新能源能源管理系统方案

新能源能源管理系统方案
新能源能源管理系统方案

新能源能源管理系统方案

1概述

国内外先进工业规模企业的成功实践证明,利用先进能源管理系统来进行能源管理,对能源的统一调度、优化能源介质平衡、减少煤气放散、提高环保质量、降低企业综合能耗和提高劳动生产率有重要作用,而且对于能源事故原因的快速分析和及时判断处理、能源计划编制、实绩分析、质量管理、能源预测等都是十分有效的。

企业能源管理系统主要由数据采集层、数据传输网络、能效管理系统软件三部分组成,武汉舜通智能科技公司是专业致力于企业能源管理系统的综合技术方案供应商,公司通过自主研发,在数据采集层研发出SmartDAQ具有完全自主知识产权的能耗采集器产品,在能效管理系统软件上研发完全适合不同行业应用的管理系统QT-EMS能源管理系统,该产品的特点是在数据通讯,数据完整性保证,行业差异方面具有可扩展性和先进性原则,为客户提供优良的服务。通过多年的持续努力,QT-EMS能源管理软件在高耗能企业、公共建筑、节约型校园等领域获得客户高度评价。

2系统特点

QT-EMS能源管理系统主要特点如下:

1)对耗能企业的的用电、用水、用煤、暖气等介质能源实现在线能源监测;

2)自主研发的能耗采集器,通过RS485,无线Zegbee、无线GPRS等通讯方式对电表、水表、气表实现数据采集;

3)能耗采集器具有采集时间灵活设定,具有internet/无线3G传输机制,能够实现断点续传,确保数据在30天断线的情况下,数据有效本地存储,在上线后续传;

4)为企业建立统一的能耗管理平台,实现对单位建筑,单位房间的能耗分析和管理,实现对能耗的分类分项统计;

5)具有二级管理子单元,如远程抄表系统,电表预付费管理系统;

6)通过能耗数据分析,发现能耗黑洞;

7)为节能改造指明方向,并验证节能效果;

8)横向比较相同类型建筑的能耗数据,通过能耗公示鼓励先进、督促落后;

9)数据传输采用MD5认证算法以及AES加密算法,保证信息传输的可靠性、保密性。

3系统结构

系统根据具体的工程情况来组网,采用分层分布式结构。

根据项目规模的大小,可以灵活选择通讯介质和组网方式。当设备比较集中时,通讯介质通常采用屏蔽双绞线和五类八芯屏蔽电缆;当系统设备比较分散时,可采用光纤作为通讯介质,组网方式可以采用光纤环网或者光纤星型网;如果设备较少而且非常分散,可以采用无线通讯设备组网。

系统拓扑图如图1所示:

1)数据采集层:采用由武汉舜通智能公司生产的smartDAQ安装在现场的智能数据采集器/变送器,采集器主要为电力采集模块、智能远传水表、智能远传气表三种。

电力采集模块采集电压、电流、有功、无功、谐波、电量等参数;智能远传水表采集瞬时流量及累计用水量;智能远传气表采集瞬时气流量及累计用气量。根据现场条件和系

统应用的要求,变压器高压侧参数采集取自用户的变电站后台系统。

2)数据传输网络:现场采用RS-485总线,将区域内的电力采集模块连接至相对的数据集中器;各数据集中器通过用户局域网连接至中央服务器。部分实际情况不理想的区域,灵活选用电话网络、电力线载波、GPRS/CDMA、无线网桥等多种方式。

3)能效系统软件:完成数据采集、校验、分析、处理、输出、系统维护、授权使用权限分级控制等;并可将现场运行的重要数据、报警信息、故障信息等传送到企业决策人员。

3.1软件实现原理

武汉舜通智能科技有限公司通过自主研发,在系统软件设计上具有独到之处,自主研发的QTouch组态软件对采集层的硬件提供了软件支撑,采集层和通讯层具有丰富的通讯规约库,不仅快而且强大,能够快速实现对智能电表的数据采集,分类分项,完整性转换,远程传输,断点续传等特点。

软件系统实现原理如下图2所示:

3.2EMS能源管理系统功能

QT-EMS能源管理系统针对不同行业具有不同的特点,采用模块化设计原则,在业务结构上与企业充分沟通,建立符合企业需要的能源管理系统,为企业用好能源管理系统做服务,因而在功能结构上分三层模块,系统功能如下图3所示:

4系统功能

4.1能耗平台主页面

概要显示当月、当年用能情况,并与往年同期用能进行对比,掌握用能趋势。实时动态监测企业当前用电功率。通过设置每日用能的计划值,实现用能的定额管理,并与实际用能进行对比,对可能出现的用能突增进行预警。将各类用能折算为标准煤,全局掌握企业用能情况。

4.2用能趋势分析

通过用能趋势图,快速定位用能负荷高峰,并逐级定位高峰能耗的组成,为移峰填谷找到依据。

4.3节能足迹

记录每一次节能改造的过程和记录,通过改造后的同比分析,使原来无法说清楚的节能改造效果变得可量化、可比较、可评价,展示节能工作所取得的成果。

4.4报表服务

按需定制的各类报表,包括分户能耗、设备能耗、数据集抄等,并可将数据导出到Excel 等电子文件,方便日常管理工作。

4.5B/S访问接口

系统提供C/S和B/S两种访问模式,C/S访问模式客户端响应速度快,充分发挥客户端PC的处理能力,减轻服务器的压力。B/S访问模式不需要安装客户端,任何地方只要有一台可以上网的电脑即可访问服务器,做到了真正的跨网络、跨平台访问。

4.6系统灵活扩展

系统可根据企业实际用能情况,灵活配置用能类型、用能结构、用能设备、用能区域、监测参量等基本信息,对系统上线后发生的用能回路、用能设备的增加亦只需进行配置即可。系统可以通过互联网接入单个或多个单位的用能情况,进行集中管理。

