可燃气体的爆炸极限和最大允许氧含量的测定及影响因素研究_图文(精)

可燃气体的爆炸极限和最大允许氧含量的测定及影响因素研究_图文(精)
可燃气体的爆炸极限和最大允许氧含量的测定及影响因素研究_图文(精)

第28卷第3期2006年9月湘潭师范学院学报(自然科学版Journal of X iangtan Normal University (Natural Science Edition

Vol.28No.3

Sep.2006

可燃气体的爆炸极限和最大允许氧含量的

测定及影响因素研究

张增亮a ,李革梅

b

(湖南科技大学a.能源与安全工程学院;b.信息与电气工程学院,湖南湘潭411201

摘要:通过实验分析了可燃气体(液体蒸汽的爆炸极限规律,同时独到地分析了各浓度可燃气体(液体蒸汽的最大允许氧含量的规律;通过爆炸极限和最大允许氧含量规律的对比研究,分析了两者的影响因素,指出两者从不同角度界定了可燃气体(液体蒸汽的爆炸范围。

关键词:可燃气体;液体蒸汽;最大允许氧含量;爆炸极限;影响因素中图分类号:T Q620文献标识码:A 文章编号:1671-0231(200603-0067-04

可燃气体(液体蒸汽发生燃烧和爆炸的三个基本因素是火源,可燃气体(液体蒸汽,氧气。即燃烧爆炸,不仅需要达到最小点火能以上能量值的火源,还需要两个重要条件:高于爆炸上限的可燃气浓度和混合物中氧含量达到最大允许氧含量以上。

目前,对最大允许氧含量的理论及影响因素尚无报道,鉴于此,笔者通过对十氢萘和煤气等做了大量爆炸实验,将可燃气体(液体蒸汽的最大允许氧含量与爆炸极限进行了类比研究,深入揭示了两者之间的相似与不同之处,从而进一步挖掘出最大允许

氧含量的内在性质,特别是对最大允许氧含量的变化规律及其对安全生产工作的指导方面的研究,开创了国内研究之先河。笔者认为本研究的创新思想将对安全工作发挥有力的指导作用。

1爆炸筒2放电极针3混合喷嘴4电磁阀5引射器6可燃液体计量装置7可燃气体流

量计

8空气干燥器9空气流量计10空气加热蛇管11空气湿度仪12氧分析仪13真空

泵14温度传感器15温度传感器16电加热器17电加热器18电加热丝19压电晶体传感器

图1测试系统总布置图1实验装置

实验所用装置系统如图1,为中北大学研制的可燃气体(液体蒸汽爆炸特性测试装置。其主体为20L 柱形爆炸筒,共分爆炸筒、点火源、配气系统三部分。该装置性能可靠、测试精确,尤其对可燃液体的测试,巧妙地性地运用引射技术,将可燃液体利用引

射器引射到预热的空气输送管道,从而得以气化并混合输送到特定温度的爆炸筒中,成功地解决了液体气化计量及

混合的难题,从而能够在同一装置中对可燃气体和可燃液体蒸汽的爆炸特性进行测试。

2实验原理

当可燃性气体或液体蒸汽与空气(或氧在一定范围内均匀混合,遇到火源会发生爆炸,这个浓度范围

①收稿日期:2006-03-24

作者简介:张增亮(1968-,男,山东寿光人,讲师,研究方向:安全技术及工程。

即为其爆炸极限。最大允许氧含量是指当给以足够的点燃能量能使某一浓度的可燃气体或液体蒸汽刚好不发生燃烧爆炸的临界最高氧浓度,即为爆炸与不爆的临界点。若氧含量高于此浓度,便会发生燃烧或爆炸。换句话说,氧含量低于此浓度便不会发生燃烧或爆炸。

爆炸极限和最大允许氧含量的测试方法基本是一致的。即:将一定浓度的可燃气体与其它气体(根据浓度比等于体积比的规律混合。对于液体则首先根据实验所需液体蒸汽的浓度换算出需要的液体体积,然后运用引射混合方法与其它气体混合,通过电极放电点火,根据压力传感器的压力波形前沿是否较快上升或爆炸筒内的火焰是否升起,采用逐步逼近法进行爆与不爆的判定。

3实验结果与讨论

3.1实验结果

通过对煤气和十氢萘等做了大量爆炸实验,分别对它们的爆炸极限及爆炸极限范围内(主要是空气中爆炸极限范围内的最大允许氧含量进行了对比测试,并得出以下数据:

表1200℃时十氢萘在空气中各浓度下的实际氧含量与最大允许氧含量(% concentration of decahydronaphthalene0.650.7 1.4252 2.5345 6.5 actual oxygen content20.8620.8520.7020.5820.4820.3720.1619.9519.64 M

AOC9.51010.511121416.218.119.64表21大气压下加入不同配比的惰性气体时煤气的爆炸极限及所对应的最大允许氧含量(% inert gasΠ1atm20℃inert gasΠ1atm80℃

flammable explosion explosion flammable explosion explosion

(N2ΠC oal lower M AOC upper M AOC(N2ΠC oal lower M AOC upper M AOC gaslimit limit gaslimit limit

07 5.863513.6507 5.863912.81

17 5.862211.7617 5.862311.36

27 5.861610.9227 5.861710.29

37 5.86149.2437 5.86149.24

47 5.86128.447 5.86128.4

597.5397.5357 5.86108.4

68 6.708 6.70

表3 1.5大气压下加入不同配比的惰性气体时煤气的爆炸极限及所对应的最大允许氧含量(% inert gasΠ 1.5atm20℃inert gasΠ 1.5atm80℃

flammable explosion explosion flammable explosion explosion

(N2ΠC oal lower M AOC upper M AOC(N2ΠC oal lower M AOC upper M AOC gaslimit limit gaslimit limit

0 6.3 5.273613.440 6.3 5.273912.81

1 6.7 5.612211.761 6.6 5.5223.711.05

2 6.7 5.6116.710.482 6.7 5.6117.310.10

3 6.7 5.61149.243 6.

4 5.3614.78.65

4 6.7 5.61128.44 6.4 5.3613.27.14

59.37.789.37.785 6.5 5.4410.77.52

68.77.288.77.28

表4实验所用煤气的组成

ingredients H2CH4C O CnHm C O2O2N2

contentΠ%54.824 6.6 1.8 3.20.49.2

3.2对实验结果的讨论

(1爆炸极限和氧含量的关系

从表1及表5中文献数据可以看出,氧含量几乎对下限不产生影响,而对上限影响却很大。从上面分析知,下限与当量浓度之间,氧处于过剩状态,尤其在下限附近,氧过剩很多,因此再加过多的氧,甚至可燃物在全氧环境中,对下限也不会产生影响。

而当量浓度与上限之间处于缺氧状态,尤其在上限,氧更是严重匮乏,可燃物之所以不爆,就是因为氧严重不足,不足以引燃可燃物,因此当加氧时,上限会急速加大,特别是在全氧环境中,上限值要比在空气中的大得多。

表5某些可燃气体在空气和氧气中的爆炸极限(%

name in the air

in the oxygen

lower limit

upper limit

lower limit

upper limit

CH 4515561C 2H 6 3.012.5 3.066H 2

4

75

4

94

(2就可燃物的浓度来说,它具有爆炸极限。实际上,在整个可爆范围内,最大允许氧含量也存在极限

值。从理论上讲,对多数碳氢化合物,其反应方程式可写为:

