4-20mA电流环、电压电流转换芯片方案比较

4-20mA电流环、电压电流转换芯片方案比较
4-20mA电流环、电压电流转换芯片方案比较

4-20mA电流输出芯片比较

XTR110应用电路

XTR111内部没有提供将0V输入转换成4mA输出的电路,最常用的方法是采用两个电阻网络

连接参考电压和输入信号进行分压输入

XTR111 应用电路

XTR105/XTR112/XTR114原理图

130A

XTR115/XTR116/XTR117原理图

RCV42——4-20mA电流转0-5V电压基本连接

RCV42——4-20mA电流转0-5V电压实例

XTR101--Precision, Low Drift 4-20mA TWO-WIRE TRANSMITTER

XTR106-- 4-20mA CURRENT TRANSMITTER with Bridge Excitation and Linearization

XTR108-- 4-20mA, TWO-WIRE TRANSMITTER “Smart” Programmable with Signal

Conditioning

XTR300-- Industrial Analog Current/Voltage OUTPUT DRIVER

AD420—standard configuration AD5412/5422—in HART configuration AD694—standard configuration

AM400—standard configuration

AM460—standard configuration

AM462—standard configuration

另查过Linear和MAXIM公司无相关产品

电压环与电流环设计报告.doc

电压环与电流环设计报告

控制电路设计 一、电流环的设计 电流环的设计核心是控制主电路上电感电流的平均值,使它处于稳定状态,根据主电路与设计思路得电流控制环的系统框图如下: - + PI 1/Vs Vd Vo + -1/SL IL K1 其中Vcv 为电压环的输出电压(即系统的参考电压),Vs 为锯齿波的幅值,IL 为电感上的电流,K1为采样的放大倍数。设置PI 为单零点—单极点补偿网络。如下图所示: R1 R2C1 -+ 因为系统的开关频率为100KHZ ,为了避免开关频率对控制环路的影响,穿越频率fci 必须远远小于开关频率,当然为了对系统动态响应的速度,我们希望fci 越大越好,在一般的开关电源中,fci 都小于开关频率的1/10,此处我们设置为开关频率的1/10,即10KHZ 。补偿网络的传递函数为:211111 ()R C S G s R C S += , 由系统框图可以得系统 的开环传递函数为:21211(1)11 ()1 S R C S G S K R C S V SL += , 式中:Vs=5V ;

L=15uH; K1=1/100; S=jw;代入上式,当fci=10KHz 时,2()G S =1,令补偿零点角频率1211w R C = 在fci/2处,即121 1w R C ==5KHz ,经计算得11R C =62.710-?,21R C =4210-?, 所以 2 1 R R =74,令1R =1K ,得2R =74K ,1C =2.7 nf, 代入得开环传递函数为:224 5000()/10S G S S -+=,经 MATLAB 画出 BODE 图如下: 从上图可以看出,在(1/2)fci 频率处,开环传递函数的斜率由-40dB 变成-20dB ,可以达到较快的动态响应,由于传递函数以-20dB 的斜率穿越0dB 线,也可以获得足够的相位裕量(64度)。同时由于从0Hz~(1/2)fci 之间,开环传递函数以-40dB 斜率衰减,可以获得很高的静态增益,从而使得静态误差非常的小。根据乃奎斯特环路稳定性判据,系统是稳定的,设计也合理。 二、电压环的设计 在电压环的设计中,电流环可视为控制对象的一个环节,因此先

各种电压电流采样电路设计

常用采样电路设计方案比较 配电网静态同步补偿器(DSTATCOM)系统总体硬件结构框图如图2-1所示。由图2-1可知DSTATCOM的系统硬件大致可以分成三部分,即主电路部分、控制 电路部分、以及介于主电路和控制电路之间的检测与驱动电路。其中采样电路包括3路交流电压、6路交流电流、2路直流电压和2路直流电流、电网电压同步信号。3路交流电压采样电路即采样电网三相电压信号;6路交流电流采样电路分别为电网侧三相电流和补偿侧三相电流的电流采样信号;2路直流电压和2路直流电流的采样电路DSTATCOM的桥式换流电路的直流侧电压信号和电流信号;电网电压 同步信号采样电路即电网电压同步信号。 信号调 理 TMS320 LF2407A DSP 键盘显示 电路电压电流信号驱动电路保护电路 控制电路检测与驱动 电路主电路 图2-1 DSTATCOM系统总体硬件结构框图 1.1常用电网电压同步采样电路及其特点 1.1.1 常用电网电压采样电路 1 从D-STATCOM的工作原理可知,当逆变器的输出电压矢量与电网电压矢 量幅值大小相等,方向相同时,连接电抗器内没有电流流动,而D-STATCOM 工作在感性或容性状态都可由调节以上两矢量的夹角来进行控制,因此,逆变 器输出的电压矢量的幅值及方向的调节都是以电网电压的幅值和方向作为参考的,因此,系统电压与电网电压的同步问题就显得尤为重要。

图2-2 同步信号产生电路1 从图2-2所示同步电路由三部分组成,第一部分是由电阻、电容组成的RC滤波环节,为减小系统与电网的相位误差,该滤波环节的时间常数应远小于系统 的输出频率,即该误差可忽略不计。其中R5=1K,C4=15pF,则时间常数错误!未找到引用源。<

