二次函数----纯代数问题

二次函数----纯代数问题
二次函数----纯代数问题

(稍难题)75.在平面直角坐标系xOy 中,已知点A (1,m +1),B (a ,m +1),

C (3,m +3),

D (1,m +a ),m >0 ,a >1.

(1)若AD ∥BC ,判断四边形ABCD 的形状并说明理由;

(2)若a <3,点P (n -m ,n )是四边形ABCD 内的一点,且△P AD 与△

的面积相等,求n -m 的值.

解:(1)∵A (1,m +1),B (a ,m +1),

∴y A =y B . ∴AB ∥x 轴. ∵A (1,m +1),D (1,m +a ), ∴x A =x

D . ∴AD ∥y 轴. ∴∠DAB =90° . 又a >1,

∴AB =a -1, AD =a -1. ∴AD =AB . 如图1, ∵CB ∥AD ,

∴CB ∥y 轴.

∴x C =x B , ∴a =3 .

∴y C =y D =m +3 . ∴CD ∥x 轴. ∴CD ∥AB .

∴四边形ABCD 是平行四边形. 又∠DAB =90°,

∴四边形ABCD 是矩形. 又AD =AB ,

∴四边形ABCD 是菱形. ∴四边形ABCD 是正方形.

(2)设直线AC 的解析式为y =kx +b ,

将A (1,m +1),C (3,m +3)分别代入,可得k =1,b

=m .

∴y =x +m .

∵当x =n -m 时,y =n -m +m =n , ∴点P (n -m ,n )在直线y =x +m 上. 又点P 在四边形ABCD 内, ∴点P 在线段AC 上.

如图2,过点P 作PE ⊥x 轴,交AB 于点E ,作PF ⊥y 轴,

交AD 于点F ,

∵由(1)得,AB ∥x 轴,AD ∥y 轴, AD =AB , ∴PE =n -m -1,PF =n -m -1. ∴PE =PF . ∴S △P AD =S △P AB . ∵S △P AD =S △PBC , ∴S △P AB =S △PBC .

图1

∴S △P AB =1

2

S △ABC .

过点C 作CG ⊥x 轴,交AB 延长线于点G ,则CG =2. ∵12AB·PE =12×12 AB·CG . ∴PE =1

2

CG .

∴n -m -1=1. ∴n -m =2.

(稍难题)73.已知抛物线y =-x 2+bx +c 与直线y =-4x +m 相交于第一象限不同的两点:

A (5,n ),

B (e ,f ).

(1)若m =4,x <1,画出一次函数y =-4x +m 图象;

(2)将此抛物线平移,设平移后的抛物线为y =-x 2+px +q 且过点A ,

① 若b =4,c =6,p =5,是否可以通过平移使抛物线的顶点恰好在直线y =-4x +m 上?请说明理由;

② 若点(1,2)在平移后的抛物线上,且m -q =25.在平移过程中,若抛物线y =-x 2+bx +c 向下平移了s (s >0)个单位长度,求s 的取值范围.

解:(1)由题得,直线解析式为y =-4x +4 .

列表,得

画图如右.

(2)① 解:由题得,平移前的抛物线解析式为y =-x 2

把A (5,n )代入得,n =1 .

把A (5,1)分别代入y =-4x +m 和y =-x 2+5x +q ,得m =21,q =1. ∴直线的解析式为y =-4x +21,

平移后的抛物线解析式为y =-x 2+5x +1.

∴平移后的抛物线的顶点为(52,29

4).

当x =52 时,y =-4x +21=11≠294

. ∴不能通过平移,使平移后的抛物线的顶点恰好在直线y =-4x +m 上. ② 解:将A (5,n )分别代入y =-x 2+bx +c ,y =-4x +m , 将A (5,n ),(1,2)分别代入y =-x 2+px +q ,得 -25+5b +c =n , -20+m =n , -25+5p +q =n , -1+p +q =2 . 又m -q =25 ,

解得m =22,n =2,p =6,q =-3,c =27-5b . ∴直线的解析式为y =-4x +22,

平移前抛物线的解析式为y =-x 2+bx +27-5b , 平移后抛物线的解析式为y =-x 2+6x -3.

设在平移过程中,抛物线向下平移了s 个单位长度, 又y =-x 2+6x -3=-(x -3)2+6,

y =-x 2

+bx +27-5b =-(x -b 2)2+(b 2

4

-5b +27) ,

∴s =(b 24-5b +27)-6=1

4

(b -10)2-4.

当-x 2+bx +27-5b =-4x +22时,可得x 1=5,x 2=b -1.

∴B (b -1,-4b +26).

∵A ,B 在第一象限且为不同两点, ∴b -1>0,-4b +26>0且b -1≠5. ∴1<b <13

2且b ≠6.

对于s =1

4(b -10)2-4.

∵14

>0, ∴当b <10时,s 随b 的增大而减小. ∵1<b <13

2且b ≠6,

∴-1516<s <65

4且s ≠0.

∵s >0, ∴0<s <654

.

∴在平移过程中,抛物线y =-x 2+bx +c 向下平移的单位长度s 的取值范围 是0<s <65

4

.

(稍难题)72.如图,已知点A (-1,-2),抛物线F :2222y x mx m =-+-与直线x =-2交于点P .

(1)当抛物线F 经过点A 时,求它的表达式;

(2)设点P 的纵坐标为P y ,求P y 的最小值,此时抛物线F 上有两点11(,)x y ,22(,)x y ,

且12x x <≤-2,比较1y 与2y 的大小; (3)已知点B (0,2),点C (2,2),当抛物线F 与线段BC 有公共点时,直接写出m 的取值

范围.

(2016福州)27.已知,抛物线y=ax 2+bx+c (a ≠0)经过原点,顶点为A (h ,k )(h ≠0). (1)当h=1,k=2时,求抛物线的解析式;

(2)若抛物线y=tx 2(t ≠0)也经过A 点,求a 与t 之间的关系式; (3)当点A 在抛物线y=x 2﹣x 上,且﹣2≤h <1时,求a 的取值范围.

第72题

(2015北京倒3题)27. 在平面直角坐标系xOy 中,过点(0,2)且平行于x 轴的直线,与直线1y x =-交于点A ,点A 关于直线1x =的对称点为B ,抛物线21:C y x bx c =++经过点A ,B 。 (1)求点A ,B 的坐标;

(2)求抛物线1C 的表达式及顶点坐标;

(3)若抛物线22:(0)C y ax a =≠与线段AB 恰有一个公共点,结合函数的图象,求a 的取值范围。

3.(2015?四川成都,第25题4分)如果关于x 的一元二次方程20ax bx c ++=有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的是 .(写出所有正确说法的序号)

①方程220x x --=是倍根方程;

②若(2)()0x mx n -+=是倍根方程,则22450m mn n ++=;

③若点()p q ,在反比例函数2

y x

=

的图像上,则关于x 的方程230px x q ++=是倍根方程;

④若方程20ax bx c ++=是倍根方程,且相异两点(1)M t s +,,N(4)t s -,都在抛物线2y ax bx c =++上,则方程20ax bx c ++=的一个根为54

.