C n H m +(n +

m

4

O 2=nCO 2+

m

2

H 2O

(1

其最大允许氧含量的最小值在数值上等于处于下限浓度(L 下的可燃物刚好完全反应所需要的临界氧含量[1]

,用等式表示为:

O m =L 下×(n +

m

4

(2

而最大允许氧含量的最大值则对应于爆炸上限时的实际氧含量,可见两者的极限值具有一一对应的关系。

(3根据表1可以看出,最大允许氧含量值是随可燃气体的浓度呈现逐渐递增规律的。而且在爆炸范围内,可燃物每一浓度都对应唯一的最大允许氧含量值。因此可运用数值分析原理根据所给定的部分数据拟合出相应的规律函数,如:根据表1所列数据,可运用计算机拟合出三次函数:

Y =10.02497-1.09745X +1.06675X 2-0.10329X

3

(3图2十氢萘浓度与其最大允许氧含量的关系

其对应模拟图形如图2。当然根据精度及其它需要还可拟合出次数更高更精确的函数及图形。这样对可燃物每个浓度所对应的最大允许氧含量都可从理论上估算出。

(4温度和压力等物理因素对爆炸极限有影响,同样对最大允许氧含量也有影响。当温度和压力升高时,爆炸下限下降,上限上升,爆炸极限范围变宽;反之,则爆炸极限范围变窄[2]

。如实验数据表2、表3所示。

从下面图更能直观地观察到这种趋势。由于最大允许氧含量最小值和最大值与爆炸极限是一一对应的关系,因此它们也随之发生变化,表现为:当温度和压力升高时,

最大值和最小值相对各自原来的值变小,相应地可燃物各个浓度所对应的最大允许氧含量也较原值变小,反之则都较原值变大,如表2、表

3所列数据及图3、图4所示。这是因为当温度升高,反应物分

子运动加剧;压力升高,反应物分子间距变小,相应地单位时间反应物分子碰撞机会都会增多,反应更容易进行,刚好维持反应所需要的氧即其相应的最大允许氧含量变小。

(5若在可燃气体中加入惰性气体(如表2、表3数据及图3、图4所示,则对爆炸极限产生较大影响,表

现为爆炸范围缩小,下限上升,上限下降,但对上限的影响比对下限的影响更为显著[3]

。这是因为下限附近氧含量原本过剩较多,所以加入少量惰性气体不会对下限产生较大影响。而上限附近本来氧含量相对不足,所以即使加入少量惰性气体,也会引起上限值剧烈下降。随着惰性气体的不断加入,上下限值逐渐靠近,直至两者重合,当继续加入惰性气体时,便会超出爆炸范围之外,可燃气体不再发生爆炸。同样当加入惰性气体时,由于最大允许氧含量的最小值和最大值与爆炸上下限的对应关系,最大允许氧含量也产生较大影响,表现为:最小值上升,最大值下降,两者差值减小,但对最大值的影响更为显著(如表2、表3数据及图5、图6所示。随着惰性气体的不断加入,两者也不断接近,直至重合,乃至退出爆炸范围。最小值上升主要因为加入惰性气体后,其分子会使可燃气体分子与氧分子分散隔离,在两者之间形成一道屏障,使两种分子不能有效碰撞,减小了两者反应机会,同时当活化分子撞击惰性气体分子时,则会减少甚至失去活化能,要想不致反应链中断,必须提高氧含量以抵消其损失。最大值下降主要是由于惰性气体的加入,空气相对减少,导致氧

气的直接减少,同时也使可燃气浓度相对降低了。氧气和可燃气的减少、惰性气体分子的阻隔及活化分子与惰性气体分子撞击的损失,使反应热急剧降低,从而也导致了爆炸上限的下降。

(6当然,以上对最大允许氧含量的讨论主要是针对空气中爆炸极限范围内的。其实,它的最大允许氧含量的最大值还不是最大值,当继续加氧时,可燃物还会爆炸,直至可燃物达到全氧环境时的爆炸上限,这个范围内的每一浓度的可燃物都唯一对应相应的最大允许氧含量,在同一温度、压力等条件下,全氧环境时的爆炸上限才是本条件下的最大值。因此,以上结论针对整个爆炸范围是普遍适用的。

4结论

(1在整个爆炸极限范围内,爆炸上下限与最大允许氧含量的最大值、最小值是一一对应的关系。

(2在同一温度、压力等条件下,可燃气体(液体蒸汽每一浓度都有唯一的最大允许氧含量与之对应,并随着浓度的逐渐增加呈现递增规律。

(3温度、压力和惰性气体等因素都对爆炸极限和最大允许氧含量产生不同程度的影响[4,5]。根据它们的不同影响,可通过减少反应中氧浓度、降压、降温、加

入惰性气体等办法,以缩小爆炸极限范围、增大该浓度的最大允许氧含量,从而将其控制在爆炸范围之外。

(4要控制爆炸,将可燃气体控制在爆炸下限以下和最大允许氧含量的最小值以下是最安全的方法[6]。

(5从经济、作业因素的具体条件而论,将可燃气体控制在爆炸极限以外或该浓度可燃物的最大允许氧含量以上,并适当附加一定的安全系数即可。

参考文献:

[1]蔡风英,谈宗山,孟赫.化工安全工程[M].北京:科学出版社,2001.

[2]陈莹.工业防火与防爆[M].北京:中国劳动出版社,1993.

[3]田兰,曲和鼎,蒋永明,等.化工安全技术[M].北京:化学工业出版社,1984.

[4]周邦智,郭珍,魏永生.煤气-空气多元爆炸性混合气体爆炸反应极限范围的研究[J].青海师范大学学报(自然科学

版,2003,(4:46-48.

[5]田贯三,李兴泉.城镇燃气爆炸极限影响因素与计算误差的分析[J].中国安全科学学报,2002,12(6:48-51.

[6]万成略,汪莉.可燃性气体含氧量安全限值的探讨[J].中国安全科学学

报,1999,9(1:48-53.

常见气体的爆炸极限

常见气体的爆炸极限 气体名称化学分子式/在空气中的爆炸极限(体积分数) / % 下限(V/V) 上限(V/V) 乙烷C2H6 3.0 15.5 乙醇C2H5OH 3.4 19 乙烯C2H4 2.8 32 氢气H2 4.0 75 硫化氢H2S 4.3 45 甲烷CH4 5.0 15 甲醇CH3OH 5.5 44 丙烷C3H8 2.2 9.5 甲苯C6H5CH3 1.2 7 二甲苯C6H5(CH3)2 1.0 7.6 乙炔C2H2 1.5 100 氨气NH3 15 30.2 苯C6H6 1.2 8 丁烷C4H10 1.9 8.5 一氧化碳CO 12.5 74 丙烯C3H6 2.4 10.3 丙酮CH3COCH3 2.3 13 苯乙烯C6H5CHCH2 1.1 8.0