几种常见的电压电流转换电路

由运放组成的V-I、I-V转换电路 1、0-5V/0-10mA的V/I变换电路 图1是由运放和阻容等元件组成的V/I变换电路,能将0—5V的直流电压信号线性地转换成0-10mA的电流信号,A1是比较器,A3是电压跟随器,构成负反馈回路,输入电压Vi与反馈电压Vf比较,在比较器A1的输出端得到输出电压V1,V1控制运放A2的输出电压V2,从而改变晶体管T1的输出电流IL而输出电流IL又影响反馈电压Vf,达到跟踪输入电压Vi的目的。输出电流IL的大小可通过下式计算:IL=Vf/(Rw+R7),由于负反馈的作用使Vi=Vf,因此IL=Vi/(Rw+R7),当Rw+R7取值为500Ω时,可实现0-5V/0-10mA 的V/I转换,如果所选用器件的性能参数比较稳定,故运放A1、A2的放大倍数较大,那么这种电路的转换精度,一般能够达到较高的要求。 2、0-10V/0-10mA的V/I变换电路 图2中Vf是输出电流IL流过电阻Rf产生的反馈电压,即V1与V2两点之间的电压差,此信号经电阻R3、R4加到运放A1的两个输入端Vp与Vn,反馈电压Vf=V1-V2,对于运放A1,有VN=Vp;Vp=V1/(R2+R3)×R2,VN=V2+(Vi-V2)×R4/(R1+R4),所以V1/(R2+R3)×R2=V2+(Vi-V2)×R4/(R1+R4),依据Vf=V1-V2及上式可推导出: 若式中R1=R2=100kΩ,R1=R4=20kΩ,则有:Vf×R1=Vi×R4,得出:Vf=R4/R1×Vi=1/5Vi,如果忽略流过反馈回路R3、R4的电流,则有:IL=Vf/Rf=Vi/5Rf,由此可以看出.当运放的开环增益足够大时,输出电流IL与输入电压Vi满足线性关系,而且关系式中只与反馈电阻Rf的阻值有关.显然,当Rf=200Ω时,此电路能实现0-10v/0-10mA的V/I变换。 3、1-5V/4-20mA的V/I变换电路 在图3中.输入电压Vi是叠加在基准电压VB(VB=10V)上,从运放A1的反向输入VN 端输入的,晶体管T1、T2组成复合管,作为射极跟踪器,起到降低T1基极电流的作用(即

运放电压电流转换电路

运放电压电流转换电路 LELE was finally revised on the morning of December 16, 2020

运放电压电流转换电路1、 0-5V/0-10mA的V/I变换电路 图1是由运放和阻容等元件组成的V/I变换电路,能将0—5V的直流电压信号线性地转换成0-10mA的电流信号,A1是比较器.A3是电压跟随器,构成负反馈回路,输入电压Vi与反馈电压Vf比较,在比较器A1的输出端得到输出电压VL,V1控制运放A1的输出电压V2,从而改变晶体管T1的输出电流IL而输出电流IL又影响反馈电压Vf,达到跟踪输入电压Vi的目的。输出电流IL的大小可通过下式计算:IL=Vf/(Rw+R7),由于负反馈的作用使Vi=Vf,因此IL=Vi/(Rw+R7),当Rw+R7取值为500Ω时,可实现0-5V/0-10mA的V/I转换,如果所选用器件的性能参数比较稳定,运故A1、A2的放大倍数较大,那么这种电路的转换精度,一般能够达到较高的要求。 2、 0-10V/0-10mA的V/I变换电路 图2中Vf是输出电流IL流过电阻Rf产生的反馈电压,即V1与V2两点之间的电压差,此信号经电阻R3、R4加到运放A1的两个输入端Vp与Vn,反馈电压Vf=V1-V2,对于运放A1,有VN=Vp;Vp=V1/(R2+R3)×R2,VN=V2+(Vi- V2)×R4/(R1+R4),所以V1/(R2+R3)×R2=V2+(Vi-V2)×R4/(R1+R4),依据Vf=V1-V2及上式可推导出: 若式中R1=R2=100kΩ,R1=R4=20kΩ,则有:Vf×R1=Vi×R4, 得出:Vf=R4/R1×Vi=1/5Vi,如果忽略流过反馈回路R3、R4的电流,则有:IL=Vf/Rf=Vi/5Rf,由此可以看出.当运放的开环增益足够大时,输出电流IL与输入电压Vi满足线性关系,而且关系式中只与反馈电阻Rf的阻值有关.显然,当Rf=200Ω时,此电路能实现0-10v/0-10mA的V/I变换。 3、 1-5V/4-20mA的V/I变换电路 在图3中.输入电压Vi是叠加在基准电压VB(VB=10V)上,从运放A1的反向输入VN端输入的,晶体管T1、T2组成复合管,作为射极跟踪器,起到降低T1基极电流的作用(即忽略反馈电流I2),使得IL≈I1,而运放A1满足VN≈Vp,如果电路图中R1=R2=R,R4=R5=kR,则有如下表达式:

4-20mA电流环、电压电流转换芯片方案比较

4-20mA电流输出芯片比较 Precision Voltage-to-Current Converter/Transmitter NAME XTR110 XTR111 SUPPLY RANGE to 40V7V to 44V NONLINEARITY%% INPUT0V to +5V, 0V to +10V0 to 12V OUTPUT 0mA to 20mA, 5mA to 25mA Outputs Other Ranges 0mA–20mA, 4mA–20mA, 5mA–25mA AND VOLTAGE OUTPUTS Output Current Equation I O = 10 [(Vref In/16) + (VIN1/4) + (VIN2/2)] /RSPAN I O = 10 × Vvin/Rset PROBABLE PRICE 90元10元

