离散时间系统最优控制

第五章离散时间系统最优控制

引言

?前面所讨论的都是关于连续时间系统的最优控制问题。?现实世界中,很多实际系统本质上是时间离散的。

?即使是系统是时间连续的,因为计算机是基于时间和数值上都离散的数字技术的,实行计算机控制时必须

将时间离散化后作为离散系统处理。

?因此,有必要讨论离散时间系统的最优控制问题。

?离散时间系统仍然属于连续变量动态系统(CVDS)范畴。

注意与离散事件动态系统(DEDS)的区别。

?CVDS与DEDS是自动化领域的两大研究范畴,考虑不同的自动化问题。

5.1 离散时间系统最优控制问题的提法

(1) 离散系统最优控制举例——多级萃取过程最优控制

?萃取是指可被溶解的物质在两种互不相溶的溶剂之间的转移,一般用于将是指可被溶解的物质在两种互不相溶的溶剂之间的转移,般用于将要提取的物质从不易分离的溶剂中转移到容易分离的溶剂中。

?多级萃取是化工生产中提取某种价值高、含量低的物质的常用生产工艺。

萃取V

u (0)

u (1)

u (k -1)

u (N -1)

V

V

V

V

V

V

萃取器1萃取器2

萃取器

k 萃取器N

x (0)

x (1)x (2)

x (k -1)

x (k )

x (N )x (N -1)

含物质z (0)z (1)

z (k-1)

z (N -1)

多级萃取过程

A 的混合物以流量V 进入萃取器1,混合物中A 浓度x (0);

萃取剂以流量u (0)通过萃取器1,单位体积萃取剂带走A 的量为z (0);

一般萃取过程的萃取物含量均较低,可认为通过萃取器1后混合物流量仍为V ;

流出萃取器1的混合物中A 物质的浓度为x (1)。以此类推至萃取器N 。

(2)(2)

离散系统最优控制问题的提法给定离散系统状态方程

(5-1-6)1

101-==+N k k k u k x k x ()和初始状态

(5-1-7)

,,,],),(),([)(f 0

)0(x x =其中分别为状态向量和控制向量,f 为连续可微的n 维

函数向量。考虑性能指标

(518)m

n R k u R k x ∈∈)(,)(-1

)))N 其中Φ、L 连续可微。

?*(0)*(1)*(-1)(5-1-8)

∑=+Φ=0]

),(),([]),([k k k u k x L N N x J 离散系统的最优控制问题就是确定最优控制序列u (0),u (1),…,u (N 1),使性能指标J 达到极小(或极大)值。

?

将最优控制序列u *(0),u *(1),…,u *(N -1)依次代入状态方程,并利用初始条件可以解出也称为条件,可以解出最优状态序列x *(1),x *(2),…,x *(N ),也称为最优轨线。

5.3离散极大值原理

?

与连续系统相似,离散变分法解最优控制问题多有不便,需考虑离散极大值原理。考虑离散系统状态方程

(5-3-1)1

· · ·,1,0],),(),([)1(-==+N k k k u k x f k x ,初始状态

(5-3-2)0)0(x x =终态应满足的约束条件

(5-3-3)0

]),([=N N x ψ和性能指标其中:∈n ∈m f 性能指标(5-3-4)∑

-=+=1

]

),(),([]),([N k k k u k x L N N x J φx (k )R ,u (k )R 。u (k )不受约束,f 为n 维连续可微向量

函数,Ψ是x (N )的连续可微r 维向量函数,Φ是x (N )的连续可微标量函数,L 为x (k )、u (k )的连续可微标量函数,要求最优控制序列)01使最小

u *(k ), k =0,…, N -1,使J 最小。

上述问题中即

上述问题中,当控制序列受到约束时,即时,其中是m 维实函数空间的闭子集,

即,则与连续系统相同,有相应的极大值原理形式,即上述)1,,1)((-=N k k u 1,,0,)(-=∈N k k u ΩΩm

R ?Ω定理中(3)不同,为

(3’)离散H 函数对最优控制序列达到最小值,即:

(5-3-16)

?离散最优控制的极大值原理

为:]),(),(),([min ]),(),(),([**)(***k k u k k x H k k u k k x H k u 11+=+∈λλΩ

离散最优控制的极大值原充分条件为(i) 离散最优控制问题的状态集为凸集,(ii) 性能指标泛函为凸函数

?如果上述条件不能满足,则不能确定极大值原理是否是离散最优控制的充分AND/OR 必要条件。

5.4连续与离散极大值原理的比较

54

?本章讨论的离散系统极大值原理和在第三章讨论的连续系统极大值原理,基本原理是相同的,因此我们希望在解决同一个最优控

制问题时应该得到同样的结果。

?然而,从连续系统极大值原理出发,以不同的变换途径所得的离散系统极大值原理在形式上有所不同,解决同一问题所得到的解

也会有所不同。

也会有所不同

?通过比较两种不同的离散系统极大值原理获取途径,分析同一问题所得到的离散最优控制解不同的原因可以帮助尽量避免这种题所得到的离散最优控制解不同的原因,可以帮助尽量避免这种