空气中体积浓度在5.0%~15%之间时,遇火源会爆炸,否则就不会爆炸。可可燃气(粉尘)的重量百分数表示(克/米*或是毫克/升)。爆炸极限是一个气体分级和确定其火灾危险性类别的依据。我国目前把爆炸下限小于是10%的可燃气体等,都需要知道该场所存在的可燃气体(蒸气、粉尘)的爆炸极限数值。(将可燃气体(蒸气、粉尘)的浓度控制在爆炸下限以下。为保证这一点,在制定安全生产警等。 空气(氧气或氧化剂)均匀混合形成爆炸性混合物,其浓度达到一定的范围时,遇到明火度称为爆炸浓度上限,爆炸浓度的上限、下限之间称为爆炸浓度范围。可可燃物质的爆炸极限受诸多因素的影响。如可燃气体的爆炸极限受温度、压力、合物中所占体积的百分比(%)来表示的,表5—3中一氧化碳与空气的混合物的爆炸极限为359/m3可燃粉尘的爆炸上限,因为浓度太高,大多数场合都难以达到,一般很少,爆炸所产生的压力不大,温度不高,爆炸威力也小。当可燃物的浓度大致相当于反应当宽,其爆炸危险性越大,这是因为爆炸极限越宽则出现爆炸条件的机会越多。爆炸下限炸条件。生产过程中,应根据各可燃物所具有爆炸极限的不同特点,采取严防跑、冒、滴容器里或管道里逸出,重新接触空气时却能燃烧,因此,仍有发生着火的危险。 反应时,爆炸所析出的热量最多,产生的压力也最大,实际的反应当量浓度稍高于计算的热量和压力就会随着可燃物质在混合物中浓度的增加而减小;如果可燃物质在混合物中的全燃烧时在混合物中该可燃物质的含量。根据化学反应计算可燃气体或蒸2C0+02+3.76N2=2C02+3.76N2 根据反应式得知,参加反应0%=29.6%(三)爆炸极限的影响因素爆炸极限通常是在常含氧量、惰性气体含量、火源强度等因素的变化而变化。1.初始温度 爆炸危险性。2.初始压力增加混合气体的初始压力,通常

影响气体混合物爆炸极限的因素

影响气体混合物爆炸极限 的因素 This manuscript was revised by the office on December 10, 2020.

影响气体混合物爆炸极限的因素 :可燃物质(、蒸气和)与空气(或)必须在一定的浓度范围内均匀混合,形成预混气,遇着火源才会发生爆炸,这个浓度范围称为,或。例如与空气混合的爆炸极限为12.5%~74%。可燃性混合物能够发生爆炸的最低浓度和最高浓度,分别称为和爆炸上限,这两者有时亦称为着火下限和着火上限。在低于爆炸下限时不爆炸也不着火;在高于爆炸上限同样不燃不爆。这是由于前者的可燃物浓度不够,过量空气的冷却作用,阻止了火焰的蔓延;而后者则是空气不足,导致火焰不能蔓延的缘故。当可燃物的浓度大致相当于反应当量浓度时,具有最大的爆炸威力(即根据完全燃烧反应方程式计算的浓度比例)。 影响气体混合物爆炸极限的因素:温度、氧含量、惰性介质、压力、容器或管道直径、着火源(点火能量) 1)温度。混合物的原始温度越高,则爆炸下限越低,上限提高,爆炸极限范围扩大,爆炸危险性增加。这是因为混合物温度升高,其分子内能增加,引起燃烧速度的加快,而且,由于分子内能的增加和燃烧速度的加快,使原来含有的过量空气(低于爆炸下限)或可燃物高于爆炸上限,而不能使火焰蔓延的混合物浓度变成为可以使火焰蔓延的浓度,从而改变了爆炸极限范围。 (2)氧含量。混合物中含氧量增加,爆炸极限范围扩大,尤其爆炸上限提高得更多。例如氢与空气混合的爆炸极限为4%~75%,而氢与纯氧混合的爆炸极限为4%~95%。 (3)惰性介质。如若在爆炸混合物中掺入不燃烧的惰性气体(如氮、二氧化碳、水蒸气、氩、氦等),随着惰性气体的百分数增加,爆炸极限范围则缩小,惰性气体的浓度提高到某一数值,亦可以使混合物变成不可爆炸。一般情况下,惰性气体对混合物爆炸上限的影响较之对下限的影响更为显着,因为惰性气体浓度加大,表示氧的浓度相对减小,而在上限中氧的浓度本来已经很小,故惰性气体稍为增加一点,即产生很大影响,而使爆炸上限剧烈下降。 (4)压力。混合物的原始压力对爆炸极限有很大影响,压力增大,爆炸极限范围也扩大,尤其是爆炸上限显着提高。值得重视的是当混合物的原始压力减小时,爆炸极限范围缩小,压力降至某一数值时,下限与上限合成一点,压力再降低,混合物即变成不可爆。爆炸极限范围缩小为零的压力称为爆炸的临界压力。临界压力的存在表明,在密闭的设备内进行减压操作,可以免除爆炸的危险。 (5)容器或管道直径。容器或管道直径越小,火焰在其中越难蔓延,混合物的爆炸极限范围则越小。当容器直径小到某一数值时,火焰不能蔓延,可消除爆炸危险,这个直径称为临界直径。如甲烷的临界直径为0.4~0.5mm,氢和乙炔为0.1~0.2mm等。 容器直径大小对爆炸极限的影响,可以用链式反应理论解释。燃烧是自由基产生的一系列链锁反应的结果,管径减小时,游离基与管壁的碰撞几率相应增大,当管径减小到一定程度时,即因碰撞造成游离基的销毁的反应速度大于游离基产生的反应速度,燃烧反应便不能继续进行。 (6)着火源。能源的性质对爆炸极限范围的影响是:能源强度越高,加热面积越大,作用时间越长,爆炸极限范围越宽。以甲烷为例,100V·A的电火花不引起曝炸, 2V·A的电火花可引起爆炸,爆炸极限为5.9%~13.6%,3V·A的电火花则爆炸极限扩大为5.85%~14.8%。 各种爆炸性混合物都有一个最低引爆能量,即点火能量,它是指能引起爆炸性混合物发生爆炸的最小火源所具有的能量,它也是混合物爆炸危险性的一项重要的性能参数。爆炸性混合物的点火能量越小,其燃爆危险性就越大。 火花的能量、热表面的面积、火源和混合物的接触时间等,对爆炸极限均有影响。此外,光对爆炸极限也有影响,如前所述,氢和氯混合,在避光黑暗处反应十分缓慢,但在强光照射下则发生剧烈反应(链锁反应)并导致爆炸。

爆炸极限的影响因素

爆炸极限的影响因素 Revised final draft November 26, 2020

爆炸极限的影响因素 【大纲考试内容要求】: 1.了解爆炸极限的影响因素; 2.了解爆炸反应浓度的计算; 【教材内容】: 爆炸极限值不是一个物理常数,它是随实验条件的变化而变化,在判断某工艺条件下的爆炸危险性时,需根据危险物品所处的条件来考虑其爆炸极限,如在火药、起爆药、炸药烘干工房内可燃蒸气的爆炸极限与其他工房在正常温度下的极限是不一样的,在受压容器和在正常压力下的爆炸极限亦有所不同;其他因素如点火源的能量,容器的形状、大小,火焰的传播方向,惰性气体与杂质的含量等均对爆炸极限有影响。 1.温度的影响 混合爆炸气体的初始温度越高,爆炸极限范围越宽,则爆炸下限降低,上限增高,爆炸危险性增加。这是因为在温度增高的情况下,活化分子增加,分子和原子的动能也增加,使活化分子具有更大的冲击能量,爆炸反应容易进行,使原来含有过量空气(低于爆炸下限)或可燃物(高于爆炸上限)而不能使火焰蔓延的混合物浓度变成可以使火焰蔓延的浓度,从而扩大了爆炸极限范围。例如丙酮的爆炸极限受温度影响的情况见表2—1。 2.压力的影响 混合气体的初始压力对爆炸极限的影响较复杂,在~ MPa的压力下,对爆炸下限影响不大,对爆炸上限影响较大;当大于 MPa时,爆炸下限变小,爆炸上限变大,爆炸范围扩大。这是因为在高压下混合气体的分子浓度增大,反应速度加快,放热量增加,且在高气压下,热传导性差,热损失小,有利于可燃气体的燃烧或爆炸。甲烷混合气初始压力对爆炸极限的影响见表2 —2。 值得重视的是当混合物的初始压力减小时,爆炸极限范围缩小,当压力降到某一数值时,则会