4.7集团式能耗管理模式

系统将归属同一集团、同一区域的单位的GPS坐标标注在电子地图上,鼠标停靠在坐标上可显示该企业的能耗概况,双击图标后可显示企业用能的详细情况,方便集团公司对下属分公司、门店进行集中管控。

4.8远程集抄

将分散分布的能源监测计量表具通过能源管理系统连接在一起,各表数据采集时间偏差十分微小,大大减轻人工抄表的工作量,实现“能耗信息采集自动化、数据传输网络化、管理数字量化、决策科学化”的目标。

4.9电能质量管理

通过与电能管理系统的数据接口,可将电能管理中的数据引入到能耗系统中进行分析,包括三相电流、三相电压、功率、功率因素、谐波等。

4.10分项能耗分析

将各类能源监测数据(水、电、气)接入到一套能耗监测系统中,改变原来多头管理的局面,清晰的掌握企业能耗的构成,避免能耗改造过程中降低某一类能耗的同时增加了其他类能耗的支出。

4.11用能分时段统计

将企业用能按照尖、峰、平、谷(时间段可灵活设置,时间段设置可扩展)划分,找到

企业用能在时间段上的不合理之处,也可作为企业能耗复费率计算的依据。同时,系统

可以统计任意时间期间的能耗,并进行逐日、逐周、逐月、逐季度、逐年汇总。

4.12多维度用能分析

判断一个能耗的高低,不应仅仅看总量,还应将能耗数据同建筑面积、员工人数、

商场客流量、产量、销售额、环境温度等其他参数进行综合比较,系统可以根据需要建

立不同的能耗分析模型,从而更加科学、更加准确的判断建筑能耗的高低。

5产品清单

产品清单如下所示:

能耗监测产品清单

1、现场设备

序号设备名称型号数量供应商单位单价总价备注

1 预付费电能表DDZY719(二相)4449 国产台

2 预付费电表DDZY719(三相)34 国产台

3 水表ZDKS-M20S(DN20)130 国产台

4 天然气表G2.5S 23 国产台

5 能耗采集器QT241 87 武汉舜通台

小计

2、能耗管理平台

序号设备名称型号数量供应商单位单价总价备注

1 服务器IBM X3100 1 IBM 台

2 工作站联想扬天 M4632D 2 联想台

3 操作系统软件Windows 3 微软套

4 能耗监测软件平台QT-EMS能耗监测软

件(B/S)

1 武汉舜通套

5 工作台监控主机工作台(双

工位)

2 国产台

6 串口通讯线RVVP屏蔽线3000 国产米

7 网线屏蔽5类双绞线500 国产米

8 网线水晶头150 国产个

小计调试服务

1 施工调试服务(接通讯线、安装电脑软件、调试通讯管理机)

2 能耗管理需求分析

3 能耗监测软件实施

4 培训及资料交接

5 试运行及售后服务

小计合计(总价)

2018年新能源汽车热管理系统分析报告

2018年新能源汽车热管理系统分析报告

投资聚焦 研究背景 汽车电动化浪潮下,新能源汽车热管理系统的需求高增长;与传统汽车热管理系统相比,新能源汽车热管理系统的单车价值量更高。我们在本篇报告中深度研究了汽车电动化浪潮下热管理行业的变化,并结合分析推导出投资策略。 创新之处 (1)在本报告中,我们从空调系统、电池热管理系统及整体解决方案三个方面,对电动车和传统燃油车热管理系统的异同进行了定性和定量分析,进而对电动车热管理系统的市场需求进行了测算。 (2)本报告投资策略的标的选择范围更广,我们在A股和新三板两个市场中选择优质标的。 投资观点 汽车电动化趋势下,热管理行业迎来变革期。微观角度来看,与传统燃油汽车相比,电动车热管理系统的变化包括:(1)热管理模块新增电池热管理系统、电机电控热管理系统等;(2)空调系统动力源由发动机变为电能,系统复杂程度明显提升;(3)热管理整体解决方案需更加重视功能实现和能耗管理的平衡。以上变化反应在行业层面为:(1)热管理系统的单车价值量明显提升,行业空间也相应增加;(2)行业格局或将出现变化。 根据我们的测算,2020年全球电动车热管理系统需求约300亿元,CAGR约50%,其中,中国市场需求约125亿元(CAGR44%),海外市场需求约175亿元(CAGR59%)。 我们认为在汽车电动化浪潮中,既有的汽车热管理竞争格局已有松动迹象,国内企业存在弯道超车的可能性。我们首次给予汽车热管理行业“买入”评级,建议关注: 1、A股:三花智控(002050.SZ,全球空调阀门龙头)、奥特佳(002239.SZ,汽车空调压缩机龙头)、松芝股份(002454.SZ,客车空调龙头)、银轮股份(002126.SZ,汽车热交换器龙头)、中鼎股份(000887.SZ,密封件龙头)等; 2、新三板:昊方机电(831710.OC)、瑞阳科技(834825.OC)等。风险因素 (1)新能源汽车政策变化影响行业发展的风险:新能源汽车行业仍在早期发展阶段,政策会对行业发展产生较大影响,若监管部门发布相关政策,可能会冲击行业发展。 (2)技术路线更替风险:技术进步是新能源汽车行业发展的驱动力之一,新产品的产业化可能会对上一代产品产生冲击,进而替代原有的技术路线。 (3)市场竞争加剧风险:新能源汽车行业拥有很大发展空间,有大量企业参与竞争,行业产能可能在短期内超过需求,从而出现产能过剩的风险。