现象产生。

离散时间系统最优控制离散时间系统最优控制

第五章离散时间系统最优控制

?前面所讨论的都是关于连续时间系统的最优控制问题。?现实世界中,很多实际系统本质上是时间离散的。?即使是系统是时间连续的,因为计算机是基于时间和数值上都离散的数字技术的,实行计算机控制时必须将时间离散化后作为离散系统处理。 引言 ?因此,有必要讨论离散时间系统的最优控制问题。 ?离散时间系统仍然属于连续变量动态系统(CVDS)范畴。注意与离散事件动态系统(DEDS)的区别。 ? CVDS 与DEDS 是自动化领域的两大研究范畴,考虑不同的自动化问题。

5.1 离散时间系统最优控制问题的提法 (1) 离散系统最优控制举例——多级萃取过程最优控制 ?萃取是指可被溶解的物质在两种互不相溶的溶剂之间的转移,一般用于将要提取的物质从不易分离的溶剂中转移到容易分离的溶剂中。 ?多级萃取是化工生产中提取某种价值高、含量低的物质的常用生产工艺。 萃取器萃取器萃取器萃取器V u (0)u (1)u (k -1)u (N -1) V V V V V V 含物质A 的混合物以流量V 进入萃取器1,混合物中A 浓度x (0); 萃取剂以流量u (0)通过萃取器1,单位体积萃取剂带走A 的量为z (0); 一般萃取过程的萃取物含量均较低,可认为通过萃取器1后混合物流量仍为V ; 流出萃取器1的混合物中A 物质的浓度为x (1)。以此类推至萃取器N 。 1 2 k N x (0) z (0)z (1) z (k-1) z (N -1) x (1) x (2) x (k -1) x (k ) x (N ) x (N -1) 多级萃取过程

(2) 离散系统最优控制问题的提法 给定离散系统状态方程(5-1-6)和初始状态 (5-1-7) 其中分别为状态向量和控制向量,f 为连续可微的n 维 函数向量。考虑性能指标 1 ,,1,0],),(),([)1( N k k k u k x f k x 0 )0(x x m n R k u R k x )(,)( 1 N 其中Φ、L 连续可微。 ?离散系统的最优控制问题就是确定最优控制序列u *(0),u *(1),…,u *(N -1),使性能指标J 达到极小(或极大)值。 ? 将最优控制序列u *(0),u *(1),…,u *(N -1)依次代入状态方程,并利用初始条件,可以解出最优状态序列x *(1),x *(2),…,x *(N ),也称为最优轨线。 (5-1-8) ] ),(),([]),([k k k u k x L N N x J

离散时间系统的状态空间描述

燕山大学 课程设计说明书 题目:离散时间系统的状态空间描述学院(系):电气工程学院 年级专业: 11级精密仪器二班 学号:徐。。 学生姓名: 指导教师: 教师职称:

电气工程学院《课程设计》任务书 课程名称:数字信号处理课程设计 说明:1、此表一式四份,系、指导教师、学生各一份,报送院教务科一份。 2、学生那份任务书要求装订到课程设计报告前面。 电气工程学院教务科

目录 摘要 (4) 一、课题总体描述 (5) 二、计算过程 (一)状态变量及状态空间表达式 (6) 1.状态变量 (6) 2.状态矢量 (6) 3.状态空间 (6) 4.状态方程 (6) 5.输出方程 (6) 6.状态空间表达式 (7) (二)MATLAB语句分析 1.用到的MATLAB函数 (8) 2.Tf2ss:传递函数到状态空间模型 (9) 3.转换为零极点增益模型 (12) 4.用传递函数求冲击响应 (13) 5.状态空间模型求冲击响应 (15) 三、心得体会 (17) 四、参考文献 (18)