常见气体的爆炸极限完整版

常见气体的爆炸极限 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

常见气体的爆炸极限 气体名称化学分子式/在空气中的爆炸极限 (体积分数) / % 下限(V/V) 上限(V/V) 乙烷 C2H6 乙醇 C2H5OH 19 乙烯 C2H4 32 氢气 H2 75 硫化氢 H2S 45 甲烷 CH4 15 甲醇 CH3OH 44 丙烷 C3H8

甲苯 C6H5CH3 7 二甲苯 C6H5(CH3)2 乙炔 C2H2 100 氨气 NH3 15 苯 C6H6 8 丁烷 C4H10 一氧化碳 CO 74 丙烯 C3H6 丙酮 CH3COCH3 13 苯乙烯 C6H5CHCH2

炸,这个浓度范围称为爆炸极限(或爆炸浓度极限)。形成爆炸性混合物的最低浓度称为爆炸浓度下限,最高浓度称为爆炸浓度上限,爆炸浓度的上限、下限之间称为爆炸浓度范围。可燃性混合物有一个发生燃烧和爆炸的浓度范围,即有一个最低浓度和最高浓度,混合物中的可燃物只有在其之间才会有燃爆危险。可燃物质的爆炸极限受诸多因素的影响。如可燃气体的爆炸极限受温度、压力、氧含量、能量等影响,可燃粉尘的爆炸极限受分散度、湿度、温度和惰性粉尘等影响。可燃气体和蒸气爆炸极限是以其在混合物中所占体积的百分比(%)来表示的,表5—3中一氧化碳与空气的混合物的爆炸极限为12.5%~80%。可燃粉尘的爆炸极限是以其在混合物中所占的比重(g/m3)来表示的,例如,木粉的爆炸下限为409/m3,煤粉的爆炸下限为359/m3可燃粉尘的爆炸上限,因为浓度太高,大多数场合都难以达到,一般很少涉及。例如,糖粉的爆炸上限为135009/m3,煤粉的爆炸上限为135009/m3,一般场合不会出现。可燃性混合物处于爆炸下限和爆炸上限时,爆炸所产生的压力不大,温度不高,爆炸威力也小。当可燃物的浓度大致相当于反应当量浓度(表中的30%)时,具有最大的爆炸威力。反应当量浓度可根据燃烧反应式计算出来。可燃性混合物的爆炸极限范围越宽,其爆炸危险性越大,这是因为爆炸极限越宽则出现爆炸条件的机会越多。爆炸下限越低,少量可燃物(如可燃气体稍有泄漏)就会形成爆炸条件;爆炸上限越高,则有少量空气渗入容器,就能与容器内的可燃物混合形成爆炸条件。生产过程中,应根据各可燃物所具有爆炸极限的不同特点,采取严防跑、冒、滴、漏和严格限制外部空气渗入容器与管道内等安全措施。应当指出,可燃性混合物的浓度高于爆炸上限时,虽然不会着火和爆炸,但当它从容器里或管道里逸出,重新接触空气时却能燃烧,因此,仍有发生着火的危险。(二)爆炸反应当量浓度的计算爆炸性混合物中的可燃物质和助燃物质的浓度比例恰好能发生完全化合反应时,爆炸所析出的热量最多,产生的压力也最大,实际的

爆炸极限理论与计算 (1)

第五节爆炸极限理论与计算 一、爆炸极限理论 可燃气体或蒸气与空气的混合物,并不是在任何组成下都可以燃烧或爆炸,而且燃烧(或爆炸)的速率也随组成而变。实验发现,当混合物中可燃气体浓度接近化学反应式的化学计量比时,燃烧最快、最剧烈。若浓度减小或增加,火焰蔓延速率则降低。当浓度低于或高于某个极限值,火焰便不再蔓延。可燃气体或蒸气与空气的混合物能使火焰蔓延的最低浓度,称为该气体或蒸气的爆炸下限;反之,能使火焰蔓延的最高浓度则称为爆炸上限。可燃气体或蒸气与空气的混合物,若其浓度在爆炸下限以下或爆炸上限以上,便不会着火或爆炸。 爆炸极限一般用可燃气体或蒸气在混合气体中的体积百分数表示,有时也用单位体积可燃气体的质量(kg·m—3)表示。混合气体浓度在爆炸下限以下时含有过量空气,由于空气的冷却作用,活化中心的消失数大于产生数,阻止了火焰的蔓延。若浓度在爆炸上限以上,含有过量的可燃气体,助燃气体不足,火焰也不能蔓延。但此时若补充空气,仍有火灾和爆炸的危险。所以浓度在爆炸上限以上的混合气体不能认为是安全的。 燃烧和爆炸从化学反应的角度看并无本质区别。当混合气体燃烧时,燃烧波面上的化学反应可表示为 A+B→C+D+Q(4—1) 式中A、B为反应物;C、D为产物;Q为燃烧热。A、B、C、D不一定是稳定分子,也可以是原子或自由基。化学反应前后的能量变化可用图4—4表示。初始状态Ⅰ的反应物(A+B)吸收活化能正达到活化状态Ⅱ,即可进行反应生成终止状态Ⅲ的产物(C+D),并释放出能量W,W=Q+E。 图4-4 反应过程能量变化 假定反应系统在受能源激发后,燃烧波的基本反应浓度,即反应系统单位体积的反应数为n,则单位体积放出的能量为nW。如果燃烧波连续不断,放出的能量将成为新反应的活化能。设活化概率为α(α≤1),则第二批单位体积内得到活化的基本反应数为anW/E,放出的能量为。αnW2/E。后批分子与前批分子反应时放出的能量比β定义为燃烧波传播系数,为

爆炸极限的基本概述

爆炸极限的影响因素 【大纲考试内容要求】: 1.了解爆炸极限的影响因素; 2.了解爆炸反应浓度的计算; 【教材内容】: 爆炸极限值不是一个物理常数,它是随实验条件的变化而变化,在判断某工艺条件下的爆炸危险性时,需根据危险物品所处的条件来考虑其爆炸极限,如在火药、起爆药、炸药烘干工房内可燃蒸气的爆炸极限与其他工房在正常温度下的极限是不一样的,在受压容器和在正常压力下的爆炸极限亦有所不同;其他因素如点火源的能量,容器的形状、大小,火焰的传播方向,惰性气体与杂质的含量等均对爆炸极限有影响。 1.温度的影响 混合爆炸气体的初始温度越高,爆炸极限范围越宽,则爆炸下限降低,上限增高,爆炸危险性增加。这是因为在温度增高的情况下,活化分子增加,分子和原子的动能也增加,使活化分子具有更大的冲击能量,爆炸反应容易进行,使原来含有过量空气(低于爆炸下限)或可燃物(高于爆炸上限)而不能使火焰蔓延的混合物浓度变成可以使火焰蔓延的浓度,从而扩大了爆炸极限范围。例如丙酮的爆炸极限受温度影响的情况见表2—1。 2.压力的影响 混合气体的初始压力对爆炸极限的影响较复杂,在0.1~2.0 MPa的压力下,对爆炸下限影响不大,对爆炸上限影响较大;当大于2.0 MPa时,爆炸下限变小,爆炸上限变大,爆炸范围扩大。这是因为在高压下混合气体的分子浓度增大,反应速度加快,放热量增加,且在高气压下,热传导性差,热损失小,有利于可燃气体的燃烧或爆炸。甲烷混合气初始压力对爆炸极限的影响见表2 —2。 值得重视的是当混合物的初始压力减小时,爆炸极限范围缩小,当压力降到某一数值时,则会出现下限与上限重合,这就意味着初始压力再降低时,不会使混合气体爆炸。把爆炸极限范围缩小