电动汽车电池组热管理系统的关键技术

第22卷 第3期 2005年3月 公 路 交 通 科 技 Journal of Highway and T ransportation Research and Development V ol 122 N o 13 Mar 12005 文章编号:1002Ο0268(2005)03Ο0119Ο05 收稿日期:2004Ο03Ο16 基金项目:国家高技术研究发展计划(863计划)重大专题项目(2003AA501100) 作者简介:付正阳(1978-),男,北京人,清华大学汽车工程系硕士研究生,主要从事电动汽车方面的研究1 电动汽车电池组热管理系统的关键技术 付正阳,林成涛,陈全世 (清华大学 汽车安全与节能国家重点实验室,北京 100084) 摘要:电池组热管理系统的研究与开发对于电动汽车的安全可靠运行有着非常重要的意义。本文分析了温度对电池组性能和寿命的影响,概括了电池组热管理系统的功能,介绍了电池组热管理系统设计的一般流程,并对设计热管理系统提出了建议。文章重点分析了设计电池组热管理系统过程中的关键技术,包括电池最优工作温度范围的确定、电池生热机理研究、热物性参数的获取、电池组热场计算、传热介质的选择、散热结构的设计等。关键词:电动汽车;电池组;热管理系统 中图分类号:T M911141 文献标识码:A K ey Technologie s of Thermal Management System for EV Battery Packs FU Zheng Οyang ,LIN Cheng Οtao ,CHEN Quan Οshi (S tate K ey Laboratory of Autom otive Safety and Energy ,Tsinghua University ,Beijing 100084,China ) Abstract :Research and development of battery thermal management system (BT MS )is very im portant for the operation safety and relia 2bility of electric vehicle (E V )1In this paper ,by analyzing the in fluence of tem perature on the per formance and service life of batteries ,the desired function of a BT MS was outlined ,a procedure for designing BT MS was introduced 1Several key technologies during designing a BT MS were introduced and analyzed ,including optimum operating tem perature range of a battery ,heat generation mechanism ,ac 2quisition of the therm odynamic parameters ,calculation of tem perature distribution ,selection of heat trans fer medium ,design of cooling structure and s o on 1 K ey words :E lectric vehicle ;Battery pack ;Thermal management system 0 引言 能源与环境的压力使传统内燃机汽车的发展面临前所未有的挑战,各国政府、汽车公司、科研机构纷纷投入人力物力开发内燃机汽车的替代能源和动力,这大大促进了电动汽车的发展。 电池作为电动汽车中的主要储能元件,是电动汽车的关键部件[1,2],直接影响到电动汽车的性能。电池组热管理系统的研究与开发对于现代电动汽车是必需的,原因在于:(1)电动汽车电池组会长时间工作 在比较恶劣的热环境中,这将缩短电池使用寿命、降 低电池性能;(2)电池箱内温度场的长久不均匀分布将造成各电池模块、单体性能的不均衡;(3)电池组的热监控和热管理对整车运行安全意义重大。 清华大学从承担国家“八五”电动汽车攻关项目以来,在电动汽车、混合动力汽车和燃料电池汽车关键技术的研究中,积极开展了电池组热管理系统的研究,并在样车上进行了道路试验,目前电池组热管理系统的优化设计与改进工作正在进行中。本文是对前阶段研究工作的总结和今后工作的展望。

汽车热管理综述

汽车热管理现状发展综述 自从汽车产生以来,排放以及燃油经济性有关先进科学技术陆续应用到了内燃机上,汽车性能得到了明显的改善。在内燃机燃烧系统、气体热交换系统以及发动机控制系统的发展与改进方面,我们都花费了大量的精力。为了提高发动机的性能,但是,在之后的35年,我们都在发动机及其动力总成上花费了很大的精力,收获却越来越小,成本越来越高。幸运的是,现代工业已经发现并探索出了“最后的领地”—汽车热管理。 何为汽车热管理系统?汽车热管理系统是从系统集成和整体角度出发,统筹热量与发动机及整车之间的关系,采用综合手段控制和优化热量传递的系统。先进的热管理系统设计必须同时考虑发动机冷却系统与润滑系统、暖通空调系统(HV AC)以及发动机舱内外的相互影响,采用系统化、模块化设计方法将这些系统进行设计集成、制造集成,集成为一个有效的热管理系统。其必须能根据行车工况和环境条件,自动调节冷却强度以保持相应的部件在最佳的温度范围内工作,改善汽车各方面的性能,例如燃油经济型、驾驶舒适性等。因此,开发高效可靠的汽车热管理系统已经成为发动机进一步提高功率、改善经济性所必须突破的关键技术问题。因此采用先进的热管理系统设计理念,应用汽车现代设计方法和手段,对汽车热管理系统进行深入研究具有十分重要的意义。 1.国内汽车热管理系统的研究现状 发动机冷却系统作为发动机正常稳定运行的重要辅助系统,国内学者和企业对其研究一直在不断地深入和扩展。在燃烧放热,活塞、缸套、气缸盖温度场与热负荷,缸内气体流动与传热,散热器设计,风扇设计优化,排气系统传热等方面做了大量的研究工作。 目前,国内对汽车整车或者整机的热管理研究并不成熟,还处于初级阶段。国内对整车或者整机的研究主要集中在某几个高校,如同济大学、浙江大学、西安交通大学、清华大学等;而只有几所高校研究发动机的整机热管理,并且还处于起步阶段;而对于整车的热管理研究,国内几乎没有可以承担的。国内大部分企业主要针对某些零部件做单一的研究,并没有把部件统一起来作为整体来考虑。 对于小型轿车来说,冷却系统趋于向高性能方向发展,电控应用技术越来越多;但是对于重型车辆来说,改变并不是很大。重型汽车热管理系统基本结构在过去的40—50年里变化不大,有些部件(冷却液泵和节温器)的设计基本上没改变过。传统的节温器通常采用的是注蜡式节温器,它只能在一定的冷却液温度(80一85℃)内进行单点控制(节温器在85℃时开启,80℃时关闭),不能满足未来的冷却系统对冷却液流量精确控制的要求。研究表明。在25℃大气温度时,路上运行的负载车辆,其节温器打开(大循环)时间仅占总时间的10%。另外,

