电容的充放电过程及其应用

电容的充放电过程及其应用
电容的充放电过程及其应用

电容的充放电过程及其应用

一、实验目的

1.观察RC电路的矩形脉冲响应。

2.了解RC微分电路、积分电路及耦合电路的作用及特点。

3.学习双踪示波器的使用方法。

二、实验原理

1.RC串联电路的充放电过程

在由电阻R及电容C组成的直流串联电路中,暂态过程即是电容器的充放电过程(图1),当开关K打向位置1时,电源对电容器C

化的具体数学描述为q=CUc,而I = dq / dt ,故

dt

dUc

C

dt

dq

i=

=(1)

E

iR

Uc=

+(2)

将式(1)代人式(2),得

E

RC

Uc

RC

dt

dUc1

1

=

+

考虑到初始条件t=0时,u C=0,得到方程的解:

[]

()

()

?

?

?

??

?

?

-

=

-

=

-

=

=

RC

t

E

U

E

U

RC

t

R

E

i

RC

t

E

U

C

R

/

exp

/

exp

/

-

exp

-

1

C

上式表示电容器两端的充电电压是按指数

增长的一条曲线,稳态时电容两端的电压等于电

源电压E,如图2(a) 所示。式中RC=具有时

间量纲,称为电路的时间常数,是表征暂态过程

进行得快慢的一个重要的物理量,由电压u c上

升到0.63E,1/e≈0.37,所对应的时间即为。

当把开关k1打向位置2时,电容C通过电阻R放电,放电过程的数学描述为

dt

dUc

C

i=,代人上式得0

1

=

+Uc

RC

dt

dUc

由初始条件t=0时,Uc=E,解方程得

?

?

?

?

?

-

-

=

-

-

=

-

=

)

/

exp(

)

/

exp(

)

/

exp(

RC

t

E

U

RC

t

R

E

i

RC

t

E

Uc

R

表示电容器两端的放电电压按指数律衰减到零,也可由此曲线衰减到0.37E所对应的

图2 RC电路的充放电曲线

(a)电容器充电过程(b)电容器放电过程

U R

Uc

K

1

2

V

E

R

C

图1 RC串联电路

时间来确定。充放电曲线如图2所示。 2. 半衰期T 1/2

与时间常数τ有关的另一个在实验中较容易测定的特征值,称为半衰期T 1/2,即当U C (t )下降到初值(或上升至终值)一半时所需要的时间,它同样反映了暂态过程的快慢程度,与t 的关系为:T 1/2 =τln2 = 0.693τ(或τ= 1.443T 1/2)

3. RC 电路的矩形脉冲响应。

若将矩形脉冲序列信号加在电压初值为零的RC 串联电路上,电路的瞬变过程就周期性地发生了。显然,RC 电路的脉冲响应就是连续的电容充放电过程。如图3所示。

图3 RC 电路及各元件上电压的变化规律

若矩形脉冲的幅度为U ,脉宽为t p 。电容上的电压可表示为:

??

???≤≤?≤≤-=-

-211

0)1()(t t t e U t t e U t

u t

t c τ

τ

电阻上的电压可表示为:

??

???

≤≤?-≤≤?=-

-2

110)(t t t e U t t e U t u t

t

R ττ

即当10t t ≤≤时,U t u i =)(,电容被充电;当21t t t ≤≤时,电容器经电阻R 放电。 4.RC 电路的应用

(1)微分电路。取RC 串联电路中的电阻两端为输出端,并选择适当的电路参数使时间常数τ<

u c (t )接近等于输入电压u i (t ),这时输出电压为:

(t u i )(t R )

(t C )(t u i (t u R (t u C u

u

u

-t

t

t

dt

t du RC dt du RC i R t u i c c )

()(0?≈?

=?= 上式说明,输出电压)(0t u 近似地与输入电压)(t u i 成微分关系,所以这种电路称微分电路。微分电路在矩形脉冲电压)(t u i 的作用下,输出正、负尖脉冲信号。如图 4所示。在矩形正脉冲波形的前沿输出正尖脉冲波,在其后沿输出负尖脉冲波。尖脉冲在实际应用中可作为触发信号。

(a )基本原理图 (b )输出波形图

图4 RC 微分电路及输入和输出电压波形

(2)RC 耦合电路

若改变上述电路的参数,使得τ>>t p ,微分电路转变为耦合电路。其输出波形如图5所示。这种电路在多级交流放大电路中经常作为级间耦合电路。

(3)RC 积分电路

如果将RC 电路的电容两端作为输出端,电路参数满足τ>>t p 的条件,则成为积分电路。由于这种电路电容器充放电进行得很慢,因此电阻R 上的电压)(t u R 近似等于输入电压

)(t u i ,其输出电压)(0t u 为:

(t u i )

(0t

-(0t u )

(t u i

(0u (u i t

t

图5 RC 耦合电路电压波形

dt t u RC dt R t u C dt t i C t u t u i R c c ?≈?=?=

=?

??)(1)(1)(1)()(0 上式表明,输出电压)(0t u 与输入电压)(t u i 近似地成积分关系。其输入、输出波形如 图6所示。

图6 积分电路及输入和输出电压波形

3.测定RC 电路时间常数的方法。

本实验使用双踪示波器,可以同时观察电路的输入、输出信号。

在RC 电路输入矩形脉冲信号,将示波器的输入端接在电容两端,将示波器的垂直增益“微调”旋钮位于校准位置,同时将时基扫描速度“微调”旋钮位于校准位置。Y 轴输入开关置于“DC ”档。调节示波器使荧光屏上呈现出一个稳定的指数曲线。利用荧光屏上的坐标尺,测出电容器电压的最大值U m 的格数。

)格(的格数A U m =

取0.63U m =B (格)交纵轴于M ,过M 点引水平线交指数曲线于Q 点,则Q 点对应的横坐标即为时间常数τ。根据MQ 的格数及所选用的“扫描时间”标称值(t /div ),就可以算出τ,见图7所示。

()div /t MQ ?=格τ

图7 RC 电路时间常数的测量三、实验仪器

信号发生器、双踪示波器、电容箱、电阻箱、大电容、万用表。其中信号发生器能够产生一定频率的正弦波、方波、锯齿波等,我们这次实验主要使用方波。使用时首先选择频率范围,一排按键哪个按下就说明信号发生器这时产生的最大信号频率为按键标定值,调节频率用仪器左边旋钮。

四、预习要求

(1)已知矩形脉冲的频率f =200Hz ,周期T= 秒。拟在示波器的荧光屏上看到

)

(t (t u i (0t u )

(t u i 23

1t

)