影响气体混合物爆炸极限的因素

影响气体混合物爆炸极限的因素 :可燃物质(、蒸气和)与空气(或)必须在一定的浓度范围内均匀混合,形成预混气,遇着火源才会发生爆炸,这个浓度范围称为,或。例如与空气混合的爆炸极限为12.5%~74%。可燃性混合物能够发生爆炸的最低浓度和最高浓度,分别称为和爆炸上限,这两者有时亦称为着火下限和着火上限。在低于爆炸下限时不爆炸也不着火;在高于爆炸上限同样不燃不爆。这是由于前者的可燃物浓度不够,过量空气的冷却作用,阻止了火焰的蔓延;而后者则是空气不足,导致火焰不能蔓延的缘故。当可燃物的浓度大致相当于反应当量浓度时,具有最大的爆炸威力(即根据完全燃烧反应方程式计算的浓度比例)。 影响气体混合物爆炸极限的因素:温度、氧含量、惰性介质、压力、容器或管道直径、着火源(点火能量) 1)温度。混合物的原始温度越高,则爆炸下限越低,上限提高,爆炸极限范围扩大,爆炸危险性增加。这是因为混合物温度升高,其分子内能增加,引起燃烧速度的加快,而且,由于分子内能的增加和燃烧速度的加快,使原来含有的过量空气(低于爆炸下限)或可燃物高于爆炸上限,而不能使火焰蔓延的混合物浓度变成为可以使火焰蔓延的浓度,从而改变了爆炸极限范围。 (2)氧含量。混合物中含氧量增加,爆炸极限范围扩大,尤其爆炸上限提高得更多。例如氢与空气混合的爆炸极限为4%~75%,而氢与纯氧混合的爆炸极限为4%~95%。 (3)惰性介质。如若在爆炸混合物中掺入不燃烧的惰性气体(如氮、二氧化碳、水蒸气、氩、氦等),随着惰性气体的百分数增加,爆炸极限范围则缩小,惰性气体的浓度提高到某一数值,亦可以使混合物变成不可爆炸。一般情况下,惰性气体对混合物爆炸上限的影响较之对下限的影响更为显着,因为惰性气体浓度加大,表示氧的浓度相对减小,而在上限中氧的浓度本来已经很小,故惰性气体稍为增加一点,即产生很大影响,而使爆炸上限剧烈下降。 (4)压力。混合物的原始压力对爆炸极限有很大影响,压力增大,爆炸极限范围也扩大,尤其是爆炸上限显着提高。值得重视的是当混合物的原始压力减小时,爆炸极限范围缩小,压力降至某一数值时,下限与上限合成一点,压力再降低,混合物即变成不可爆。爆炸极限范围缩小为零的压力称为爆炸的临界压力。临界压力的存在表明,在密闭的设备内进行减压操作,可以免除爆炸的危险。 (5)容器或管道直径。容器或管道直径越小,火焰在其中越难蔓延,混合物的爆炸极限范围则越小。当容器直径小到某一数值时,火焰不能蔓延,可消除爆炸危险,这个直径称为临界直径。如甲烷的临界直径为0.4~0.5mm,氢和乙炔为0.1~0.2mm等。容器直径大小对爆炸极限的影响,可以用链式反应理论解释。燃烧是自由基产生的一系列链锁反应的结果,管径减小时,游离基与管壁的碰撞几率相应增大,当管径减小到一定程度时,即因碰撞造成游离基的销毁的反应速度大于游离基产生的反应速度,燃烧反应便不能继续进行。 (6)着火源。能源的性质对爆炸极限范围的影响是:能源强度越高,加热面积越大,作用时间越长,爆炸极限范围越宽。以甲烷为例,100V·A的电火花不引起曝炸,2V·A的电火花可引起爆炸,爆炸极限为5.9%~13.6%,3V·A的电火花则爆炸极限扩大为5.85%~14.8%。 各种爆炸性混合物都有一个最低引爆能量,即点火能量,它是指能引起爆炸性混合物发生爆炸的最小火源所具有的能量,它也是混合物爆炸危险性的一项重要的性能参数。爆炸性混合物的点火能量越小,其燃爆危险性就越大。 火花的能量、热表面的面积、火源和混合物的接触时间等,对爆炸极限均有影响。此外,光对爆炸极限也有影响,如前所述,氢和氯混合,在避光黑暗处反应十分缓慢,但在强光照射下则发生剧烈反应(链锁反应)并导致爆炸。

常见可燃气体爆炸极限.docx

常见可燃气体爆炸极限 可燃气体发生爆炸必须具备一定的条件, 那就是:一定浓度的可燃气体, 一定量的氧气以及足够热量点燃它们的火源, 这就是爆炸三要素 , 缺一不可 , 也就 是说 , 缺少其中任何一个条件都不会引起火灾和爆炸.当可燃气体和氧气混合 并达到一定浓度时 , 遇具有一定温度的火源就会发生爆炸. 我们把可燃气体遇火 源发生爆炸的浓度称为爆炸浓度极限, 简称爆炸极限 , 一般用 %表示 .实际上, 这种混合物也不是在任何混合比例上都会发生爆炸而要有一个浓度范围. 当可 燃气体浓度低于LEL(最低爆炸限度)时(可燃气体浓度不足)和其浓度高于 UEL(最高爆炸限度)时(氧气不足)都不会发生爆炸. 不同的可燃气体的LEL 和 UEL都各不相同 , 为安全起见 , 一般我们应当在可燃气体浓度在LEL 的 10%和 20%时发出警报 , 这里 ,10%LEL称. 作警告警报 , 而 20%LEL称作危险警报 . 这也就是我们将可燃气体检测仪又称作 LEL检测仪的原因 . 需要说明的是 ,LEL 检测仪上显示的 100%不是可燃气体的浓度达到气体体积的100%,而是达到了 LEL 的 100%, 即相当于可燃气体的最低爆炸下限. 序号名称化学式在空气中爆炸限 (体积分数) /% 下限上限1乙烷 C 2H 6 3.015.5 2乙醇C2H 5OH 3.419 3乙烯C2 H 4 2.832 4氢H 2 4.075 5硫化氢H 2 S 4.345 6煤油0.757甲烷CH 4 5.015 8甲醇CH 3 OH 5.544 9丙醇C3H 7OH 2.513.5 10丙烷C3H8 2.29.5 11丙烯C3H6 2.410.3 12甲苯 C 6 H 5 CH 3 1.27 13二甲苯C 6 H 4(CH 3)2 1.07.6 14二氯乙烷C2H 4 Cl2 5.616 15二氯乙烯C2H2C l2 6.515 16二氯丙烷C3H 6 Cl2 3.414.5 17乙醚C2 H 5OC 2H 5 1.736 1

