自组装半导体碳纳米管薄膜的光电特性

自组装半导体碳纳米管薄膜的光电特性
自组装半导体碳纳米管薄膜的光电特性

[Article]

https://www.360docs.net/doc/b516905579.html,

物理化学学报(Wuli Huaxue Xuebao )

Acta Phys.-Chim.Sin.2014,30(7),1377-1383

July Received:February 26,2014;Revised:May 6,2014;Published on Web:May 9,2014.?

Corresponding author.Email:shengwang@https://www.360docs.net/doc/b516905579.html,;Tel:+86-136********.

The project was supported by the National Key Basic Research Program of China (973)(2011CB933002,2011CB933001)and National Natural Science Foundation of China (61370009,61271051,61321001).

国家重点基础研究发展规划项目(973)(2011CB933002,2011CB933001)和国家自然科学基金(61370009,61271051,61321001)资助

?Editorial office of Acta Physico-Chimica Sinica

doi:10.3866/PKU.WHXB201405093

自组装半导体碳纳米管薄膜的光电特性

赵青靓1

刘旸1,2魏楠1王胜1,

*

(1北京大学电子学系,纳米器件物理与化学教育部重点实验室,北京100871;

2

北京大学前沿交叉学科研究院,北京100871)

摘要:采用自组装的方法制备99%高纯度半导体碳纳米管平行阵列条带,以金属钯和钪为非对称接触电极制

备碳纳米管(CNT)薄膜晶体管(TFTs)器件.主要研究不同沟道长度碳纳米管薄膜晶体管器件的电输运特性和红外光电响应特性,分析了其中的载流子输运和光生载流子分离的物理机制.我们发现薄膜晶体管器件的电学性能和光电性能依赖于器件沟道长度(L )和碳纳米管的平均长度(L CNT ).当沟道长度小于碳纳米管的平均长度时,器件开关比最低;当沟道长度超过碳纳米管平均长度时,随着沟道长度的增加,器件开关比增加,光电流减小.相关研究结果为高纯碳纳米管薄膜晶体管器件在红外光探测器方面的进一步应用提供参考依据.关键词:

碳纳米管;

自组装;非对称接触;光电响应;

红外;

沟道长度;薄膜晶体管

中图分类号:

O649

Photoelectric Characteristics of Self-Assembled Semiconducting

Carbon Nanotube Thin Film s

ZHAO Qing-Liang 1

LIU Yang 1,2

WEI Nan 1

WANG Sheng 1,*

(1Key Laboratory for the Physics and Chemistry of Nanodevices,Department of Electronics,Peking University,

Beijing 100871,P .R.China ;2Academy for Advanced Interdisciplinary Studies,Peking University,Beijing 100871,P .R.China )

Abstract:We used the self-assembly method to form high purity (99%)semiconducting carbon nanotube (CNT)aligned arrays.Thin-film transistors (TFTs)were fabricated with asymmetric Pd and Sc electrodes.We studied the electronic transport characteristics and infrared photoelectronic properties of the TFTs with different channel lengths.The physical mechanism of carrier transport and the dissociation of photoexcited carries are also discussed.We found that the electronic and photoelectronic properties of the TFTs were dependent on the channel length and the average length of the CNTs.The on/off ratio of the device was the lowest when the channel length of the device (L )was less than the average length of the CNTs (L CNT ),and it increased with increasing L when L was larger than L CNT .In addition,the short circuit current of the device also decreased.These results provide an effective reference for further infrared detector applications based on high-purity semiconducting carbon nanotube TFTs.

Key Words:Carbon nanotube;Self-assembly;Asymmetric contact;

Photoelectric response;

Infrared;Channel length;Thin film transistor

1引言

碳纳米管(CNTs)自1991年被发现以来,1在纳

米电子和光电应用领域以其优异的性能和广阔的应用潜力得到了广泛的关注.在电学方面,半导体

1377

Acta Phys.-Chim.Sin.2014V ol.30

型单壁碳纳米管具有高达105cm2?V-1?s-1的载流子迁移率2和超过1μm的电子平均自由程.3单根半导体单壁碳纳米管作为沟道材料的场效应晶体管(FET),其性能指标已经在多方面超过传统硅基器件.此外,碳纳米管还具有良好的化学稳定性和机械延展性,具有很好的构建柔性电子器件、4全碳电路的潜力.5,6在光电特性方面,碳纳米管与传统光电材料如化合物半导体、有机物半导体相比也具有优异的光吸收和光响应性能.碳纳米管是一种多子带、直接带隙的半导体,其带隙可调,并与直径大致成反比关系,7因此碳纳米管薄膜具有从紫外到红外的宽谱光吸收特性.碳纳米管的吸收系数很高,已报道碳管薄膜样品在近红外到中红外区间的光吸收系数在104-105cm-1之间,8较传统红外材料高出约一个量级.作为一种小尺度的纳米材料,碳纳米管具有很好的光电集成潜力,在保持较高探测性能的同时,单一像素器件能够达到亚微米尺度.9最早的碳纳米管场效应器件是由碳纳米管和铂(Pt)金属形成肖特基接触制备而成,但肖特基结的存在限制了器件的性能,10对于光电器件应用也会限制最佳光电流和光电压的获得.斯坦福大学的Dai研究组11于2003年首次在碳管上采用高功函数的钯(Pd)金属作为源漏电极,实现了p型欧姆接触的场效应晶体管,器件的接触电阻接近理论的量子极限.我们研究组12,13利用低功函数的钪(Sc)和钇(Y)金属实现了很好的碳管n型欧姆接触.利用Pd和Sc/Y金属电极可以构建非对称接触的碳纳米管二极管,14无需化学掺杂即可形成类似p-n结的内建电场,可以高效地实现光生载流子的分离和收集.基于非对称接触碳管二极管,经过引入“虚电极”对可以构成级联碳管二极管结构,利用级联结构的光伏倍增效应,15碳纳米管平行阵列作为沟道材料的光探测器件可以得到更高的信噪比和探测度,多级级联探测器的室温红外探测率可以接近一般的商用红外探测器水平.16

先前的基于单根半导体碳纳米管二极管器件的电学和光电性能的研究显示出很好的应用潜力.14,15但由于单根碳纳米管材料尺度的限制,难以满足应用所需材料的大规模制备和均匀分布要求.碳纳米管薄膜材料在发挥单根碳管优异性能的同时,也可以在二维尺度上拓展碳管各方面的应用,如电子器件的沟道材料4,17-19和太阳能电池.20目前常用的薄膜制备方法主要有化学气相沉积法和溶液沉积法.虽然化学气相沉积直接生长可得到高质量的碳纳米管薄膜,但这种方式得到的碳管薄膜中半导体性碳纳米管和金属性碳纳米管混合在一起,通常直接生长的碳纳米管中金属管和半导体管的比例为1:2,金属管的存在会使器件具有较低的开关比,而且不利于半导体碳管中的光激发载流子的分离.如果不能有效去除金属管,基于这种薄膜的器件应用受到较大限制.一般的溶液沉积法可以用密度梯度超速离心法提纯后的碳纳米管做原料,经过自然沉积得到随机网络状分布的高纯度半导体碳纳米管薄膜,其中的碳管是无序分布状态,并且碳管的密度大面积均匀性较难控制.21在溶液沉积法的诸多方式中,蒸发自组装方法在排列的定向性和大面积可控性上具有很大优势.22先前的结果显示出用该方法得到的碳管薄膜材料制备的薄膜场效应器件表现出了较好的均一性和电输运性能,23而且由于碳纳米管的光吸收和光发射具有明显的偏振依赖关系,24对于碳纳米管薄膜在光电器件方面的应用来说,需要定向排列的碳纳米管薄膜以确保器件的光学特性控制.

本文采用密度梯度超速离心法提纯的99%半导体单壁碳纳米管作为材料,利用蒸发自组装的方法实现了碳纳米管大面积的近似平行排列的条带,在此基础上批量制备了非对称接触薄膜晶体管器件,主要研究器件沟道长度和碳纳米管的平均长度对器件的电学及光电性质的影响规律,以及薄膜晶体管沟道中光生载流子的分离特性.