(t (t u i

二个完整周期的矩形脉冲,“扫描时间”旋钮选择在 档较合适(2ms/div 、5ms/div 、1ms/div 、0.5ms/div 、0.2ms/div )(注意:荧光屏为格1010?)。

(2)试计算表1-7-2中各项时间常数,将计算结果填入表中,并说明是否满足该电路的条件,取脉冲宽度T t p 2

1

=

。 (3)微分电路的输出电压u o (t )是从RC 电路的 两端取出。积分电路的输出电压

u o (t )从 两端取出。

五、实验内容

1.观察大电容,记录电容型号 ,电容值 ,耐压大小 。仔细观察电容哪个是正极,哪个是负极。把万用表旋转到二极管和通断测量档(这两个功能在一个档,即200欧姆电阻档左边),用万用表红黑表笔接触大电容正负两级,观察万用表显示,过一会等万用表稳定后反接正负极,观察万用表上读数变化, 根据测量情况,分析现象原因: 。

2.调节信号发生器,产生方波,根据示波器图形分析,输出波形为1000Hz ,即1kHz ,观察矩形脉冲波形,将波形画在表1中。并测出矩形波的U m 、、、T (取T t p 2

1

=

)。 U m 为 div (格),示波器的垂直标称值 V /div ,则U m = V 。

T 为 div (格),时基扫描速度标称值 (time /div ),则T= ms 。 3.观测RC 电路的矩形脉冲响应,并测定时间常数τ,按表1取RC 值,用电容箱、电阻箱按图7接线,完成表1中的内容,信号发生器1000Hz 输出。

电容电压的最大值U m 为 div(格),示波器的垂直标称值 V/div ,则U m = V 。 τ为 div ,时基扫描速度标称值 time/div ,τ= ms 。 3.观察微分电路的输出波形。信号发生器1000Hz 输出。 4.观察积分电路的输出波形。信号发生器1000Hz 输出。 5.观察耦合电路的输出波形。信号发生器1000Hz 输出。

以上各项内容均按表1选择RC 参数,完成表1中各项内容并记录在表中。

表1

六、实验总结

1.根据测绘的RC电路瞬变过程曲线,用实测的电路时间常数,与预算值进行比较。

2.根据实验结果说明RC串联电路用作微分电路和积分电路时的参数条件。

3.输入矩形波频率改变时(变大或变小),输出信号波形是否发生变化?怎么变?为什么?

电容的充放电过程及其应用

电容的充放电过程及其应用 一、实验目的 1.观察RC 电路的矩形脉冲响应。 2.了解RC 微分电路、积分电路及耦合电路的作用及特点。 3.学习双踪示波器的使用方法。 二、实验原理 1. RC 串联电路的充放电过程 在由电阻R 及电容C 组成的直流串联电路中,暂态过程即是电容器的充放电过程(图1),当开关K 打向位置1时,电源对电容器C 充电,直到其两端电压等于电源E 。这个暂态变化的具体数学描述为q =CUc ,而I = dq / dt ,故 dt dUc C dt dq i == (1) E iR Uc =+ (2) 将式(1)代人式(2),得 E RC Uc RC dt dUc 11=+ 考虑到初始条件t=0时,u C =0,得到方程的解: []()() ?? ?? ?? ?-=-=-==RC t E U E U RC t R E i RC t E U C R /exp /exp )/-(exp -1C 上式表示电容器两端的充电电压是按指数增长的一条曲线,稳态时电容两端的电压等于电 源电压E ,如图2(a) 所示。式中RC=具有时间量纲,称为电路的时间常数,是表征暂态过程进 行得快慢的一个重要的物理量,由电压u 上升到,1/e ≈,所对应的时间即为。 当把开关k 1打向位置2时,电容C 通过电阻R 放电,放电过程的数学描述为 图2 RC 电路的充放电曲线 (a )电容器充电过程 (b )电容器放电过程 U R Uc K 1 2 V E R C 图1 RC 串联电路

将dt dUc C i =,代人上式得01 =+Uc RC dt dUc 由初始条件t =0时,Uc =E ,解方程得 ? ??? ?--=--=-=) /exp()/exp() /exp(RC t E U RC t R E i RC t E Uc R 表示电容器两端的放电电压按指数律衰减到零,也可由此曲线衰减到所对应的时间 来确定。充放电曲线如图2所示。 2. 半衰期T 1/2 与时间常数τ有关的另一个在实验中较容易测定的特征值,称为半衰期T 1/2,即当U C (t )下降到初值(或上升至终值)一半时所需要的时间,它同样反映了暂态过程的快慢程度,与t 的关系为:T 1/2 =τln2 = τ(或τ= 2) 3. RC 电路的矩形脉冲响应。 若将矩形脉冲序列信号加在电压初值为零的RC 串联电路上,电路的瞬变过程就周期性地发生了。显然,RC 电路的脉冲响应就是连续的电容充放电过程。如图3所示。 图3 RC 电路及各元件上电压的变化规律 若矩形脉冲的幅度为U ,脉宽为t p 。电容上的电压可表示为: ?? ??? ≤≤?≤≤-=- -211 0)1()(t t t e U t t e U t u t t c τ τ ) (t u i )(t u R ) (t C R C ) (t u i (t u R (t u C u u u -t t t 1t 2 t 2t p t 1t 1 t 3 t 2t 3 t 3 t

用示波器观测电容的充放电特性2

用示波器观测电容的充放电特性 ● 实验目的 1.观察电容器的充与放电现象 2.通过放电的电压曲线,研究放电时间与哪些因素有关,测定电容器的电容量; 3.进一步熟悉示波器的使用. ● 仪器和用具 双踪示波器一台, 函数发生器一台,标准电阻箱一个,电容器一个 ● 实验原理

电容器能储存电量,如图8-1所示,将电键S与a 接通,电容器充电;将电键S与b相连接,电容器放电。可以用示波器CH1通道并联在电容器两端观察电容器充放电时电压与时间的变化曲线,实际测量中使用信号发生器输出标准方波来代替电键。根据串联电阻电容充电公式: 电容放电公式: 当电容充电(或放电)时间t=τ(τ=RC)时电容

器两端的电压等于电源E的63.2%(或36.8%),可见电容器两端电压跟串联电阻R的大小和电容C的大小有关。当电容器两端电压: τ=RC C=τ/R C=T/2R0.693 如果已知标准电阻R, 只要测得半衰期时间T/2就可以求得待测电容C的值. ● 实验步骤 1,按图连接线路, 2,调节信号发生器输出方波, 参考幅度:2Vpp---4Vpp。