各常见气体爆炸极限

常见可燃性气体爆炸极限 三氯氢硅SiHCl3 1. 别名?英文名

硅氯仿、硅仿、三氯硅烷;Trichlorosilane 、Silicochloroform . 2. 用途 单晶硅原料、外延成长、硅液、硅油、化学气相淀积、硅酮化合物制造、电子气。 3. 制法 (1) 在高温下Si 和HCl 反应。 (2) 用氢还原四氯化硅(采用含铝化合物的催化剂) 。 4. 理化性质 分子量:135.43 熔点(101.325kPa) : -134C ;沸点(101.325kPa) : 31.8 C;液体密度(0 C): 13 50kg/m3;相对密度(气体,空气=1): 4.7 ;蒸气压(-16.4 C) : 13.3kPa ; (14. 5C) : 53.3kPa ;燃点:-27.8 C;自燃点:104.4 C;闪点:-14C ;爆炸下限:9.8%;毒性级别:3;易燃性级别:4;易爆性级别:2 三氯硅烷在常温常压下为具有刺激性恶臭易流动易挥发的无色透明液体。在空气中极易燃烧,在-18C以下也有着火的危险,遇明火则强烈燃烧,燃烧时发出红色火焰和白色烟,生成SiO2、HCl 和Cl2: SiHCI3 O2-SiO2 HCI CI2 ;三氯硅烷的蒸气能与空气形成浓度范围很宽的爆炸性混合气,受热时引起猛烈的爆炸。它的热稳定性比二氯硅烷好,在900C时分解产生氯化物有毒烟雾(HCl),还生成Cl2和Si。 遇潮气时发烟,与水激烈反应:2SiHCI3 3H2O—- (HSiO)2O 6HCI ; 在碱液中分解放出氢气:SiHCl3 3NaOH H2O—-Si (OH)4 3NaCl H2 ; 与氧化性物质接触时产生爆炸性反应。与乙炔、烃等碳氢化合物反应产生有机氯硅烷: SiHCl3 CH三CH一—CH2CHSiCl3、SiHCl3 CH2=CH2-->CH3CH2SiCl3 在氢化铝锂、氢化硼锂存在条件下,SiHCl3 可被还原为硅烷。容器中的液态Si HCl3 当容器受到强烈撞击时会着火。可溶解于苯、醚等。无水状态下三氯硅烷对铁和不锈钢不腐蚀,但是在有水分存在时腐蚀大部分金属。 5. 毒性 小鼠-吸入LC50 1.5?2mg/L 最高容许浓度:1mg/m3 三氯硅烷的蒸气和液体都能对眼睛和皮肤引起灼伤,吸入后刺激呼吸道粘膜引起各种症状(参见四氯化硅)。 6. 安全防护 液体用玻璃瓶或金属桶盛装,容器要存放在室外阴凉干燥通风良好之处或在易燃液体专用库内,要与氧化剂、碱类、酸类隔开,远离火种、热源,避光,库温不宜超过25 r。可用氨水探漏。 火灾时可用二氧化碳、干石粉、干砂,禁止用水及泡沫。废气可用水或碱液吸收。 三氯硅烷有水分时腐蚀性极强。可用铁、镍、铜镍合金、镍钢、低合金钢,不能用铝、铝合金。可以用聚四氟乙烯、聚三氟氯乙烯聚合体、氟橡胶、聚氯乙烯、聚乙烯、玻璃等。

什么是爆炸极限

什么是爆炸极限 (一)定义 可燃物质(可燃气体、蒸气、粉尘或纤维)与空气(氧气或氧化剂)均匀混合形成爆炸性混合物,其浓度达到一定的范围时,遇到明火或一定的引爆能量立即发生爆炸,这个浓度范围称为爆炸极限(或爆炸浓度极限)。形成爆炸性混合物的最低浓度称为爆炸浓度下限,最高浓度称为爆炸浓度上限,爆炸浓度的上限、下限之间称为爆炸浓度范围。 可燃性混合物有一个发生燃烧和爆炸的浓度范围,即有一个最低浓度和最高浓度,混合物中的可燃物只有在其之间才会有燃爆危险。 可燃物质的爆炸极限受诸多因素的影响。如可燃气体的爆炸极限受温度、压力、氧含量、能量等影响,可燃粉尘的爆炸极限受分散度、湿度、温度和惰性粉尘等影响。 可燃气体和蒸气爆炸极限是以其在混合物中所占体积的百分比(%)来表示的,表5—3中一氧化碳与空气的混合物的爆炸极限为12.5%~80%。可燃粉尘的爆炸极限是以其在混合物中所占的比重(g/m3)来表示的,例如,木粉的爆炸下限为409/m3,煤粉的爆炸下限为359/m3可燃粉尘的爆炸上限,因为浓度太高,大多数场合都难以达到,一般很少涉及。例如,糖粉的爆炸上限为135009/m3,煤粉的爆炸上限为135009/m3,一般场合不会出现。可燃性混合物处于爆炸下限和爆炸上限时,爆炸所产生的压力不大,温度不高,爆炸威力也小。当可燃物的浓度大致相当于反应当量浓度(表中的30%)时,具有最大的爆炸威力。反应当量浓度可根据燃烧反应式计算出来。 可燃性混合物的爆炸极限范围越宽,其爆炸危险性越大,这是因为爆炸极限越宽则出现爆炸条件的机会越多。爆炸下限越低,少量可燃物(如可燃气体稍有泄漏)就会形成爆炸条件;爆炸上限越高,则有少量空气渗入容器,就能与容器内的可燃物混合形成爆炸条件。生产过程中,应根据各可燃物所具有爆炸极限的不同特点,采取严防跑、冒、滴、漏和严格限制外部空气渗入容器与管道内等安全措施。应当指出,可燃性混合物的浓度高于爆炸上限时,虽然不会着火和爆炸,但当它从容器里或管道里逸出,重新接触空气时却能燃烧,因此,仍有发生着火的危险。 (二)爆炸反应当量浓度的计算 爆炸性混合物中的可燃物质和助燃物质的浓度比例恰好能发生完全化合反应时,爆炸所析出的热量最多,产生的压力也最大,实际的反应当量浓度稍高于计算的反应当量浓度。当混合物中可燃物质超过化学反应当量浓度时,空气就会不足,可燃物质就不能全部燃尽,于是混合物在爆炸时所产生的热量和压力就会随着可燃物质在混合物中浓度的增加而减小;如

常见可燃气体爆炸上下限

常见可燃气体爆炸上、下限

什么是可燃气体的爆炸极限、爆炸上限、爆炸下限 可燃气体的爆炸极限: 可燃气体(蒸气)与空气的混合物,并不是在任何浓度下,遇到火源都能爆炸,而必须是在一定的浓度范围内遇火源才能发生爆炸。这个遇火源能发生爆炸的可燃气浓度范围,称为可燃气的爆炸极限(包括爆炸下限和爆炸上限)。不同可燃气(蒸气)的爆炸极限是不同的,如氢气的爆炸极限是4.0%~75.6%(体积浓度),意思是如果氢气在空气中的体积浓度在4.0%~75.6%之间时,遇火源就会爆炸,而当氢气浓度小于4.0%或大于75.6%时,即使遇到火源,也不会爆炸。甲烷的爆炸极限是5.0%~15%意味着甲烷在空气中体积浓度在5.0%~15%之间时,遇火源会爆炸,否则就不会爆炸。 可燃粉尘爆炸极限的概念与可燃气爆炸极限是一致的。 爆炸极限一般用可燃气(粉尘)在空气中的体积百分数表示(%),也可以用可燃气(粉尘)的重量百分数表示(克/米*或是毫克/升)。 爆炸极限是一个很重要的概念,在防火防爆工作中有很大的实际意义: (1)它可以用来评定可燃气体(蒸气、粉尘)燃爆危险性的大小,作为可燃气体分级和确定其火灾危险性类别的依据。我国目前把爆炸下限小于是10%的可 燃气体划为一级可燃气体,其火灾危险性列为甲类。 (2)它可以作为设计的依据,例如确定建筑物的耐火等级,设计厂房通风系统等,都需要知道该场所存在的可燃气体(蒸气、粉尘)的爆炸极限数值。