XTR110应用电路 XTR111内部没有提供将0V输入转换成4mA输出的电路,最常用的方法是采用两个电阻网 络连接参考电压和输入信号进行分压输入 XTR111 应用电路

4-20mA CURRENT TRANSMITTER with Sensor Excitation and Linearization NAME XTR105XTR112XTR114 SUPPLY RANGE to 36V PRECISION CURRENT SOURCES INPUT EXCITATION2- OR 3-WIRE RTD OPERATION Output Current Equation IO = VIN (40/RG) + 4mA, VIN in Volts, RG in Input Offset V oltage VCM = 2V PROBABLE PRICE25元50元60元 XTR105/XTR112/XTR114原理图

常用电流和电压采样电路

2常用采样电路设计方案比较 配电网静态同步补偿器(DSTATCOM )系统总体硬件结构框图如图2-1所示。由图2-1可知DSTATCOM 的系统硬件大致可以分成三部分,即主电路部分、控制电路部分、以及介于主电路和控制电路之间的检测与驱动电路。其中采样电路包括3路交流电压、6路交流电流、2路直流电压和2路直流电流、电网电压同步信号。3路交流电压采样电路即采样电网三相电压信号;6路交流电流采样电路分别为电网侧三相电流和补偿侧三相电流的电流采样信号;2路直流电压和2路直流电流的采样电路DSTATCOM 的桥式换流电路的直流侧电压信号和电流信号;电网电压同步信号采样电路即电网电压同步信号。 图2-1 DSTATCOM 系统总体硬件结构框图 2.2.11 常用电网电压同步采样电路及其特点 .1 常用电网电压采样电路1 从D-STATCOM 的工作原理可知,当逆变器的输出电压矢量与电网电压矢量幅值大小相等,方向相同时,连接电抗器内没有电流流动,而D-STATCOM 工作在感性或容性状态都可由调节以上两矢量的夹角来进行控制,因此,逆变器输出的电压矢量的幅值及方向的调节都是以电网电压的幅值和方向作为参考的,因此,系统电压与电网电压的同步问题就显得尤为重要。

图2-2 同步信号产生电路1 从图2-2所示同步电路由三部分组成,第一部分是由电阻、电容组成的RC 滤波环节,为减小系统与电网的相位误差,该滤波环节的时间常数应远小于系统的输出频率,即该误差可忽略不计。其中R 5=1K Ω,5pF,则时间常数错误!未 因此符合设计要求;第二部分由电压比较器LM311构成, 实现过零比较;第三部分为上拉箝位电路,之后再经过两个非门,以增强驱动能力,满足TMS320LF2407的输入信号要求。 C 4=1找到引用源。<

电压环与电流环设计

控制电路设计 一、电流环的设计 电流环的设计核心是控制主电路上电感电流的平均值,使它处于稳定状态,根据主电路与设计思路得电流控制环的系统框图如下: 其中Vcv 为电压环的输出电压(即系统的参考电压),Vs 为锯齿波的幅值,IL 为电感上的电流,K1为采样的放大倍数。设置PI 为单零点—单极点补偿网络。如下图所示: 因为系统的开关频率为100KHZ ,为了避免开关频率对控制环路的影响,穿越频率fci 必须远远小于开关频率,当然为了对系统动态响应的速度,我们希望fci 越大越好,在一般的开关电源中,fci 都小于开关频率的1/10,此处我们设置为开关频率的1/10,即10KHZ 。补偿网络的传递函数为:211111()R C S G s R C S += , 由系统框图可以得系统的开环传递函数为:21211(1)11()1S R C S G S K R C S V SL +=, 式中:Vs=5V ;L=15uH; K1=1/100; S=jw;代入上式,当fci=10KHz 时,2()G S =1,令补偿零点角频率1211w R C = 在fci/2处,即1211w R C ==5KHz ,经计算得11R C =62.710-?,21R C =4210-?,所以21 R R =74,令1R =1K ,得2R =74K ,1C = nf, 代入得开环传递函数为:2245000()/10 S G S S -+= ,经MATLAB 画出BODE 图如下: 从上图可以看出,在(1/2)fci 频率处,开环传递函数的斜率由-40dB 变成-20dB ,可以达到较快的动态响应,由于传递函数以-20dB 的斜率穿越0dB

电压电流转换电路

模拟电路课程设计报告设计课题:电流电压转换电路 专业班级: 学生姓名: 学号: 指导教师: 设计时间:

电流电压转换电路 一、设计任务与要求 ①将4mA~20mA的电流信号转换成±10V的电压信号,以便送入计算机进行处理。 这种转换电路以4mA为满量程的0%对应-10V,12mA为50%对应0V,20mA为 100%对应+10V。 ②用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。 二、方案设计与论证 在工业控制中各类传感器常输出标准电流信号4~20mA为此,常要先将其转换成+10v 或—10v的电压信号,以便送给各类设备进行处理。这里转换电路以4mA为满量程的0%对 应-10V,12mA为50%对应0V,20mA为100%对应+10V。 方案一 、。

方案二 方案二所示的是由单个运放构成的电流/电压转换电路。由于运放本身的输入偏置电流不为零,因此会产生转换误差。 三、单元电路设计与参数计算 1、桥式整流电容滤波集成稳压块电路设计电路所需的正负直流 电源(±12V)。 其流程图为: 直流电源电路图如下:

原理分析: (1)电源变压器。 其电路图如下: 由于要产生±12V的电压,所以在选择变压器时变压后副边电压应大于24V,由现有的器材可选变压后副边电压为30V的变压器。 (2)整流电路。 其电路图如下:

①原理分析: 桥式整流电路巧妙地利用了二极管的单向导电性,将四个二极管分为两组,根据变压器副边电压的极性分别导通,将变压器副边电压的正极性端与负载电阻的上端相连,负极性端与负载电阻的下端相连,使负载上始终可以得到一个单方向的脉动电压。 整流输出电压的平均值(即负载电阻上的直流电压VL)VL定义为整流输出电压vL 在一个周期内的平均值,即 设变压器副边线圈的输出电压为,整流二极管是理想的。则根据桥式整流电路的工作波形,在vi 的正半周,vL = v2 ,且vL的重复周期为p ,所以

几个常用的电压电流转换电路

几个常用的电压电流转换电路

I/V转换电路设计 1、在实际应用中,对于不存在共模干扰的电流输入信号,可以直接利用一个精密的线绕电阻,实现电流/电压的变换,若精密电阻R1+Rw=500Ω,可实现0-10mA/0-5V的I/V变换,若精密电阻R1+Rw=250Ω,可实现4-20mA/1-5V的I/V变换。图中R,C组成低通滤波器,抑制高频干扰,Rw用于调整输出的电压范围,电流输入端加一稳压二极管。 电路图如下所示: 输出电压为: Vo=Ii?(R1+Rw)(Rw可以调节输出电压范围) 缺点是:输出电压随负载的变化而变化,使得输入电流与输出电压之间没有固定的比例关系。 优点是:电路简单,适用于负载变化不大的场合, 2、由运算放大器组成的I/V转换电路 原理: 先将输入电流经过一个电阻(高精度、热稳定性好)使其产生一个电压,在将电压经过一个电压跟随器(或放大器),将输入、输出隔离开来,使其负载不能影响电流在电阻上产生的电压。然后经一个电压跟随器(或放大器)输出。C1滤除高频干扰,应为pf级电容。

电路图如下所示: 输出电压为: Vo=Ii?R4?(1+(R3+Rw) R1 ) 注释:通过调节Rw可以调节放大倍数。 优点:负载不影响转换关系,但输入电压受提供芯片电压的影响即有输出电压上限值。 要求:电流输入信号Ii是从运算放大器A1的同相输入端输入的,因此要求选用具有较高共模抑制比的运算放大器,例如,OP-07、OP-27等。R4为高精度、热稳定性较好的电阻。 V/I转换电路设计 原理: 1、V I 变换电路的基本原理: 最简单的VI变换电路就是一只电阻,根据欧姆定律:Io=Ui R ,如果保证电阻不变,输出电流与输入电压成正比。但是,我们很快发现这样的电路无法实用,一方面接入负载后,由于不可避免负载电阻的存在,式中的R发生了变化,输出电流也发生了变化;另一方面,需要输入

电流信号转电压信号方法大全

电流信号转换为电压信号的方法 由于应用和原理的不同,电流信号的输出,如传感器变送器输出的4~20mA,需要变换成电压以利于后续驱动或采集。对于不同的电流信号,考虑功率问题,有的需要先经过电流互感器将大电流变小,否则大电流容易在电阻上产生过大的功率。 下面介绍几种I/V变换的实现方法。 分压器方法 利用如图1分压电路,将电流通入电阻。在电阻上采样出电压信号。其中,可以使用电位器调节输出电压的大小。这种方法最简单,但需要考虑功率和放大倍数的选择问题。 利用如图1分压电路,将电流通入电阻。在电阻上采样出电压信号。其中,可以使用电位器调节输出电压的大小。这种方法最简单,但需要考虑功率和放大倍数的选择问题。 霍尔传感器方法 使用霍尔效应,在元件两端通过电流I,并在元件垂直方向上施加磁感应强度B的磁场,即会输出电压。由下面的公式获得线性关系。

其中,RH为霍尔常数,I为输入电流,B为磁感应强度,d为霍尔元件厚度。 这种方法多用于对电流的测量,虽然也可以实现转换,但是精度有限。 积分电路方法 电压可以看作是电流的积分,利用如图电路有: 为保证精度,选取运放时尽量找输入阻抗大的。该电路常用于PID调节,积分电路成熟且放大倍数和精度较好。但要注意这种电路输出电压和输入电流的相位是相反的。 运放直接搭接的方法(跨阻放大器) 充分利用运放“虚短”和“虚断”的概念,将电流转换为电压信号,如图电路

电流通过电阻,在电阻上产生压降,建立起电压和电流的关系为 这种方法避免了运放输入失调电压和输入偏置电流和失调电流影响带来的积分误差。也避免了电容的漏电流带来的误差。但未获得稳定的高精度放大,对电阻和运放的精度要求较高。 三极管方法 三极管同样具有放大能力,但应用上多采用运放。电路如图 下面以实际的例子叙述整个实现过程。 尝试将一个0~5A信号转换为0~5V信号。最简单的是加一个1欧的电阻,但这样发热功率过大,所以需要采用电流互感器将原先的电流变小。按照一般互感器指标是输入0~10A信号,变比为200:1,即0~5A的信号变为0~25mA。下面采用运放直接搭接的方法实现转换。考虑到相位的问题,对电路作了改进。利用50欧电阻在正端产生 的电压与负端相等的条件,并利用运放的放大功能,实现最终要求的。如图。另外,用集成运放OP27为的是得到更高的运算精度;50欧的电阻是前端互感器带负载要求。