摘要 数字信号处理是将信号以数字方式表示并处理的理论和技术。简单的说,数字信号处理就是用数值计算的方式对信号进行加工的理论和技术。信号是信息的物理体现形式,或是传递信息的函数,而信息则是信号的具体内容,信号处理的内容包括滤波,变换,检测,谱分析,估计,压缩,识别等一系列的加工处理。 MATLAB是一个功能强大的用于算法开发,数据可视化,数据分析以及数值计算的高级技术计算语言和交互式环境,通过将数字信号处理与MATLAB结合运用的过程可以方便地处理各种运算,包括将传递函数变换为状态方程,输出方程,或者由状态方程求其单位冲击响应,通过MATLAB的辅助都使计算变得异常简便。 根据本次课题要求,通过使用MATLAB,方便了对系统函数的繁琐的计算,并且直观形象的用计算机进行模拟仿真,通过观察图像,由图像的特征从而进一步的对系统进行形象的分析。 信号处理理论和分析方法已应用于许多领域和学科中。信号处理方面的课程,如“信号与系统”,“数字信号处理”等不仅是无线电,通信,电子工程等专业的主干课程,也成为相关工科专业非常实用的课程。

自动控制原理第7章离散系统题库习题

7-1已知下列时间函数()c t ,设采样周期为T 秒,求它们的z 变换()C z 。 (a )2 ()1()c t t t = (b )()()1()c t t T t =- (c )()()1()c t t T t T =-- (d )()1()at c t t te -= (e )()1()sin at c t t e t ω-= (f )()1()cos at c t t te t ω-= 7-2已知()x t 的拉氏变换为下列函数,设采样周期为T 秒,求它们的z 变换()X z 。 (a )21()C s s = (b )()()a C s s s a = + (c )2()() a C s s s a = + (d )1 ()()()()C s s a s b s c = +++ (e )2221 ()() C s s s a = + (f )()1 ()1sT C s e s -= - 7-3求下列函数的z 反变换。 (a ) 0.5(1)(0.4)z z z -- (b ) 2()() T T z z e z e ---- (c )2 2 (1)(2) z z z ++

7-4已知0k <时,()0c k =,()C z 为如下所示的有理分式 120121212()1n n n n b b z b z b z C z a z a z a z ------++++=++++L L 则有 0(0)c b = 以及 []1 ()()n k i i c kT b a c k i T ==--∑ 式中k n >时,0k b =。 (a )试证明上面的结果。 (b )设 23220.5 ()0.5 1.5 z z C z z z z +-=-+- 应用(a )的结论求(0)c 、()c T 、(2)c T 、(3)c T 、(4)c T 、(5)c T 。 7-5试用部分分式法、幂级数法和反演积分法,求下列函数的z 反变换: (a )10()(1)(2) z E z z z = -- (b )1 12 3()12z E z z z ----+=-+ (c )2()(1)(31)z E z z z = ++ (d )2 ()(1)(0.5) z E z z z = -+ 7-6用z 变换法求下面的差分方程 (2)3(1)2()0,(0)0,(1)1x k x k x k x x ++++=== 并与用迭代法得到的结果(0)x 、(1)x 、(2)x 、(3)x 、(4)x 相比较。 7-7求传递函数为

最优控制习题答案

最优控制习题答案 1.设系统方程及初始条件为? ??=+-=)()() (2)()(1211t x t x t u t x t x &&,???==0)0(1)(21x t x 。约束 5.1)(≤t u 。若系统终态)(f t x 自由,利用连续系统极大值原理求)(*t u 性能指标,)3(2x J =取最小值。 解: 2.设一阶离散时间系统为)()()1(k u k x k x +=+,初值2)0(=x ,性 能指标为∑=+=20 2 2 )(21)2(k k u x J ,试用离散系统最小值原理求解最优控 制序列:)2(),1(),0(u u u ,使J 取极小值。 解: 3.软着落、空对空导弹的拦截问题、防空拦截问题。 解答: 4.设离散系统状态方程为)(2.00)(101.01)1(k u k x k x ?? ? ???+??????=+,已知边界条件?? ? ???=01)0(x ,??????=00)1(x 。试用离散系统最小值原理求最优控制序 列,使性能指标∑==1 02 )(03.0k k u J 取极小值,并求出最优的曲线序列。 解:属于控制无约束,N 不变,终端固定的离散最优控制问题,构造离 散 哈 密 尔 顿 函 数 )](2.0)()[1()](1.0)()[1()(03.0)(222112k u k x k k x k x k k u k H ++++++=λλ 其中)1(),1(21++k k λλ为给定拉个朗日乘子序列,由伴随方程:

)1()()(111+=??= k k x H k λλ,)1()1(1.0) ()(2122+++=??=k k k x H k λλλ得出 ?? ?+==+==) 2()2(1.0)1(),2()1() 1()1(1.0)0(),1()0(2121121211λλλλλλλλλλ, 由 极 值 条 件 ??? ????>=??=++=??0 06.0)(0)1(2.0)(06.0) (22 2k u H k k u k u H λ极小)1(310)(2+-=k k u λ可使min )(=k H ,令k=0和k=1的?? ??? -=-=) 2(310 )1(*)1(310)0(*22λλu u ,)(k u 带入状态方程并令k=0和1得到: 5.求 泛 函 dt x x x x J ?++=1 02 221211],[&&满足边界条件 π===-=)3(,0)0(,0)3(,3)0(2211x x x x 和约束条件36221=+t x 的 极值曲线。 解:应用拉格朗日乘子法,新目标函数为: dt t x t x x J )36)((1[2 21 1 022211-++++=?λ&&,令哈密尔顿函数为: )36(12 212221-++++=t x x x H λ&&,可以得到无约束条件新的泛函1 J 的欧拉方程为0)1(2)(22 211 1111=++-=??-??x x x dt d x x H dt d x H &&&&λ (1)

连续系统离散化处理基本方法

在数字计算机上对连续系统进行仿真时,首先遇到的问题是如何解决数字计算机在数值及时间上的离散性与被仿真系统数值及时间上的连续性这一基本问题。 从根本意义上讲,数字计算机所进行的数值计算仅仅是“数字”计算,它表示数值的精度受限于字长,这将引入舍入误差;另一方面,这种计算是按指令一步一步进行的,因而,还必须将时间离散化,这样就只能得到离散时间点上系统性能。用数字仿真的方法对微分方程的数值积分是通过某种数值计算方法来实现的。任何一种计算方法都只能是原积分的一种近似。因此,连续系统仿真,从本质上是对原连续系统从时间、数值两个方面对原系统进行离散化,并选择合适的数值计算方法来近似积分运算,由此得到的离散模型来近似原连续模型。如何保证离散模型的计算结果从原理上确能代表原系统的行为,这是连续系统数字仿真首先必须解决的问题。 设系统模型为:),,(t u y f y =&,其中u (t )为输入变量,y (t )为系统变量;令仿真时间间隔为h ,离散化后的输入变量为)(?k t u ,系统变量为)(?k t y ,其中k t 表示t=kh 。如果)()(?k k t u t u ≈,)()(?k k t y t y ≈,即0)()(?)(≈-=k k k u t u t u t e ,0)()(?)(≈-=k k k y t y t y t e (对所有k=0,1,2,…),则可认为两模型等价,这称为相似 原理(参见图)。 实际上,要完全保证0)(,0)(==k y k u t e t e 是很困难的。进一步分析离散化引的误差,随着计算机技术的发展,由计算机字长引入的舍入误差可以忽略,关键是数值积分算法,也称为仿真建模方法。相似原理用于仿真时,对仿真建模方法有三个基本要求: (1)稳定性:若原连续系统是稳定的,则离散化后得到的仿真模型也应是稳定的。关于稳定性的详细讨论将在节中进行。 (2)准确性:有不同的准确性评价准则,最基本的准则是: 绝对误差准则:δ≤-=)()(?)(k k k y t y t y t e 相对误差准则:δ≤-= )(?)()(?)(k k k k y t y t y t y t e 其中 规定精度的误差量。 原连续模型 仿真模型 )(≈k y t e 图 相

§7.4动态规划与离散系统最优控制

§ 7.4 动态规划与离散系统最优控制 1. 动态规划基本原理 最优性原则应有如此性质: 即无论(整个过程的)初始状态和初始决策如何,其余(后段)各决策对于由第一个决策(后)所形成的状态作为(后段)初始状态来说,必须也是一个最优策略。 A B C D E 最优性原则 图7.5

用式表示 1() ()min{(,())(())},1,2,,n n n n n u x J x R x u x J u x n N -=+= 阶段变量n (分析次序) 状态变量x 决策变量()n u x 决策组11{,, ,}n n u u u - 损失(效益)函数:(,)n R x u 对x 用决策n u 所付代价(效益) 后部最优策略函数()n J x 由x 至终最小损失(最大效益)

A 到D 的最短路线 解 3阶段的决策过程, 在CD 段(首), (分析)阶段变量1n =; 7.6 图A 2C 1 B D 2 B 3 B 1 C 3 C 4 5 55 6 3 3) b (A 2 C 1B D 2 B 3 B 1 C 3 C 4 4 5 55 55 66677 7 3 3 (a) 3 =n 1 =n 2 =n