(3)它可以作为制定安全生产操作规程的依据。在生产、使用和贮存可燃气体(蒸气、粉尘)的场所,为避免发生火灾和爆炸事故,应严格将可燃气体(蒸气、 粉尘)的浓度控制在爆炸下限以下。为保证这一点,在制定安全生产操作规 程时,应根据可燃气(蒸气、粉尘)的燃爆危险性和其它理化性质,采取相 应的防范措施,如通风、置换、惰性气体稀释、检测报警等。 可燃性气体的浓度过低或过高它是没有危险的,它只有与空气混合形成混合气或更确切地说遇到氧气形成一定比例的混合气才会发生燃烧或爆炸。燃烧是伴有发光发热的激烈氧化反应,它必须具备三个要素:a、可燃物(燃气);b、助燃物(氧气);c、点火源(温度)。可燃气的燃烧可以分为两类,一类是扩散燃烧,即挥发的或从设备中喷出、泄漏的可燃气,遇到点火源混合燃烧。另一类燃烧,是可燃气与空气混合着火燃烧,这种燃烧反应激烈而速度快,一般会产生巨大的压力和声响,又称之为爆炸。燃烧与爆炸没有严格的区分。 有关权威部门和专家已经对目前发现的可燃气作了燃烧爆炸分析,制定出了可燃性气体的爆炸极限,它分为爆炸上限(英文upper explode limit的简写UEL)和爆炸下限(英文lower explode limit的简写LEL?)。低于爆炸下限,混合气中的可燃气的含量不足,不能引起燃烧或爆炸,高于上限混合气中的氧气的含量不足,也不能引起燃烧或爆炸。另外,可燃气的燃烧与爆炸还与气体的压力、温度、点火能量等因素有关。爆炸极限一般用体积百分比浓度表示。 爆炸极限是爆炸下限、爆炸上限的总称,可燃气体在空气中的浓度只有在爆炸下限、爆炸上限之间才会发生爆炸。低于爆炸下限或高于爆炸上限都不会发生爆炸。因此,在进行爆炸测量时,报警浓度一般设定在爆炸下限的25%LEL以下。 便携式可燃气体检测仪的通常设有一个报警点:25%LEL为报警点。 举例说明,甲烷的爆炸下限为5%体积比,那也就是说,把这个5%体积比,一百等分,让5%体积比对应100%LEL,也就是说,当检测仪数值到达10%LEL报警点时,相当于此时甲烷的含量为0.5%体积比。当检测仪数值到达25%LEL报警点时,相当于此时甲烷的含量为1.25%体积比。 所以,您不必担心报警后是不是随时有危险了,此时是在提示您,要马上采取相应的措施啦,比如开启排气扇或是切断一些阀门等,离真正有可能出现危险的爆炸下限还

影响气体混合物爆炸极限的因素

影响气体混合物爆炸极 限的因素 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

影响气体混合物爆炸极限的因素 :可燃物质(、蒸气和)与空气(或)必须在一定的浓度范围内均匀混合,形成预混气,遇着火源才会发生爆炸,这个浓度范围称为,或。例如与空气混合的爆炸极限为%~74%。可燃性混合物能够发生爆炸的最低浓度和最高浓度,分别称为和爆炸上限,这两者有时亦称为着火下限和着火上限。在低于爆炸下限时不爆炸也不着火;在高于爆炸上限同样不燃不爆。这是由于前者的可燃物浓度不够,过量空气的冷却作用,阻止了火焰的蔓延;而后者则是空气不足,导致火焰不能蔓延的缘故。当可燃物的浓度大致相当于反应当量浓度时,具有最大的爆炸威力(即根据完全燃烧反应方程式计算的浓度比例)。 影响气体混合物爆炸极限的因素:温度、氧含量、惰性介质、压力、容器或管道直径、着火源(点火能量) 1)温度。混合物的原始温度越高,则爆炸下限越低,上限提高,爆炸极限范围扩大,爆炸危险性增加。这是因为混合物温度升高,其分子内能增加,引起燃烧速度的加快,而且,由于分子内能的增加和燃烧速度的加快,使原来含有的过量空气(低于爆炸下限)或可燃物高于爆炸上限,而不能使火焰蔓延的混合物浓度变成为可以使火焰蔓延的浓度,从而改变了爆炸极限范围。 (2)氧含量。混合物中含氧量增加,爆炸极限范围扩大,尤其爆炸上限提高得更多。例如氢与空气混合的爆炸极限为4%~75%,而氢与纯氧混合的爆炸极限为4%~95%。 (3)惰性介质。如若在爆炸混合物中掺入不燃烧的惰性气体(如氮、二氧化碳、水蒸气、氩、氦等),随着惰性气体的百分数增加,爆炸极限范围则缩小,惰性气体的浓度提高到某一数值,亦可以使混合物变成不可爆炸。一般情况下,惰性气体对混合物爆炸上限的影响较之对下限的影响更为显着,因为惰性气体浓度加大,表示氧的浓度相对减小,

影响气体混合物爆炸极限的因素之令狐文艳创作

影响气体混合物爆炸极限的因素 令狐文艳 爆炸极限:可燃物质(可燃气体、蒸气和粉尘)与空气(或氧气)必须在一定的浓度范围内均匀混合,形成预混气,遇着火源才会发生爆炸,这个浓度范围称为爆炸极限,或爆炸浓度极限。例如一氧化碳与空气混合的爆炸极限为12.5%~74%。可燃性混合物能够发生爆炸的最低浓度和最高浓度,分别称为爆炸下限和爆炸上限,这两者有时亦称为着火下限和着火上限。在低于爆炸下限时不爆炸也不着火;在高于爆炸上限同样不燃不爆。这是由于前者的可燃物浓度不够,过量空气的冷却作用,阻止了火焰的蔓延;而后者则是空气不足,导致火焰不能蔓延的缘故。当可燃物的浓度大致相当于反应当量浓度时,具有最大的爆炸威力(即根据完全燃烧反应方程式计算的浓度比例)。 影响气体混合物爆炸极限的因素:温度、氧含量、惰性介质、压力、容器或管道直径、着火源(点火能量) 1)温度。混合物的原始温度越高,则爆炸下限越低,上限提高,爆炸极限范围扩大,爆炸危险性增加。这是因为混合物温度升高,其分子内能增加,引起燃烧速度的加快,而且,由于分子内能的增加和燃烧速度的加快,使原来含有的过量空气(低于爆炸下限)或可燃物高于爆炸上限,而不能使火焰蔓延的混合物浓度变成为可以使火焰蔓延的浓度,从而改变了爆炸极限范围。 (2)氧含量。混合物中含氧量增加,爆炸极限范围扩大,尤其爆炸上限提高得更多。例如氢与空气混合的爆炸极限为4%~75%,而氢与纯氧混合的爆炸极限为4%~95%。 (3)惰性介质。如若在爆炸混合物中掺入不燃烧的惰性气体(如氮、二氧化碳、水蒸气、氩、氦等),随着惰性气体的百分数增加,爆炸极限范围则缩小,惰性气体的浓度提高到某一数值,亦可以使混合物变成不可爆炸。一般情况下,惰性气体对混合物爆炸上限的影响较之对下限的影响更为显著,因为惰性气体浓度加大,表示氧的浓度相对减小,而在上限中氧的浓度本来已经很小,故惰性气体稍为增加一点,即产生很大影响,而使爆炸上限剧烈下降。