新能源汽车电池热管理调研报告

1. 新能源汽车电池热管理 1.1 市场情况 汽车热管理主要作用是为驾驶舱提供舒适温度环境,使汽车各部件在适合的温度范围工作。而新能源汽车的热管理包括空调系统、电池热管理、电子设备热管理和电机热管理,整体价值将达到整车的8%-10%左右。由于温度对电池安全、寿命、性能乃至整车续航里程都产生直接影响,因此电池热管理是新能源汽车热管理的核心。 相比传统汽车,新能源汽车电池热管理系统为新增加的系统,为从0到1的增量市场。以乘用车为例,液冷模式下单车价值在1500元左右。液冷模式的电池热管理系统包括电子膨胀阀、冷却板、电池冷却器、电子水泵等价值量较大的部件,系统整体单车价值约为1500元。该情况下,新能源汽车热管理系统价值量有望由传统汽车2000元左右提升至6000元,预估2020年国内市场规模有望达到70亿。 表1 电池热管理系统(液冷)单车价值量拆分 冷却板150 4~6 600~900 电池冷却器200 1 200 电子水泵250~300 1 250~300 电子膨胀阀150 1 150 其他200 合计1400~1700 (来源:长江证券研究所)1.2 电池热管理技术 电池热管理主要分为三个内容: 1)在电池温度较高时进行冷却,防止电池热失控; 2)在电池温度较低时进行加热,确保电池低温下的充电性能和安全性; 3)对电池系统进行保温,提高电池热管理效率,减少热管理能耗。 电池热管理系统的重点在于冷却,且根据冷却介质的不同,可分为风冷、液冷、相变材料冷却三种方式。目前已实现商用的是风冷和液冷,而相变材料冷却方案由于技术尚不成熟,尚未在汽车领域使用,短期内商业化可能性不大。 表1 不同电池冷却方案优劣势对比

2018年汽车热管理系统行业深度分析报告

2018年汽车热管理系统行业深度分析报告

投资要点: ?技术路线:从传统到新能源,热管理系统复杂性提升汽车热管理系 统广泛意义上包括对所有车载热源系统进行综合管理与优化,热管理系统主要是用于冷却和温度控制,例如对发动机、润滑油、增压空气、燃料、电子装置以及EGR的冷却,对发动机舱及驾驶室的温度控制。热管理系统工作性能的优劣,直接影响汽车的整体性能,对于整车的重要性不言而喻。新能源汽车的发展,对于汽车热管理系统是一场大的变革。传统燃油车的热管理架构主要包括了空调系统以及动力总成热管理系统。新能源汽车由于动力源发生了变化,新增了三电系统,因此要对电池、电机、电控等进行热管理的重新构建。此外,新能源汽车的空调系统因为动力方式的转变也产生较大的变革,从压缩机部件到制暖系统都需要进行技术的升级以及产品的替换。总体而言,从传统燃油车到新能源汽车,汽车热管理系统变得更加复杂,对于整车的重要性愈加提升。 ?产品空间:传统叠加新能源,热管理市场扩容1)节能减排带来传 统燃油车热管理部件新需求。节能推动涡轮增压器市场渗透率持续提升。针对2020年我国乘用车产品平均燃料消耗量达到5L/100km 的目标,涡轮增压(小排量化)成为提升发动机能量转化效率的重要技术,预计到2020年汽油机涡轮增压的比例会上升到40%。节能减排推动尾气处理(EGR)渗透率持续提升。到2020年,我们预测柴油车EGR装机率将逐步达到60%,汽油车EGR装机率达20%。涡轮增压器和尾气处理(EGR)市场渗透率的提升,将直接带动中冷器、电子水泵、EGR冷却器等热管理零部件需求量提升。 2)电动化趋势下,催生新能源汽车热管理新增量市场。目前电动化已经成为汽车行业最主要的趋势之一,各国政府出台相关政策推动,而各家车企也都不同程度的投入到新能源汽车的研发生产中。在政策与产业的联合助力下,新能源汽车发展迅速。单车价值方面,由于新能源汽车热管理系统相对于传统燃油车增加了电机电控冷却系统和电池热管理系统,形成新的产品需求如电子膨胀阀、电池冷却器、电池水冷板、电子水泵等,因此单车价值从传统车的2200元左右提升至4600元左右。3)预计到2020年,传统燃油车热管理系统全球市场规模超2200亿元,新能源汽车热管理系统全球市场规模超200亿元。 ?竞争格局:传统市场行业集中度较高,新能源市场中外厂商共谋未

新能源汽车控制系统

新能源汽车控制系统》教学大纲 总学时:32H 学分:2 基本面向:自动化所属单位:自动化系 一、本课程的目的、性质及任务本课程是专业方向任选课程,是机械、电力电子、自动控制、化工等诸多技术和学科应用于汽车工程上的一门综合技术,也是一个国家现代化水平的重要标志之一。本课程的任务是使学生学习综合、系统地应用自动控制专业知识,熟悉并初步掌握新能源汽车控制系统的原理和基本设计思路与方法,具备开发新能源汽车控制系统的初步研制能力。力求使学生能结合我国汽车工业和控制技术应用等领域的现状和发展,了解国内外新能源汽车研制的新成果和新动态,拓展知识面,提高相关的专业技能。 二、本课程的基本要求 1、全面理解新能源汽车与燃油汽车的区别,了解新能源汽车的性能、特点、结构与指标要求,以及最新的发展动态。 2、综合应用自动控制专业知识,进一步理解掌握新能源汽车的控制技术,包括新能源汽车驱动系统控制机构和控制策略。掌握新能源汽车构成原理及设计步骤。 3、以新能源汽车为控制对象,进一步学习新能源汽车控制系统的新技术和发展趋势,学习系统地应用自动控制专业知识的方法,提高专业实际分析能力和应用技能。 三、本课程与其它课程的关系(课程的前修后续关系)前修课程:自动控制原理、电力电子技术、电机与拖动基础、运动控制系统、汽车理论与构造基础、汽车电子控制技术后续课程:无四、本课程的教学内容 第一章绪论 1、新能源汽车的定义和分类 2、新能源汽车产生和发展的原因 3、新能源汽车的发展历史 4、新能源汽车的基本结构 5、新能源汽车的主要行驶性能指标 第二章新能源汽车 1、纯电动汽车 2、混合动力电动汽车 3、太阳能电动汽车 4、燃料电池电动汽车