2实验部分

2.1碳纳米管阵列条带材料的制备与表征

制备碳纳米管阵列的原材料是经过预先提纯的固态99%半导体碳纳米管(美国NanoIntegris公司).首先将碳纳米管加入浓度为1%的十二烷基硫酸钠(SDS)溶液中,SDS购于Sigma公司,纯度大于99%.用宁波新芝生物科技股份有限公司生产的JY92-2D型超声波细胞破碎机,以200W功率超声1h,以使碳管充分分散.将超声处理过后的碳纳米管的SDS溶液进行超速离心,离心机为日本日立公司CS150GX II,在104000G的加速度下离心30 min.离心后取上层清液,得到分散较好的碳纳米管溶液,将这些溶液进一步稀释10倍后,将表面清洗干净的500nm厚氧化硅的硅片垂直插入溶液中,放入真空干燥器,在0.4个大气压下、减震环境下排列

1378

赵青靓等:自组装半导体碳纳米管薄膜的光电特性

No.7

48h,得到大面积均一的定向排列的碳纳米管条带.碳纳米管条带的扫描电子显微镜(SEM)照片如图1(a)所示,碳管条带的宽度约为18μm,条带中碳管大致呈平行排列,条带的宽度和周期大小可以通过碳管的浓度和气压条件进行控制.所用的经分离提纯后的单根碳管的长度平均约为1μm,薄膜条带中碳纳米管的管径分布可以由拉曼光谱表征得到.图1(b,c)为碳管薄膜的拉曼光谱,从图1(b,c)中可以看到碳管样品明显的呼吸模(RBM)和G 模,同时可以看到较小的D 峰,利用简单的RBM 峰和直径关系ω=248/d (其中ω是RBM 峰的位置,d 是碳管以nm 为单位时的直径大小),可以得到碳管直径的分布范围为1.2-1.7nm.25图1(d)为99%高纯度碳管薄膜的光吸收谱,吸收谱是采用美国Perkin Elmer 公司的Lambda 950型紫外-可见分光光度计进行测量的.在1100和1800nm 附近显示出强的吸收峰,它们可以分别对应半导体碳纳米管S 22和S 11的吸收峰,吸收谱的长波截止波长在2500nm 左右,说明这种高纯碳管薄膜在可见光到近红外波段均有显著光吸收,同时吸收谱的波长范围也与拉曼光谱给出的碳管的直径分布基本一致.吸收谱中未见明显的金属

性碳纳米管M 11吸收峰,证明材料中半导体管有较高的纯度.262.2

碳纳米管阵列器件的制备

主要采用电子束光刻(EBL)方式对前面获得的Si/SiO 2衬底上的碳纳米管条带进行电极加工,所用的EBL 是加载在美国FEI 公司XL 30SFEG 型号的SEM 上的德国Raith 公司电子束图形发生器附件来完成的.用电子束蒸发镀膜的方式蒸镀金属电极,所用仪器为美国Kurt J.Lesker 公司的电子束蒸发镀膜仪.镀膜之后随即通过美国Cambridge 公司原子层沉积(ALD)方式生长12nm 的氧化铪进行保护,随后进行剥离.采用美国Trion 公司的电感耦合等离子体刻蚀仪(ICP)刻蚀掉器件四周的碳纳米管薄膜,以保证器件之间的独立性.最后用德国Micro Chem 公司的电子束光刻胶聚甲基丙烯酸甲酯(PMMA),浓度为6%,对器件进行封装,以增加器件在大气中测量的稳定性.典型器件的结构如图2(a)所示,以Si/SiO 2做底栅,源极和漏极金属分别为钛/钯(宽度0.5μm,厚度0.5nm/60nm)和钪(宽度0.5μm,厚度70nm).2.3

器件电学和光电性质的测量

图1高纯半导体碳纳米管平行阵列薄膜的表征

Fig.1Characterization of the high purity semiconducting nanotube aligned arrays

(a 1-a 3)SEM image of the carbon nanotube film;(b)radial breathing mode (RBM),(c)D band and G band of Raman spectrum of the carbon

nanotube film;(d)visible-near-infrared absorption spectra of carbon nanotube film on glass substrate

1379

Acta Phys.-Chim.Sin.2014V ol.30

器件的电学输运特性测量是在常温、大气环境下进行的,所用仪器为美国Keitheley4200SCS半导体分析仪以及探针台.光电测量是在美国Horiba JY 公司HR800显微拉曼光学系统上通过自制的探针台完成的,用Keithley4200SCS半导体分析仪进行光电响应的测量.所用激光波长为785和633nm.

3结果与讨论

3.1器件的电学特性表征

图2(a)为碳纳米管薄膜条带器件结构示意图. Si/SiO2为衬底的同时也作为底栅控制碳管薄膜晶体管的开关状态,Pd和Sc金属作为源漏电极与碳纳米管形成非对称接触.由于碳纳米管薄膜中的碳管为准定向排列,碳管的平均长度约为1μm,对于不同沟道长度器件的输运机制不同,在沟道比较短的时候(小于1μm),沟道里大部分碳管以直接输运为主,即通过直接搭接在源漏两端电极,当沟道比较长的时候(大于1μm),沟道中的碳管无法直接连接两端源漏电极,主要以碳管相互搭接的方式连接,即以渗透输运机制为主.为了比较不同沟道长度器件的输运特性,我们首先研究了沟道长度对器件电学特性的影响.图2(b)显示了不同沟道长度(分别为0.5,1,2,5μm)器件的转移特性曲线(I ds-V gs(ds:源漏极,gs:栅源极)).器件的沟道中碳管条带宽度均约为18μm,栅压扫描范围为-80-80V,漏极(Pd)偏压为1V,源极(Sc)接地.碳管薄膜晶体管器件的转移特性呈现出典型的p型特征.对于不同的沟道长度器件,其阈值电压不同,对于沟道较长(2,5μm)器件,当其栅压(V gs)为60V左右为关态,对于沟道较短器件(0.5,1μm),其关态电压为20-40V之间,阈值电压的变化主要可能是来自不同沟道长度器件的电输运机制.随着沟道长度的增大,器件的开关比增大,开态电流减小.当沟道长度为0.5μm时,器件具有最大的开态电导,由于平均碳管长度约为

1

图2高纯半导体碳纳米管平行阵列的薄膜晶体管器件结构与电学特性

Fig.2Device structure and electrical properties of thin-film transistors based on high purity semiconducting

nanotube aligned arrays

(a)schematic of the CNT-TFT device with asymmetric contacts;(b)transfer characteristics of nanotube TFTs,with channel lengths of0.5,1,

2,and5μm under bias1V;(c)current-voltage characteristic of TFT device with channel length L=2μm.V gs changes from-40to80V with a step of40V(gs:gate-source,ds:drain-source);(d)on-state current plotted against on/off ratio of thin film transistors for all devices studied 1380

赵青靓等:自组装半导体碳纳米管薄膜的光电特性No.7

μm,此时大部分碳管的两端可以直接搭接到源漏电极上,电流的输运机制以直接输运为主,由于碳纳米管的密度较高,每微米超过20根,23因此同时也存在渗透输运机制.此时材料中的金属管的直接搭接和渗透输运机制存在使得器件的电流基本不受底栅调制,开关比小于10.当沟道长度为1μm时,器件的开关比为101-102.随着沟道长度的进一步增加,当沟道长度为2μm时,由于碳管平均长度只有1μm左右,器件中直接搭接到源漏电极的金属碳管几乎不存在,器件的开关比能够达到102,电流的输运机制从直接输运为主变为渗透输运为主.最后当沟道长度为5μm,远大于碳管平均长度时,开关比均大于102,个别器件能大于104,此时载流子需要通过多个碳管间的渗透输运才能从一个电极到达另一个电极,因此具有最大的开关比和最小的开态电导.

图2(c)为沟道长度为2μm的典型器件在不同栅压下的输出特性.此沟道长度器件的电流受到栅压明显的调制,开关比可以达到2个数量级.在正负偏压下的电流基本对称,电阻随偏压的增大而减小.单根碳管在非对称接触Pd/Sc结构会表现出的典型二极管特性在薄膜体系中没有被观察到,这主要可能是由于薄膜体系的输运特性为渗透输运机制,并且与沟道中碳纳米管之间接触引入的肖特基结有关,沟道中碳管之间的多次搭接形成了一个较为复杂的输运体系.器件的电流电压特性(I ds-V ds)由非对称的金属与碳管接触形成的接触电阻和碳管之间的接触特性共同决定.图2(d)为同一批制作的所有不同沟道长度器件的开态电流与开关比的关系统计结果.绝大多数相同沟道长度器件的开态电流和开关比变化在一个较小的范围内.实验结果显示了相同沟道长度器件之间较高的均一性,与此同时不同沟道长度的器件开态电流和开关比的分布有显著的差异.长沟道的器件拥有较大的开关比和较小的开态电流,短沟道的器件开关比较小,但开态电流较大,与图2(b)转移曲线规律一致.