可燃气体爆炸极限影响因素研究

学号:09412110 常州大学 毕业设计(论文) (2013届) 题目可燃气体爆炸极限影响因素研究 学生 学院环境与安全工程学院专业班级安全091 校内指导教师专业技术职务 校外指导教师专业技术职务 二○一三年六月

可燃气体爆炸极限影响因素研究 摘要:可燃气体爆炸已经逐渐成为工业生产、生活中主要危害之一,因此研究可燃气体爆炸机理对预防可燃气体爆炸具有重要意义,而爆炸极限是研究可燃气体爆炸的一个重要参数。影响可燃气体爆炸极限的因素很多,本文主要以液化石油气、甲烷为例,通过实验及查找文献等,运用对比分析、线性回归、黄金分割等方法进行研究,研究结果如下: 可燃气体最小点火能随浓度呈先减小后增大的趋势,液化石油气最小点火能为3.85mJ,对应浓度为7.5%;甲烷最小点火能为5.19mJ,对应浓度为11%,并且根据二者变化趋势图,得出液化石油气、甲烷最小点火能与浓度之间的抛物线方程。可燃气体爆炸上限随惰性气体浓度上升急剧减小,而爆炸下限基本不变。通过线性回归分析,获得甲烷爆炸上限与氮气、甲烷浓度之间的一次线性回归方程。在分析惰性气体对甲烷抑爆作用中得出,氮气抑爆极限浓度为23%,二氧化碳抑爆极限浓度为32%。通过优选法中黄金分割法,给出简化最小点火能实验的方法,该结果可以减小实验的盲目性,快速、准确地获得可燃气体的最小点火能。 关键词:液化石油气;甲烷;最小点火能;惰性气体;爆炸极限

Research on influencing factors about combustible gas explosion limits Abstract:Combustible gas explosions have become one of the main hazards among the industrial production and the life step by step, therefore, it is very important to do research on the combustible gas explosion mechanism to prevent the combustible gas explosion, and the explosive limit is is an important parameter when we do study on combustible gas explosion. There are many factors affect the combustible gas explosion limits, in this paper, we give LPG, methane for examples, researching with the methods of comparative analysis, linear regression and optimization through doing experiments and searching for literature.The results are as follows: The minimum ignition energy of combustible gas concentrations were decreased first and then increased with the increase of concentrations.LPG minimum ignition energy is 3.85mJ,corresponding to a concentration of 7.5%;the minimum ignition energy of methane is 5.19mJ,corresponding to a concentration of 11%.According to both of the the changing trends pictures,we can get the parabolic equation of LPG and methane between the minimum ignition energy and concentration.The upper explosion limit of combustible gas decreases sharply with the increase of the concentration of the inert gas , while the lower explosion limit basically unchanged.Through linear regression analysis,obtaining the linear regression equations between methane concentrations and the upper explosion limit of methane,nitrogen. In the analysis of the suppression effects of inert gas,we derive that nitrogen explosion suppression limit concentration is 23%, the concentration of carbon dioxide explosion suppression limit is 32%.Through the golden section method in the optimizing method, the simplify experimental method is given when we need the minimum ignition energy,the experimental results can reduce the blindness of experiment, obtain the minimum ignition energy of combustible gases quickly and accurately. Key words:LPG;methane;minimum ignition energy;Inert gas;Explosive limit

爆炸极限影响因素(通用版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 爆炸极限影响因素(通用版) Safety management is an important part of production management. Safety and production are in the implementation process

爆炸极限影响因素(通用版) 压力 混合气体的压力对爆炸极限有很大的影响,压力增大,爆炸极限区间的宽度一般会增加,爆炸上限增加,略使爆炸下限下降。这是因为系统压力增高,其分子间距更为接近,碰撞几率增高,因此使燃烧的最初反应和反应的进行更为容易,所以压力升高,爆炸危险性增大。反之,压力降低,则爆炸极限范围缩小。 待压力降至某值时,其下限与上限重合,此时的最低压力称为爆炸的临界压力。若压力降至临界压力以下,系统就不爆炸。因此,在密闭容器内进行减压(负压)操作对安全生产有利。 需要说明的是,压力的变化对爆炸上限影响很大,但爆炸下限的变化不明显,而且不规则。各个文献间的计算结果有一定的差距。 温度 常温下爆炸极限数据已很充足,然而摩擦生热、燃烧热等通过

热传导、辐射、对流可以使环境温度高于常温。在实际生产部门中,非常温下(高于室温)可燃气体被预期或非预期引爆的例子屡见不鲜,因此测定非常温下爆炸极限具有非常重要的意义。 一般来说,爆炸性气体混合物的温度越高,则爆炸极限范围越大,即:爆炸下限降低,上限增高。因为系统温度升高,其分子内能增加,使更多的气体分子处于激发态,原来不燃的混合气体成为可燃、可爆系统,所以温度升高使爆炸危险性增大。 燃气的种类及化学性质 可燃气体的分子结构及其反应能力,影响其爆炸极限。对于碳氢化合物而言,具有C—C型单键相连的碳氢化合物,由于碳键牢固,分子不易受到破坏,其反应能力就较差,因而爆炸极限范围小;而对于具有C≡C型三键相连的碳氢化合物,由于其碳键脆弱,分子很容易被破坏,化学反应能力较强,因而爆炸极限范围较大;对于具有C=C型二键相连的碳氢化合物,其爆炸极限范围位于单键与三键之间。 对于同一烃类化合物,随碳原子个数的增加,爆炸极限的范围

常见气体的爆炸极限及爆炸极限计算公式精修订

常见气体的爆炸极限及爆炸极限计算公式 标准化管理部编码-[99968T-6889628-J68568-1689N]

爆炸极限计算方法:比较认可的计算方法有两种: 莱·夏特尔定律?对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱·夏特尔定律,可以算出与空气相混合的气体的爆炸极限。用Pn表示一种可燃气在混合物中的体积分数,则: LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%) 混合可燃气爆炸上限: UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)(V%)

此定律一直被证明是有效的。 2.2理·查特里公式 理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。Lm=100/(V1/L1+V2/L2+……+Vn/Ln)式中Lm——混合气体爆炸极限,%;L1、L2、L3——混合气体中各组分的爆炸极限,%;V1、V2、V3——各组分在混合气体中的体积分数,%。例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。Lm=100/(80/5+15/3.22+4/2.37+1/1.86)=4.369德迈数据计算: 废气风量:19000Nm3/h 废气中可燃性成分:戊烷7kg/h;甲醛29kg/h,其它约5kg/h(当甲醛计算)戊烷体积=7000/72*22.4/1000=2.178Nm3/h体积分数=2.178/19000=0.012% 甲醛体积分数=25.39Nm3/h体积分数=25.39/19000=0.134% 混合气体中可燃气体的总体积分数=0.146% 由公式:LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3) (V%)得: 混合气体的爆炸下限=0.146%/(0.012/1.7+0.134/7)=5.57% 结论:混合气体中可燃气体的总体积分数为0.146%,混合气体的爆炸下限为5.57%,可燃气体浓度是爆炸下限浓度的1/38,放心烧吧!

相关文档
最新文档