参考频率:50HZ---200HZ 参考电阻: 10000Ω 参考电容: 0.100UF 3,用示波器CH1通道观测电容器的充放电特性;也可以用CH2通道观测信号发生器的输出波形,用 以作为对比; 4,改变R,C,和信号发生器的方波周期,观测充放电特性曲线; 5,调节最佳半衰期图形,用示波器标尺读出T1/2值, 设计表格记下各项参数; 6, 用坐标纸画出一个完整的充放电波形图. ● 实验数据处理

1,计算测量电容值 因为电容充放电为: τ=RC C=τ/R C=T1/2R0.693 2,计算相对误差: E=ΔC/C参考X100% ● 实验结论与误差分析1, 2, 3,

(推荐)RC电路充放电时间计算

RC电路充放电时间计算 V0 为电容上的初始电压值; V1 为电容最终可充到或放到的电压值; Vt 为t时刻电容上的电压值。 则, Vt="V0"+(V1-V0)* [1-exp(-t/RC)] 或, t = RC*Ln[(V1-V0)/(V1-Vt)] 求充电到90%VCC的时间。(V0=0,V1=VCC,Vt=0.9VCC) 代入上式: 0.9VCC=0+VCC*[[1-exp(-t/RC)] 既 [[1-exp(-t/RC)]=0.9; exp(-t/RC)=0.1 - t/RC=ln(0.1) t/RC=ln(10) ln10约等于2.3 也就是t=2.3RC。 带入R=10k C=10uf得。 t=2.3*10k*10uf=230ms RC回路充放电时间的推导过程需要用高等数学,简单的方法只要记住RC回路的时间常数τ=R×C,在充电时,每过一个τ的时间,电容器上电压就上升(1-1/e)约等于0.632倍的电源电压与电容器电压之差;放电时相反。 如C=10μF,R=10k,则τ=10e-6×10e3=0.1s 在初始状态Uc=0时,接通电源,则过0.1s(1τ)时,电容器上电压Uc为0+(1-0)×0.632=0.632倍电源电压U,到0.2s(2τ)时,Uc为0.632+(1-0.632)×0.632=0.865倍U……以此类推,直到t=∞时,Uc=U。放电时同样运用,只是初始状态不同,初始状态Uc=U。

单片机复位(上电复位和按键复位,复位脉宽10ms,R常取值10k~47k,c 取值10~100uf,电容大些为好): 原理:如果复位是高电平复位,加电后电容充电电流逐渐减少,此时经电阻接地的单片机IO是没电压的,因为电容是隔直流的,直到充电完毕开始放电,放电的过程同样是电流逐渐减少的,开始放电时电流很大,加到电阻上后提供给IO高电平,一段时间(电容器的充放电参数:建立时间等)后,电流变弱到0,但是复位引脚已经有了超过3us的高电平,所以复位就完成了; 手动复位,如加按键,则是直接将电容短路,给复位引脚送高电平,此部分就只有电容在起作用;当然电源较大(一般3.3v-5v)的话,加电阻是为了分压,防止烧坏引脚。 (注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

电容充放电计算公式

标 签:电容充放电公式 电容充电放电时间计算公式设,V0 为电容上的初始电压值; V1 为电容最终可充到或放到的电压值; Vt 为t时刻电容上的电压值。 则, Vt="V0"+(V1-V0)* [1-exp(-t/RC)] 或, t = RC*Ln[(V1-V0)/(V1-Vt)] 例如,电压为E的电池通过R向初值为0的电容C充电 V0=0,V1=E,故充到t时刻电容上的电压为: Vt="E"*[1-exp(-t/RC)]

再如,初始电压为E的电容C通过R放电 V0=E,V1=0,故放到t时刻电容上的电压为: Vt="E"*exp(-t/RC) 又如,初值为1/3Vcc的电容C通过R充电,充电终值为 Vcc,问充到2/3Vcc需要的时间是多少? V0=Vcc/3,V1=Vcc,Vt=2*Vcc/3,故 t="RC"*Ln[(1-1/3)/(1-2/3)]=RC*Ln2 = 注:以上exp()表示以e为底的指数函数;Ln()是e为底的对数函 解读电感和电容在交流电路中的作用 山东司友毓 一、电感 1.电感对交变电流的阻碍作用 交变电流通过电感线圈时,由于电流时刻都在变化,因此在线圈中就会产生自感电动势,而自感电动势总是阻碍原电流的变化,故电感线圈对交变电流会起阻碍作用,前面我们已经学习过,自感电动势的大小与线圈的自感系数及电流变化的快慢有关,自感系数越大,交变电流的频率越高,产生的自感电动势就越大,对交变电流的阻碍作用就越大,电感对交流的阻碍作用大小的物理量叫做感抗,用X L表示,且X L=2πfL。感抗的大小由线圈的自感系数L和交变电流的频率f共同决定。 2.电感线圈在电路中的作用 (1)通直流、阻交流,这是对两种不同类型的电流而言的,因为恒定电流的电流不变化,不能引起自感现象,所以对恒定电流没有阻碍作用,交流电的电流时刻改变,必有自感

电容的充放电过程及其应用

电容的充放电过程及其应用 、实验目的 1.观察RC 电路的矩形脉冲响应。 2?了解RC 微分电路、积分电路及耦合电路的作用及特点。 3?学习双踪示波器的使用方法。 二、实验原理 考虑到初始条件t=0时,U c =O ,得到方程的解: U c = E 1 - exp ( - t / RC 】 =R exp(—t / RC) -U c = Eex p (—t / RC) 上式表示电容器两端的充电电压是按指数 增长的一条曲线,稳态时电容两端的电压等于电 源电压E ,如图2(a)所示。式中RC= T 具有时间 量纲,称为电路的时间常数, 是表征暂态过程进 行得快慢的一个重要的物理量,由电压 到 0.63E , 1/e ~0.37,所对应的时间即为 「杪 dUc dUc 1 将i =C ——,代人上式得——+——Uc=O dt dt RC 由初始条件t = 0时,Uc = E ,解方程得 Uc = Eex p(-t/RC) { -|exp(-t / RC) U R =-Eex p(-t/RC) 表示电容器两端的放电电压按指数律衰减到零, 时间来确定。充放电曲线如图 2 所示。 2.半衰期T 1/2 1. RC 串联电路的充放电过程 在由电阻R 及电容 1),当开关K 打向位置 态变化的具体数学描述为 dt dt Uc + i R =E 将式⑴代人式⑵,得 dUc 丄 1 「 ----- + ——Uc dt RC C 组成的直流串联电路中,暂态过程即是电容器的充放电过程(图 1时,电源对电容器 C 充电,直到其两端电压等于电源 E 。这个暂 q = CUc , 而 I = dq / dt ,故 (1) 当把开关k 1打向位置2时,电容C 通过电阻 R 放电,放电过程的数学描述为 U c 上升 T 也可由此曲线衰减到 0.37E 所对应的 图2 RC 电路的充放电曲线