3.2器件的光电特性表征

在前面电学特性表征的基础上,我们对比了不同沟道长度器件的红外光电响应.图3(a)显示了无光照、栅压处于关态条件下,不同沟道长度的器件的电流-电压(I-V)特性.沟道长度越长,暗电流越小.图3(b)为沟道长度2μm的典型器件在不同光强条件下(光照强度分别为2.3,1.15,0.58,0.23,0.023kW?cm-2,激发波长785nm)的I-V特性.入射功率密度为2.3kW?cm-2时,短路光电流为6.3nA.光电流随光强的减小而减小,在光照强度下降至0.023 kW?cm-2时,器件仍存在一定的光电流响应.由于碳纳米管的光吸收具有偏振依赖关系,在轴向有最强的光吸收特性,我们采用的激光偏振方向与碳纳米管定向排列方向一致以获得高的光电响应效果.图3(c)不同颜色的点显示了不同沟道长度的器件短路光电流随光照强度的变化趋势,图中直线是拟合的结果.器件的短路光电流均随光照强度基本呈线性变化,长沟道的器件(大于1μm)的短路光电流较短沟道的器件要小,这是由于随着沟道长度变长,载流子被电极收集形成光电流的过程需要经过更多碳管之间的输运导致的结果,同时光生载流子也容易在输运过程中产生复合而损耗掉.对于0.5μm短沟道器件中,由于存在金属管直接搭接源漏电极,在光照情况下很难有效产生短路光电流和开路光电压,而沟道长度为2和5μm的短路光电流值差异较小.

为进一步了解碳纳米管薄膜体系中的有效的光生载流子分离区域和分离机制,我们采用激光扫描光电流谱的方法对器件不同区域的光响应进行了研究.图4(a)为高纯半导体碳纳米管阵列晶体管对光照位置沿沟道方向的光电流响应.测量采用沟道长度为一个5μm的典型器件,激发波长为633 nm,采用50倍的物镜进行聚焦,激光的光斑直径约为2μm.在关态栅压情况下,通过移动样品台,光斑从器件漏电极一侧的沟道之外区域,以1μm步长沿着器件沟道从漏电极往源电极进行扫描.从图4(a)中可以看到,器件在金属和碳纳米管接触处附近有较大的正向光电流,说明在该体系下,光激发电子空穴对的分离主要发生在金属和碳纳米管接触区域.而光照在器件沟道中间时,由于没有有效的自建场存在,无法产生正向光电流,因此沟道中间处的反向电流可能是由碳管的局域缺陷引起的光电流.图4(b)显示了对应器件的能带示意图,非对称接触形成的能带弯曲是在两个电极接触区域产生净光电流的主要条件.在金属钯与碳纳米管接触区域附近,通过电荷转移,形成空穴富集区域;在金属钪与碳纳米管接触区域附近,形成电子富集区域,所以两个区域产生的光电流同向.当激光照射在碳管与Pd金属接触处的时候,由于碳管的能带向上弯曲且Pd金属可以与碳纳米管的价带形成良好的欧姆

1381

Acta Phys.-Chim.Sin.2014V ol.30

接触,光激发的空穴很容易被Pd 电极收集,产生净的光电流.当激光照射在碳管与Sc 金属接触处时,由于碳管的能带向上弯曲且Sc 金属可以与碳纳米管的导带形成良好的欧姆接触.光激发的电子很快被Sc 电极收集,产生与光照在Pd 端同向的光电流.而在沟道中间,由于远离接触区域,没有有效分离电子空穴的自建电场,光电流迅速变小,光激发的

载流子无法有效通过碳管之间输运到达源漏电极.

4结论

采用溶液蒸发自组装法(EDSA)可控地大面积定向排列了99%高纯半导体单壁碳纳米管阵列薄膜.利用排列的碳纳米管阵列,采用无掺杂的非对称接触电极方法制备了薄膜晶体管器件,对它的电学特性、光电特性进行了测量和研究,并对相关的物理机制进行了分析.在高纯碳管阵列薄膜器件中,沟道长度对器件的电学、光电响应特性存在较大影响.器件的沟道长度超过碳纳米管的平均长度会使沟道中管与管之间的结数量增加,使器件由直接输运占主导转变为渗透输运占主导,同时器件的电导和短路光电流下降,开关比增加.扫描光电流结果也显示出光电流主要产生在碳管与金属(Pd 和Sc)接触区域附近,同时非对称的接触电极可以高效地收集光生载流子.相关结果为高纯碳管薄膜在光探测方面的应用提供了参考依据.

References

(1)Iijima,S.Nature 1991,354,56.doi:10.1038/354056a0(2)

Perebeinos,V .;Tersoff,J.;Avouris,P.Nano Lett .2006,6,205.doi:10.1021/nl052044h (3)

Purewal,M.S.;Hong,B.H.;Ravi,A.;Chandra,B.;Hone,J.;Kim,P.Phys.Rev.Lett.2007,98,186808.doi:10.1103/PhysRevLett.98.186808(4)

Cao,Q.;Kim,H.S.;Pimparkar,N.;Kulkarni,J.P.;Wang,C.;Shim,M.;Roy,K.;Alam,M.A.;Rogers,J.A.Nature 2008,454,495.doi:10.1038/nature07110(5)

Liang,X.L.;Wang,S.;Wei,X.L.;Ding,L.;Zhu,Y .Z.;Zhang,Z.Y .;Chen,Q.;Li,Y .;Zhang,J.;Peng,L.M.Adv.Mater.

2009,

图4

高纯半导体碳纳米管阵列晶体管沿沟道方向的

光电流响应(激光波长λ=633nm)

Fig.4Spatial photocurrent response along the channel of

high purity semiconducting CNT-TFTs device with

scanning laser wavelength of 633nm

(a)short circuit current (I sc )as a function of position being illuminated when gate bias (V gs )is 20V;(b)depicted energy band diagrams of the asymmetrically contacted CNT-TFT.The electron-hole pairs can be separated and collected efficiently at the contact area between

metal electrode and carbon

nanotube.

图3高纯半导体碳纳米管阵列薄膜晶体管的光电特性表征

Fig.3Photoelectric properties of thin-film transistors based on high purity semiconducting nanotube arrays

(a)current -voltage (I -V )characteristic of typical CNT-TFTs with channel lengths of 0.5,1,2,and 5μm;(b)current -voltage characteristics in a

logarithmic scale of a typical CNT-TFT with channel length of 2μm with different power densities and the laser wavelength of 785nm;

(c)experimental data (point)and fit results (line)for short circuit current as a function of power density,for TFT

devices with channel lengths of 1,2,and 5μm

1382

赵青靓等:自组装半导体碳纳米管薄膜的光电特性No.7

21,1339.doi:10.1002/adma.v21:13

(6)Zhu,Y.Z.;Wang,S.;Wei,X.L.;Ding,L.;Zhang,Z.Y.;Liang,

X.L.;Chen,Q.;Peng,L.M.Acta Phys.-Chim.Sin.2008,24,

2122.[朱玉振,王胜,魏贤龙,丁力,张志勇,梁学磊,陈

清,彭练矛,物理化学学报,2008,24,2122]doi:10.3866/PKU.

WHXB20081131

(7)Bachilo,S.M.;Strano,M.S.;Kittrell,C.;Hauge,R.H.;

Smalley,R.E.;Weisman,R.B.Science2002,298,2361.

doi:10.1126/science.1078727

(8)Itkis,M.E.;Borondics,F.;Yu,A.;Haddon,R.C.Science2006,

312,413.doi:10.1126/science.1125695

(9)Yang,L.J.;Wang,S.;Zeng,Q.S.;Zhang,Z.Y.;Li,Y.;Zhou,

W.W.;Liu,J.;Peng,L.M.ACS Appl.Mater.Inter.2012,4,

1154.doi:10.1021/am201778x

(10)Tans,S.J.;Verschueren,A.R.M.;Dekker,C.Nature1998,393,

49.doi:10.1038/29954

(11)Javey,A.;Guo,J.;Wang,Q.;Lundstrom,M.;Dai,H.J.Nature

2003,424,654.doi:10.1038/nature01797

(12)Zhang,Z.;Liang,X.;Wang,S.;Yao,K.;Hu,Y.;Zhu,Y.;Chen,

Q.;Zhou,W.;Li,Y.;Yao,Y.;Zhang,J.;Peng,L.M.Nano Lett.

2007,7,3603.doi:10.1021/nl0717107

(13)Ding,L.;Wang,S.;Zhang,Z.Y.;Zeng,Q.S.;Wang,Z.X.;Pei,

T.;Yang,L.J.;Liang,X.L.;Shen,J.;Chen,Q.;Cui,R.L.;Li,

Y.;Peng,L.M.Nano Lett.2009,9,4209.doi:10.1021/

nl9024243

(14)Wang,S.;Zhang,Z.Y.;Ding,L.;Liang,X.L.;Sun,J.;Xu,H.