【答案】②③

【解析】:研究一元二次方程20ax bx c ++=是倍根方程的一般性结论,设其中一根为t ,则另一个根为2t ,

因此222()(2)32ax bx c a x t x t ax atx t a ++=--=-+,所以有2902b ac -

=;我们记29

2

K b ac =-,即0K =时,方程20ax bx c ++=为倍根方程;下面我们根据此结论来解决问题:

对于①, 2

9

102

K b ac =-

=,因此本选项错误;

对于②,2(2)20mx n m x n +--=,而2

9

K (2)(2)02

n m m n =--

-=?22450m mn n ++=,因此本选项正确;

对于③,显然2pq =,而2

9

K 302

pq =-

=,因此本选项正确;

对于④,由(1)M t s +,,N(4)t s -,知1455222

b t t b a a ++--

==?=- ,由倍根方程的结论知2902b ac -=,从而有509c a =,所以方程变为22150105094550093

ax ax a x x x -+=?-+=?=,

25 3

x ,因此本选项错误。

综上可知,正确的选项有:②③。

35.(2015?广东广州,第25题14分)已知O为坐标原点,抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A(x1,0),B(x2,0),与y轴交于点C,且O,C两点间的距离为3,x1?x2<0,|x1|+|x2|=4,点A,C在直线y2=﹣3x+t上.(1)求点C的坐标;

(2)当y1随着x的增大而增大时,求自变量x的取值范围;

(3)将抛物线y1向左平移n(n>0)个单位,记平移后y随着x的增大而增大的部分为P,直线y2向下平移n 个单位,当平移后的直线与P有公共点时,求2n2﹣5n的最小值.

考点:二次函数综合题.

分析:(1)利用y轴上点的坐标性质表示出C点坐标,再利用O,C两点间的距离为3求出即可;

(2)分别利用①若C(0,3),即c=3,以及②若C(0,﹣3),即c=﹣3,得出A,B点坐标,进而求出函数解析式,进而得出答案;

(3)利用①若c=3,则y1=﹣x2﹣2x+3=﹣(x+1)2+4,y2=﹣3x+3,得出y1向左平移n个单位后,则解析式为:y3=﹣(x+1+n)2+4,进而求出平移后的直线与P有公共点时得出n的取值范围,②若c=﹣3,则y1=x2﹣2x﹣3=(x﹣1)2﹣4,y2=﹣3x﹣3,y1向左平移n个单位后,则解析式为:y3=(x﹣1+n)2﹣4,进而求出平移后的直线与P有公共点时得出n的取值范围,进而利用配方法求出函数最值.

解答:解:(1)令x=0,则y=c,

故C(0,c),

∵OC的距离为3,

∴|c|=3,即c=±3,

∴C(0,3)或(0,﹣3);

(2)∵x1x2<0,

∴x1,x2异号,

①若C(0,3),即c=3,

把C(0,3)代入y2=﹣3x+t,则0+t=3,即t=3,

∴y2=﹣3x+3,

把A(x1,0)代入y2=﹣3x+3,则﹣3x1+3=0,

即x1=1,

∴A(1,0),

∵x1,x2异号,x1=1>0,∴x2<0,

∵|x1|+|x2|=4,

∴1﹣x2=4,

解得:x2=﹣3,则B(﹣3,0),

代入y1=ax2+bx+3得,,

解得:,

∴y1=﹣x2﹣2x+3=﹣(x+1)2+4,

则当x≤﹣1时,y随x增大而增大.

②若C(0,﹣3),即c=﹣3,

把C(0,﹣3)代入y2=﹣3x+t,则0+t=﹣3,即t=﹣3,∴y2=﹣3x﹣3,

把A(x1,0),代入y2=﹣3x﹣3,

则﹣3x1﹣3=0,

即x1=﹣1,

∴A(﹣1,0),

∵x1,x2异号,x1=﹣1<0,∴x2>0

∵|x1|+|x2|=4,

∴1+x2=4,

解得:x2=3,则B(3,0),

代入y1=ax2+bx+3得,,

解得:,

∴y1=x2﹣2x﹣3=(x﹣1)2﹣4,

则当x≥1时,y随x增大而增大,

综上所述,若c=3,当y随x增大而增大时,x≤﹣1;

若c=﹣3,当y随x增大而增大时,x≥1;

(3)①若c=3,则y1=﹣x2﹣2x+3=﹣(x+1)2+4,y2=﹣3x+3,

y1向左平移n个单位后,则解析式为:y3=﹣(x+1+n)2+4,

则当x≤﹣1﹣n时,y随x增大而增大,

y2向下平移n个单位后,则解析式为:y4=﹣3x+3﹣n,

要使平移后直线与P有公共点,则当x=﹣1﹣n,y3≥y4,

即﹣(﹣1﹣n+1+n)2+4≥﹣3(﹣1﹣n)+3﹣n,

解得:n≤﹣1,

∵n>0,∴n≤﹣1不符合条件,应舍去;

②若c=﹣3,则y1=x2﹣2x﹣3=(x﹣1)2﹣4,y2=﹣3x﹣3,

y1向左平移n个单位后,则解析式为:y3=(x﹣1+n)2﹣4,

则当x≥1﹣n时,y随x增大而增大,

y2向下平移n个单位后,则解析式为:y4=﹣3x﹣3﹣n,

要使平移后直线与P有公共点,则当x=1﹣n,y3≤y4,

即(1﹣n﹣1+n)2﹣4≤﹣3(1﹣n)﹣3﹣n,

解得:n≥1,

综上所述:n≥1,

2n2﹣5n=2(n﹣)2﹣,

∴当n=时,2n2﹣5n的最小值为:﹣.

点评:此题主要考查了二次函数综合以及二次函数的平移以及二次函数增减性等知识,利用分类讨论得出n 的取值范围是解题关键.

24. (2014年江苏南京,第24题)已知二次函数y=x2﹣2mx+m2+3(m是常数).

(1)求证:不论m为何值,该函数的图象与x轴没有公共点;

(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?

考点:二次函数和x轴的交点问题,根的判别式,平移的性质,二次函数的图象与几何变换的应用

分析:(1)求出根的判别式,即可得出答案;

(2)先化成顶点式,根据顶点坐标和平移的性质得出即可.

(1)证明:∵△=(﹣2m)2﹣4×1×(m2+3)=4m2﹣4m2﹣12=﹣12<0,

∴方程x2﹣2mx+m2+3=0没有实数解,

即不论m为何值,该函数的图象与x轴没有公共点;

(2)解答:y=x2﹣2mx+m2+3=(x﹣m)2+3,

把函数y=(x﹣m)2+3的图象延y轴向下平移3个单位长度后,得到函数y=(x﹣m)2的图象,它的顶点坐标是(m,0),

因此,这个函数的图象与x轴只有一个公共点,

所以,把函数y=x2﹣2mx+m2+3的图象延y轴向下平移3个单位长度后,得到的函数的图象与x轴只有一个公共点.

点评:本题考查了二次函数和x轴的交点问题,根的判别式,平移的性质,二次函数的图象与几何变换的应用,主要考查学生的理解能力和计算能力,题目比较好,有一定的难度.

