备供电。 在市电正常时,整流器一方面给通 信设备供电,一方面给蓄电池充电,补充电池因局部放电而失去的电 能,同时,蓄电池还具有一定的滤波作用(降低杂音),市电一旦中 断,电池单独给通信设备供电,直至油机发电供电或市电来电为止, 低压交流部份?整流模块*直流配电部份 1 电信设备 蓄电池组 电信设备

这种供电方式结构简单、工作可靠、效率较高。 1.3接地系统 为了提高通信质量,确保通信设备与人身安全,通信电源的交 流和直流供电系统都必须有良好的接地装置。根据用途分为: 1、交流接地 2、直流工作接地 3、保护接地 4、防雷接地 5、联合接地 1.4交流接地 电信设备一般由三相交流电供电。为了避免因三相负载不平衡而使各相电压差别过大,三相电源的中性点(如三相变压器和三相交流发电机的中性点)者应当直接接地,这种接地称为交流工作接地。接地线一般称为零线。这种接地方式又称为接零。当变压器的容量在100KVA以下时,接地电阻不应大于10Q,当变压器的容量在100KVA 以下时,接地电阻应不大于 4Q。 1.5直流工作接地 在直流供电系统中,由于通信设备的需要,蓄电池的组的正极(或直流配电屏正极汇流排)必须接地,这种接地通常称为直流工作接地。 1. 6保护接地和防雷接地 为了避免电源设备的金属外壳因绝缘损坏而带电,与带电部分绝缘的金属外壳必须直接接地。这种接地称为保护接地,保护接地的接地电

不间断电源和防雷接地系统方案

不间断电源和防雷接地系 统设计方案 1.1.不间断电源和防雷接地系统方案 1.1.1.不间断电源系统概述 随着信息产业的蓬勃兴起,计算机网络、通讯设备、精密仪器、工业控制系统等高精尖设备越来越广泛的应用在各行各业。这些设备承担着十分重要的任务,时时都进行着大量的数据处理和传送。然而,由于客观上的原因,电力供应在我国的大部分地区尚且不足,再加上其它一些自然现象,使电网质量问题尤为突出。由于各行业对信息产业的依赖加强,因电源问题使计算机网络等造成数据丢失甚至损坏设备,其造成的损失越来越无法估量,实际上,45.3%的数据丢失都是因电源问题造成的,是病毒危害的15倍。为了克服这些电源问题,合理、准确的选择不间断电源电源具有十分重大的现实意义。 不间断电源,即不间断电源,是一种含有储能装置,以逆变器为主要组成部分的恒压恒频的不间断电源。主要用于给单台计算机、计算机网络系统或其它电力电子设备提供不间断的电力供应。当市电输入正常时,不间断电源将市电稳压后供应给负载使用,此时的不间断电源就是一台交流市电稳压器,同时它还向机内电池充电;当市电中断( 事故停电 )时, 不间断电源立即将机内电池的电能,通过逆变转换的方法向负载继续供应220V交流电,使负载维持正常工作并保护负载软、硬件不受损坏。 1.1. 2.系统建设目标 本系统主要是为嘉兴教育学院校内的计算机系统、通信系统、安防系统、电