L.;Chen,Q.;Cui,R.L.;Li,Y.;Peng,L.M.Adv.Mater.2008,

20,3258.doi:10.1002/adma.v20:17

(15)Yang,L.;Wang,S.;Zeng,Q.S.;Zhang,Z.Y.;Pei,T.;Li,Y.;

Peng,L.M.Nature Photon.2011,5,672.doi:10.1038/

nphoton.2011.250

(16)Yang,L.;Wang,S.;Zeng,Q.S.;Zhang,Z.Y.;Peng,L.M.

Small2013,9,1225.doi:10.1002/smll.201203151

(17)Snow,E.S.;Novak,J.P.;Campbell,P.M.;Park,D.Appl.Phys.

Lett.2003,82,2145.doi:10.1063/1.1564291

(18)Zhang,J.;Wang,C.;Fu,Y.;Che,Y.;Zhou,C.W.ACS Nano

2011,5,3284.doi:10.1021/nn2004298

(19)Wang,C.;Zhang,J.;Zhou,C.W.ACS Nano2010,4,7123.doi:

10.1021/nn1021378

(20)Wei,J.Q.;Jia,Y.;Shu,Q.K.;Gu,Z.Y.;Wang,K.L.;Zhuang,

D.M.;Zhang,G.;Wang,Z.C.;Luo,J.B.;Cao,A.Y.;Wu,D.

H.Nano Lett.2007,7,2317.doi:10.1021/nl070961c

(21)Wang,C.;Zhang,J.;Ryu,K.;Badmaev,A.;Arco,L.G.;Zhou,

C.W.Nano Lett.2009,9,4285.doi:10.1021/nl902522f

(22)Shastry,T,A.;Seo,J.;Lopez,J.;Arnold,H.;Kelter J.;Sangwan,

V.;Lauhon,L.;Marks,T.;Hersam,M.C.Small2013,9,45.

doi:10.1002/smll.v9.1

(23)Engel,M.;Small,J.P.;Steiner,M.;Freitag,M.;Green,A.A.;

Hersam,M.C.;Avouris,P.ACS Nano2008,2,2445.doi:

10.1021/nn800708w

(24)Kinoshita,M.;Steiner,M.;Engel,M.;Small,J.P.;Green,A.A.;

Hersam,M.C.;Krupke,R.;Mendez,E.E.;Avouris,P.Opt.

Express2010,18,25738.doi:10.1364/OE.18.025738

(25)Dresselhaus,M.S.;Dresselhaus,G.;Saito,R.;Jorio,A.Phys.

Rep.2005,409,47.doi:10.1016/j.physrep.2004.10.006

(26)Cao,Q.;Han,S.;Tulevski,G.S.;Zhu,Y.;Lu,D.D.;Haensch,

W.Nature Nanotech.2013,8,180.doi:10.1038/nnano.2012.257

1383

高k材料用作纳米级MOS晶体管栅介质薄层下

“半导体技术”2008年第二期趋势与展望 93-高k材料用作纳米级MOS晶体管栅介质薄层(下) 翁妍,汪辉98-塑封微电子器件失效机理研究进展 李新,周毅,孙承松102-光电光窗的封接技术 李成涛,沈卓身技术专栏(新型半导体材料) 106-(Bi3.7Dy0.3)(Ti2.8V0.2)O12铁电薄膜的制备 及退火影响唐俊雄, 唐明华, 杨锋, 等109-掺Al富Si/SiO2薄膜制备及紫外发光特性研究 王国立, 郭亨群113-氧分压对锰掺杂氧化锌结构及吸收性能的影响 杨兵初, 张丽, 马学龙, 等117-升级冶金级Si衬底上ECR-PECVD沉积 多晶Si薄膜崔洪涛, 吴爱民, 秦福文, 等121-用XPS法研究SiO2/4H-SiC界面的组成 赵亮, 王德君, 马继开, 等126-Al在生长InGaN材料中的表面活化效应 袁凤坡, 尹甲运, 刘波, 等器件制造与应用 129-4H-SiC MESFET直流I-V特性解析模型 任学峰, 杨银堂, 贾护军133-6H-和4H-SiC功率VDMOS的比较与分析 张娟, 柴常春, 杨银堂, 等137-智能LED节能照明系统的设计赵玲, 朱安庆141-InP基谐振隧穿二极管的研究 李亚丽,张雄文,冯震,等144-氧化硅在改善双极型晶体管特性上的作用 王友彬,汪辉工艺技术与材料 147-低温退火制备Ti/4H-SiC欧姆接触 陈素华, 王海波, 赵亮, 等151-精密掩模清洗及保护膜安装工艺赵延峰封装、测试与设备 155-测量计算金属-半导体接触电阻率的方法 李鸿渐,石瑛160-热超声倒装过程中的建模和多参量仿真 李丽敏,吴运新,隆志力集成电路设计与开发 164-微波宽带单片集成电路二分频器的 设计与实现陈凤霞,默立冬,吴思汉167-基于分组网络结构NOC的蚁群路由算法 陈青, 郝跃, 蔡觉平171-基于ARM+FPGA的大屏幕显示器 控制系统设计陈炳权176-新型异步树型仲裁器设计 徐阳扬,周端,杨银堂,等179-一种用于高速ADC的采样保持电路的设计 林佳明,戴庆元,谢詹奇,等技术产品专栏 183-飞思卡尔升级高品质车用i.MX应用处理器产业新闻 184-综合新闻

碳纳米管的特性及应用_孙晓刚

作者介绍:孙晓刚(1957-),男,吉林人,江西金世纪冶金(集团)股份有限公司高级工程师,长期从事碳纳米管制备工 艺的研究,并对碳纳米管的工业化生产进行了广泛深入的研究和商业策划工作。 收稿日期:2001-02-21 修回日期:2001-05-08 碳纳米管的特性及应用 孙晓刚1,曾效舒2,程国安2 (1.江西金世纪冶金(集团)股份有限公司,江西南昌 330046; 2.南昌大学,江西南昌 330029) 摘 要:介绍了巴基球及碳纳米管的发现和历史,重点介绍 了碳纳米管的基本性能和晶体结构,描述了碳纳米管电传导 和热传导的机理。文中还介绍了碳纳米管的主要生产方法 和各自的优点。根据全球碳纳米管应用研究的方向,对碳纳 米管的应用领域进行了探讨,展望了碳纳米管的应用前景及 商业开发价值。 关键词:碳纳米管;性能;制备;应用 中图分类号:T B383 文献标识码:A 文章编号:1008-5548(2001)06-0029-05 1 碳纳米管简介 仅仅在十几年前,人们一般认为碳的同素异形 体只有两种:石墨和金刚石。1985年,英国Sussex 大学的Kroto教授和美国Rice大学的Sm alley教授 进行合作研究,用激光轰击石墨靶以尝试用人工的 方法合成一些宇宙中的长碳链分子。在所得产物中 他们意外发现了碳原子的一种新颖的排列方式,60 个碳原子排列于一个截角二十面体的60个顶点,构 成一个与现代足球形状完全相同的中空球,这种直 径仅为0.7nm的球状分子即被称为碳60分子。此 即为碳晶体的第三种形式。 1991年,碳晶体家族的又一新成员出现了,这 就是碳纳米管。日本NEC公司基础研究实验室的 Iijima教授在给《Nature》杂志的信中宣布合成了一 种新的碳结构。它由一些柱形的碳管同轴套构而 成,直径大约在1~30nm之间,长度可达到1μm。 进一步的分析表明,这种管完全由碳原子构成,并可 看成是由单层石墨六角网面以其上某一方向为轴, 卷曲360°而形成的无缝中空管。相邻管子之间的 距离约为0.34nm,与石墨中碳原子层与层之间的距 离0.335nm相近,所以这种结构一般被称为碳纳米 管。这是继C60之后发现的碳的又一同素异形体, 是碳团簇领域的又一重大科研成果。 碳纳米管由层状结构的石墨片卷曲而成,因卷 曲的角度和直径不同,其结构各异:有左螺旋的、右 螺旋的和不螺旋的。由单层石墨片卷成的称为单壁 碳纳米管,多层石墨片卷成的称为多壁碳纳米管。 碳纳米管的径向尺寸较小,管的外径一般在几纳米 到几十纳米;管的内径更小,有的只有1nm左右。 而碳纳米管的长度一般在微米量级,长度和直径比 非常大,可达103~106,因此,碳纳米管被认为是一 种典型的一维纳米材料。 碳纳米管、碳纳米纤维材料一直是近年来国际 科学的前沿领域之一。仅就碳纳米管而言,自从 1991年被人类发现以来,就一直被誉为未来的材 料。 2 基本性能 碳纳米管的性质与其结构密切相关。就其导电 性而言,碳纳米管可以是金属性的,也可以是半导体 性的,甚至在同一根碳纳米管上的不同部位,由于结 构的变化,也可以呈现出不同的导电性。此外,电子 在碳纳米管的径向运动受到限制,表现出典型的量 子限域效应;而电子在轴向的运动不受任何限制。 无缺陷金属性碳纳米管被认为是弹道式导体,其导 电性能仅次于超导体。根据经典电阻理论和欧姆定第7卷第6期 2001年12月 中 国 粉 体 技 术 China Powder Science and Technology Vol.7No.6 December2001