RC电路充电时间计算

RC电路充电时间计算 简单RC电路充电时间的计算方法。时间常数为tao=RC,一般三个tao就能完全充满电

V0 为电容上的初始电压值; V1 为电容最终可充到或放到的电压值; Vt 为t时刻电容上的电压值。 则, Vt="V0"+(V1-V0)* [1-exp(-t/RC)] 或, t = RC*Ln[(V1-V0)/(V1-Vt)] 求充电到90%VCC的时间。(V0=0,V1=VCC,Vt=0.9VCC)

代入上式:0.9VCC=0+VCC*[[1-exp(-t/RC)] 既[[1-exp(-t/RC)]=0.9; exp(-t/RC)=0.1 - t/RC=ln(0.1) t/RC=ln(10) ln10约等于2.3 也就是t=2.3RC。 带入R=10k C=10uf得。 t=2.3*10k*10uf=230ms RC回路充放电时间的推导过程需要用高等数学,简单的方法只要记住RC回路的时间常数τ=R×C,在充电时,每过一个τ的时间,

电容器上电压就上升(1-1/e)约等于0.632倍的电源电压与电容器电压之差;放电时相反。 如C=10μF,R=10k,则τ=10e-6×10e3=0.1s 在初始状态Uc=0时,接通电源,则过0.1s(1τ)时,电容器上电压Uc为0+(1-0)×0.63 2=0.632倍电源电压U,到0.2s(2τ)时,Uc为0.632+(1-0.632)×0.632=0.865倍U……以此类推,直到t=∞时,Uc=U。放电时同样运用,只是初始状态不同,初始状态Uc=U。 单片机复位(上电复位和按键复位,复位脉宽10ms,R常取值10k~47k,c取值10~100uf,电容大些为好): 原理:如果复位是高电平复位,加电后电容充电电流逐渐减少,此时经电阻接地的单片机IO是没电压的,因为电容是隔直流的,直到充电完毕开始放电,放电的过程同样是电流逐渐减少的,开始放电时电流很大,加到电阻上后提供给IO高电平,一段时间(电容器的充放电参数:建立时间等)后,电流变弱到0,但是复位引脚已经有了超过3us的高电平,所以复位就完成了; 手动复位,如加按键,则是直接将电容短路,给复位引脚送高电平,此部分就只有电容在起作用;当然电源较大(一般3.3v-5v)的话,加电阻是为了分压,防止烧坏引脚。 1.放电是一个一阶电路的零输入响应, SPICE Model R 1 0 R C 1 0 C IC=UC 我们有公式:UR-Uc=0,而UR=i*R, i=dUc/dt; 所以,有RC*dUc/dt+Uc=0;从而有初始条件有:Uc=UC*EXP(-t/RC),令τ=1/RC为时间常数,我们得到放电方程为Uc=UC*EXP(-t/τ), 其放电时间一般为3~5τ,理由是5τ时Uc=0.0067UC,已很小。 2. 充电方程类似,可以自己分析吧!

电容的选取与充放电时间的计算

电容的选取与充放电时间的计算 电容的选取: 电容在电路中实际要承受的电压不能超过它的耐压值。在滤波电路中,电容的耐压值不要小于交流有效值的1.42倍。使用电解电容的时候,还要注意正负极不要接反。 不同电路应该选用不同种类的电容。揩振回路可以选用云母、高频陶瓷电容,隔直流可以选用纸介、涤纶、云母、电解、陶瓷等电容,滤波可以选用电解电容,旁路可以选用涤纶、纸介、陶瓷、电解等电容。 电容在装入电路前要检查它有没有短路、断路和漏电等现象,并且核对它的电容值。安装的时候,要使电容的类别、容量、耐压等符号容易看到,以便核实。 电容的原理: 在电子线路中,电容用来通过交流而阻隔直流,也用来存储和释放电荷以充当滤波器,平滑输出脉动信号。小容量的电容,通常在高频电路中使用,如收音机、发射机和振荡器中。大容量的电容往往是作滤波和存储电荷用。而且还有一个特点,一般1μF以上的电容均为电解电容,而1μF以下的电容多为瓷片电容,当然也有其他的,比如独石电容、涤纶电容、小容量的云母电容等。电解电容有个铝壳,里面充满了电解质,并引出两个电极,作为正(+)、负(-)

极,与其它电容器不同,它们在电路中的极性不能接错,而其他电容则没有极性。 把电容器的两个电极分别接在电源的正、负极上,过一会儿即使把电源断开,两个引脚间仍然会有残留电压(学了以后的教程,可以用万用表观察),我们说电容器储存了电荷。电容器极板间建立起电压,积蓄起电能,这个过程称为电容器的充电。充好电的电容器两端有一定的电压。电容器储存的电荷向电路释放的过程,称为电容器的放电。 举一个现实生活中的例子,我们看到市售的整流电源在拔下插头后,上面的发光二极管还会继续亮一会儿,然后逐渐熄灭,就是因为里面的电容事先存储了电能,然后释放。当然这个电容原本是用作滤波的。至于电容滤波,不知你有没有用整流电源听随身听的经历,一般低质的电源由于厂家出于节约成本考虑使用了较小容量的滤波电容,造成耳机中有嗡嗡声。这时可以在电源两端并接上一个较大容量的电解电容(1000μF,注意正极接正极),一般可以改善效果。发烧友制作HiFi音响,都要用至少1万微法以上的电容器来滤波,滤波电容越大,输出的电压波形越接近直流,而且大电容的储能作用,使得突发的大信号到来时,电路有足够的能量转换为强劲有力的音频输出。这时,大电容的作用有点像水库,使得原来汹涌的水流平滑地输出,并可以保证下游大量用水时的供应。

电容的选取与充放电时间的计算完整版

电容的选取与充放电时 间的计算 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

电容的选取与充放电时间的计算 电容的选取: 电容在电路中实际要承受的电压不能超过它的耐压值。在滤波电路中,电容的耐压值不要小于交流有效值的倍。使用电解电容的时候,还要注意正负极不要接反。 不同电路应该选用不同种类的电容。揩振回路可以选用云母、高频陶瓷电容,隔直流可以选用纸介、涤纶、云母、电解、陶瓷等电容,滤波可以选用电解电容,旁路可以选用涤纶、纸介、陶瓷、电解等电容。电容在装入电路前要检查它有没有短路、断路和漏电等现象,并且核对它的电容值。安装的时候,要使电容的类别、容量、耐压等符号容易看到,以便核实。 电容的原理: 在电子线路中,电容用来通过交流而阻隔直流,也用来存储和释放电荷以充当滤波器,平滑输出脉动信号。小容量的电容,通常在高频电路中使用,如收音机、发射机和振荡器中。大容量的电容往往是作滤波和存储电荷用。而且还有一个特点,一般1μF以上的电容均为电解电容,而1μF以下的电容多为瓷片电容,当然也有其他的,比如独石电容、涤纶电容、小容量的云母电容等。电解电容有个铝壳,里面充满了电解质,并引出两个电极,作为正(+)、负