电压频率与频率电压转换电路

电压频率与频率电压 转换电路 2011年8月24日

目录: 摘要: (2) Abstract: (2) 一、设计方案 (3) (一)、电压频率转换电路 (3) 1.基于555定时器的电压频率转换: (3) 2.基于LM331的电压频率转换: (4) (二)、频率电压转换电路 (5) 1.基于LM2907的频率电压转换: (5) 2.基于LM331的频率电压转换 (5) 二、主体电路设计 (8) 三、电路安装 (9) (一)、电压频率转换电路 (9) (二)、频率电压转换电路 (10) 四、系统调试: (10) (一)VFC: (10) (二)FVC: (11) 1

摘要: 本系统利用了LM331的原理及性能设计了频率电压以及电压频率转换电路,实现了0Hz--10kHz频率与0—10V电压的相互转换,电路简单,转换结果线性度好。 关键字:LM331 频率电压转换滤波 Abstract: The system uses the principle and characteristic of LM331 to design the frequency-to-voltage and the voltage-to- frequency conversion circuits, realizes the frequency of 0Hz--10kHz and the voltage of 0 - 10V’s transformation , the circuits are simple and result have good linearity. Key-word: LM331 frequency voltage transformation filter 2

实用的4~20mA输入I-V转换电路

实用的4~20mA输入/0~5V输出的I/V转换电路 2008-10-25 07:18:28 标签:实用4~20mA输入0~5V输出I/V转换电路 最简单的4-20mA输入/5V输出的I/V转换电路 在与电流输出的传感器接口的时候,为了把传感器(变送器)输出的1-10mA或者4-20mA电流信号转换成为电压信号,往往都会在后级电路的最前端配置一个I/V转换电路,图1就是这种电路最简单的应用示意图。 仅仅使用一只I/V转换取样电阻,就可以把输入电流转换成为信号电压,其取样电阻可以按照Vin/I=R求出,Vin是单片机需要的满度A/D信号电压,I是输入的最大信号电流。 这种电路虽然简单,但是却不实用,首先,其实际意义是零点信号的时候,会有一个零点电流流过取样电阻,如果按照4~20mA输入电流转换到最大5V电压来分析,零点的时候恰好就是1V,这个1V在单片机资源足够的时候,可以由单片机软件去减掉它。可是这样一来。其有用电压就会剩下5-1=4V而不是5V了。由于单片机的A/D 最大输入电压就是单片机的供电电压,这个电压通常就是5V,因此,处理这种简单的输入转换电路时比较麻烦。为了达到A/D转换的位数,就会导致芯片成本增加。 LM324组成的4-20mA输入/5V输出的I/V转换电路 解决上面问题的简单方法是在单片机输入之前配置一个由运算放大器组成的缓冲处理电路,见图2。 增加这级运算放大器可以起到对零点的处理会变得更加方便,无需耗用单片机的内部资源,尤其单片 机是采用A/D接口来接受这种零点信号不为零电压的输入时,可以保证A/D转换位数的资源能够全部应 用于有用信号上。 以4~20mA 例,图B中的RA0是电流取样电阻,其值的大小主要受传感变送器供电电压的制约,当前 级采用24V供电时,RA0经常会使用500Ω的阻值,对应20mA 的时候,转换电压为10V,如果仅仅需要最 大转换电压为5V,可以取RA0=250Ω,这时候,传感变送器的供电只要12V就够用了。因为即使传送距离 达到1000米,RA0最多也就几百Ω而已。 同时,线路输入与主电路的隔离作用,尤其是主电路为单片机系统的时候,这个隔离级还可以起到保 护单片机系统的作用。

4-20mA电流环、电压电流转换芯片方案比较

4-20mA电流输出芯片比较 (1)TI公司4-20mA电流输出芯片比较 Precision Voltage-to-Current Converter/Transmitter NAME XTR110 XTR111 SUPPLY RANGE13.5V to 40V7V to 44V NONLINEARITY0.005%0.002% INPUT 0V to +5V, 0V to +10V 0 to 12V OUTPUT 0mA to 20mA, 5mA to 25mA Outputs Other Ranges 0mA–20mA, 4mA–20mA, 5mA–25mA AND VOLTAGE OUTPUTS Output Current Equation I O = 10 [(Vref In/16) + (VIN1/4) + (VIN2/2)] /RSPAN I O = 10 × Vvin/Rset PROBABLE PRICE 90元10元

Fig.1 XTR110应用电路 XTR111部没有提供将0V输入转换成4mA输出的电路,最常用的方法是采用两个电阻网络 连接参考电压和输入信号进行分压输入 Fig.2 XTR111 应用电路

4-20mA CURRENT TRANSMITTER with Sensor Excitation and Linearization NAME XTR105 XTR112 XTR114 SUPPLY RANGE7.5V to 36V PRECISION CURRENT SOURCES0.8mA 0.25mA 0.1mA INPUT EXCITATION 2- OR 3-WIRE RTD OPERATION IO = VIN ? (40/RG) + 4mA, VIN in Volts, RG in Output Current Equation ? Input Offset Voltage VCM = 2V PROBABLE PRICE 25元50元60元 Fig.3XTR105/XTR112/XTR114原理图