网络管理实验报告

实验1:W i n d o w2003S N M P服务配置 1.掌握简单网络管理协议的操作知识 (SNMP网络管理模型,抽象语法表示(ASN.1),管理信息结构(SMI),常用的管理信息(MIB)。SNMP协议数据格式与工作模式,网络管理系统) 2.收集在网络上实现SNMP所必需信息 (1)一个典型的网络管理系统包括四个要素:管理员、管理代理、管理信息数据库、代理服务设备。一般说来,前三个要素是必需的,第四个只是可选项。 (2)网络管理软件的重要功能之一,就是协助网络管理员完成管理整个网络的工作。网络管理软件要求管理代理定期收集重要的设备信息,收集到的信息将用于确定独立的网络设备、部分网络、或整个网络运行的状态是否正常。管理员应该定期查询管理代理收集到的有关主机运转状态、配置及性能等的信息。? 网络管理代理是驻留在网络设备中的软件模块,这里的设备可以是UNIX工作站、网络打印机,也可以是其它的网络设备。管理代理软件可以获得本地设备的运转状态、设备特性、系统配置等相关信息。管理代理软件就象是每个被管理设备的信息经纪人,它们完成网络管理员布置的采集信息的任务。管理代理软件所起的作用是,充当管理系统与管理代理软件驻留设备之间的中介,通过控制设备的管理信息数据库(MIB)中的信息来管理该设备。管理代理软件可以把网络管理员发出的命令按照标准的网络格式进行转化,收集所需的信息,之后返回正确的响应。在某些情况下,管理员也可以通过设置某个MIB对象来命令系统进行某种操作。 路由器、交换器、集线器等许多网络设备的管理代理软件一般是由原网络设备制造商提供的,它可以作为底层系统的一部分、也可以作为可选的升级模块。设备厂商决定他们的管 理代理软件可以控制哪些MIB对象,哪些对象可以反映管理代理软件开发者感兴趣的问题。 (3)管理信息数据库(MIB)定义了一种数据对象,它可以被网络管理系统控制。MIB是一个信息存储库,这里包括了数千个数据对象,网络管理员可以通过直接控制这些数据对象去控制、配置或监控网络设备。网络管理系统可以通过网络管理代理软件来控制MIB数据对象。不管到底有多少个MIB

碳纳米管纳米材料的应用要点

碳纳米管及其复合材料在储能电池中的应用 摘要碳纳米管具有良好的机械性能和导电性、高化学稳定性、大表面积以及独特的一维结构,选择合适的方法制备出碳纳米管复合材料,可以使其各种物理化学性能得到增强, 因而在很多领域有着极大的应用前景,尤其是在储能电池中的应用。本文分析了碳纳米管及其复合材料的特点,总结了碳纳米管的储锂机理,对其发展趋势作了展望。 关键词碳纳米管复合材料储能电池应用 Abstract carbon nanotubes(CNTs) are nanometer-sized carbon materials with the characteristics of unique one-dimensional geometric structure,large surface area,high electrical conductivity,elevated mechanical strength and strong chemical inertness. Selecting appropriate methods to prepare carbon nanotube composites can enhance physical and chemical properties , and these composites have a great future in many areas,especially in energy storage batteries . In this paper, based on the analysis and comparison of the advantages and disadvantages of carbon nanotube composites,the enhancement mechanisms of the CNTs catalysts are introduced. Afterward,the lithium ion storage properties are summarized according to the preparation methods of composite materials. Finally, the prospects and challenge for these composite materials are also discussed. Keywords carbon nanotube; composite; energy storage batteries; application 1 引言 碳纳米管(CNTs)在2004 年被人们发现,是一种具有特殊结构的一维量子材料, 它的径向尺寸可达到纳米级, 轴向尺寸为微米级, 管的两端一般都封口, 因此它有很大的强度, 同时巨大的长径比有望使其制作成韧性极好的碳纤维。碳纳米管由于其独特的一维纳米形貌被作为锂离子电池负极材料广泛研究,通过对碳纳米管进行剪切,官能化及掺杂等方法进行改性处理,能有效的减少碳纳米管的首次不可逆容量,增加可逆的储锂比容量。此外,碳纳米管的中空结构也成为抑制高容量金属及金属氧化物体积膨胀理想复合基体。本文中,我们研究了碳纳米管的储锂性能,考察了碳纳米管作为锡类复合材料基体,其内部限域空间对高容量金属及金属氧化物的储锂性能促进的具体原因。该研究结果为碳纳米管以及其他具有限域空间的结构在锂离子电池中的应用提供了参考。 2 碳纳米管的储锂机理和应用 相比广泛应用的石墨类材料,碳纳米管在锂离子电池负极材料中有其独特的应用优势。首先,碳纳米管的尺寸在纳米级,管内及间隙空间也都处于纳米尺寸级,因而具有纳米材料的小尺寸效应,能有效的增加锂离子在化学电源中的反应活性空间;其次,碳纳米管的比表面积较大,能增加锂离子的反应活性位,并且随着

软件工程实验报告

软件工程实验报告 姓名:冯巧 学号 实验题目:实验室设备管理系统 1、系统简介: 每天对实验室设备使用情况进行统计,对于已彻底损坏的作报废处理,同时详细记录有关信息。对于有严重问题(故障)的要即时修理,并记录修理日期、设备名、修理厂家、修理费用、责任人等。对于急需但又缺少的设备需以“申请表”的形式送交上级领导请求批准购买。新设备购入后立即对新设备登记(包括类别、设备名、型号、规格、单价、数量、购置日期、生产厂家、购买人等),同时更新申请表的内容。 2、技术要求及限定条件: 采用C#语言设计桌面应用程序,同时与数据库MySql进行交互。系统对硬件的要求低,不需要网络支持,在单机环境下也能运行,在局域网环境下也能使用。方案实施相对容易,成本低,工期短。 一:可行性分析 1、技术可行性分析 计算机硬件设备,数据库,实验室设备管理软件与实验室设备管理系统的操作人员组成,能够实现实验室设备管理的信息化,提高工作效率,实现现代化的实验室设备管理。系统需要满足实验室设备管理(包括对实验设备的报废、维修和新设备的购买)、实验室设备信息查询(包括按类别进行查询和按时间进行查询)、实验室设备信息统计报表(包括对已报废设备的统计、申请新设备购买的统计和现有设备的统计)。这些功能框图如下图所示: 2、经济可行性分析 依据用户的现实需求、技术现状、经济条件、工期以及其他局限性因素等等因素,考虑到工期的长短、技术的成熟可靠、操作方便等因素,本方案具备经济可行性。

3、系统可选择的开发方案 ①方案A用C#开发系统的特点是:开发工具与数据库集成一体,可视化,开发速度较快,但数据库能够管理的数据规模相对较小。系统对硬件的要求低,不需要网络支持,在单机环境下也能运行,在局域网环境下也能使用。方案的实施相对容易,成本低,工期短。 ②方案B:以小型数据库管理系统为后台数据库,该前台操作与数据库分离,也能够实现多层应用系统。系统对硬件的要求居中,特别适合在网络环境下使用,操作方便。但系统得实现最复杂,成本最高,工期也较长。 二:软件需求分析 1.软件系统需求基本描述: 实验室设备管理系统是现代企业资源管理中的一个重要内容,也是资源开发利用的基础性工作。实验室设备在信息化之前,在用户系统管理、设备维修管理、设备的增删改查管理等方面存在诸多不利于管理的地方,不适应现代的企业管理形势和资源的开发利用。 2.软件系统数据流图(由加工、数据流、文件、源点和终点四种元素组成): 1)顶层数据流图 2)二层流程图 3)总数据流图