11.(2014?孝感,第22题10分)已知关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;

(2)试说明x1<0,x2<0;

(3)若抛物线y=x2﹣(2k﹣3)x+k2+1与x轴交于A、B两点,点A、点B到原点的距离分别为OA、OB,且OA+OB=2OA?OB﹣3,求k的值.

1. (2014?安徽省,第22题12分)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.

(1)请写出两个为“同簇二次函数”的函数;

(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A(1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.

考点:二次函数的性质;二次函数的最值.菁优网

专题:新定义.

分析:(1)只需任选一个点作为顶点,同号两数作为二次项的系数,用顶点式表示两个为“同簇二次函数”的函数表达式即可.

(2)由y1的图象经过点A(1,1)可以求出m的值,然后根据y1+y2与y1为“同簇二次函数”就可以求出函数y2的表达式,然后将函数y2的表达式转化为顶点式,在利用二次函数的性质就可以解决问题.

解答:解:(1)设顶点为(h,k)的二次函数的关系式为y=a(x﹣h)2+k,

当a=2,h=3,k=4时,

二次函数的关系式为y=2(x﹣3)2+4.

∵2>0,

∴该二次函数图象的开口向上.

当a=3,h=3,k=4时,

二次函数的关系式为y=3(x﹣3)2+4.

∵3>0,

∴该二次函数图象的开口向上.

∵两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4顶点相同,开口都向上,

∴两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4是“同簇二次函数”.

∴符合要求的两个“同簇二次函数”可以为:y=2(x﹣3)2+4与y=3(x﹣3)2+4.

(2)∵y1的图象经过点A(1,1),

∴2×12﹣4×m×1+2m2+1=1.

整理得:m2﹣2m+1=0.

解得:m1=m2=1.

∴y1=2x2﹣4x+3

=2(x﹣1)2+1.

∴y1+y2=2x2﹣4x+3+ax2+bx+5

=(a+2)x2+(b﹣4)x+8

∵y1+y2与y1为“同簇二次函数”,

∴y1+y2=(a+2)(x﹣1)2+1

=(a+2)x2﹣2(a+2)x+(a+2)+1.

其中a+2>0,即a>﹣2.

∴.

解得:.

∴函数y2的表达式为:y2=5x2﹣10x+5.

∴y2=5x2﹣10x+5

=5(x﹣1)2.

∴函数y2的图象的对称轴为x=1.

∵5>0,

∴函数y2的图象开口向上.

①当0≤x≤1时,

∵函数y2的图象开口向上,

∴y2随x的增大而减小.

∴当x=0时,y2取最大值,

最大值为5(0﹣1)2=5.

②当1<x≤3时,

∵函数y2的图象开口向上,

∴y2随x的增大而增大.

∴当x=3时,y2取最大值,

最大值为5(3﹣1)2=20.

综上所述:当0≤x≤3时,y2的最大值为20.

点评:本题考查了求二次函数表达式以及二次函数一般式与顶点式之间相互转化,考查了二次函数的性质(开口方向、增减性),考查了分类讨论的思想,考查了阅读理解能力.而对新定义的正确理解和分类讨论是解决第二小题的关键.

6. (2014?扬州,第26题,10分)对x,y定义一种新运算T,规定:T(x,y)=(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)==B.

(1)已知T(1,﹣1)=﹣2,T(4,2)=1.

①求a,b的值;

②若关于m的不等式组恰好有3个整数解,求实数p的取值范围;

(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?

=

=

②根据题意得:

∴不等式组的解集为﹣,

2≤

,得到=

二次函数经典题练习

1.求出下列二次函数的对称轴、顶点坐标,并求出最小(大)值。 (1)542+-=x x y (2)21352 y x x =-++(3)21212y x x =-+ (4)2 24y x x =-+- 2.在长20cm ,宽15cm 的矩形木板的四角上各锯掉一个边长为xcm 的正方形,写出余下木板的面积y(cm 2 ) 与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围. 3.心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x (分钟)之间满足函数关系:y =-0.1x 2+2.6x +43(0≤x ≤30),y 值越大表示接受能力越强. (1)x 在什么范围内,学生的接受能力逐步增加?x 在什么范围内,学生的接受能力逐步降低? (2)第10 分钟时,学生的接受能力是多少?几分钟时,学生的接受能力最强? (3)结合本题针对自己的学习情况有何感受? 4.先画出函数图象,然后结合图象回答下列问题: (1)函数y =3x 2的最小值是多少? (2)函数y =-3x 2的最大值是多少? (3)怎样判断函数y =ax 2有最大值或最小值?与同伴交流. 5. 二次函数y =-2x 2的图象与二次函数y =2x 2的图象有什么关系?它是轴对称图形吗?作图看看.它的开口方向、对称轴和顶点坐标分别是什么? 6.求下列函数的图像的对称轴、顶点坐标及与x 轴的交点坐标. (1)y=4x 2+24x+35; (2)y=-3x 2+6x+2; (3)y=x 2-x+3; (4)y=2x 2+12x+18. 8.试分别说明将抛物线:(1)y =(x +1)2;(2)y =(x -1)2;(3)y =x 2+1;(4)y =x 2-1的图象通过怎样的平移得到y =x 10.一跳水运动员从10米高台上跳下,他的高度h(单位:米)与所用的时间t(单位:秒)的关系为 h=-5(t-2)(t+1),你能帮助该运动员计算一下他跳起来后多长时间达到最大高度?最大高度是多少米? 11.篱笆墙长30m ,靠墙围成一个矩形花坛,写出花坛面积y(m 2)与长x 之间的函数关系式,并指出自变量的取值范围. 12.已知二次函数y=ax 2 +bx +c ,当 x=0时,y=0;x=1时,y=2;x=-1时,y=1.求a 、b 、c ,并写出函数

1、2014二次函数与代数综合题题(学生版)

二次函数与代数综合题 一、二次函数与一次函数关系 (相交,相切,相离) 1(基础练习).已知抛物线322--=x x y . (1)它与x 轴的交点的坐标为_______ (2)将该抛物线在x 轴下方的部分(不包含与x 轴的交点)记为G ,若直线b x y +=与G 只有一个公共点,则b 的取值范围是_______. 1.(相切) 已知抛物线C 1:22y x x =-的图象如图所示,把C 1的图象沿y 轴翻折,得到 抛物线C 2的图象,抛物线C 1与抛物线C 2的图象合称图象C 3. (1)求抛物线C 1的顶点A 坐标,并画出抛物线C 2的图象; (2)若直线y kx b =+与抛物线2(0)y ax bx c a =++≠有且只有一个交点时,称直线与抛物线相切. 若直线y x b =+与抛物线C 1相切,求b 的值; (3)结合图象回答,当直线y x b =+与图象C 3 有两个交点时,b 的取值范围.