几个常用的电压电流转换电路

I/V转换电路设计1、在实际应用中,对于不存在共模干扰的电流输入信号,可以直接利用一个精密的线绕电阻,实现电流/电压的变换,若精密电阻R1+Rw=500Ω,可实现0-10mA/0-5V的I/V变换,若精密电阻R1+Rw=250Ω,可实现4-20mA/1-5V的I/V变换。图中R,C组成低通滤波器,抑制高频干扰,Rw用于调整输出的电压范围,电流输入端加一稳压二极管。 电路图如下所示: 输出电压为: Vo=Ii?(R1+Rw)(Rw可以调节输出电压范围) 缺点是:输出电压随负载的变化而变化,使得输入电流与输出电压之间没有固定的比例关系。 优点是:电路简单,适用于负载变化不大的场合, 2、由运算放大器组成的I/V转换电路 原理: 先将输入电流经过一个电阻(高精度、热稳定性好)使其产生一个电压,在将电压经过一个电压跟随器(或放大器),将输入、输出隔离开来,使其负载不能影响电流在电阻上产生的电压。然后经一个电压跟随器(或放大器)输出。C1滤除高频干扰,应为pf级电容。 电路图如下所示:

输出电压为: Vo=Ii?R4?(1+(R3+Rw) R1 ) 注释:通过调节Rw可以调节放大倍数。 优点:负载不影响转换关系,但输入电压受提供芯片电压的影响即有输出电压上限值。 要求:电流输入信号Ii是从运算放大器A1的同相输入端输入的,因此要求选用具有较高共模抑制比的运算放大器,例如,OP-07、OP-27等。R4为高精度、热稳定性较好的电阻。 V/I转换电路设计 原理: 1、V I 变换电路的基本原理: 最简单的VI变换电路就是一只电阻,根据欧姆定律:Io=Ui R ,如果保证电阻不变,输出电流与输入电压成正比。但是,我们很快发现这样的电路无法实用,一方面接入负载后,由于不可避免负载电阻的存在,式中的R发生了变化,输出电流也发生了变化;另一方面,需要输入信号提供相应的电流,在某些场合无法满足这种需要。 1 、基于运算放大器的基本VI变换电路为了保证负载电阻不影响电压/电流的变换关系,需要对电路进行调整,如图1是基于运算放大器的基本VI变换电路。利用运算放大器的“虚短”概念可知U-=U+=0;因此流过Ri的电流: Ii=Ui R

电流环设计

(1)确定时间常数 1)整流装置滞后时间常数s T 。按表2-2,三相桥式电路的平均失控时间s T =0.0017s 。 2)电流滤波时间常数oi T 。三相桥式电路每个波头的时间是3.3ms ,为了基本滤平波头,应有(1~2)oi T =3.33ms ,因此取oi T =2ms=0.002s 。 3)电流环小时间常数之和i T ∑。按小时间常数近似出黎,取∑i T =s T +oi T =0.0037s 。 (2)选择电流调节器结构 根据设计要求i σ≤5%,并保证稳态电流误差,可按典型Ⅰ型系统设计电流调节器。电流环控制对象是双惯性型的,因此可用PI 型电流调节器,其传递函数见式(3-48)。 检查对电源电压的抗扰性能:i l T T ∑≈0.0037 0.03≈8.11,参看表3-2的典型Ⅰ型系统动态抗扰性能,各项指标都是可以接受的。 (3)计算电流调节器参数 电流调节器超前时间常数:s T l 03.0i ==τ。 电流环开环增益:要求i σ≤5%是,按表3-1,应取i I T K ∑=0.5,因此 1-i I 135.10.0037 0.5T 0.5K s ≈== ∑ 于是,ACR 的比例系数为 1.5350.044 360.60.03135.1K R K K s i I i ≈???== βτ (4)校验近似条件 电流环截止频率:-1I ci 135.1s K ==ω 1)校验晶闸管整流装置传递函数的近似条件 ci ω>≈?=1-1-s 196.1s s 0.0017313T 1 满足近似条件 2)校验忽略反电动势变化对电流环动态影像的条件 ci l m s s T ω<≈??=--1136.9203 .022.013T 13 满足近似条件

电压频率和频率电压转换电路的设计

电压频率和频率电压转换电路的设计 图1 数字测量仪表电压/频率电路是一种模/数转换电路,它应用于模/数转换,调频,遥控遥测等各种设备。(2)F/V转换电路F/V转换电路的任务是把频率变化信号转换成按比例变化的电压信号。这种电路主要包括电平比较器、单稳态触发器、低通滤波器等电路。它有通用运放F/V转换电路和集成F/V转换器两种类型。1、1设计要求设计一个将直流电压转换成给定频率的矩形波的电路,要求包括:积分器;电压比较器和一个将给定频率的矩形波转换为直流电压的电路,要求包括:过零比较器、单稳态触发器、低通滤波器等。1、2 设计指标(1)输入为直流电压0- 10V,输出为f=0-500Hz的矩形波。 (2)输入ui是0~10KHZ的峰-峰值为5V的方波,输出uo为0~10V的直流电压。2 设计内容总体框图设计2.1 V/F转换电路的设计2、1、1 工作原理及过程积分器和滞回比较器首尾相接形成正反馈闭环系统,如图2所示,比较器输出的矩形波经积分器积分可得到三角波,三角波又触发比较器自动翻转形成矩形波,这样便可构成三角波,矩形波发生器。由于采用集成运放组成的积分电路,因此可以实现恒流充电,能够得到比较理想的矩形波。 通过分析可知,矩形波幅值大小由稳压管的稳定电压值决定,即方波的幅值。