(-)极,与其它电容器不同,它们在电路中的极性不能接错,而其他电容则没有极性。 把电容器的两个电极分别接在电源的正、负极上,过一会儿即使把电源断开,两个引脚间仍然会有残留电压(学了以后的教程,可以用万用表观察),我们说电容器储存了电荷。电容器极板间建立起电压,积蓄起电能,这个过程称为电容器的充电。充好电的电容器两端有一定的电压。电容器储存的电荷向电路释放的过程,称为电容器的放电。 举一个现实生活中的例子,我们看到市售的整流电源在拔下插头后,上面的发光二极管还会继续亮一会儿,然后逐渐熄灭,就是因为里面的电容事先存储了电能,然后释放。当然这个电容原本是用作滤波的。至于电容滤波,不知你有没有用整流电源听随身听的经历,一般低质的电源由于厂家出于节约成本考虑使用了较小容量的滤波电容,造成耳机中有嗡嗡声。这时可以在电源两端并接上一个较大容量的电解电容(1000μF,注意正极接正极),一般可以改善效果。发烧友制作HiFi音响,都要用至少1万微法以上的电容器来滤波,滤波电容越大,输出的电压波形越接近直流,而且大电容的储能作用,使得突发的大信号到来时,电路有足够的能量转换为强劲有力的音频输出。这时,大电容的作用有点像水库,使得原来汹涌的水流平滑地输出,并可以保证下游大量用水时的供应。

电容的充放电过程及其应用 (2)

电容的充放电过程及其应用 一、实验目的 1.观察RC电路的矩形脉冲响应。 2.了解RC微分电路、积分电路及耦合电路的作用及特点。 3.学习双踪示波器的使用方法。 二、实验原理 1.RC串联电路的充放电过程 在由电阻R及电容C组成的直流串联电路中,暂态过程即就是电容器的充放电过程(图1),当开关K打向位置1时,电源对电容器C充电,直到其两端电压等于电源E。这个暂态变化的具体数学描述为q=CUc,而I = dq / dt ,故 dt dUc C dt dq i= =(1) E iR Uc= +(2) 将式(1)代人式(2),得 E RC Uc RC dt dUc1 1 = + 考虑到初始条件t=0时,u C=0,得到方程的解: [] () () ? ? ? ?? ? ? - = - = - = = RC t E U E U RC t R E i RC t E U C R / exp / exp ) / - ( exp - 1 C 上式表示电容器两端的充电电压就是按指 数增长的一条曲线,稳态时电容两端的电压等于 电源电压E,如图2(a) 所示。式中RC=τ具有时间 量纲,称为电路的时间常数,就是表征暂态过程进 行得快慢的一个重要的物理量,由电压u c上升到 0、63E,1/e≈0、37,所对应的时间即为τ。 当把开关k1打向位置2时,电容C通过电阻R放电,放电过程的数学描述为 将 dt dUc C i=,代人上式得0 1 = +Uc RC dt dUc 由初始条件t=0时,Uc=E,解方程得 ? ? ? ? ? - - = - - = - = ) / exp( ) / exp( ) / exp( RC t E U RC t R E i RC t E Uc R 表示电容器两端的放电电压按指数律衰减到零,τ也可由此曲线衰减到0、37E所对应的 时间来确定。充放电曲线如图2所示。 2、半衰期T1/2 图2 RC电路的充放电曲线 (a)电容器充电过程(b)电容器放电过程 U R Uc K 1 2 V E R C 图1 RC串联电路

电容放电和充电时间计算

设:O V 为电容器两端的初始电压值 m a x V 为电容器两端充满时电压值 t V 为电容器两端任意时刻t 时的电压值 那么: ()??? ? ??-?-+=-RC t o o t e V V V V 1max 若,电压为E 的电池通过电阻R 向初值为0的电容C 充电,此时0=o V ,充电极限E V =max 故,任意时刻t ,电容上的电压为: ??? ? ??-?=????? ??-=-t RC t t V E E RC t e E V ln 1 若,已知某时刻电容上的电压t V ,根据常数可以计算出时间t 。 公式涵义: 完全充满时,t V 接近E ,时间t 无穷大; 当RC t =时,电容电压E 63.0=; 当RC t 2=时,电容电压E 86.0=; 当RC t 3=时,电容电压E 96.0=; 当RC t 4=时,电容电压E 98.0=; 当RC t 5=时,电容电压E 99.0=; 可见,经过RC 个5~3后,充电过程基本结束。 例:F C V V V t μ1.01M R 375V 325V V 0max O =Ω====,,,,,求t S t 20.0325 375375ln 101.010166=-????=

已知,初始电压为E 的电容C 通过电阻R 放电,0max O ==V E V ,; 那么,电容器放电时任意时刻t ,电容两端电压t V 为: t RC t t V E RC t e E V ln ?=??=- 例:F C V V t μ1.01M R 22V V 375O =Ω===,,,,求t S t 28.022375 ln 101.010166=????=

电容充放电计算公式

签:电容充放电公式 电容充电放电时间计算公式 设,V0 为电容上的初始电压值; V1 为电容最终可充到或放到的电压值; Vt 为t时刻电容上的电压值。 则, Vt="V0"+(V1-V0)* [1-exp(-t/RC)] 或, t = RC*Ln[(V1-V0)/(V1-Vt)] 例如,电压为E的电池通过R向初值为0的电容C充电 V0=0,V1=E,故充到t时刻电容上的电压为: Vt="E"*[1-exp(-t/RC)] 再如,初始电压为E的电容C通过R放电 V0=E,V1=0,故放到t时刻电容上的电压为: Vt="E"*exp(-t/RC) 又如,初值为1/3Vcc的电容C通过R充电,充电终值为 Vcc,问充到2/3Vcc需要的时间是多少? V0=Vcc/3,V1=Vcc,Vt=2*Vcc/3,故 t="RC"*Ln[(1-1/3)/(1-2/3)]=RC*Ln2 = 注:以上exp()表示以e为底的指数函数;Ln()是e为底的对数函