视系统、广播系统和重要部门等的重要设备等提供一套不间断电源解决方案。通过不间断电源系统解决来自电网的电涌、高压尖脉冲、暂态过电压、电压下降、电线噪声、频率偏移、持续低电压、市电中断等影响电源质量的因素,从而保证负载正常和安全运行。 不间断电源作为一级供电设备,连接着很多重要的负载,因此,它的可靠性是最重要的,如果市电一切正常,而由于不间断电源出现故障使负载断电,造成经济损失,那可真是得不偿失,还不如将负载直接接到市电上。衡量不间断电源可靠性的指标有工作效率、输出电流峰值系数、输出电流浪涌系数、过载能力和年均无故障时间等。这些指标是衡量一台不间断电源可靠性的标准,也是在购买不间断电源时应该重点考虑的。 用户也要注意不间断电源对电网的适应能力。不间断电源对电网的适应能力包括输入电压范围、输入功率因数、对电网的谐波干扰和频率跟踪能力等。不间断电源对电网的适应能力越强,它对用户负载的限制就越少。 1.1.3.不间断电源系统主要设备介绍 1.1.3.1.城堡系列在线式不间断电源 山特(Castle)系列在线式不间断电源,包括容量1KVA至20KVA的一系列的不间断电源产品,与在线互动式或后备式不间断电源相比,在线式不间断电源能够为负载提供更佳的电源环境,无论从稳压输出范围、频率范围、输入杂讯的滤除,乃至市电模式与电池模式零转换时间等方面考虑,在线式均是最佳的不间断电源结构,因此,重要的设备,或是对电力环境要求苛刻的设备几乎都应选用在线式不间断电源。 城堡系列在线式不间断电源,除了具备传统在线式功能外,更为要求极高可靠度的用户着想,除了全面供应长效机以外,容量6KVA以上的机种,更可以使用双机热备份,使故障率大为降低,有效提高使用电源的安全性与可靠性,为用户最重要的设备提供安全无忧的电力保障。

工作接地与保护接地的区别与详解(有图有真相)

明确工作接地和保护接地两个概念 1什么是工作接地,什么是保护接地? 工作接地,在正常或故障情况下为了保证电气设备的可靠运行,而将电力系统中某一点接地称为工作接地。例如电源(发电机或变压器)的中性点直接(或经消弧线圈)接地,能维持非故障相对地电压不变,电压互感器一次侧线圈的中性点接地,能保证一次系统中相对低电压测量的准确度,防雷设备的接地是为雷击时对地泄放雷电流。 保护接地,将在故障情况下可能呈现危险的对地电压的设备外露可导电部分进行接地称为保护接地。电气设备上与带点部分相绝缘的金属外壳,通常因绝缘损坏或其他原因而导致意外带电,容易造成人身触电事故。为保障人身安全,避免或减小事故的危害性,电气工程中常采用保护接地。 接地保护与接零保护统称保护接地,是为了防止人身触电事故、保证电气设备正常运行所采取的一项重要技术措施。这两种保护的不同点主要表现在三个方面:一是保护原理不同。接地保护的基本原理是限制漏电设备对地的泄露电流,使其不超过某一安全范围,一旦超过某一整定值保护器就能自动切断电源;接零保护的原理是借助接零线路,使设备在绝缘损坏后碰壳形成单相金属性短路时,利用短路电流促使线路上的保护装置迅速动作。二是适用范围不同。根据负荷分布、负荷密度和负荷性质等相关因素,《农村低压电力技术规程》将上述两种电力网的运行系统的使用范围进行了划分。TT系统

通常适用于农村公用低压电力网,该系统属于保护接地中的接地保护方式;TN系统(TN系统又可分为TN-C、TN-C-S、TN-S三种)主要适用于城镇公用低压电力网和厂矿企业等电力客户的专用低压电力网,该系统属于保护接地中的接零保护方式。当前我国现行的低压公用配电网络,通常采用的是TT或TN-C系统,实行单相、三相混合供电方式。即三相四线制380/220V配电,同时向照明负载和动力负载供电。三是线路结构不同。接地保护系统只有相线和中性线,三相动力负荷可以不需要中性线,只要确保设备良好接地就行了,系统中的中性线除电源中性点接地外,不得再有接地连接;接零保护系统要求无论什么情况,都必须确保保护中性线的存在,必要时还可以将保护中性线与接零保护线分开架设,同时系统中的保护中性线必须具有多处重复接地。 低压配电系统中,按保护接地的形式,分为TN系统,TT系统,IT系统。 如果家用电器未采用接地保护,当某一部分的绝缘损坏或某一相线碰及外壳时,家用电器的外壳将带电,人体万一触及到该绝缘损坏的电器设备外壳(构架)时,就会有触电的危险。相反,若将电器设备做了接地保护,单相接地短路电流就会沿接地装置和人体这两条并联支路分别流过。一般地说,人体的电阻大于1000欧,接地体的电阻按规定不能大于4欧,所以流经人体的电流就很小,而流经接地装置的电流很大。这样就减小了电器设备漏电后人体触电的危险。