车辆热管理系统的建模与仿真

车辆热管理系统的建模与仿真 作者:世冠工程公司 车辆热管理系统广泛意义上包括对所有车载热源系统进行综合管理与优化,现阶段主要研究对象通常以冷却系统为核心,综合考虑润滑系统油冷器、空调系统冷凝器及中冷器等与冷却系统之间的相互影响,而发动机冷启动特性研究和发动机舱流动传热分析为车辆热管理研究的首要问题。 典型的车辆冷却系统(见图1),包括:冷却水泵、发动机、油冷器、节温器、散热器、暖风与膨胀水箱等部件。 图1 典型车辆冷却系统结构 通过对系统进行建模仿真计算,必须考虑以下物理现象: 1.系统各支路流量、压力与温度分布; 2.节温器的工作特征; 3.系统动态过程温度波动; 4.系统各处的换热情况。 车辆冷却系统 AMESim针对车辆冷却系统提供了热库、热流体库及冷却系统库等专业库,涵盖了冷却系统建模所需要的全部部件,通过鼠标拖放操作就可以快速建立起冷却系统的仿真模型。

图2 AMESim车辆冷却系统模型 图2为应用AMESim建立起的车辆冷却系统模型,该模型需要输入的参数如下: 1.实际系统的管网结构; 2.采用冷却液的种类; 3.各段冷却水管的几何尺寸; 4.水泵特性曲线; 5.系统各部件的流阻特性(散热器、油冷器和水套等); 6.散热器性能MAP图。 通过设定系统外部边界条件(大气压力、大气温度等)及系统初始条件,给定仿真周期,AMESim能够自动选择最优的积分算法与步长,快速完成系统瞬态计算。AMESim车辆冷却系统典型仿真结果见图3。

图3 AMESim车辆冷却系统仿真结果 由图3可见,通过AMESim建模仿真可以计算系统各支路流量与流动阻力,对系统整体性能进行评估,选择关键部件的尺寸并设计控制策略等。基于AMESim冷却系统解决方案,工程师可以研究新的部件、新型结构对系统效率和性能的影响,包括: 1.分析采用新型电子水泵和电子节温器的影响; 2.分析系统最高工作温度; 3.分析新的部件、新的布置结构以及管路尺寸的影响; 4.分析更高的水箱压力对汽蚀的影响。 发动机热模型 采用上述冷却系统模型并不能精确计算发动机的冷启过程,因为上述模型并没有考虑机体内存储的能量与机体内部的换热过程,因此,需要建立更加详细的发动机机体热模型,充分考虑机体内的换热过程。首先,考虑一个典型的发动机机体结构,为了建立发动机机体离散热模型,必须考虑热流体属性(润滑油、冷却液、空气和燃烧废气)、固体热容(铝、铸铁)以及这些热容间的传热(传导、对流和辐射)。发动机机体(见图4)被离散为以下热容结构(最少热容点离散方式,可以进一步细化):油底壳、曲轴箱、曲轴、连杆、活塞、缸体外壁、气缸、气缸盖和凸轮轴。 图4 机体热模型基本结构 对发动机机体进行离散后,必须正确考虑离散后各部分之间的传热现象,包括: 1.各离散质量点之间的热传导(缸体、缸盖及活塞等);

2019年新能源汽车热管理系统行业分析报告

2019年新能源汽车热管理系统行业分析报告 2019年9月

目录 一、热管理需求催生热管理系统 (4) 1、热管理对整车安全和用能经济性重要性强 (5) 2、热管理影响乘员舱温度和乘员舒适程度 (9) 二、热管理系统,各司其职 (10) 1、发动机热管理、三电热管理、空调系统按需配置 (10) 2、发动机及附属系统的热管理 (12) 3、三电系统的热管理 (14) 4、空调系统 (17) 5、全局热管理:统筹控温,精巧高效 (20) 三、新能源汽车提供价值增量,热管理待一飞冲天 (22) 1、新能源汽车销量增速总体迅猛,纯电动乘用车主体地位确立 (22) 2、补贴逐步退坡“双积分”征求意见,新能源汽车长期规模有保证 (24) 3、纯电动乘用车长续航、高能量密度化进行时 (28) 4、热管理重要性提升,真增量市场待逐步开启 (29) 四、相关上市公司:面对国际巨头,自主待突破 (33) 1、国际巨头寡头垄断 (33) 2、自主企业待逐步突破 (34)