解读电感和电容在交流电路中的作用 山东司友毓 一、电感 1.电感对交变电流的阻碍作用 交变电流通过电感线圈时,由于电流时刻都在变化,因此在线圈中就会产生自感电动势,而自感电动势总是阻碍原电流的变化,故电感线圈对交变电流会起阻碍作用,前面我们已经学习过,自感电动势的大小与线圈的自感系数及电流变化的快慢有关,自感系数越大,交变电流的频率越高,产生的自感电动势就越大,对交变电流的阻碍作用就越大,电感对交流的阻碍作用大小的物理量叫做感抗,用X L表示,且X L=2πfL。感抗的大小由线圈的自感系数L 和交变电流的频率f共同决定。 2.电感线圈在电路中的作用 (1)通直流、阻交流,这是对两种不同类型的电流而言的,因为恒定电流的电流不变化,不能引起自感现象,所以对恒定电流没有阻碍作用,交流电的电流时刻改变,必有自感电动势产生以阻碍电流的变化,所以对交流有阻碍作用。 (2)通低频、阻高频,这是对不同频率的交变电流而言的,因为交变电流的频率越高,电流变化越快,感抗也就越大,对电流的阻碍越大。 (3)扼流圈:利用电感阻碍交变电流的作用制成的电感线圈。 低频扼流圈:线圈绕在铁芯上,匝数多,自感系数大,电阻较小,具有“通直流、阻交流”的作用。 高频扼流圈:匝数少,自感系数小;具有“通低频、阻高频”的作用。 二、电容 1.电容器为何能“通交流” 把交流电源接到电容器两个极板上后,当电源电压升高时,电源给电容器充电,电荷向电容器极板上聚集,在电路中形成充电电流;当电源电压降低时,电容器放电,原来极板上聚集的电荷又放出,在电路中形成放电电流,电容器交替进行充电和放电,电路中就有了电流,好像是交流“通过”了电容器,但实际上自由电荷并没有通过电容器两极板间的绝缘介质。 2. 电容器对交变电流的阻碍作用是怎样形成的 我们知道,恒定电流不能通过电容器,原因是电容器的两个极板被绝缘介质隔开了。当

电容充放电时间的计算

电容充放电时间的计算: 1.L、C元件称为“惯性元件”,即电感中的电流、电容器两端的电压,都有一定的“电惯性”,不能突然变化。充放电时间,不光与L、C的容量有关,还与充/放电电路中的电阻R有关。“1UF电容它的充放电时间是多长?”,不讲电阻,就不能回答。 RC电路的时间常数:τ=RC 充电时,uc=U×[1-e^(-t/τ)]U是电源电压 放电时,uc=Uo×e^(-t/τ)Uo是放电前电容上电压 RL电路的时间常数:τ=L/R LC电路接直流,i=Io[1-e^(-t/τ)]Io是最终稳定电流 LC电路的短路,i=Io×e^(-t/τ)]Io是短路前L中电流 2. 设V0 为电容上的初始电压值; V1 为电容最终可充到或放到的电压值; Vt 为t时刻电容上的电压值。则: Vt=V0 +(V1-V0)× [1-exp(-t/RC)] 或 t = RC × Ln[(V1 - V0)/(V1 - Vt)] 例如,电压为E的电池通过R向初值为0的电容C充电,V0=0,V1=E,故充到t时刻电容上的电压为: Vt=E × [1-exp(-t/RC)] 再如,初始电压为E的电容C通过R放电, V0=E,V1=0,故放到t时刻电容上的电压为:Vt=E × exp(-t/RC) 又如,初值为1/3Vcc的电容C通过R充电,充电终值为Vcc,问充到2/3Vcc需要的时间是多少? V0=Vcc/3,V1=Vcc,Vt=2*Vcc/3,故t=RC × Ln[(1-1/3)/(1-2/3)]=RC × Ln2 =0.693RC 注:以上exp()表示以e为底的指数函数;Ln()是e为底的对数函数 {e是一个数值,约等于2.7182818245,对数函数:以e为底X的对数就可以写成lne,叫做自然对数} 3. 提供一个恒流充放电的常用公式:?Vc=I*?t/C.再提供一个电容充电的常用公式: Vc=E(1-e-(t/R*C))。RC电路充电公式Vc=E(1-e-(t/R*C))中的:-(t/R*C)是e的负指数项。

电容的充放电过程及其应用

1.观察RC 电路的矩形脉冲响应。 2.了解RC 微分电路、积分电路及耦合电路的作用及特点。 3.学习双踪示波器的使用方法。 二、实验原理 1. RC 串联电路的充放电过程 在由电阻R 及电容C 组成的直流串联电路中,暂态过程即是电容器的充放电过程(图1),当开关K 打向位置1时,电源对电容器C 充电,直到其两端电压等于电源E 。这个暂态变化的具体数学描述为q =CUc ,而I = dq / dt ,故 dt dUc C dt dq i == (1) E iR Uc =+ (2) 将式(1)代人式(2),得 E RC Uc RC dt dUc 11=+ 考虑到初始条件t=0时,u C =0,得到方程的解: []()() ?? ?? ?? ?-=-=-==RC t E U E U RC t R E i RC t E U C R /exp /exp )/-(exp -1C 上式表示电容器两端的充电电压是按指数增长的一条曲线,稳态时电容两端的电压等于电源电压E ,如图2(a) 所示。式中RC=τ具有时间量纲,称为电路的时间常数,是表征暂态过程进 行得快慢的一个重要的物理量,由电压u c 上升 到0.63E ,1/e ≈0.37,所对应的时间即为τ。 当把开关k 1打向位置2时,电容C 通过电阻R 放电,放电过程的数学描述为 将dt dUc C i =,代人上式得 01 =+Uc RC dt dUc 由初始条件t =0时,Uc =E ,解方程得 ? ??? ?--=--=-=) /exp()/exp() /exp(RC t E U RC t R E i RC t E Uc R 表示电容器两端的放电电压按指数律衰减到零,τ也可由此曲线衰减到0.37E 所对应的时间来确定。充放电曲线如图2所示。 2. 半衰期T 1/2 与时间常数τ有关的另一个在实验中较容易测定的特征值,称为半衰期T 1/2,即当U C (t )下降到初值(或上升至终值)一半时所需要的时间,它同样反映了暂态过程的快慢程度,与t 的关系为:T 1/2 =τln2 = 0.693τ(或τ= 1.443T 1/2) 图2 RC 电路的充放电曲线 (a )电容器充电过程 (b )电容器放电过程 图1 RC 串联电路