IT接地系统

IT接地系统 IT接地系统,适用于380V/220V的供电系统。 第一个字母I表示供电电源的中性点不接地或有一点经阻抗接地,第二个字母T,表示电气设备的外露可导电部分(金属外壳)直接接地,此接地点在电气上独立于供电电源端的的接地点。 IT系统有以下三种接线方式: ①供电电源的中性点对地绝缘的不接地系统,电气设备 的外露可导电部分(金属外壳)采取直接接地; ②供电电源的中性点经1000欧的电阻接地,电气设备 的外露可导电部分(金属外壳)采取独立接地; ③供电电源的中性点经1000欧的电阻接地,电气设备的外 露可导电部分(金属外壳)与供电电源的中性点的1000欧电阻或阻抗共用一个接地极; 电气设备的外露可导电部分(金属外壳)的接地,分为单独接地和共同接地两种。 ①单独接地是指每个电气设备的外露可导电部分(金属 外壳)使用一个单独的接地极; ②共同接地是指两个或全部电气设备的外露可导电部 分(金属外壳)用保护线连接在一起后再共同使用一个接地极。 IT系统有第一次接地故障和第二次接地故障之分。

IT接地系统,第一次接地故障时,应满足R A I d≤50V的要求。R A为系统中电气设备的外露可导电部分(金属外壳)的接地电阻,I d为相线与电气设备的外露可导电部分发生第一次接地故障时的接地故障电流。 ①供电范围不大于1KM的小规模的不接地电网,应满足U R + r)≤50V的要求。U0为相电压,r为三相对地绝缘电阻,取三相最小值。R为电气设备的外露可导电部分的接地电阻。 接地短路电流还可按下列经验式计算:I d=U(350L1+ L2)/350 U为线电压,千伏;L2为架空线长度,千米;L1为电缆长度,千米;满足R A I d≤50V的要求,R A为系统中电气设备的外露可导电部分(金属外壳)的接地电阻, ②电源的中性点经1000欧的电阻接地,电气设备的外露可导电部分(金属外壳)单独接地,与供电电源的中性点的1000欧电阻不是共用一个接地极;电气设备的外露可导电部分(金属外壳)接地电阻不大于294欧,就可满足R A I d≤50V 的要求。 ③电源的中性点经1000欧的电阻接地,电气设备的外露可导电部分(金属外壳)与供电电源中性点的1000欧电阻共用一个接地极;电气设备的外露可导电部分(金属外壳)的