111111*********()(,)3,();()(,)5,();()(,)3,(). J C R C D u C D J C R C D u C D J C R C D u C D ========= 在BC 段(首), (分析)阶段变量2n =; 21111,2,3 ()min{(,)()} min{73,65,53}8i i i J B R B C J C ==+=+++=,213()u B C =; 22211,2,3 ()min{(,)()} min{63,55,73}9i i i J B R B C J C ==+=+++=,221()u B C =; 23311,2,3 ()min{(,)()} min{53,65,73}8 i i i J B R B C J C ==+=+++=,231()u B C =;

离散时间系统的分析

课程设计报告 课程设计题目:离散时间系统分析学号:201420130206 学生姓名:董晓勇 专业:通信工程 班级:1421301 指导教师:涂其远 2015年12月18日

离散时间系统的分析 一、设计目的和意义 1 . 目的: (1)深刻理解卷积和、相加、相乘运算,掌握求离散序列卷积和、相加相乘的计算方法;(2)加深理解和掌握求离散序列Z变换的方法; (3)加深和掌握离散系统的系统函数零点、函数极点和系统时域特性、系统稳定性的关系。 2 . 意义: 在对《信号与系统》一书的学习中,进行信号与系统的分析是具有十分重要的意义,同时也是必不可少的。利用matlab函数,只需要简单的编程,就可以实现系统的时域、频域分析,对系统特性进行分析,为实际的系统设计奠定了基础。本设计在离散系统Z域分析理论的基础上,利用matlab对离散系统的稳定性和频域响应进行了分析。 二、设计原理

第一部分:对离散时间系统的时域进行分析呈 对离散时间信号的代数运算(相加、相乘、卷积和),是在时域进行分析。相加用“+”来完成,相乘用“·*”来完成,卷积和则用conv 函数来实现,具体形式为y=conv(x1,x2,….),其中x1,x2,…..为输入的离散序列 ,y 为输出变量。 在零初始状态下,matlab 控制工具箱提供了一个filter 函数,可以计算差分方程描述的系统的响应,其调用形式为: y=filter(b,a,f) 其中,a=[a0,a1,a2,…]、b=[b0,b1,b2,….]分别是系统方程左、右边的系数向量,f 表示输入向量,y 表示输出向量。 第二部分:对离散时间系统的Z 域进行分析 matlab 工具箱提供了计算Z 正变换的函数ztrans,其调用形式为: F=zrtans(f) %求符号函数f 的Z 变换,返回函数的自变量为z 。 Matlab 的zplane 函数用于系统函数的零极点图的绘制,调用方式为: zplane(b,a)其中,b 、a 分别为系统函数分子、分母多项式的系数向量。 matlab 中,利用freqz() 函数可方便地求得系统的频率响应,调用格式为: freqz(b,a,N) 该调用方式将绘制系统在0~PI 范围内N 个频率等分点的幅频特性和相频特性图。 三、 详细设计步骤 1.自己设计两个离散时间序列x1、x2,对其进行相加,相乘,卷积运算,并显示出图形。 2.根据已知的LTI 系统:y[n]-0.7y[n-1]-0.6y[n-2]+y[n-3]=x[n]+0.5[n-1],得其在Z 域输 入输出的传递函数为: 1 12310.5()10.70.6z H z z z z ----+= --+ 利用matlab 求:(1)系统函数的零点和极点,并在z 平面显示他们的分布;(2)画出幅频响应和相频响应的特性曲线。 四、 设计结果及分析 (1).自行设计产生两个离散序列信号,对其进行相加、乘及卷积运算

离散时间系统题目及答案

1 判断下列序列是否是周期的,若是周期的,确定其周期。 (1) ??? ??+=53 sin )(x ππn n 解 z k 63 220 ∈===k k k w T ππ 当k=1时,x(n)的最小正周期为6. (2) ??? ??+=541) (πn j e n x 解 z 84 1220 ?===k k k w T πππ x(n)为非周期序列. 2.简述离散时间系统线性,时不变性,因果性,稳定性。 答:线性:满足齐次性和可加性 设y 1(n )=T [x 1(n )], y 2(n )=T [x 2(n )] 对任意常数a,b ,若 T [ax 1(n )+bx 2(n )]=aT [x 1(n )]+bT [x 2(n )] =a y 1(n )+b y 2(n ) 则称T[ ]为线性离散时间系统。 非时变: 设y (n ) = T [x (n )] 对任意整数k ,有 y (n-k )=T [x (n-k )] 稳定性 稳定系统是有界输入产生有界输出的系统,充要条件是 因果性 若系统 n 时刻的输出,只取决于n 时刻以及n 时刻以前的输入序列,而与n 时刻以后的输入无关,则称该系统为因果系统 线性时不变离散系统是因果系统的充要条件: 3傅里叶变换、拉普拉斯变换以及Z 变换的区别与联系。 答:信号与系统的分析方法除时域分析方法以外,还有频域的分析方法。在连续时间信号与系统中,其变换域方法就是拉普拉斯变换与傅里叶变换。在离散时间信号与系统中变换域分析方法是Z 变换法和离散时间傅里叶变换法。Z 变换在离散时间系统中的作用就如同拉普拉∑∑∑=====N k N k N k k k k k k k n y a n x T a n x a T 111 )()]([)]([()00 h n n =