2. (相交)在平面直角坐标系xOy 中,二次函数2(3)3(0)y mx m x m =+-->的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C 。 (1)求点A 的坐标; (2)当45ABC ∠=?时,求m 的值; (3)已知一次函数y kx b =+,点P (n ,0)是x 轴上的一个动点,在(2)的条件下,过点P 垂直于x 轴的直线交这个一次函数的图象于点M ,交二次函数 2(3)3(0)y mx m x m =+-->的图象于N 。若只有当22n -<<时,点 M 位于点N 的上方,求这个一次函数的解析式。

3.在平面直角坐标系x O y 中,抛物线 222--=mx mx y (0≠m )与y 轴交于点A ,其对称轴与x 轴交于点B 。 (1)求点A ,B 的坐标; (2)设直线l 与直线AB 关于该抛物线的对称轴对称,求直线l 的解析式; (3)若该抛物线在12-<<-x 这一段位于直线l 的上方,并且在32<

练习二十二·代数·二次函数及其图

练习二十二·代数·二次 函数及其图 Prepared on 24 November 2020

[文件] [科目] 数学 [年级] 初三 [类型] 同步 [关键词] 二次函数 [标题] 练习二十二·代数·二次函数及其图像(二) [内容] 练习二十二·代数·二次函数及其图像(二) 班级________姓名_________学号____________ 一、 选择题 1.已知抛物线的顶点坐标为(2,1),且抛物线经 过点(3,0),则这条抛物线的解析式是( ). (A )913 94 91 2++=x x y (B )95 9491 2+--=x x y (C )y=x 2-4x+5 (D )y=-x 2+4x-3 2.抛物线y=ax 2+bx+c (a ≠0)的图像如图22-1,那 么( ). (A ) a <0,b >0,c >0(B )a <0,b <0,c >0 (B )a <0,b >0,c <0(D )a <0,b <0,c <0 3.二次函数y=mx 2+2mx-(3-m )的图像如图22-2,那么m 的取值范围是( ) (A )m >0(B )m >3(C )m <0(D )0<m <3

4.函数y=ax2与y=ax+a(a<0=在同一直角坐标系中的图像大致是图22-3中的() . 5.函数y=ax2+b与y=ax+b(a≠0,a,b为常数)在同一直角坐标系中的图像大致是图22-4中的(). 二、解答题 6.已知抛物线经过A(1,-4),B(7,8),C(-5,20)三点,求二次函数的解析式. 7.已知抛物线顶点(3,3),且过点(1,1),求此抛物线的解析式. 8.已知二次函数图像与x轴交点坐标是(-2,0),(1,0),且过点(2,8),求此二次函数的解析式. 9.抛物线过A(2,8),B(0,-4),且在x轴上截得的线段长为3,求此抛物线的解析式. 三、填空题 10.抛物线y=x2+3x-10的顶点坐标是__________,与y轴交点坐标是__________,与x轴交点坐标是__________. 11.二次函数y=ax2+4x+a的最大值是3,则a=__________. 12.将抛物线y=3(x+3)2-5向_________平移__________个单位,向_________平移________个单位,才能使顶点在原点. 13.函数y=x2-4x+3的图像的顶点及它和x轴的两个交点为顶点所构成的三角形面积为______平方单位. 14.已知抛物线y=ax2+bx+c,经过(-3,0),(1,0)及(0,4)三点,则解析式为_________.

二次函数与几何综合压轴题题型归纳88728

学生: 科目: 数 学 教师: 刘美玲 一、二次函数和特殊多边形形状 二、二次函数和特殊多边形面积 三、函数动点引起的最值问题 四、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:?? ? ??++22B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定此 抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下:

已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ; ∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解? ?? ?==0 b a 7、路径最值问题(待定的点所在的直线就是对称轴) (1)如图,直线1l 、2l ,点A 在2l 上,分别在1l 、2l 上确定两点M 、N ,使得MN AM +之和最小。 (2)如图,直线1l 、2l 相交,两个固定点A 、B ,分别在1l 、2l 上确定两点M 、N ,使得 AN MN BM ++之和最小。 (3)如图,B A 、是直线l 同旁的两个定点,线段a ,在直线l 上确定两点E 、F (E 在F 的左侧 ),使得四边形AEFB 的周长最小。 8、在平面直角坐标系中求面积的方法:直接用公式、割补法 三角形的面积求解常用方法:如右图,S △PAB =1/2 ·PM ·△x=1/2 ·AN ·△y 9、函数的交点问题:二次函数(c bx ax y ++=2 )与一次函数(h kx y +=) (1)解方程组???h kx y c bx ax y +=++= 2可求出两个图象交点的坐标。 (2)解方程组???h kx y c bx ax y +=++= 2,即()02 =-+-+h c x k b ax ,通过?可判断两个图象的交点 的个数 有两个交点 ? 0>?

代数经典试题及答案

代数经典试题及答案一 (完卷时间:90分钟,满分:100分) 一、填空题(本题共12小题,每小题2分,满分24分) 1.2-的相反数是 . 2.如果分式2 4 2--x x 的值为零,那么x = 3.不等式7—2x >1的正整数解是 . 4.点Q (-3,4)关于原点对称的点的坐标是 . 5.函数1 -= x x y 的定义域是 . 6.如果正比例函数的图像经过点(2,4),那么这个函数的解析式为 . 7.三峡水库的库容量可达393000000000立方米,这个数用科学记数法表示为 . 8.方程2+x =-x 的解是 . 9.甲、乙两人比赛飞镖,两人所得平均环数相同,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10.那么成绩较为稳定的是 (填“甲”或“乙”). 10.如果x =1是方程032=+-x ax 的根,那么a = . 11.如果方程0242=+-x x 的两个实数根分别是x 1、x 2,那么21x x = .

12.平价大药房大幅度降低药品价格,某种常用药品原来价格为m 元,那么降价30%后的价格 为 元. 二、选择题:(本题共6小题,每小题2分,满分12分) 【本题每小题列出的四个答案中,只有一个是正确的,把正确答案的代号填入括号内】 13.15-的一个有理化因式是 ( ) (A )5 (B ) 51- (C )51+ (D )15- 14.如果用换元法解方程021 3122=+---x x x x ,设x x y 12-=,那么原方程可化为 ( ) (A )0232=+-y y (B )0232=-+y y (C )0322=+-y y (D )0322=-+y y 。 15.下列说法正确的是 ( ). (A )无理数都是实数 (B )无限小数都是无理数 (C )正数的平方根都是无理数 (D )无理数都是开方所得的数 16.在数轴上表示实数a 和b 的点的位置如图所示, 那么下列各式成立的是 ( ). (A )b a < (B )b a > (C )0>ab (D )b a > 17.化简23)2(x 所得的结果是 ( ) (A )52x ; (B )54x ; (C )62x ; (D )64x .