矩形波的振荡频率2、1、2 模块功能积分器:积分电路可以完成对输入电压的积分运算,即输入电压与输出电压的积分成正比。滞回比较器:用来输出矩形波,积分器得到的三角波可触发比较器自动翻转形成矩形波。稳压管:用来确定矩形波的幅值。 图2 总体框架图2、2 功能模块的设计2、2、1 积分电路工作原理积分电路可以完成对输入电压的积分运算,即输入电压与输出电压的积分成正比。由于同相积分电路的共模输入分量大,积分误差大,应用场合少,所以不予论述,本课程设计用到的是反相积分电路。图3 积分器反相积分电路如图3 所示,电容器C 引入交流并联电压负反馈,运放工作在线性区。由于积分运算是对瞬时值而言的,所以各电流电压均采用瞬时值符号。由电路得因为“-”端是虚地,即U-=0,并且式中是积分前时刻电容C上的电压,称为电容端电压的初始值。所以把代入上式得当时若输入电压是图所示的阶跃电压,并假定,则t>=0时,由于,所以由此看出,当E为正值时,输出为反向积分,E对电容器恆流充电,其充电电流为E/R,故输出电压随线性变化。当向负值方向增大到集成运放反向饱和电压时,集成运放进入非线性工作状态,保持不变,图3所示。 如输入是方波,则输出将是三角波,波形关系如图4所示。当时间在0~期间时,电容放电当t=1时,当时间在~期间时,电容充电,其初始值所以当 t= 时,。

XTR115电流环电路原理及应用

XTR115电流环电路原理及应用 在各种数据采集与监控中通常用一个仪表放大器来完成信号的调理,但是工业现场进行长线传输时,往往会产生以下问题:1)由于传输的信号是电压信号,传输线会受到噪声的干扰;2)传输线的分布电阻会产生电压降;3)现场无法提供仪表放大器的工作电压。为了解决上述问题并避开相关噪声的影响,通常用电流来传输信号,这是因为电流对噪声并不敏感。4~20 mA的电流环便是用4 mA表示零信号,用20 mA表示信号的满刻度,而将低于4 mA 和高于20 mA的信号用作各种故障的报警。电流环电路,根据转换原理的不同可划分成以下两种类型:一种是电压/电流转换器,亦称电流环发生器,它能将输入电压转换成4~20 mA的电流信号(典型产品有1B21,1B22,AD693,AD694,XTR115和XTR116);另一种属于电流/电压转换器,也叫电流环接收器(典型产品为RCV420),上述产品可满足不同用户的需要。电流环电路,根据器件位置的不同又可划分成以下两种类型:两线制和三线制。当监控系统需要通过长线驱动现场的驱动器件(如阀门等)时,一般采用三线制变送器,这里,电流环器件位于监控的系统端,由系统直接向电流环器件供电,供电电源是二根电流传输线以外的第三根线。两线系统是电流环器件和传感器位于现场端,由于现场供电问题的存在,一般是接收端利用4~20 mA的电流环向远端的电流环器件供电,通过4~20 mA来反映信号的大小。 XTR系列是美国BB(BURR-BROWN)公司生产的精密电流变送器,该公司现已并入美国Texas Instruments公司。该系列产品包括XTR101,XTR10 5,XTR106,XTR110,XTR115和XTR116共6种型号。其特点是能完成电压/电流(或电流/电流)转换,适配各种传感器构成测试系统、工业过程控制系统、电子秤重仪等。其中,XTR115和XTR116能够满足工业测量标准的两线4~20 mA电流环电路,该电路设计巧妙、使用方便、超低静态电流,非常适合于变送器等典型工业测量应用之中。本文针对两线的XTR115电流环电路的工作原理和典型应用展开详细讨论,可为4~20 mA电流环电路的使用提供有益参考。1 XTR115的性能特点 XTR115具有如下性能特点: 1)XTR115属于二线制电流变送器,内部的2.5 V基准电压可作为传感器的激励源。XTR115可将传感器产生的40~200μA弱电流信号放大100倍,获得4~20 mA的标准输出。当环路电流接近32 mA时能自动限流。如果在3脚与5脚之间并联一只电阻,就可以改变限流值。 2)芯片中增加了+5 V精密稳压器,其输出电压精度为±0.05%,电压温度系数仅为20x10-6/℃,可给外部电路(例如前置放大器)单独供电,从而简化了外部电源的设计。 3)精度高,非线性误差小。转换精度可达±0.05%,非线性误差仅为±0.003%。 4)环路电源电压的允许范围宽为7.5~36 V。XTR115由环路电源供电。工作温度范围是-40~+85℃。 5)专门设计了功率管接口,适配外部NPN型功率晶体管,它与内部输出晶体管并联后可降低芯片的功耗。2 XTR115的工作原理 XTR115和XTR116用SO-8小型化封装,其结构组成及原理图,XTR115和XTR116内部电路主要由3部分组成。 第一部分是电流环电路的核心部分,它是由内部的运算放器A1、电阻RIN、R1、R2、Rlim 和外接晶体三极管T1组成。第二部分是电源调整电路,它提供传感器部分的外围电路工作电源和参考电压。第三部分是由电阻Ra、Rb、Rlim和晶体三极管TO组成保护电路,以防止输出电流过大或上电过程中的过冲脉冲损坏芯片。为了叙述方便,摘出电流环电路部分。 图2电路中,信号电压施加在VIN和VG之间,VG相当于传感器部分的参考点。根据运算放大器的基本原理,运算放大器的两个输入端电压基本相等,流入运算放大器输入端的电流基本为零。可知:此时的I0只是信号变化部分的电流,它的变化范围是0~16 mA,对应到I3是0~160μA,可以根据这一电流和输入信号的电压幅度决定输入电阻RIN;要