连续系统离散化分析

1 实验一 离散系统的分析 一 实验目的 1.学习利用采样控制理论; 2.使用MATLAB 理论进行分析; 3. 学习利用z 变换与反变换分析离散控制系统; 二、实验步骤 1.开机执行程序 C :\matlab \bin \matlab.exe (或用鼠标双击图标)进人MATLAB 命令窗口; 2.运用所学自动控制理论z 变换与反变换,使用MATLAB 的基本知识分析离散控制系统的基本性质及进行控制系统的设计。 3. MATLAB 离散系统基本命令 模型转换 1)连续系统离散化 sysd=c2d(sys,T) T 为采样时间 sysd=c2d(sys,T,method) method 有四种模式: a. ‘zoh’---采用零阶保持器, b. ‘foh’---采用一阶保持器, c. ‘tustin’---采用双线性逼近(tustin )方法, d. ‘preqarp’---采用改进的(tustin )方法, 2)离散系统连续化 sys=d2c(sysd,T,method) T 为采样时间 例 设) 1(1)(+=s s s g , T=0.1s , 求G(z) 键入命令:sys=tf([1],[1 1 0]); c2d(sys,0.1) %采样时间0.1s 得到离散传递函数: 当采样时间取T=1s 时: 0.004837 z + 0.004679 G (z )= ---------------------------- z^2 - 1.905 z + 0.9048 0.3679 z + 0.2642 G (z )= ---------------------------- z^2 - 1.368 z + 0.3679