整车热管理需求催生热管理系统。 热管理的作用是通过不同形式的热交换对整车的不同部分进行温域控制、形成合理温度场,以主导/协助满足整车安全性、经济性和乘员舒适性等需求。 对燃油汽车而言,发动机处于工作状态时是核心产热部件,其不同工况下的温度场分布直接影响整车热效率和工作寿命;发动机附属系统、减排系统等也都有合理温度范围需求。 对新能源汽车而言,在较高的实际温度下使用或存放直接影响动力电池的使用寿命甚至安全性;在较低温度下使用也影响动力电池的输出能力、充电能力和安全性。 乘员舱的物理尺寸和温度分布严重影响驾驶、乘坐体验。通常情况下,不同季节时人对体感温度的可接受区间有合适范围。行车环境下增减衣物调节空间有限,通过空调等手段进行乘员舱热管理重要性进一步增加。 发动机及附属系统、三电系统、空调系统热管理各司其职。 热管理系统所采用的零部件包括各类泵、阀、工质容器、热交换器、压缩机、管路、散热器等,分别按需应用于发动机及附属系统、以动力电池为首的三电系统、空调系统。 发动机热管理子系统主要包括由散热器、冷却风扇、节温器、水泵、膨胀水箱、冷却液管路、等;三电热管理子系统主要包括电池冷却器、电子膨胀阀、电子水泵等;汽车空调子系统主要包括压缩机、冷凝器、蒸发器、膨胀阀、贮液干燥器、管路、空调箱及控制系统等。

2020年新能源汽车热管理行业分析报告

2020年新能源汽车热管理行业分析报告 2020年6月

目录 一、汽车热管理简述 (6) 1、汽车热管理系统概述 (6) (1)燃油车热管理系统构成 (7) (2)新能源汽车热管理系统构成 (7) (3)混合动力汽车热管理系统构成 (8) 2、汽车热管理技术 (9) (1)燃油车热管理技术 (9) ①发动机热管理技术 (9) ②变速箱冷却系统技术 (10) ③乘用舱空调系统技术 (11) (2)新能源汽车热管理技术 (12) ①电动汽车电池热管理技术 (12) A.空冷式散热系统 (12) B.液冷式散热系统 (12) C.相变材料式散热系统 (13) ②电机/电机控制器热管理技术 (14) ③DCDC热管理技术 (15) ④充电机热管理技术 (16) 二、热管理是汽车发展的必然趋势 (16) 1、节能减排重要性倒逼汽车热管理 (16) (1)汽车热管理精准开发对节能减排的重要性 (16) (2)节能减排势在必行 (17) 2、热管理对新能源汽车更加重要 (20) (1)热管理对新能源汽车有多重意义 (20) ①续航里程和电池成本问题,仍然制约新能源汽车的发展,汽车热管理有利于提 升电动车续航里程 (21)

②新能源汽车的安全问题仍然制约新能源汽车的发展,加强动力电池品控和整车 热管理有利于减少安全事故 (22) (2)各大车企加快投放新能源车型,热管理零部件需求大增 (24) ①新能源汽车发展迅速 (24) ②新能源汽车成长空间巨大,目前进入到1%-10%的成长期 (24) ③新能源汽车生产准入门槛放宽:造车新势力迎利好,各个车企制定新能源汽车 战略 (25) 三、新能源汽车热管理应用技术主流 (26) 1、PTC加热损耗热能,热泵空调是主要应用方向 (26) 2、液冷是电池热管理主流方向 (30) 3、新能源整车热管理是必然的趋势 (32) 4、新能源汽车热管理单车配套价值高 (33) 四、汽车热管理市场规模与竞争格局 (34) 1、从燃油车到新能源车,热管理单车配套价值量倍增 (34) (1)汽车销量增长及高效节能要求,带来传统汽车热管理系统部件需求提升 (34) (2)复杂的热系统及高精度要求,带来新能源汽车热管理系统部件升级及单车配套价值量提升 (35) 2、汽车热管理市场竞争格局 (37) (1)空调领域 (39) (2)压缩机领域 (40) (3)阀类、泵类领域 (41) 五、相关企业简析 (42) 1、三花智控 (42) (1)产品线种类丰富,配套优势明显 (43) (2)客户群体优质稳定,极具全球竞争力 (43) (3)传统叠加新能源下汽车热管理空间广阔,三花汽零业务增长可期 (44)

2018年汽车热管理系统专题研究报告

2018年汽车热管理系统专题研究报告

投资要点 ?热管理系统将迎变革,行业重要性提升 新能源热管理与传统车热管理相比,空调系统与热管理系统的关系变得更为紧密相连,并且新增了电池、电机、电子设备冷却的热管理系统,代替了传统对发动机、变速箱的却冷。其中,电池不仅需要传统的冷却功能,还需要具有制热的功能,新能源车电池的重要性使得热管理系统的重要性显著上升。另外,电动汽车空调必须从自身解决低效供暖的问题,热泵型空调技术正好解决了电动汽车采暖能耗高及对发动机余热的依赖问题。 ?单车价值显著提升,电动车渗透率提升空间大 新能源汽车的车载空调及热管理系统相比传统汽车更为复杂,部分零部件数量及种类均有增加,新增零部件包括电子膨胀阀、带电磁阀的膨胀阀和电池冷却器、冷却板、电子水泵和电子水阀。在补贴逐步退坡的情况下,双积分制有望接过补贴政策,从供给端推动国内新能源汽车行业的快速发展,明确汽车行业电动化的发展方向,新能源汽车的热管理系统市场空间有望快速提升。我们初步测算,新能源汽车的热管理系统价值相比传统汽车提高超过4000元,且国内新能源汽车市场上升空间仍然巨大,我们认为热管理系统的各项驱动因素的环比情况仍然能够进一步提升。 ?与国际主流一级供应商站在同一起跑线 目前,电装公司、法雷奥、汉拿、马勒贝洱四家国际公司四家合计占据超过50%的全球市场份额。国内的热管理系统制造企业在传统车上落后于国际主流企业,但是在新能源汽车的热管理系统的技术上国内企业与国际主流一级供应商站都仍在起步阶段。受益于国内新能源汽车政策面的大力推动,国内新能源汽车销量增速领先全球,利好国内零部件企业,有望在热管理的细分行业弯道超车。 ?投资建议 受益于国内汽车市场近十五年的快速发展,部分优秀零部件企业已经拥有自己的核心产品,不仅进入国内自主品牌的供应链体系,也进入国际主流主机厂商的供应链配套。我们建议持续关注拥有核心技术,成本优势明显,客户资源丰富以及积极布局新能源汽车热管理系统的优质企业。重点推荐:三花智控(阀类产品进入壁垒高,积极布局热管理系统,拥有特斯拉等国际客户背书,未来有望加速切入自主品牌供应链体系),银轮股份(由商转乘成功,进入大众供应链体系,与国际龙头企业站在同一竞争平台)。 ?风险提示 宏观经济波动, 汽车销量增速不及预期, 新能源汽车销量不及预期, 新能源汽车热管理系统技术突破不及预期。