碳纳米管的性质性能及其应用前景

碳纳米管的性质性能其应用前景 The Properties and Applications of Carbon Nano-Tubes 张雅坤北京师范大学化学学院201411151935 摘要:从1991年被正式认识并命名至今,碳纳米管凭借其特殊的结构及异常的力学、电学和化学性能获得了材料、物理、电子及化学界的广泛关注。近些年随着碳纳米管及纳米材料研究的深入,其广阔的应用前景也不断地展现出来。本文主要对碳纳米管目前的性质性能及其应用前景进行了系统详细的介绍【8】。 关键词:碳纳米管、无机化学、性质性能、应用前景 一、综述 1.发展历史与研究进程 在1991年日本NEC公司基础研究实验室的电子显微镜专家饭岛(Lijima)在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon nanotube”,即碳纳米管,又名巴基管。 1993年,S. Lijima等和D. S. Bethune等同时报道了采用电弧法,在石墨电极中添加一定的催化剂,可以得到仅仅具有一层管壁的碳纳米管,即单壁碳纳米管产物。

1997年,A. C. Dillon等报道了单壁碳纳米管的中空管可储存和稳定氢分子,引起广泛的关注。相关的实验研究和理论计算也相继展开。据推测,单壁碳纳米管的储氢量可达10%(质量比)。此外,碳纳米管还可以用来储存甲烷等其他气体。但该猜测在后来被证实是错误的,碳纳米管无法用于储氢的主要问题有两个:一是假如作为容器进行储氢,则无法对其进行可控的封闭和开启;二是假如用于氢气吸附,则其吸附率不超过1%(质量分数)。 能否控制单壁碳纳米管的生长是近二十余年来一直困扰着碳纳米管研究领域科学家们的难题,能否找到控制方法也成为碳纳米管应用的瓶颈。2014年,这道世界性难题被北京大学李彦教授研究团队攻克,该团队在全球首次提出单壁碳纳米管生长规律的控制方法,研究成果已于2014年6月26日发表在国际权威学术期刊《自然》杂志上,这是碳纳米管研究方面的又一大突破。 2.碳纳米管的制备方法 常用的碳纳米管制备方法主要有:电弧放电法、激光烧蚀法、化学气相沉积法(碳氢气体热解法)、固相热解法、辉光放电法、气体燃烧法以及聚合反应合成法等。 2.1电弧放电法 电弧放电法是生产碳纳米管的主要方法。1991年日本物理学家饭岛澄男就是从电弧放电法生产的碳纤维中首次发现碳纳米管的。电弧放电法的具体过程是:将石墨电极臵于充满氦气或氩气的反应容器中,在两极之间激发出电弧,此时温度可以达到4000度左右。在这种条件下,石墨会蒸发,生成的产物有富勒烯(C60)、无定型碳和单壁或多壁的碳纳米管。通过控制催化剂和容器中的氢气含量,可以

碳纳米管的性质与应用

碳纳米管的性质与应用 【摘要】 本文主要介绍了碳纳米管的结构特点,制备方法,特殊性质,由于碳纳米管独特性质而产生的广泛应用,并对其前景进行展望。 【关键词】 碳纳米管场发射复合材料优良性能 【前言】 自日本NEC科学家Lijima发现碳纳米管以来,碳纳米管研究一直是国际新材料领域研究的热点。由于碳纳米管具有特殊的导电性能、力学性质及物理化学性质等,故其在许多领域具有其广阔的应用前景,自问世以来即引起广泛关注。目前,国内外有许多科学家对碳纳米管进行研究,科研成果颇丰,尤其是碳纳米管在复合材料、储氢及催化等领域的应用。 【正文】 一、碳纳米管的结构 碳纳米管中碳原子以sp2杂化为主,同时六角型网格结构存在一定程度的弯曲,形成空间拓扑结构,其中可形成一定的sp3杂化键,即形成的化学键同时具有sp2和sp3混合杂化状态,而这些p 轨道彼此交叠在碳纳米管石墨烯片层外形成高度离域化的大π 键,碳纳米管外表面的大π 键是碳纳米管与一些具有共轭性能的大分子以非共价键复合的化学基础[1]。 对多壁碳纳米管的光电子能谱研究结果表明,不论单壁碳纳米管还是多壁碳纳米管,其表面都结合有一定的官能基团,而且不同制备方法获得的碳纳米管由于制备方法各异,后处理过程不同而具有不同的表面结构。一般来讲,单壁碳纳米管具有较高的化学惰性,其表面要纯净一些,而多壁碳纳米管表面要活泼得多,结合有大量的表面基团,如羧基等。以变角X 光电子能谱对碳纳米管的表面检测结果表明,单壁碳纳米管表面具有化学惰性,化学结构比较简单,而且随着碳纳米管管壁层数的增加,缺陷和化学反应性增强,表面化学结构趋向复杂化。内层碳原子的化学结构比较单一,外层碳原子的化学组成比较复杂,而且外层碳原子上往往沉积有大量的无定形碳。由于具有物理结构和化学结构的不均匀性,碳

实验室设备管理系统实验报告1讲解

本科实验报告 课程名称:软件工程导论 实验项目:实验室设备管理系统 实验地点:实验楼210 专业班级:软件1319 学号:2013005655 学生姓名:张卫东 指导教师:王会青 2015年05 月21 日

一、实验目的和要求 1.系统简介 某大学每学年都需要对实验室设备使用情况进行统计、更新。 其中: (1)对于已彻底损坏的实验设备做报废处理,同时详细记录有关信息。 (2)对于有严重问题(故障)的需要及时修理,并记录修理日期、设备名、编号、修理厂家、修理费用、责任人等。 (3)对于急需使用但实验室目前又缺乏的设备,需以“申请表”的形式送交上级领导请求批准购买。新设备购入后要立即进行设备登记(包括类别、设备名、编号、 型号、规格、单价、数量、购置日期、生产厂家、保质期和经办人等信息),同 时更新申请表的内容。 (4)随时对现有设备及其修理、报废情况进行统计、查询,要求能够按类别和时间段等条件进行查询。 2.技术要求及限制条件 (1)所有工作由专门人员负责完成,其他人不得任意使用。 (2)每件设备在做入库登记时均由系统按类别加自动顺序号编号,形成设备号;设备报废时要及时修改相应的设备记录,且有领导认可。 (3)本系统的数据存储至少包括:设备记录、修理记录、报废记录、申请购买记录。 (4)本系统的输入项至少包括:新设备信息、修理信息、申请购买信息、具体查询统计要求。 (5)本系统的输出项至少包括:设备购买申请表、修理/报废设备资金统计表。 二、实验内容和原理 可行性分析报告 可行性研究主要是初步确定项目的规模和目标,确定项目的约束和限制。对于项目的功能和性能方面的要求进行简要的概述。详见组长田彦博的实验报告。 需求规格说明书 需求规格说明书主要是进一步定制实验室设备管理系统软件开发的细节问题,便于用户与开发商协调工作。在此主要绘制了系统的数据流图、相应的数据字典、E-R图、以及系统的功能图,对于各个方面的需求进行了详细的阐述。详见组长田彦博的实验报告。 概要设计说明书 概要设计说明书是为了说明整个实验室设备管理系统的体系架构,以及需求用例的各个功能点在架构中的体现。在此主要绘制了系统流程图、总体结构和模块的外部设计,而且对于数据库中逻辑结构方面也进行了详细的设计。详见组长田彦博的实验报告。

常用国产电子管参数

常用国产电子管参数

常用国产电子管参数 参数 类别 典型特性参数极限运用参数 用途备注 参数名称 灯丝阳极 第一 (控 制) 栅压 帘栅 内 阻 互(跨) 导 放 大 系 数 灯丝 最高 阳极 电压 最大 阳极 功耗 帘栅电 压 电 流 电 压 电 流 第 二 栅 压 第 二 栅 流 电压 (大) 电压 (小) 最高 电压 最大 功耗 符号U f I f U a I a U g1U g2Ig 2R i Sμ U f max U f min U a max P a M U g2m ax P g2 max 单位V A V mA V V mA kΩmA — v —V V V W V W 型 号 二

5AR 4 5 1.9 2 × 55 14 8 极 管 ZB 2= 75 n R l =2 k Ω 5Z1P52± 0.2 2× 500 125—————— 5.5 4.51400 6 2—— 5Z2P52± 0.2 2× 400 125—————— 5.5 4.51400 5 0—— 负载 2.7k Ω 5Z3P52± 0.3 2× 500 230—————— 5.5 4.51500115—— 负载 2kΩ 5Z4P52± 0.2 2× 500 122—————— 5.5 4.51300 6 0—— 负载 4.7k Ω