电容充电放电时间和充电电流计算公式

电容充电放电时间和充电电流计算公式 设,V0 为电容上的初始电压值; V1 为电容最终可充到或放到的电压值; Vt 为t时刻电容上的电压值。 则, Vt="V0"+(V1-V0)* [1-exp(-t/RC)] 或, t = RC*Ln[(V1-V0)/(V1-Vt)] 例如,电压为E的电池通过R向初值为0的电容C充电 V0=0,V1=E,故充到t时刻电容上的电压为: Vt="E"*[1-exp(-t/RC)] 再如,初始电压为E的电容C通过R放电 V0=E,V1=0,故放到t时刻电容上的电压为: Vt="E"*exp(-t/RC) 又如,初值为1/3Vcc的电容C通过R充电,充电终值为 Vcc,问充到2/3Vcc需要的时间是多少? V0=Vcc/3,V1=Vcc,Vt=2*Vcc/3,故 t="RC"*Ln[(1-1/3)/(1-2/3)]=RC*Ln2 =0.693RC 注:以上exp()表示以e为底的指数函数;Ln()是e为底的对数函数

直流充电电流计算: 1F 乘1V 除1A = 1S 1法拉乘1伏特除1安培=1秒 以上式类推, 另:i = (V / R)e - (t / CR) 在交流电路中电容中的电流的计算公式: I=U/Xc Xc=1/2πfC I=2πfCU f:交流电频率 U:电容两端交流电电压 C:电容器电容量 在直流电路中电容中上的电量:Q=CU,如电容器两端电压不变,电容上的电量也不变,电容中就没有电流流过。

THANKS !!! 致力为企业和个人提供合同协议,策划案计划书,学习课件等等 打造全网一站式需求 欢迎您的下载,资料仅供参考

超级电容充放电控制电路毕业设计

摘要: 超级电容是一种新型的储能元器件,它相比其它储能元器件有很多优势,比如比功率高、充电速度快、放电电流大、使用寿命长、不污染环境等。其具有很大的发展前景,但由于超级电容个体电压不高,在实际应用过程中就需要将多个超级电容器串并联起来使用。超级电容在充放电过程中,由于其参数存在离散型,即使是同一型号同一规格的超级电容器在其电压内阻、容量等参数上都存在一定的差异。这样容易导致某些超级电容器过充或者过放,影响超级电容的使用寿命和系统的稳定性。同时,超级电容器在充放电过程中,超级电容器电池组两端的电压会逐渐下降,尤其经过长时间大电流放电,电压下降明显,会直接影响负载的工作稳定性。因此研究超级电容充放电控制电路对提高超级电容的使用寿命和系统稳定性十分重要。本文主要对超级电容器电池组采取电压均衡和放电稳压就行设计研究。超级电容器的充放电控制电路有恒压、恒流等。放电稳压有稳压管稳压、三极管反馈稳压、集成芯片稳压等等方式。联系到将超级电容用作后备电源,针对实际应用列出了详细的设计步骤和研究方案。 关键词: 超级电容电压均衡放电稳压 1 绪论 1.1 课题研究背景及意义 1.1.1 课题研究背景 当今社会由于石油、煤炭等传统能源日益枯竭,并且这些燃料燃烧对生态环境已经造成了严重的污染。目前人们研究的层次还是局限于油、气混合动力燃料电池、化学电池的研究。虽然其研究成果取得了一定的成就但是他们的缺点也日益暴露出来比如:使用寿命短、温度特性差、充放电速度慢、放电电流小、对环境仍有一定的污染等。所以人们迫切希望能够找到一种绿色环保的储能装置代替传统的储能装置。而超级电容器是上个世纪80年代初出现的新产品,是一种介于传统电容器和充电电池之间的新型储能器件。它有其功率高、充电速度快、储存能量大、放电电流大、使用寿命长、免维护等优点。随着便携式电气设备的普及,超级电容在电动汽车的研发、UPS电源、数码产品电源的发展获得了极大的

超级电容充放电时间计算方法修订稿

超级电容充放电时间计 算方法 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

超级电容充放电时间计算方法 1法拉=1000000微法 1微法=1000000皮法 12V,10法拉的电容,对12V,的用电器放电应该在400秒时间内放完 电容没有功率,在电路中只要电压不超过耐压值27v就可以。 普通蓄电池如12V14安时的放电量=14×3600∕12=4200(F) 电流的大小和负载相关,电容放电,电压会降低的,具体可以参考电容的放电曲线。如果想有稳定的电压和电流可以在电容后增加DC-DC的稳压电路 一般应用在太阳能指示灯上时, LED 都釆用之闪烁妁发光, 例如釆用一颗 LED 且控制每秒闪烁放电持续时间为秒, 对超级电容充电电流 100mA 下面以 / 50F在太阳能交通指示灯为例, 超级电容充电时间如下: C X dv = I X t C: 电容器额定容量; V: 电容器工作电压 I: 电容器充电 t: 电容器充电时间 R: 电容器内阻 dv: 工作电压差 故 / 50F 超级电容充电时间为: t = ( C X V) / I = (50 X / = 1250S 超级电容放电时间为: C X dv - I X C X R = I X t 故 / 50F 超级电容从放到放电时间为: t = C X (dv / I - R) = 50 X [ ( - ] / - ] = 5332S 应用在 LED 工作时间为 5332 / = 106640S = hr C: 电容器额定容量 (F) R: 电容器内阻 (Ohm) V work: 正常工作电压 (V) V min : 停止工作电压 (V) t : 在电路中要求持续工作时间 (s) I : 负载电流 (A) 超级电容量的计算方式: )-VminC = (Vwork + Vmin)It / (Vwork 例: 如单片机应用系统中, 应用超级电容作为後备电源,在断电後需要用

超级电容充放电时间计算方法

超级电容充放电时间计算方法 1法拉=1000000微法 1微法=1000000皮法 12V,10法拉的电容,对12V,1.5A的用电器放电应该在400秒时间内放完 电容没有功率,在电路中只要电压不超过耐压值2?7v就可以。 普通蓄电池如12V14安时的放电量=14×3600∕12=4200(F) 电流的大小和负载相关,电容放电,电压会降低的,具体可以参考电容的放电曲线。如果想有稳定的电压和电流可以在电容后增加DC-DC的稳压电路 一般应用在太阳能指示灯上时, LED 都釆用之闪烁妁发光, 例如釆用一颗LED 且控制每秒闪烁放电持续时间为0.05 秒, 对超级电容充电电流100mA (0.1A) 下面以2.5V / 50F在太阳能交通指示灯为例, 超级电容充电时间如下: C X dv = I X t C: 电容器额定容量; V: 电容器工作电压 I: 电容器充电 t: 电容器充电时间 R: 电容器内阻 dv: 工作电压差 故2.5V / 50F 超级电容充电时间为: t = ( C X V) / I = (50 X 2.5) / 0.1 = 1250S 超级电容放电时间为: C X dv - I X C X R = I X t 故2.5V / 50F 超级电容从2.5V 放到0.9V 放电时间为: t = C X (dv / I - R) = 50 X [ ( 2.5 - 0.9) ] / 0.015 - 0.02 ] = 5332S 应用在LED 工作时间为5332 / 0.05 = 106640S = 29.62 hr C: 电容器额定容量(F) R: 电容器内阻(Ohm) V work: 正常工作电压(V) V min : 停止工作电压(V) t : 在电路中要求持续工作时间(s) I : 负载电流(A) 超级电容量的计算方式: )-Vmin C = (Vwork + Vmin)It / (Vwork 例: 如单片机应用系统中, 应用超级电容作为後备电源,在断电後需要用