各种接地系统

接地制式按照配电系统和电气设备的不同接地组合分类。按照IEC60364规定,接地系统一般由两个字母组成,必要时可加后续字母。第一个字母:表示电源中性点对地的关系 T:直接接地 I:不接地,或通过阻抗与大地相连第二个字母:表示电气设备外壳与大地的关系 T:独立于电源接地点的直接接地 N:表示直接与电源系统接地点或与该点引出的导体相连后续字母:表示中性线与保护线之间的关系 C:表示中性线N与保护线PE合二为一(PEN线) S:表示中性线N与保护线PE分开 C-S:表示在电源侧为PEN线,从某一点分开为中性线N和保护线PE低压配电系统有三种形式:■ TN系统■ TT系 统■ IT系统 2.不同接地系统的组成及特点:■ TN系统的组成及特 点在TN系统中,所有电气设备的外壳接到保护线(PE)上,与配电系统的中性点相连(若无中性点,即变压器二次侧三角形连接或未引出中性点,可将变压器二次侧绕组的一相接地,但该接点不能用作PEN线)。保护线应在每个变电所附近接地,配电系统引入建筑物时,保护线在其入口处接地。为了保证故障时保护线的电位尽量接近地电位,尽可能将保护线与附近的有效接地体相连,如必要,可增加接地点,并使其均匀分布。其特点是故障电流较大,仅与电缆的阻抗大小有关。出现绝缘故障时,需要短路电流保护装置瞬时断开电路。国际标准 IEC60364规定,根据中性线与保护线是否合并的情况,TN系统分为如下三 种:□ TN-C □ TN-S □ TN-C-S 注:对电网来说,当铜导线截面积≤10mm2,铝导线截面积≤16mm2时,必须采用TN-S系统,而不允许采用TN -C系统。下面介绍其组成及特点: 2.1 TN-C系统:本系统中,保护线与中性线合二为一,称为PEN线。优点:□ TN-C方案易于实现,节省了一根导线,且保护电器可节省一极,降低设备的初期投资费用。□发生接地短路故障时,故障电流大,可采用一过流保护电器瞬时切断电源,保证人员生命和财产安全缺点:□线路中有单相负荷,或三相负荷不平衡,及电网中有谐波电流时,由于PEN中有电流,电气设备的外壳和线路金属套管间有压降,对敏感性电子设备不利□ PEN线中的电流在有爆炸危险的环境中会引起爆 炸□ PEN线断线或相线对地短路时,会呈现相当高的对地故障电压,可能扩大事故范围□不能使用剩余电流保护装置RCD(由于检测不出漏电流,RCD 会拒动),因此绝缘故障时,不能有效地对人身和设备进行保护 2.2 TN-S系统本系统保护线(PE)和中性线(N)分开优点:□正常时PE线不通过负荷电流,适用于数据处理和精密电子仪器设备,也可用于爆炸危险场合□民用建筑中,家用电器大都有单独接地触点的插头,采用TN-S系统,既方便,又安全□如果回路阻抗太高或者电源短路容量较小,需采用剩余电流保护装置RCD对人身安全和设备进行保护,防止火灾危险缺点:□由于增加了中性线,初期投资较高□ TN-S系统相对地短路时,对地故障电压较高 2.3 TN -C-S系统在系统某一点起,PEN分为保护线和中性线,分开后,中性线(N)对地绝缘(注:PEN线分开后,不能再合并)优点:□适用于工矿企业供电,前面TN-C系统可满足固定设备的需要,后端TN-S系统可满足对电位敏感的电子设备的需要□民用建筑中,电源线路采用TN-C,进入建筑物后,采用TN-S系统,可确保TN-S系统的优点 2.4 TT系统的组成及其特点: TT 系统的变压器或发电机的中性点直接接地,电气设备的所有外壳用保护线连在一起,接在与电源中性点独立的接地点。如下图所示:优点:□电气设备的外壳与电源的接地无电气联系,适用于对电位敏感的数据处理设备和精密电子设备□故障时对地故障电压不会蔓延□接地短路时,由于受电流接地电阻和