电动汽车热管理系统

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201710538323.X (22)申请日 2017.06.29 (71)申请人 知豆电动汽车有限公司 地址 315600 浙江省宁波市宁海县力洋镇 储家山路1号 (72)发明人 尹湘林 鲍文光 王红梅 闫优胜  樊晓浒 何志刚  (74)专利代理机构 杭州杭诚专利事务所有限公 司 33109 代理人 尉伟敏 (51)Int.Cl. B60H 1/00(2006.01) B60H 1/32(2006.01) B60H 1/22(2006.01) B60L 11/18(2006.01) (54)发明名称 电动汽车热管理系统 (57)摘要 本发明公开了一种电动汽车热管理系统,包 括乘员舱热管理模块和动力系统热管理模块,乘 员舱热管理模块包括电动压缩机、冷凝器、冷凝 风扇、膨胀阀、HVAC系统、第一水泵、水PTC加热器 和连接管路,动力系统热管理模块包括动力电池 包、水壶、第二水泵、散热器、散热器风扇、第三水 泵、控制器、逆变器、电机、热电板式换热器和连 接管路。动力系统热管理模块采用热电板式换热 器来实现。热电板式换热器根据珀耳帖效应,具 有加热和制冷功能。本发明具有结构简单,可靠 性好,控温精确,热利用率高,能有效提高电动汽 车电池使用效率和延长电动汽车行驶里程的特 点。权利要求书1页 说明书4页 附图3页CN 107310344 A 2017.11.03 C N 107310344 A

1.一种电动汽车热管理系统,其特征是,包括乘员舱热管理模块和动力系统热管理模块,乘员舱热管理模块包括制冷循环密闭系统和采暖循环密闭系统,制冷循环密闭系统包括电动压缩机(1)、冷凝器(2)、冷凝风扇(3)、膨胀阀(4)、HVAC系统(5)和连接管路,采暖循环密闭系统包括第一水泵(6)、水PTC加热器(7)和连接管路,动力系统热管理模块包括第一流体循环密闭系统和第二流体循环密闭系统,第一流体循环密闭系统包括动力电池包(8)、水壶(9)、第二水泵(10)、热电板式换热器(17)和连接管路,第二流体循环密闭系统包括散热器(11)、散热器风扇(12)、第三水泵(13)、控制器(14)、逆变器(15)、电机(16)、热电板式换热器(17)和连接管路。 2.根据权利要求1所述的电动汽车热管理系统,其特征是,动力系统热管理模块中的热电板式换热器包括第一流体进口(21)、第一流体出口(22)、第二流体进口(23)和第二流体出口(24),第一流体进口通过连接管路与第二水泵出口连接,第一流体出口通过连接管路与动力电池包进口连接,第二流体进口通过连接管路与第三水泵出口连接,第二流体出口通过连接管路与控制器进口连接。 3.根据权利要求1所述的电动汽车热管理系统,其特征是,热电板式换热器和散热器对动力系统热管理模块进行热管理。 4.根据权利要求2所述的电动汽车热管理系统,其特征是,第一流体和第二流体同时经过热电板式换热器进行加热或制冷,第一流体从热电板式换热器流出时的温度与第二流体从热电板式换热器流出时的温度差可以通过热电板式换热器工作电流大小进行调节,温度差调节在5℃-10℃比较合适。 5.根据权利要求1所述的电动汽车热管理系统,其特征是,当动力电池包不需要制冷或加热时,热电板式换热器停止工作,仅作流通通道,控制器、逆变器和电机依靠散热器和散热风扇进行降温。 6.根据权利要求1或2或3或4或5所述的电动汽车热管理系统,其特征是,HVAC系统包括蒸发器(18)、鼓风机(19)、暖风芯体(20)和连接管路,蒸发器进口通过连接管路与膨胀阀出口连接,蒸发器出口通过连接管路与电动压缩机进口连接,暖风芯体进口通过连接管路与水PTC加热器出口连接,暖风芯体出口通过连接管路与第一水泵进口连接。 权 利 要 求 书1/1页CN 107310344 A

新能源汽车热管理行业研究报告

新能源汽车热管理行业研究报告

电动化浪潮来临,热管理系统行业迎变革 汽车热管理系统简介汽车热管理系统是调节汽车座舱环境(温度、湿度等)以及汽车零部件工作环境的重要部件。汽车热管理系统是从系统集成和整体角度出发,采用综合手段控制和优化车内热量传递和利用的系统。汽车热管理系统的主要功能是调节座舱环境(空调系统)和保障车辆各部件(驱动系统:发动机或电池系统等)在适宜的温度下工作,通过制冷、制热和热量内部传导综合提升能源利用效率。对于目前的燃油车,最主要的两个热管理系统分别是发动机冷却系统和汽车空调系统。 我国汽车热管理发展史:电动化带来热管理行业进入变革期行业导入期(20 世纪60~80 年代末):与国外企业相比,我国汽车空调行业起步较晚,20 世纪70 年代初仍是空白。1969 年,长春第一汽车集团公司成功研制了第一台汽车空调装置,开创了中国自行设计、独立制造汽车空调装置的先河。自此,我国汽车空调行业开启导入期,这一阶段汽车空调主要依赖CKD 组装。行业成长期(20 世纪90 年代~21 世纪初):80 年代末期,国内企业看到了汽车空调的发展