电容充放电时间计算

电容充放电时间计算 硬件工程师在做一些仪表产品时,往往会面临一个“掉电保存”的问题。例如在数显电能表中,当突然发生外部电源断电时;MCU要在断电的一刹那,运行掉电中断服务程序,把电量数据或当前工作状态存到外部的E2PROM中。这样在下一次上电时,MCU就能从E2PROM中读取数据,或恢复断电前的工作状态。 在没有后备电池的应用中,这个动作只能通过大电容的短时间放电来完成。如果不考虑中断服务程序中执行指令的时间,仅仅普通24C02写一页(8字节)的编程时间最大就会达10ms;电容的放电时间最起码要比这个时间长,这样我们就需要计算电容放电的持续时间。 下面给出两个例子: 1、100uF的电容充上5V的电;之后用1mA恒流放电,多长时间能放干净(放到0V)? 2、100uF电容用1mA恒流放电,从2.8V放电到2.2V,需要多长时间?(实际中的例子:系统总工作电流为1mA;设置单片机2.8V进入掉电中断,2.2V发生低压复位;掉电中断程序必须在这个时间区内完成对24C02的写操作)。 ------------------------------------------------------------ 计算方法有很多,这里给出一个公式和计算过程: 根据电容上的电流和电压公式:。 因为恒流放电,ic恒定,uc线性变化;上面公式可改为:,可得,这个就是电容恒流充放电计算公式。 第1题,代入C=0.1mF,Ic=1mA,电压变化=5V,可计算出放电时间=500ms。 第2题,电压变化=2.8-2.2=0.6V,其他不变,可计算出=60ms;也就是从从2.8V 放电到2.2V,需要60ms。实际使用中如果掉电保存内容比较多,这个时间不够,那就把这个电容加大一点。 另外,电容恒流充电计算也是同样的过程。

电容的充电和放电

电容的充电和放电 1 应该是电池负极放出电子到一块极板,电池正极将另一块极板上的电子吸了过去。 2 此时电路是通路电容的充放电过程,你这么理解是对的。 3 这个问题,要看你这个电路对电容充放电的时间周期。如果高于交流电的周期,那么电容电还没放完,电流方向就改变,开始反向充电,这样电容电压始终不能回零。如果小于交流电周期,电流还没有回落到零,电容已放电完毕。总之,只有两周期相同时,电容电压才和电路电压变化一致。 将电容器的两端接上电源。(注意电容及电池连接的极性,电解电容器的负极应与电池的负极相接)电容器就会充电,有电荷的积累。两端电压不断升高,当电容器两端电压Uc同电池电压E相等时,充电完毕。此时Uc(电容器两端电压)=Q(电容器充电的电量)/C(电容器的电容量), 当电容器两端去掉电源改加电阻等负载时,电容器进行放电。放电电流I=Uc/R(注意Q是逐渐减少的,Uc也是逐渐减少的,所以I也是逐渐减少的)。 电容的充电和放电 电容是一种以电场形式储存能量的无源器件。在有需要的时候,电容能够把储存的能量释出至电路。电容由两块导电的平行板构成,在板之间填充上绝缘物质或介电物质。图1和图2分别是电容的基本结构和符号。 图1: 电容的基本结构

图2: 电容的电路符号 当电容连接到一电源是直流电(DC) 的电路时,在特定的情况下,有两个过程会发生,分别是电容的“充电” 和“放电”。 若电容与直流电源相接,见图3,电路中有电流流通。两块板会分别获得数量相等的相反电荷,此时电容正在充电,其两端的电位差v c逐渐增大。一旦电容两端电压v c增大至与电源电压V相等时,v c = V,电容充电完毕,电路中再没有电流流动,而电容的充电过程完成。 图3: 电容正在充电 由于电容充电过程完成后,就没有电流流过电容器,所以在直流电路中,电容可等效为开路或R = ∞,电容上的电压v c不能突变。 当切断电容和电源的连接后,电容通过电阻R D进行放电,两块板之间的电压将会逐渐下降为零,v c = 0,见图4。

超级电容充放电时间计算方法

超级电容充放电时间计算方法 一般应用在太阳能指示灯上时, LED 都釆用之闪烁妁发光, 例如釆用一颗LED 且控制每秒闪烁放电持续时间为秒, 对超级电容充电电流100mA 下面以/ 50F在太阳能交通指示灯为例, 超级电容充电时间如下: C X dv = I X t C: 电容器额定容量; V: 电容器工作电压 I: 电容器充电 t: 电容器充电时间 R: 电容器内阻 dv: 工作电压差 故/ 50F 超级电容充电时间为: t = ( C X V) / I = (50 X / = 1250S 超级电容放电时间为: C X dv - I X C X R = I X t 故/ 50F 超级电容从放到放电时间

为: t = C X (dv / I - R) = 50 X [ ( - ] / - ] = 5332S 应用在LED 工作时间为5332 / = 106640S = hr C: 电容器额定容量(F) R: 电容器内阻(Ohm) V work: 正常工作电压(V) V min : 停止工作电压(V) t : 在电路中要求持续工作时间(s) I : 负载电流(A) 超级电容量的计算方式: C = (Vwork + Vmin)It / (Vwork-Vmin) 例: 如单片机应用系统中, 应用超级电容作为後备电源,在断电後需要用 超级电容维持100mA 电流,持续时间为10S, 单片机停止工作电压为,

那麽需要多大容量的超级电容才能保证系统正常工作 工作起始电压Vwork = 5V 停止工作电压Vmin = 工作时间t = 10S 工作电源I = 那麽需要的电容容量为: C = (Vwork + Vmin)It / (Vwork-Vmin) = (5 + X X 10 / (5 X ) = 根据计算结果, 可以选择, 电容就可以满足需要了 公式:UC=It 单位:U:伏特V;C:法拉F;I:安培A;t:秒s 逆推得式子:C=It/U 充电电池的电量是mAh,表示毫安时,即毫安与小时的乘积 那么我想问,mAh能否脱离电池的电压独立表示电池的容量如果不能的话那是否应该用mAh乘以电池电压来表示呢还是

相关文档
最新文档