5Z8P52± 0.7 2× 500 400—————— 5.5 4.51700200—— 负载 1kΩ 5Z9P52± 0.3 2× 500 190—————— 5.5 4.51700100—— 负载 2.2k Ω 6Z4 6.30.62× 350 72——————7 5.71000 2 5—— 负载 5.2k Ω 6Z5P6.30.62× 400 70—————— 6.9 5.71100 3 0—— 负载 5.7k Ω 6H Z 6.30.3 2× 150 17——————7 5.74503—— 负载 10k Ω 300 B-98 5 30 45 -60 56 三极 管 300 BC 5 1.2 30 60 -60 5.3

数据库设备管理系统

郑州轻工业学院本科 数据库课程设计总结报告 设计题目:设备管理系统 学生姓名:xx 、xx 系别:计算机与通信工程学院 专业:计算机科学与技术 班级:计算机科学与技术10~01 学号:xx 指导教师:张保威金松河 2012 年12月30 日

郑州轻工业学院 课程设计任务书 题目设备管理系统 专业、班级计算机科学与技术10-1 学号 xx 姓名 xx 学号 xx 姓名 xx 主要内容: 了解设备管理的基本流程,根据构思活出E---R图。根据所化E---R图,对相应的试题和关系建立表格,实现数据的初始化。用SQL建立数据库表,然后再用其他软件建立界面(如此设备管理系统用的是C#实现界面),将建立好的界面同数据库进行链接,实现对数据库的简单的增删改查。 E-R图思路: 部门向设备处申请所需设备的数量及类型,设备处产生采购清单递交给采购员。 采购员从供应商获得设备存放在设备存放处,设备管理员将设备分配到需要设备的各个部门,部门将设备分给员工进行使用。 在使用设备的过程中,如果设备在保修期限内出现质量问题部门向设备处申请,设备退回供应商;如果设备损坏,由部门向维修人员报修;若无维修价值,则申请报废。 基本要求: 立足于科技日益发达,自动化组不占据主要市场,要求学生根据自己所学的数据库知识,建立简单的数据库实现对设备管理的机械化,自动化。 1:能够数量掌握SQL; 2:能够运用其他辅助工具做图形界面。 3:能够实现对C#和数据库的链接。 4:作出的系统能够对数据库进行简单的增删改查。 5:通过机械化,自动化工具的使用,提高工作效率、准确率。 主要参考资料等: 《数据库系统概论》作者:王珊萨师煊出版社:高等教育出版社 《数据库系统概论》课堂课件。 完成期限:两周 指导教师签名: 课程负责人签名: 2012年 12月 30 日

碳纳米管及其应用新领域

碳纳米管及其应用新领域摘要:综述了碳纳米管材料独特性能及其应用潜力,详细说明了碳纳米管材料在各种应用领域中的巨大应用前景,包括高强度复合材料、微机械、信息存储、纳米电子器件等。关键词:碳纳米管的性能,碳纳米管的应用新领域,储氮材料,复合材料,信息存储,碳纳米电子学 前言:碳纳米管具有典型的层状中空结构特征,构成碳纳米管的层片之间存在一定的夹角碳纳米管的管身是准圆管结构,并且大多数由五边形截面所组成。管身由六边形碳环微结构单元组成, 端帽部分由含五边形的碳环组成的多边形结构,或者称为多边锥形多壁结构。是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料。由于其独特的结构,碳纳米管的研究具有重大的理论意义和潜在的应用价值。 一、碳纳米管的性能 碳纳米管作为一维纳米材料,重量轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能。近些年随着碳纳米管及纳米材料研究的深入其广阔的应用前景也不断地展现出来。力学性能 由于碳纳米管中碳原子采取SP2杂化,相比SP3杂化,SP2杂化中S轨道成分比较大,使碳纳米管具有高模量、高强度。 碳纳米管具有良好的力学性能,碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸。碳纳米管的结构虽然与高分子材料的结构相似,但其结构却比高分子材料稳定得多。碳纳米管是目前可制备出的具有最高比强度的材料。若将以其他工程材料为基体与碳纳米管制成复合材料,可使复合材料表现出良好的强度、弹性、抗疲劳性及各向同性,给复合材料的性能带来极大的改善。 导电性能 碳纳米管上碳原子的P电子形成大范围的离域n键,由于共轭效应显著,碳纳米管具有一些特殊的电学性质。 碳纳米管具有良好的导电性能,由于碳纳米管的结构与石墨的片层结构相同,所以具有很好的电学性能。对于一个给定的纳米管,在某个方向上表现出金属性,是良好的导体,否则表现为半导体。对于这个的方向,碳纳米管表现出良好的导电性,电导率通常可达铜的1 万倍。传热性能 碳纳米管具有良好的传热性能,CNTs 具有非常大的长径比,因而其沿着长度方向的热交换性能很高,相对的其垂直方向的热交换性能较低,通过合适的取向,碳纳米管可以合成高各向异性的热传导材料。另外,碳纳米管有着较高的热导率,只要在复合材料中掺杂微量的碳纳米管,该复合材料的热导率将会可能得到很大的改善。 二、碳纳米管电子学的应用 碳纳米电子管(eNTs是一种具有显著电子、机械和化学特性的独特材料。其导电能力不同于普通的导体。性能方面的区别取决于应用,也许是优点,也许是缺点,也许是机会。在一理想纳米碳管内,电传导以低温漂轨道传播的,如果电子管能无缝交接,低温漂是计算机芯片的优点。诸如电连接等的混乱极大地修改了这—行为。对十较慢的模拟信号的处理速度,四周环绕着平向球分子的碳纳米管充当传播者已被实验让实。在后门将有碳的纳米管穿过两根金导线证明了场效应分子晶体管,近来证实逻辑电路的难题 遇到了静电掺杂碳纳米管。碳纳米管的掺杂质可使用化学方法来完成。CMOS类型变极器有 n型和p型掺杂两种。这项工作用达到10A5的开关比率且具有高增益的晶体管电阻逻辑以实验证明了变极器和或非电路的性能。显然,通过适当地排列碳纳米管晶体管顺序可实现与、

碳纳米管综述

碳纳米管综述 摘要:本文主要介绍碳纳米管的发现及发展过程,并说明碳纳米管的制备方法及其制备技术。同时也叙述碳纳米管的各种性能与应用。 引言:在1991年日本NEC公司基础研究实验室的电子显微镜专家饭岛在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon nanotube”,即碳纳米管,又名巴基管。 正文: 碳纳米管的制备: 碳纳米管的合成技术主要有:电弧法、激光烧蚀(蒸发)法、催化裂解或催化化学气相沉积法(CCVD,以及在各种合成技术基础上产生的定向控制生长法等。电弧法 利用石墨电极放电获得碳纳米管是各种合成技术中研究得最早的一种。研究者在优化电弧放电法制取碳纳米管方面做了大量的工作。 T. W. Ebbeseo[2]在He保护介质中石墨电弧放电,首次使碳纳米管的合成达到了克量级。为减少相互缠绕的碳纳米管在阴极上的烧结,D.T.Collbert[3]将石墨阴极与水冷铜阴极座连接,大大减少了碳纳米管缺陷。C. Journet[4]等在阳极中填人石墨粉末和铱的混合物,实现了SWNTs的大量制备。研究发现,铁组金属、一些稀土金属和铂族元素或以单个金属或以二金属混合物均能催化SWNTs 合成。 近年来,人们除通过调节电流、电压,改变气压及流速,改变电极组成,改进电极进给方式等优化电弧放电工艺外,还通过改变打弧介质,简化电弧装置。 综上所述,电弧法在制备碳纳米管的过程中通过改变电弧放电条件、催化剂、电极尺寸、进料方式、极间距离以及原料种类等手段而日渐成熟。电弧法得到的碳纳米管形直,壁簿(多壁甚至单壁).但产率偏低,电弧放电过程难以控制,制备成本偏高其工业化规模生产还需探索。 催化裂解法或催化化学气相沉积法(CCVD) 催化裂解法是目前应用较为广泛的一种制备碳纳米管的方法。该方法主要采用过渡金属作催化剂,适于碳纳米管的大规模制备,产物中的碳纳米管含量较高,但碳纳米管的缺陷较多。 催化裂解法制备碳纳米管所需的设备和工艺都比较简单,关键是催化剂的制备和分散。目前用催化裂解法制备碳纳米管的研究主要集中在以下两个方面:大规模制备无序的、非定向的碳纳米管;制备离散分布、定向排列的碳纳米管列阵。一般选用Fe, Co、Ni及其合金作催化剂,粘土、二氧化硅、硅藻土、氧化铝及氧化镁等作载体,乙炔、丙烯及甲烷等作碳源,氢气、氮气、氦气、氩气或氨气作稀释气,在530℃~1130℃范围内,碳氢化合物裂解产生的自由碳离子在催化剂作用下可生成单壁或多壁碳纳米管。1993年Yacaman等人[5]采用此方法,用Fe催化裂解乙炔,在770℃下合成了多壁碳纳米管,后来分别采用乙烯、聚乙烯、丙烯和甲烷等作为碳源,也都取得了成功。为使碳离子均匀分布,科研人员还用等离子加强或微波催化裂解气相沉积法制备碳纳米管。 激光蒸发法