基于自适应动态规划的一类带有时滞的离散时间非线性系统的最优控制

Vol.36,No.1ACTA AUTOMATICA SINICA January,2010 An Optimal Control Scheme for a Class of Discrete-time Nonlinear Systems with Time Delays Using Adaptive Dynamic Programming WEI Qing-Lai1ZHANG Hua-Guang2LIU De-Rong1ZHAO Yan3 Abstract In this paper,an optimal control scheme for a class of nonlinear systems with time delays in both state and control variables with respect to a quadratic performance index function is proposed using a new iterative adaptive dynamic programming (ADP)algorithm.By introducing a delay matrix function,the explicit expression of the optimal control is obtained using the dynamic programming theory and the optimal control can iteratively be obtained using the adaptive critic technique.Convergence analysis is presented to prove that the performance index function can reach the optimum by the proposed method.Neural networks are used to approximate the performance index function,compute the optimal control policy,solve delay matrix function,and model the nonlinear system,respectively,for facilitating the implementation of the iterative ADP algorithm.Two examples are given to demonstrate the validity of the proposed optimal control scheme. Key words Adaptive dynamic programming(ADP),approximate dynamic programming,time delay,optimal control,nonlinear system,neural networks DOI10.3724/SP.J.1004.2010.00121 The optimal control problem of nonlinear systems has always been a key focus in the control?eld in the last several decades.Coupled with this is the fact that noth-ing can happen instantaneously,as is so often presumed in many mathematical models.So strictly speaking,time delays exist in the most practical control systems.Time delays may result in degradation in the control e?ciency even instability of the control systems.So there have been many studies on the control systems with time delay in various research?elds,such as electrical,chemical engineer-ing,and networked control[1?2].The optimal control prob-lem for the time-delay systems always attracts considerable attention of the researchers and many results have been obtained[3?5].In general,the optimal control for the time-delay systems is an in?nite-dimensional control problem[3], which is very di?cult to solve.So many analysis and appli-cations are limited to a very simple case:the linear systems with only state delays[6].For nonlinear case with state de-lays,the traditional method is to adopt fuzzy method and robust method,which transforms the nonlinear time-delay systems to linear systems[7].For systems with time delays both in states and controls,it is still an open problem[4?5]. The main di?culty lies in the formulation of the optimal controller which must use the information of the delayed control term so as to obtain an e?cient control.This makes the analysis of the system much more di?cult,and there is no method strictly facing this problem even in the linear cases.This motivates our research. Adaptive dynamic programming(ADP)is a powerful tool in solving optimal control problems[8?9]and has at-tached considerable attention from many researchers in re-cent years,such as[10?16].However,most of the results focus on the optimal control problems without delays.To Manuscript received September5,2008;accepted March3,2009 Supported by National High Technology Research and Development Program of China(863Program)(2006AA04Z183),National Nat-ural Science Foundation of China(60621001,60534010,60572070, 60774048,60728307),and the Program for Changjiang Scholars and Innovative Research Groups of China(60728307,4031002) 1.Key Laboratory of Complex Systems and Intelligence Sci-ence,Institute of Automation,Chinese Academy of Sciences,Beijing 100190,P.R.China 2.School of Information Science and Engi-neering,Northeastern University,Shenyang110004,P.R.China 3. Department of Automatic Control Engineering,Shenyang Institute of Engineering,Shenyang110136,P.R.China the best of our knowledge,there are no results discussing how to use ADP to solve the time-delay optimal control problems.In this paper,the time-delay optimal control problem is solved by the iterative ADP algorithm for the ?rst time.By introducing a delay matrix function,the explicit expression of the optimal control function is ob-tained.The optimal control can iteratively be obtained us-ing the proposed iterative ADP algorithm which avoids the in?nite-dimensional computation.Also,it is proved that the performance index function converges to the optimum using the proposed iterative ADP algorithm. This paper is organized as follows.Section1presents the preliminaries.In Section2,the time-delay optimal control scheme is proposed based on iterative ADP algorithm.In Section3,the neural network implementation for the con-trol scheme is discussed.In Section4,two examples are given to demonstrate the e?ectiveness of the proposed con-trol scheme.The conclusion is drawn in Section5. 1Preliminaries Basically,we consider the following discrete-time a?ne nonlinear system with time delays in state and control vari-ables as follows: x(k+1)=f(x(k),x(k?σ))+g0(x(k),x(k?σ))u(k)+ g1(x(k),x(k?σ))u(k?τ)(1) with the initial condition given by x(s)=φ(s),s=?σ,?σ+1,···,0,where x(k)∈R n is the state vector, f:R n×R n→R n and g0,g1:R n×R n→R n×m are dif-ferentiable functions and the control u(k)∈R m.The state and control delaysσandτare both nonnegative integral numbers.Assume that f(x(k),x(k?σ))+g0(x(k),x(k?σ))u(k)+g1(x(k),x(k?σ))u(k?τ)is Lipschitz continuous on a set?in R n containing the origin,and that system(1) is controllable in the sense that there exists a bounded con-trol on?that asymptotically stabilizes the system.In this paper,how to design an optimal state feedback controller for this class of delayed discrete-time systems is mainly dis-cussed.Therefore,it is desired to?nd the optimal control u(x)satisfying u(x(k))=u(k)to minimize the generalized performance functional as follows:

连续传递函数离散化的方法与原理

目录 第一章模拟化设计基础1第一节步骤1第二节在MATLAB中离散化3第三节延时e-Ts环节的处理5第四节控制函数分类6第二章离散化算法10摘要10比较11第一节冲击响应不变法(imp,无保持器直接z变换法) 11第二节阶跃响应不变法(zoh,零阶保持器z变换法) 11第三节斜坡响应不变法(foh,一阶保持器z变换法) 11第四节后向差分近似法12第五节前向差分近似法14第六节双线性近似法(tustin) 15第七节预畸双线性法(prevarp) 17第八节零极点匹配法(matched) 18第三章时域化算法19第一节直接算法1—双中间变量向后递推19第二节直接算法2—双中间变量向前递推20第三节直接算法3—单中间变量向后递推21第四节直接算法4—单中间变量向前递推(简约快速算法) 21第五节串联算法22第六节并联算法23第四章数字PID控制算法24第一节微分方程和差分方程25第二节不完全微分25第三节参数选择26第四节 c51框架27第五章保持器33第一节零阶保持器33第二节一阶保持器30附录两种一阶离散化方法的结果的比较31