几个常用的电压电流转换电路

I/V转换电路设计 1、在实际应用中,对于不存在共模干扰的电流输入信号,可以直接利用一个精密的线绕电阻,实现电流/电压的变换,若精密电阻R1+Rw=500Ω,可实现0-10mA/0-5V的I/V变换,若精密电阻R1+Rw=250Ω,可实现4-20mA/1-5V 的I/V变换。图中R,C组成低通滤波器,抑制高频干扰,Rw用于调整输出的电压范围,电流输入端加一稳压二极管。 电路图如下所示: 输出电压为: Vo=Ii?(R1+Rw)(Rw可以调节输出电压范围) 缺点是:输出电压随负载的变化而变化,使得输入电流与输出电压之间没有固定的比例关系。 优点是:电路简单,适用于负载变化不大的场合, 2、由运算放大器组成的I/V转换电路 原理: 先将输入电流经过一个电阻(高精度、热稳定性好)使其产生一个电压,在将电压经过一个电压跟随器(或放大器),将输入、输出隔离开来,使其负载不能影响电流在电阻上产生的电压。然后经一个电压跟随器(或放大器)输出。C1滤除高频干扰,应为pf级电容。 电路图如下所示:

输出电压为: Vo=Ii?R4?(1+(R3+Rw) R1 ) 注释:通过调节Rw可以调节放大倍数。 优点:负载不影响转换关系,但输入电压受提供芯片电压的影响即有输出电压上限值。 要求:电流输入信号Ii是从运算放大器A1的同相输入端输入的,因此要求选用具有较高共模抑制比的运算放大器,例如,OP-07、OP-27等。R4为高精度、热稳定性较好的电阻。 V/I转换电路设计 原理: 1、VI变换电路的基本原理: 最简单的VI变换电路就是一只电阻,根据欧姆定律:Io=Ui R ,如果保证电阻不变,输出电流与输入电压成正比。但是,我们很快发现这样的电路无法实用,一方面接入负载后,由于不可避免负载电阻的存在,式中的R发生了变化,输出电流也发生了变化;另一方面,需要输入信号提供相应的电流,在某些场合无法满足这种需要。 1、基于运算放大器的基本VI变换电路为了保证负载电阻不影响电压/电流的变换关系,需要对电路进行调整,如图1是基于运算放大器的基本VI变换电路。利用运算放大器的“虚短”概念可知U-=U+=0;因此流过Ri的电流: Ii=Ui R

PMSM电流环速度环位置环设计与实现中的心得体会

一:电流环参数的调节 1:PMSM传动控制系统中,电机运行速度范围很宽,电流频率范围从零到上百赫兹,要在这么宽的频率范围内准确地检测电机电流,常选用霍尔元件实现电机电流的检测。 霍尔检测方法优点:动态响应好,信号传输线性及频带范围宽等优点。 为保证电机对称运行,电流三相各反馈信道的反馈系数必须相等,这就要精心选择调理电路组件,仔细调整反馈回路参数。信号调理电路使用模拟放大器时,放大器的零漂是影响电机低速运行性能的主要因素,要仔细调整放大器,将零点漂移控制在10mv以内。 2:PMSM调速系统需要电机有很宽的调速范围,达到10^4:1以上,要在这么宽的速度范围内检测出电机的速度,以实现调速系统的控制确实是个很重要的问题。尽管T法在低速时有很好的测速精度,但研究调速系统控制的论文极少见使用(T或M/T)法测速的,基本上都是采用M法测速。实际上,当电机处于极低转速时,电机能否稳定运行不仅仅取决于位置传感器及其所送来的脉冲信号,还有速度调节器的作用,以及电流环与电机转子惯性环节的影响,所以,M法仍可用于低速范围内电机速度的检测与反馈。 3:电流调节器参数对电流环的动态响应具有决定性影响。 电流调节器比例系数越大,电流阶跃跟踪响应速度越快,响应的超调越大,振荡次数越多。电流调节器的积分系数越大,电流阶跃跟踪响应的稳态误差越小,但太大会引起电流环振荡。 PMSM调速控制系统的电流环控制对象为PWM逆变器、电机电枢绕组、电流检测环节组成。在实际系统运行过程中,电流环的相应受电机反电势的影响,电流环动态响应不好,为提高永磁同步电机调速系统电流环动态响应性能,抑制反电动势对电流环的影响,在实际系统电流调节器制作时,比例和积分系数均做了调整,增大比例系数,减小积分时间常数。 电流环响应若不加微分负反馈环节,电流环动态响应将会出现振荡与超调。然而实际应用中,通常不加微分反馈环节,因为微分极易引起系统的振荡。而且按照电流环I型系统的校正原则,采用PI控制才能实现电流环系统的稳定性和高动态响应。 二、速度环参数的调节 采用II型系统设计的速度环,实际应用中,在速度阶跃过程中,速度调节器会出现饱和,系统的实际运行情况和设计时所采用的线性对象具有很大的差别,调节器设计时的初始条件和实际系统退饱和后调节器参与调节时的初始条件有很大差别。因此按照II型系统设计的速度环需要作很大的调整才能满足实际系统的需要。但该设计方法关于调节器的形式选择仍然适用。 从自动控制原理可知,调速控制系统的速度超调是使用PI调节器并要求有快速响应的必然结果,原因是速度调节器要退出饱和,参与调解。 随着速度调节器输出限幅的增加,速度响应加快,到达指定速度时的振荡程度增加。输出限幅数值决定电机在动态过程中加速力矩的大小,影响电机在加减速过程中的加速度,影响调速系统的速度响应过程。输出限幅值要合理设置,应该充分利用电机的过载能力,以提高调速控制系统的速度响应性能。同时,在调速控制系统中可设置速度微分负反馈(肖老师建议速度环一般不要加前馈),可以

相关文档
最新文档