二次函数与几何综合(有答案)中考数学压轴题必做(经典)

二次函数与几何综合
题目背景
07 年课改后,最后一题普遍为抛物线和几何结合(主要是与三角形结合)的 代数几何综合题,计算量较大。几何题可能想很久都不能动笔,而代数题则可以 想到哪里写到哪里,这就让很多考生能够拿到一些步骤分。因此,课改之后,武 汉市数学中考最后一题相对来说要比以前简单不少,而这也符合教育部要求给学 生减轻负担的主旨,因此也会继续下去。要做好这最后一题,主要是要在有限的 时间里面找到的简便的计算方法。要做到这一点,一是要加强本身的观察力,二 是需要在平时要多积累一些好的算法,并能够熟练运用,最后就是培养计算的耐 心,做到计算又快又准。
题型分析
题目分析及对考生要求 (1)第一问通常为求点坐标、解析式:本小问要求学生能够熟练地掌握待定系 数法求函数解析式,属于送分题。 (2)第二问为代数几何综合题,题型不固定。解题偏代数,要求学生能够熟练 掌握函数的平移,左加右减,上加下减。要求学生有较好的计算能力,能够把题 目中所给的几何信息进行转化,得到相应的点坐标,再进行相应的代数计算。 (3)第三问为几何代数综合,题型不固定。解题偏几何,要求学生能够对题目 所给条件进行转化,合理设参数,将点坐标转化为相应的线段长,再根据题目条 件合理构造相似、全等,或者利用锐角三角函数,将这些线段与题目构建起联系, 再进行相应计算求解,此处要求学生能够熟练运用韦达定理,本小问综合性较强。
在我们解题时,往往有一些几何条件,我们直接在坐标系中话不是很好用, 这时我们需要对它进行相应的条件转化,变成方便我们使用的条件,以下为两种 常见的条件转化思想。 1、遇到面积条件:a.不规则图形先进行分割,变成规则的图形面积;b.在第一 步变化后仍不是很好使用时,根据同底等高,或者等底同高的三角形面积相等这 一性质,将面积进行转化;c.当面积转化为一边与坐标轴平行时,以这条边为底, 根据面积公式转化为线段条件。 2、遇到角度条件:找到所有与这些角相等的角,以这些角为基础构造相似、全 等或者利用锐角三角函数,转化为线段条件。
二次函数与三角形综合
【例1】. (2012 武汉中考)如图 1,点 A 为抛物线 C1:y= x2﹣2 的顶点,点 B 的坐标为(1,
0)直线 AB 交抛物线 C1 于另一点 C

二次函数的定义专项练习30题(有答案)

二次函数的定义专项练习 30 题(有答案) 1.下列函数中,是二次函数的有( ) ① y=1﹣ x 2② y= ③ y=x (1﹣x )④ y= ( 1﹣ 2x )( 1+2x ) A 1 个 B 2 个 C 3 个 D 4 个 5.若 y=(m 2+m ) 是二次函数,则 m 的值是( ) A m=1 ±2 B m=2 C m= ﹣ 1 或 D m=3 . . . m=3 . 6.下列函数 ,y=3x 2, ,y=x (x ﹣2),y=(x ﹣ 1)2﹣ x 2 中,二次函数的个数 为 ( 7.下列结论正确的是( ) 二次函数中两个变量的值是非零实数 二次函数中变量 x 的值是所有实数 2 形如 y=ax +bx+c 的函数叫二次函数 2 二次函数 y=ax +bx+c 中 a ,b ,c 的值均不能为零 8.下列说法中一定正确的是( ) A . y=ax 2 是二次函数 B . 二次函数自变量的取值范围是所有实数 C . 二次方程是二次函数的特例 D . 二次函数自变量的取值范围是非零实数 3.下列具有二次函数关系的是( ) A . 正方形的周长 y 与边长 x B . 速度一定时,路程 s 与时间 t C . 三角形的高一定时,面积 y 与底边长 x D . 正方形的面积 y 与边长 x 4.若 y= ( 2﹣ m ) 是二次函数,则 m 等于( ) 2.下列结论正确的是 ( ) D 不能确定 A C ﹣ 2 ±2 B 2 A . B . C . D .

2 A . 函数 y=ax 2+bx+c (其中 a ,b , c 为常数)一定是二次函数 B . 圆的面积是关于圆的半径的二次函数 C . 路程一定时,速度是关于时间的二次函数 D . 圆的周长是关于圆的半径的二次函数 2 9.函数 y=( m ﹣ n )x 2+mx+n 是二次函数的条件是( ) A . m 、n 是常数,且 m ≠0 B . m 、 n 是常数,且 m ≠n C . m 、n 是常数,且 n ≠0 D . m 、 n 可以为任何常数 10.下列两个量之间的关系不属于二次函数的是( ) A . 速度一定时,汽车行使的路程与时间的关系 B . 质量一定时,物体具有的动能和速度的关系 C . 质量一定时,运动的物体所受到的阻力与运动速度的关系 D . 从高空自由降落的物体,下降的高度与下降的时间的关系 11.下列函数中, y 是 x 二次函数的是( ) A y=x ﹣1 B y=x 2+ ﹣ 10 C 2 y=x +2x D 2 y =x ﹣ 1 . . . . 12.下面给出了 6 个函数: 其中是二次函数的有( ) A 1 个 B 2个 C 3 个 2 13.自由落体公式 h= gt 2(g 为常量),h 与 t 之间的关系是( ) A 正比例函数 B 一次函数 C 二次函数 D 以上答案都不对 14.如果函数 y= ( k ﹣ 3) +kx+1 是二次函数,那么 k 的值一定是 ___________ . 15.二次函数 y= ( x ﹣2) 2﹣ 3 中,二次项系数为 __________ ,一次项系数为 ___________ 为 _________ . 16.已知函数 y=(k+2) 是关于 x 的二次函数,则 k= __________ . 17.已知二次函数 的图象是开口向下的抛物线, m= ___________ . 22 18.当 m __________ 时,关于 x 的函数 y= (m 2﹣1)x 2+(m ﹣1) x+3 是二次函数. 2 2 2 19. y=(m 2﹣ 2m ﹣3)x 2+(m ﹣1)x+m 2是关于 x 的二次函数要满足的条件是 ___________ . ① y=3x 2﹣1;② y=﹣ x 2 ﹣3x ; ③ y= ; 2 ④ y=x (x +x+1 );⑤ y= ⑥ y= ,常数项

2018北京二次函数代数综合题例讲(解析版)

二次函数的图象和性质重点落实什么能力? 2019北京中考26题重点题型------------ 必须会!!!!!! 例1 在平面直角坐标系xOy 中,抛物线 2443(0)y ax ax a a =-+-≠的顶点为A . (1)求顶点A 的坐标; (2)过点(0,5)且平行于x 轴的直线l ,与抛物线 2443(0)y ax ax a a =-+-≠交于B ,C 两点. ①当2a =时,求线段BC 的长; ②当线段BC 的长不小于6时,直接写出a 的取值范围. 代数变形能力:2 443(0)y ax ax a a =-+-≠通过配方转化为2 (2)(0)3y a x a =-≠- 几何作图能力:

考点: 二次函数的性质 分析: (1)配方得到y=ax2-4ax+4a-3=a (x-2)2-3,于是得到结论; (2)①当a=2时,抛物线为y=2x2-8x+5,如图.令y=5得到2x2-8x+5=5,解方程即可得到结论;②令y=5得到ax2-4ax+4a-3=5,解方程即可得到结论. 解答: (1)∵y =ax 2?4ax +4a ?3=a (x ?2)2?3, ∴顶点A 的坐标为(2,?3); (2)①当a =2时,抛物线为y =2x 2?8x +5,如图。 令y =5,得 2x 2?8x +5=5, 解得,x 1=0,x 2=4, ∴ a 2a 4线段BC 的长为4, ②令y =5,得ax 2?4ax +4a ?3=5, 解得,x 1= a a a 222 ,x 2=a a a 22-2 ∴线段BC 的长为 a 2a 4 ∵线段BC 的长不小于6,