前景,陆续从国外引进技术和生产设备,争上汽车空调项目。国内掀起了汽车空调热,大规模重组由此出现。1999 年,全国汽车空调年产量约70 万台,已形成门类齐全的汽车空调生产体系,基本能够满足汽车工业生产的要求,汽车空调行业处于快速成长阶段。行业成熟期(21 世纪初~2015 年):新世纪以来,随着汽车保有量和产销量的提高,国内汽车空调市场规模进一步扩大。2015 年中国汽车空调产量为3100 万台,市场规模为182亿元,相比2011 年复合增长率分别达到14.64%和13.94%。由于铜、铝等原材料的价格上涨,汽车空调成本上升、利润空间下降。同时,整车厂商对汽车空调公司提出了更加严格的要求,一批竞争力低的企业被淘汰,行业集中度提高,进入成熟阶段。行业变革期(2016 年以来):根据工信部2016 年9 月发布的《节能与新能源汽车技术路线图》,规划到2020 年、2025 年、2030 年实现新能源汽车渗透率分别达到7%、15%、以及40%,预计到2020 年、2025 年、2030 年,销量有望超过200 万辆、500 万辆、1500万辆。该规划必然会推动与之相关的汽车热管理生产配套产业的转型升级。与传统燃油汽车相比,新能源汽车的空调系统对技术要求更高,单车价值量更大。汽车空调行业既面临机遇,又需要面对挑战。新能源汽车vs 燃油汽车:热管理系统组成变化显著新能源汽车与传统汽车热管理系统的组成部分不同。由于传统汽车和新能源汽车动力部件不同,两者热管理系统也存在差异。传统汽车,热管理系统分为两大部分:1)发动机热管理系统,调节发动机的工作温度;2)汽车空调系统,调节乘员的驾驶

新能源车辆的动力电池组均衡管理系统的发展现状概述参考文本

新能源车辆的动力电池组均衡管理系统的发展现状概述参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

新能源车辆的动力电池组均衡管理系统的发展现状概述参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 新能源车辆的开发和研究已经是时代的主流,其中电 动汽车受到了市场越来越多的关注,在电动汽车中,电池 系统是重要组成部分,特别是锂电池在交通领域的应用, 对于减少温室气体的排放、降低大气污染以及新能源的应 用有着重要的意义。目前,电动汽车存在安全性低、寿命 段、充电时间长和使用成本高的问题,而电池管理系统作 为电池保护和管理的核心部件,作为电池和车辆管理系统 以及驾驶者沟通的桥梁,电池管理系统对于电动汽车性能 起着越来越关键的作用。本文介绍了电池组均衡管理的技 术发展历程、专利申请情况和涉及的主要申请人。 随着能源紧缺、城市环境污染的日益严重,替代石油

的新能源在车辆的开发利用被各国政府越来越重视。而动力电池是电动汽车的核心部件,目前车辆的动力电池存在能量密度低、价格高、寿命短等缺点,而锂电池在使用一段时间以后,电池单体性能差异在整个生命周期内客观存在,直接影响到动力电池组的使用寿命,为此,需要给予动力电池能源控制和管理,使得动力电池性能得到一定的提升。 目前,美国电动车公司生产的特斯拉纯高级电动汽车(Tesla)之所以取得成功,其核心技术就是优异的电池管理技术,采用了两千多块锂电池进行串并联设计,可以维持整个电池包的工作状态以及监控每个电池单元的系统来确保电池的高性能,使得车辆具备稳定的动力性能和优良的安全性能,具有快速充电技术,将充电时间缩短到合理的水平,在电动车领域突破了技术上的瓶颈,取得了成功,实现了从实验室转向批量生产,对汽车行业有着重大

新能源汽车动力电池及其管理系统复习题第一套

一、【单选题】(20分) 【单选题】 1可逆电池的定义是:外接电源电压(C)电池装置电动势(2分) A.大于 B.等于 C.小于 【单选题】 2、以下电池中不作为电动汽车动力电池的是(D)(2分) A.铅酸电池 B.锂离子电池 C.镍氢电池 D.锌银电池 【单选题】 3、关于蓄电池的检测,下列说法正确的是(D)。(2分) A.外观检查时,只检查蓄电池接线柱、电缆和托架固定架是否有腐蚀即可。 B.外观检查时,只检查蓄电池周围无漏液,壳体和桩柱无破损裂纹即可。 C.用万用表检测蓄电池电压,只要在12.6V以上就一定可以用。 D.万用表检测的蓄电池端电压,只能作为检测的参考因素。 【单选题】 4、(B)电池性能比较高,可以快速充电、高功率放电、能量密度高,且循环寿命长,但高温下安全性能差(2分) A.镍氢电池 B.锂离子电池 C.铅酸电池

5、动力电池包衰减诊断故障代码在下列(B)情况下可能出现。(2分) A.电池组已经退化到需要进行更换 B.电池组已经退化到只有原电池容量的20%左右 C.车辆的动力电池包电压为0伏 D.这些诊断故障代码是根据汽车的行驶里程设定的 【单选题】 6、动力电池的能量储存与输出都需要模块来进行管理,即动力电池能量管理模块,也称为动力电池管理系统,或动力电池能量管理系统,简称(C) (2分) A.BBC B.ABS C.BMS D.EPS 【单选题】 7、集中式动力电池管理系统的特征是(D)(2分) A.电池管理系统与电池包分开 B.电池信息采集器与电池管理控制器分开 C.电池信息采集器与电池模组分开 D.信息采集器和管理器集合在一起 【单选题】 8、分布式动力电池管理系统的特征是(B)(2分) A.电池管理系统与电池包分开 B.电池信息采集器与电池管理控制器分开 C.电池信息采集器与电池模组分开 D.信息采集器和管理器集合在一起

相关文档
最新文档