第一章 模拟化设计基础 数字控制系统的设计有两条道路,一是模拟化设计,一是直接数字设计。如果已经有成熟的模拟控制器,可以节省很多时间和部分试验费用,只要将模拟控制器离散化即可投入应用。如果模拟控制器还不存在,可以利用已有的模拟系统的设计经验,先设计出模拟控制器,再进行离散化。 将模拟控制器离散化,如果用手工进行,计算量比较大。借助数学软件MATLAB 控制工具箱,可以轻松地完成所需要的全部计算步骤。如果需要的话,还可以使用MATLAB 的SIMULINK 工具箱,进行模拟仿真。 第一节 步骤 步骤1 模拟控制器的处理 在数字控制系统中,总是有传输特性为零阶保持器的数模转换器(DAC ),因此,如果模拟控制器尚未设计,则应以下图 的方式设计模拟控制器,即在对象前面加上一个零阶保持器,形成一个新对象Ts 1e G s s ()--,然后针对这个新对象求模拟控 制器D(s)。事实上,模拟控制器一般是已经设计好的,无法或不方便更改了,离散化后的系统只好作为近似设计了。 然而,按照上述思路,可否将已有的控制器除以一个零阶保持器再离散化呢还没有这方面的实际经验。 D(s)x u e -模拟控制器 1-e -Ts s G(s)对象 以下假设选定的G(s),D(s)如下图,而且不对G(s)作添加保持器的预处理。 x u e -D(s)=8s+2 s+15 .G(s)=20 s(s+2) 步骤2 离散化模拟控制器 离散化模拟控制器之前,先要确定离散化算法和采样时间。离散化算法有好几种,第二章中有详细的论述,现假定采用双线性变换法。确定采样时间,需要考虑被控对象的特性,计算机的性能,以及干扰信号的影响等,初步可按采样时间T<,Tp 为被控对象时间常数,或T=~τ,为被控对象的纯滞后,初步确定后再综合平衡其它因素,当然这需要一定的经验,现在假定取秒。 假设模拟控制器为s 2 D s 8s 15 +=?+(),在MATLAB 中,用c2d 函数进行离散化,过程为: 转换结果为: x u e -D(z)= 6.1091(z-0.9048) z-0.4545 D(s)=8s+2 s+15. G(s)= 20s(s+2) 步骤3 检验数字控制器的性能 数字控制器的性能项目比较多,我们仅以直流增益,频率特性,零极点分布说明。 ds=zpk(-2,-15,8) %建立模拟控制器的s 传递函数 dz=c2d(ds,,'tustin') %将模拟控制器按tustin 方法转换为z 传递函数的数字控

离散时间系统分析资料

课程设计报告课程设计题目:离散时间系统分析 学号:201420130327 学生姓名:刘新强 专业:通信工程 班级:1421302 指导教师:涂其远 2015年12 月15 日

目录 第0章: Matlab简介 第1章: 离散时间系统的设计 1.课程设计的目的与要求 2.课题内容分析 3.实验原理 4.具体设计方案 第2章: 离散时间系统的仿真 1.画出零极点图,判断系统的稳定性 2.求出单位样值响应,并画出图形 3.求出系统的幅频响应和相频响应,并画出图形第3章: 总结

第0章: Matlab简介 MATLAB[1] 是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室)。是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。 MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。 MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来; 2) 具有完备的图形处理功能,实现计算结果和编程的可视化; 3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握; 4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,为用户提供了大量方便实用的处理工具。

离散时间信号与离散时间系统..

§7-1 概述 一、 离散时间信号与离散时间系统 离散时间信号:只在某些离散的时间点上有值的 信号。 离散时间系统:处理离散时间信号的系统。 混合时间系统:既处理离散时间信号,又处理连 续时间信号的系统。 二、 连续信号与离散信号 连续信号可以转换成离散信号,从而可以用离散时间系统(或数字信号处理系统)进行处理: 三、 离散信号的表示方法: 1、 时间函数:f(k)<——f(kT),其中k 为序号,相当于时间。 例如:)1.0sin()(k k f = 2、 (有序)数列:将离散信号的数值按顺序排列起来。例如: f(k)={1,0.5,0.25,0.125,……,} 时间函数可以表达任意长(可能是无限长)的离散信号,可以表达单边或双边信号,但是在很多情况下难于得到;数列的方法表示比较简单,直观,但是只能表示有始、有限长度的信号。 四、 典型的离散时间信号 1、 单位样值函数: ?? ?==其它001)(k k δ 下图表示了)(n k -δ的波形。

这个函数与连续时间信号中的冲激函数)(t δ相似,也有着 与其相似的性质。例如: )()0()()(k f k k f δδ=, )()()()(000k k k f k k k f -=-δδ。 2、 单位阶跃函数: ?? ?≥=其它001)(k k ε 这个函数与连续时间信号中的阶跃函数) (t ε相似。用它可以产生(或表示)单边信号(这里称为单边序列)。 3、 单边指数序列: )(k a k ε 比较:单边连续指数信号:)()()(t e t e t a at εε=,其底一定大于零,不会出现负数。 4、 单边正弦序列:)()cos(0k k A εφω+ 双边正弦序列:)cos(0φω+k A (a) 0.9a = (d) 0.9a =- (b) 1a = (e) 1a =- (c) 1.1a = (f) 1.1a =-

相关文档
最新文档