一轮二次函数代数综合题)

二次函数代数综合题 1.已知直线m x y +=和抛物线c bx x y ++=2都经过点A (1,0),B (3,2). (1)求m 的值和抛物线的解析式; (2) 结合函数图象,求不等式m x c bx x +>++2 的解集. 2.如图,二次函数的图象经过点D (0,39 7),且顶点C 的横坐标为4,该图象在x 轴上截得的线段AB 的长为6. (1)求二次函数的解析式; (2)在该抛物线的对称轴上找一点P ,使P A +PD 最小,求出点P 的坐标. 3.已知抛物线2442y ax ax a =-+-,其中a 是常数. (1)求抛物线的顶点坐标; (2)若25 a >,且抛物线与x 轴交于整数点(坐标为整数的点),求此抛物线的解析式. 4.在平面直角坐标系xOy 中,抛物线2y mx n =++经过P ,A (0,2)两点. (1)求此抛物线的解析式; (2)设抛物线的顶点为B ,将直线AB 沿y 轴向下平移两个单位得到直线l ,直线l 与抛 物线的对称轴交于C 点,求直线l 的解析式; (3)在(2)的条件下,求到直线OB 、OC 、BC 距离相等的点的坐标.

5.已知关于x 的二次函数y =x 2-(2m -1)x +m 2+3m +4. (1)探究m 满足什么条件时,二次函数y 的图象与x 轴的交点的个数. (2)设二次函数y 的图象与x 轴的交点为A (x 1,0),B (x 2,0),且21x +22x =5,与 y 轴的交点为C ,它的顶点为M ,求直线CM 的解析式. 6.已知抛物线223 4 y x kx k =+-(k 为常数,且k >0). (1)证明:此抛物线与x 轴总有两个交点; (2)设抛物线与x 轴交于M 、N 两点,若这两点到原点的距离分别为OM 、ON ,且1123ON OM -=,求k 的值. 7. 已知二次函数y =x 2-(2m +4)x +m 2-4(x 为自变量)的图象与y 轴的交点在原点下方,与x 轴交于A ,B 两点,点A 在点B 的左边,且A ,B 两点到原点的距离AO 、OB ?满足3(?OB -AO )=2AO ·OB ,直线y =kx +k 与这个二次函数图象的一个交点为P ,且锐角∠POB ?的正切值4. (1)求m 的取值范围;(2)求这个二次函数的解析式;(3)确定直线y =kx +k 的解析式. 8.已知:二次函数y =2(32)220(0)mx m x m m -+++=>. (1)求证:此二次函数的图象与x 轴有两个交点; (2)设函数图象与x 轴的两个交点方程的分别为(1x ,0),(2x ,0)(其中12x x <).若y 是关于m 的函数,且212y x x =-,求这个函数的解析式; (3)在(2)的条件下,结合函数的图象回答:当自变量m 满足什么条件时,2y m ≤.

纯代数问题(已排本)

初三年总复习二次函数(纯代数问题) 1. (2017杭州)在平面直角坐标系中,设二次函数y 1=(x +a )(x -a -1),其中a ≠0. (1)若函数y 1的图象经过点(1,-2),求函数y 1的表达式; (2)若一次函数y 2=ax +b 的图象与y 1的图象经过x 轴上同一点, 探究实数a ,b 满足的关系式; (3)已知点P (x 0,m )和Q (1,n )在函数y 1的图象上,若m <n ,求x 0的取值范围. 2. (2017漳州三模)已知二次函数y =x 2-(3m -1)x +2m 2-2m ,其中m >-1. (1)若二次函数关于y 轴对称,则m 的值是________; (2)二次函数与x 轴交于A (x ,0),B (x 2,0)(x 1<x 2)两点,且-1≤12x 1-13x 2≤1, 试求m 的取值范围; (3)当1≤x ≤3时,二次函数的最小值是-1,求m 的值.

3. (2017泉州七中与福州屏东中学联考)已知抛物线y =ax 2+x +2. (1)当a =-1时,求此抛物线的顶点坐标和对称轴; (2)若代数式-x 2+x +2的值为正整数,求x 的值; (3)当a =a 1时,抛物线y =ax 2+x +2与x 轴的正半轴相交于点M (m ,0); 当a =a 2时,抛物线y =ax 2+x +2与x 轴的正半轴相交于点N (n ,0). 若点M 在点N 的左边,试比较a 1与a 2的大小. 4. (2017泉州二模)已知抛物线y =ax 2+bx +c 的顶点为(2,5), 且与y 轴交于点C (0,1). (1)求抛物线的表达式; (2)若-1≤x ≤3,试求y 的取值范围; (3)若M (n 2-4n +6,y 1)和N (-n 2+n +74,y 2)是抛物线上的不重合的两点, 试判断y 1与y 2的大小,并说明理由.

二次函数测试题及详细答案(绝对有用)

砺智教育二次函数 一、选择题:(共30分) 1. 抛物线3)2(2+-=x y 的对称轴是( ) A. 直线3-=x B. 直线3=x C. 直线 2-=x D. 直线2=x 2. 二次函数c bx ax y ++=2的图象如右图,则点), (a c b M 在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3. 已知二次函数c bx ax y ++=2,且0+-c b a ,则一定有( ) A. 042>-ac b B. 042=-ac b C. 042<-ac b D. ac b 42-≤0 4. 把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式 是532+-=x x y ,则有( ) A. 3=b ,7=c B. 9-=b ,15-=c C. 3=b ,3=c D. 9-=b ,21=c 5. 已知反比例函数x k y = 的图象如右图所示,则二次函数222k x kx y +-=的图象大致为( )

B x 6. 下面所示各图是在同一直角坐标系内,二次函数c x c a ax y +++=)(2与一次函数 c ax y +=的大致图象,有且只有一个是正确的,正确的是( ) B D 7. 抛物线322+-=x x y 的对称轴是直线( ) A. 2-=x B. 2=x C. 1-=x D. 1=x 8. 二次函数2)1(2+-=x y 的最小值是( ) A. 2- B. 2 C. 1- D. 1 9. 二次函数c bx ax y ++=2的图象如图所示,若 c b a M ++=24c b a N +-=,b a P -=4,则( ) A. 0>M ,0>N ,0>P B. 0N ,0>P C. 0>M ,0P D. 0N ,0