接地系统分类

建筑工程供电系统中的接地系统规介绍 一、建筑工程供电系统 建筑工程供电使用的基本供电系统有三相三线制三相四线制等,但这些名词术语涵不是十分严格。国际电工委员会(IEC)对此作了统一规定,称为TT系统、TN 系统、IT系统。其中TN系统又分为TN-C、TN-S、TN-C-S系统。下面容就是对各种供电系统做一个扼要的介绍。 (一)工程供电的基本方式 根据IEC规定的各种保护方式、术语概念,低压配电系统按接地方式的不同分为三类,即TT、TN和IT系统,分述如下。 (1)TT方式供电系统 TT方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称TT系统。第一个符号T表示电力系统中性点直接接地;第二个符号T表示负载设备外露不与带电体相接的金属导电部分与直接联接,而与系统如何接地无关。在TT系统中负载的所有接地均称为保护接地,如图1所示。这种供电系统的特点如下。 图1 1)当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有接地保护,可以大大减少触电的危险性。但是,低压断路器(自动开关)不一定能跳闸,造成漏电设备的外壳对地电压高于安全电压,属于危险电压。 2)当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,困此TT系统难以推广。 3)TT系统接地装置耗用钢材多,而且难以回收、费工时、费料。 现在有的建筑单位是采用TT系统,施工单位借用其电源作临时用电时,应用一条专用保护线,以减少需接地装置钢材用量,如图2所示。

图2 图中点画线框是施工用电总配电箱,把新增加的专用保护线PE线和工作零线N 分开,其特点是:①共用接地线与工作零线没有电的联系;②正常运行时,工作零线可以有电流,而专用保护线没有电流;③TT系统适用于接地保护占很分散的地方。 (2)TN方式供电系统 这种供电系统是将电气设备的金属外壳与工作零线相接的保护系统,称作接零保护系统,用TN表示。它的特点如下。 1)一旦设备出现外壳带电,接零保护系统能将漏电电流上升为短路电流,这个电流很大,是TT系统的5.3倍,实际上就是单相对地短路故障,熔断器的熔丝会熔断,低压断路器的脱扣器会立即动作而跳闸,使故障设备断电,比较安全。 2)TN系统节省材料、工时,在我国和其他许多国家广泛得到应用,可见比TT 系统优点多。TN方式供电系统中,根据其保护零线是否与工作零线分开而划分为TN-C和 TN-S等两种。 (3)TN-C方式供电系统 它是用工作零线兼作接零保护线,可以称作保护中性线,可用NPE表示,如图3所示。这种供电系统的特点如下。 图3 1)由于三相负载不平衡,工作零线上有不平衡电流,对地有电压,所以与保护线所联接的电气设备金属外壳有一定的电压。 2)如果工作零线断线,则保护接零的漏电设备外壳带电。

接地系统的方案

接地系统方案 一、接地方式 大楼中弱电系统众多,还有交流和直流电源系统,各个系统都有独自的接地要求,按功能分有防雷地、工作交流地(N线)、静电地、屏蔽地、直流地、绝缘地、安全保护地等,为了各接地装置之间不能经土壤击穿和避免相互干扰,防雷接地与其它接地装置在土壤中需隔开较大的距离(如20m)。由于城市中大楼的接地装置受到接地装置场地的限制,无法实现上述距离间隔,因此按照现行的国家相关防雷标准,应将上述接地实现共用接地系统。在电子设备有特殊要求时,应采用瞬态接地技术。明确地讲,所说的共用接地系统是将防雷地、工作交流地(N线)、静电地、屏敝地、直流地、绝缘地、安全保护地等做在一个接地装置上(通常是大楼基础地),接地电阻值取其中的最低值。完全的共地系统不仅采用公共的接地装置,而且采用公共的接地系统,共地使电子设备无法受到地电位反击。 智能建筑必须有良好的接地装置以及良好的接地系统。 在智能建筑的共用接地系统是以大楼基础接地为接地装置,以暗装的法拉第笼中的钢筋笼栅为接地系统的骨架,并将各种已与此笼栅做了等电位连接的设备金属外壳、金属管道、电气和信号线路的金属护套、桥架等连接到一起,构成了多种大小不同的金属接地(等电位连接)网络。在垂直方向上,最下层为大楼基础地,向上是各个楼层的楼层地,在楼层内设有机房接地母排(环形或接地线),信息系统首先接到机房接地母排上,然后由此引向楼层地,再经大楼接地骨架接到最底层的接地装置上。各大楼内机房电子设备的接地方式按下述进行:二、机房接地: 计算机网络机房、卫星和有线电视系统和监控系统等机房联合接地,电阻应≤1Ω。机房静电地板下应加做均压环(具体见第6点),以起到等电位连接作用,并将均压环至少两处连接到机房所在楼层的弱电管道井内的共用接地排(楼层弱电等电位汇集点)上;机房内的工作交流地(N线)、静电地、屏敝地、直流地、绝缘地、安全保护地等直接连接到均压环上;在土建施工过程中最好将穿线缆的管从弱电间直埋到各个弱电机房,每个机房两根。 三、设备间接地:

通信电源系统概述

通信电源系统概述 通信电源是向电信设备提供交直流电的能源,它在电信网上处于极为重要的位置,人们往往把电源设备的供电比喻为电信设备运行的“心脏”。如果一个市话局的供电发生故障,中断供电将使整个电话局瘫痪,影响社会的正常生活和运作。如果一个长途干线站或电信枢纽局发生供电故障,中断供电则必将造成严重的经济损失和社会影响。因此,要求电源工作人员全面掌握电源设备的基本性能、工作原理和运用方法,做好电源设备的维护工作。 通信电源设备和设施主要包括:交流市电引入线路、高低压局内变电站设备、柴油发电机组、整流器、蓄电池组、直流变换器和交流逆变设备、以及各种交直流配电设备等。 通信配电就是把上述的电源设备,组合成一个完整的供电系统,合理地进行控制、分配、输送,满足通信设备的要求。 一个完整的电源系统,其组成如图1-1-1所示。

第一节交流供电系统 交流供电系统由主用交流电源、备用交流电源(油机发电机组)、高压开关柜、电力降压变压器、低压配电屏、低压电容器屏和交流调压稳压设备及连接馈线组成的供电总体。 主用交流电源均采用市电。为了防备市电停电,采用油机发电机等设备作为备用交流电源。大中型电信局采用10KV高压市电,经电力变压器降为380V/220V低压后,再供给整流器、不间断电源设备(UPS)、通信设备、空调设备和建筑用电设备等。小型电信局(站)则一般采用低压市电电源。 一、交流供电系统的组成 1、高压开关柜。高压开关柜的主要功能,除了引入高压(一般10KV)市电外,并能保护本局的设备和配线,同时还能防止由本局

设备故障造成的影响波及到外线设备。高压开关柜还有操作控制和监测电压和电流的性能。 高压开关柜内安装有高压隔离开关、高压真空断路器(或油断路器)、高压熔断器、高压仪用互感器和避雷器等元器件。 2、降压电力变压器。降压电力变压器是把10KV高压电源变换 到380V/220V低压的电源设备。电力变压器一般采用油浸式变压器,也有的采用有载调压变压器。近年来,由于干式电力变压器便于在机楼内安装,因此也逐渐得到应用。 3、低压配电设备。低压配电设备是将由降压电力变压器输出的低电压电源或直接由市电引入的低电压电源进行配电,作市电的通断、切换控制和监测,并保护接到输出侧的各种交流负载。低压配电设备由低压开关、空气断路开关、熔断器、接触器、避雷器和监测用各种交流电表等组成。 4、低压电容器屏。根据原水电部《供用电规则》规定:“无功电力应就地平衡,用户应在提高用电自然功率因数基础上,设计和装置无功补偿设备”以达到规定的要求。电信局(站)以采用低压补偿用 电功率因素的原则,装设电容器屏。屏内装有低压电容器、控制接入或撤除电容器组的自动化器件和监测用功率因数表等组成。 5、调压稳压设备。在市电电压变动超出规定时,需装设调压设备使输出电压稳定在额定电压允许范围内。除采用有载调压变压器在高压侧调压外,电信局(站)一般在低压侧调压,过去曾采用感应调压器,但因调节速度慢、体积大等问题,现已改用自动补偿式电力稳

相关文档
最新文档