4.二次函数与代数的综合

2014年中考解决方案二次函数与代数的综合

内容基本要求略高要求较高要求二次函数 能结合实际问题 情境了解二次函 数的意义;会用描 点法画出二次函 数的图象 能通过分析实际问题的情境确定二次函数的表 达式;能从图象上认识二次函数的性质;会根据 二次函数的解析式求其图象与坐标轴的交点坐 标,会确定图象的顶点、开口方向和对称轴;会 利用二次函数的图象求一元二次方程的近似解 能用二次函数解决 简单的实际问题; 能解决二次函数与 其他知识综结合的 有关问题 一、与一次函数只有一个交点 ?考点说明:二次函数一与次函数有交点问题,解法是联系解析式,组成关于x的二次方程,然后求解.如果只有一个交点,说明△=0,一次函数与二次函数相切;但是如果题目中给出的是直线,一定要注意是否有x a =的直线. 【例1】(2013年朝阳二模)已知关于x的一元二次方程2(4)10 x m x m --+-=. (1)求证:无论m取何值,此方程总有两个不相等的实数根; (2)此方程有一个根是3,在平面直角坐标系xOy中,将抛物线2(4)1 y x m x m =--+-向右平移3个单位,得到一个新的抛物线,当直线y x b =+与这个新抛物线有且只有一个公共点时,求b的值. 例题精讲 二次函数与代数的综合 中考说明

二、与x 轴的交点为整数 ?考点说明:二次函数与x 轴的交点问题是令0y =,解关于x 的二次方程,用含参量的未知数表示x ,然后用变量分离表示出x ,最后用整除解决问题. 【例2】 (2013年顺义区一模)已知关于x 的方程2 (32)220mx m x m -+++= (1)求证:无论m 取任何实数时,方程恒有实数根. (2)若关于x 的二次函数2 (32)22y mx m x m =-+++的图象与x 轴两个交点的横坐标均为正 整数,且m 为整数,求抛物线的解析式. 【巩固】(2011年昌平一模)已知二次函数22(1)(31)2y k x k x =---+. ⑴二次函数的顶点在x 轴上,求k 的值; ⑵若二次函数与x 轴的两个交点A 、B 均为整数点(坐标为整数的点),当k 为整数时,求A 、B 两点的坐标.

打印版-圆与二次函数综合题精练(带答案)

圆与二次函数综合题 1、已知:二次函数y=x2-kx+k+4的图象与y轴交于点c,且与x轴的正半轴交于A、B两点(点A 在点B左侧)。若A、B两点的横坐标为整数。 (1)确定这个二次函数的解析式并求它的顶点坐标;(2)若点D的坐标是(0,6),点P(t,0)是线段AB上的一个动点,它可与点A重合,但不与点B重合。设四边形PBCD的面积为S,求S与t的函数关系式; (3)若点P与点A重合,得到四边形ABCD,以四边形ABCD的一边为边,画一个三角形,使它的面积等于四边形ABCD的面积,并注明三角形高线的长。再利用“等底等高的三角形面积相等”的知识,画一个三角形,使它的面积等于四边形ABCD的面积(画示意图,不写计算和证明过程)。 2、(1)已知:关于x、y的方程组有两个实数解,求m的取值范围; (2)在(1)的条件下,若抛物线y=-(m-1)x2+(m-5)x+6与x轴交于A、B两点,与y轴交于点C,且△ABC的面积等于12,确定此抛物线及直线y=(m+1)x-2的解析式; (3)你能将(2)中所得的抛物线平移,使其顶点在(2)中所得的直线上吗?请写出一种平移方法。 3、已知:二次函数y=x2-2(m-1)x+m2-2m-3,其中m为实数。 (1)求证:不论m取何实数,这个二次函数的图像与x轴必有两个交点;(2)设这个二次函数的 图像与x轴交于点A(x1,0)、B(x2,0),且x1、x2的倒数和为,求这个二次函数的解析式。 4、已知二次函数y1=x2-2x-3. (1)结合函数y1的图像,确定当x取什么值时,y1>0,y1=0,y1<0; (2)根据(1)的结论,确定函数y2= (|y1|-y1)关于x的解析式; (3)若一次函数y=kx+b(k 0)的图像与函数y2的图像交于三个不同的点,试确定实数k与b应满足的条件。 5、已知:如图,直线y= x+ 与x轴、y轴分别交于A、B两点,⊙M经过原点O及A、 B两点。 (1)求以OA、OB两线段长为根的一元二次方程; (2)C是⊙M上一点,连结BC交OA于点D,若∠COD=∠CBO, 写出经过O、C、A三点的二次函数的解析式; (3)若延长BC到E,使DE=2,连结EA,试判断直线EA与 ⊙M的位置关系,并说明理由。(河南省) 6、如图,已知点A(tan ,0)B(tan ,0)在x轴正半轴上,点A在点B的左 边,、是以线段AB为斜边、顶点C在x轴上方的Rt△ABC的两个锐角。 (1)若二次函数y=-x2- 5/2kx+(2+2k-k2)的图像经过A、B两点,求它的解析式; (2)点C在(1)中求出的二次函数的图像上吗?请说明理由。(陕西省)

初中数学二次函数经典综合大题练习卷

1、如图9(1),在平面直角坐标系中,抛物线经过A (-1,0)、B (0,3)两点, 与x 轴交于另一点C ,顶点为D . (1)求该抛物线的解析式及点C 、D 的坐标; (2)经过点B 、D 两点的直线与x 轴交于点E ,若点F 是抛物线上一点,以A 、B 、E 、F 为顶点的四边形是平行四边形,求点F 的坐标; (3)如图9(2)P (2,3)是抛物线上的点,Q 是直线AP 上方的抛物线上一动点,求△APQ 的最大面积和此时Q 点的坐标. 2、随着我市近几年城市园林绿化建设的快速发展,对花木的需求量逐年提高。某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y 1与投资成本x 成正比例关系,如图①所示;种植花卉的利润y 2与投资成本x 成二次函数关系,如图②所示(注:利润与投资成本的单位:万元) 图① 图② (1)分别求出利润y 1与y 2关于投资量x 的函数关系式; (2)如果这位专业户计划以8万元资金投入种植花卉和树木,请求出他所获得的总利润Z 与投入种植花卉的投 资量x 之间的函数关系式,并回答他至少获得多少利润?他能获取的最大利润是多少?

3、如图,为正方形的对称中心,,,直线交于,于,点 从原点出发沿轴的正半轴方向以1个单位每秒速度运动,同时,点从出发沿方向以 个单位每秒速度运动,运动时间为.求: (1)的坐标为; (2)当为何值时,与相似? (3)求的面积与的函数关系式;并求以为顶点的四边形是梯形时的值及 的最大值. 4、如图①,正方形ABCD的顶点A,B的坐标分别为,顶点C,D在第一象限.点P从点 A出发,沿正方形按逆时针方向匀速运动,同时,点Q从点E(4,0)出发,沿x轴正方向以相同速度运动.当点P到达点C时,P,Q两点同时停止运动,设运动的时间为t秒. (1)求正方形ABCD的边长. (2)当点P在AB边上运动时,△OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分(如图②所示),求P,Q两点的运动速度. (3)求(2)中面积S(平方单位)与时间t(秒)的函数关系式及面积取最大值时点的坐标. (4)若点P,Q保持(2)中的速度不变,则点P沿着AB边运动时,∠OPQ的大小随着时间的增大而增大;沿着BC边运动时,∠OPQ的大小随着时间的增大而减小.当点沿着这两边运动时,使∠OPQ=90°的点有个.

二次函数纯代数问题

课题:二次函数纯代数问题 授课教师:李静芝 授课班级:初三2班 授课时间: 2019 年 4月 17 日 第 6 节 [教学目标] 1、知识与技能:能够根据二次函数相关知识解决求顶点、交点、定点问题; 2、过程与方法:通过观察、分析、概括、总结等方法了解二次函数顶点、交点、定点问题的基本类型,并掌握解题方法,从而体会数形结合思想在二次函数中的应用; 3、情感态度与价值观:由简单题入手逐渐提升,从而消除学生的畏惧情绪,让学生有兴趣和积极性参与数学活动。加强学生之间的合作交流,提高学生的归纳总结能力,培养学生不断反思的习惯. [教学重点]求顶点、交点、定点. [教学难点]如何求解含参解析式中的定点坐标. [课型]复习课 [教学过程] 一、情境引入 几何画板展示图案设计,让学生观察图案,以此引入课题. 二、课堂探究 类型一 顶点 引例1:抛物线y=x 2+2x-3的对称轴是 ,顶点坐标是 . 变式1:抛物线y=x 2+2ax-3a 的对称轴是 ,顶点坐标是 . (用含a 的代数式表示). 变式2:抛物线y=ax 2+2ax-3a(a ≠0)的对称轴是 ,顶点坐标是 . (用含a 的代数式表示) .

类型二交点 引例2:直线y=x-1和抛物线y=x2+2x-3有个交点. 变式1:已知:直线y=x-1和抛物线y=x2+2x-3a(a<0),试判断直线与抛物线的交点情况. 变式2:已知:直线y=x-1和抛物线y=ax2+2ax-3a(a≠0),试判断直线与抛物线的交点情况. 类型三定点 引例3:抛物线y=ax2+2(a≠0)一定经过点 . 变式1:抛物线y=x2+2kx+4k一定经过点 . 变式2:一次函数y=kx+2k-3一定经过点 . 尝试解决:抛物线y=ax2+2ax-3a(a≠0)一定经过点 . 三、实战中考我能行 当堂训练 25.(2017福建中考)已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M(1,0),且a

二次函数-综合经典题归类复习(附练习及解析)

2015年初三数学《二次函数综合题》归类复习 1.图像与性质: 例1.(2014年四川资阳,第24题12分)如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1. (1)求抛物线的解析式; (2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标; (3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S. 考点:二次函数综合题. 分析:(1)根据对称轴可知,抛物线y=ax2+bx+c与x轴的另一个交点为(﹣1,0),根据待定系数法可得抛物线的解析式为y=﹣x2+2x+3. (2)分三种情况:①当MA=MB时;②当AB=AM时;③当AB=BM时;三种情况讨论可得点M的坐标. (3)平移后的三角形记为△PEF.根据待定系数法可得直线AB的解析式为y=﹣x+3.易得直线EF的解析式为y=﹣x+3+m.根据待定系数法可得直线AC的解析式.连结BE,直线BE交AC于G,则G (,3).在△AOB 沿x轴向右平移的过程中.分二种情况:①当0<m ≤时;②当<m<3时;讨论可得用m的代数式表示S. 解:(1)由题意可知,抛物线y=ax2+bx+c与x轴的另一个交点为(﹣1,0),则,解得. 故抛物线的解析式为y=﹣x2+2x+3. (2)①当MA=MB时,M(0,0);②当AB=AM时,M(0,﹣3);③当AB=BM时,M(0,3+3)或M(0,3﹣3).所以点M的坐标为:(0,0)、(0,﹣3)、(0,3+3)、(0,3﹣3). (3)平移后的三角形记为△PEF.设直线AB的解析式为y=kx+b,则 ,解得.则直线AB的解析式为y=﹣x+3. △AOB沿x轴向右平移m个单位长度(0<m<3)得到△PEF,易得直线EF的解析式为y=﹣x+3+m.设直线AC的解析式为y=k′x+b′,则 ,解得.则直线AC的解析式为y=﹣2x+6. 连结BE,直线BE交AC于G,则G (,3).在△AOB沿x轴向右平移的过程中. ①当0<m ≤时,如图1所示.设PE交AB于K,EF交AC于M.则BE=EK=m,PK=PA=3﹣m, 联立,解得,即点M(3﹣m,2m)。故S=S△PEF﹣S△PAK﹣S△AFM =PE2﹣PK2﹣AF?h =﹣(3﹣m)2﹣m?2m=﹣m2+3m. ②当<m<3时,如图2所示.设PE交AB于K,交AC于H.因为BE=m,所以PK=PA=3﹣m, 又因为直线AC的解析式为y=﹣2x+6,所以当x=m时,得y=6﹣2m,所以点H(m,6﹣2m). 故S=S△PAH﹣S△PAK =PA?PH ﹣PA2=﹣(3﹣m)?(6﹣2m )﹣(3﹣m)2=m2﹣3m +. 综上所述,当0<m ≤时,S=﹣m2+3m ;当<m<3时,S =m2﹣3m +. 点评:考查了二次函数综合题,涉及的知识点有:抛物线的对称轴,待定系数法求抛物线的解析式,待定系数法求直线的解析式,分类思想的应用,方程思想的应用,综合性较强,有一定的难度. 2.旋转问题: 例2. (2014?福建泉州,第22题9分)如图,已知二次函数y=a(x﹣h)2+的图象经过原点O(0,0),A(2,0). (1)写出该函数图象的对称轴; (2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?

第7讲-二次函数与其它代数知识综合

内容 基本要求 略高要求 较高要求 二次函数 1.能根据实际情境了解二次函数的意义; 2.会利用描点法画出二次函数的图像; 1.能通过对实际问题中的情境分析确定二次函数的表达式; 2.能从函数图像上认识函数的性质; 3.会确定图像的顶点、对称轴和开口方向; 4.会利用二次函数的图像求出二次方程的近似解; 1.能用二次函数解决简单的实际问题; 2.能解决二次函数与其他知识结合的有关问题; 一、二次函数与一次函数的联系 一次函数()0y kx n k =+≠的图像l 与二次函数()20y ax bx c a =++≠的图像G 的交点,由方程组2 y kx n y ax bx c =+??=++? 的解的数目来确定: ①方程组有两组不同的解时?l 与G 有两个交点; ②方程组只有一组解时?l 与G 只有一个交点; ③方程组无解时?l 与G 没有交点. 二、二次函数与方程、不等式的联系 1.二次函数与一元二次方程的联系: 1.直线与抛物线的交点: (1)y 轴与抛物线2y ax bx c =++的交点为(0, c ). (2)与y 轴平行的直线x h =与抛物线2y ax bx c =++有且只有一个交点(h ,2ah bh c ++). (3)抛物线与x 轴的交点:二次函数2y ax bx c =++的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程20ax bx c ++=的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定: ①有两个交点?0?>?抛物线与x 轴相交; ②有一个交点(顶点在x 轴上)?0?=?抛物线与x 轴相切; ③没有交点?0?

相关文档
最新文档