用友ERP生产管理系统实验报告

用友ERP生产管理系统实验报告 本课程共分14单,以用友ERP-U8.72为实验平台,以一个企业的生产经营业务贯穿始终,分别介绍了ERP生产管理系统中物料清单、主生产计划、产能管理、需求规划、生产订单、车间管理、工程变更、设备管理的生产制造模块,以及与生产管理活动有关的销售管理、采购管理、委外管理、库存管理、应收款管理及应付款管理等模块的相关功能。 用友ERP生产管理系统是ERP-U8企业管理软件的重要组成部分,是企业信息化管理核心的和有效的方法和工具。它面向离散型和半离散型的制造企业资源管理的需求,遵循以客户为中心的经营战略,以销售订单及市场预测需求为导向,以计划为主轴,覆盖了面向订单采购、订单生产、订单装配和库存生产四种制造业生产类型,并广泛应用于机械、电子、食品、制药等行业。 本实验报告要针对的实验项目有客户订货、排程业务、产能管理、采购业务、委外业务、生产业务、车间管理、销售发货业务、应收款和应付款系统的制单业务、期末处理、物料清单维护、工程变更管理和设备管理。 实验一客户订货 一、实验目的 1.理解销售报价的作用,掌握销售报价的操作。 2.理解销售订货管理的主要功能,掌握相关的基本操作。 二、实验内容 1.输入销售报价单。 2.审核销售报价单。 3.输入销售预订单。 4.输入销售订单。 5.审核销售订单。 6.修改已审核销售订单。 三、实验步骤 1.输入报价单。 2.审核报价单。 3.根据报价单生成销售订单。 4.审核销售订单。 5.修改已审核销售订单。 6.手工输入新的销售订单。 7.审核手工输入的销售订单。

四、实验成果 实验二排程业务 一、实验目的 理解主生产计划和物料需求计划的作用,掌握产销排程和物料需求计划的操作。 二、实验内容 1.MPS累计提前天数推算和库存异常状况查询。 2.MPS计划参数维护。 3.MPS计划生成。 4.MPS计划作业的供需资料查询。 5.MRP累计提前天数推算和库存异常状况查询。 6.MRP计划参数维护。 7.MRP计划生成。 8.MRP供需资料查询。 三、实验步骤 1.MPS累计提前天数推算和库存异常状况查询。 2.MPS计划参数维护。 3.MPS计划生成。

LED芯片知识大解密

LED芯片知识大解密 1、led芯片的制造流程是怎样的? LED芯片制造主要是为了制造有效可靠的低欧姆接触电极,并能满足可接触材料之间最小的压降及提供焊线的压垫,同时尽可能多地出光。渡膜工艺一般用真空蒸镀方法,其主要在1.33×10?4Pa高真空下,用电阻加热或电子束轰击加热方法使材料熔化,并在低气压下变成金属蒸气沉积在LED照明材料表面。一般所用的P型接触金属包括AuBe、AuZn等合金,N面的接触金属常采用AuGeNi合金。镀膜后形成的合金层还需要通过光刻工艺将发光区尽可能多地露出来,使留下来的合金层能满足有效可靠的低欧姆接触电极及焊线压垫的要求。光刻工序结束后还要通过合金化过程,合金化通常是在H2或N2的保护下进行。合金化的时间和温度通常是根据LED照明材料特性与合金炉形式等因素决定。当然若是蓝绿等芯片电极工艺还要复杂,需增加钝化膜生长、等离子刻蚀工艺等。 2、LED芯片制造工序中,哪些工序对其光电性能有较重要的影响? 一般来说,LED外延生产完成之后她的主要电性能已定型,芯片制造不对其产甞核本性改变,但在镀膜、合金化过程中不恰当的条件会造成一些电参数的不良。比如说合金化温度偏低或偏高都会造成欧姆接触不良,欧姆接触不良是芯片制造中造成正向压降VF偏高的主要原因。在切割后,如果对芯片边缘进行一些腐蚀工艺,对改善芯片的反向漏电会有较好的帮助。这是因为用金刚石砂轮刀片切割后,芯片边缘会残留较多的碎屑粉末,这些如果粘在LED芯片的PN结处就会造成漏电,甚至会有击穿现象。另外,如果芯片表面光刻胶剥离不干净,将会造成正面焊线难与虚焊等情况。如果是背面也会造成压降偏高。在芯片生产过程中通过表面粗化、划成倒梯形结构等办法可以提高光强。 3、LED芯片为什么要分成诸如8mil、9 mil、…,13∽22 mil,40 mil等不同尺寸?尺寸大小对LED光电性能有哪些影响? LED芯片大小根据功率可分为小功率芯片、中功率芯片和大功率芯片。根据客户要求可分为单管级、数码级、点阵级以及装饰照明等类别。至于芯片的具体尺寸大小是根据不同芯片生产厂家的实际生产水平而定,没有具体的要求。只要工艺过关,芯片小可提高单位产出并降低成本,光电性能并不会发生根本变化。芯片的使用电流实际上与流过芯片的电流密度有关,芯片小使用电流小,芯片大使用电流大,它们的单位电流密度基本差不多。如果10mil 芯片的使用电流是20mA的话,那么40mil芯片理论上使用电流可提高16倍,即320mA。但考虑到散热是大电流下的主要问题,所以它的发光效率比小电流低。另一方面,由于面积增大,芯片的体电阻会降低,所以正向导通电压会有所下降。 4、LED大功率芯片一般指多大面积的芯片?为什么? 用于白光的LED大功率芯片一般在市场上可以看到的都在40mil左右,所谓的大功率芯片的使用功率一般是指电功率在1W以上。由于量子效率一般小于20?大部分电能会转换成热能,所以大功率芯片的散热很重要,要求芯片有较大的面积。 5、制造GaN外延材料的芯片工艺和加工设备与GaP、GaAs、InGaAlP相比有哪些不同的要求?为什么? 普通的LED红黄芯片和高亮四元红黄芯片的基板都采用GaP 、GaAs等化合物LED照明材料,一般都可以做成N型衬底。采用湿法工艺进行光刻,最后用金刚砂轮刀片切割成芯片。GaN材料的蓝绿芯片是用的蓝宝石衬底,由于蓝宝石衬底是绝缘的,所以不能作为LED

计算机操作系统体系结构实验报告

操作系统实验报告 实验目的: 随着操作系统应用领域的扩大,以及操作系统硬件平台的多样化,操作系统的体系结构和开发方式都在不断更新,目前通用机上常见操作系统的体系结构有如下几种:模块组合结构、层次结构、虚拟机结构和微内核结构。为了更好的了解计算机操作系统体系结构,以及linux 的体系结构,特作此报告。 实验内容: 计算机操作系统体系结构 一、模块组合结构 操作系统刚开始发展时是以建立一个简单的小系统为目标来实现的,但是为了满足其他需求又陆续加入一些新的功能,其结构渐渐变得复杂而无法掌握。以前我们使用的MS-DOS 就是这种结构最典型的例子。这种操作系统是一个有多种功能的系统程序,也可以看成是一个大的可执行体,即整个操作系统是一些过程的集合。系统中的每一个过程模块根据它们要完成的功能进行划分,然后按照一定的结构方式组合起来,协同完成整个系统的功能。如图1所示: 在模块组合结构中,没有一致的系统调用界面,模块之间通过对外提供的接口传递信息,模块内部实现隐藏的程序单元,使其对其它过程模块来说是透明的。但是,随着功能的增加,模块组合结构变得越来越复杂而难以控制,模块间不加控制地相互调用和转移,以及信息传递方式的随意性,使系统存在一定隐患。 二、层次结构 为了弥补模块组合结构中模块间调用存在的固有不足之处,就必须减少模块间毫无规则的相互调用、相互依赖的关系,尤其要清除模块间的循环调用。从这一点出发,层次结构的设计采用了高层建筑结构的理念,将操作系统或软件系统中的全部构成模块进行分类:将基础的模块放在基层(或称底层、一层),在此基础上,再将某些模块放在二层,二层的模块在基础模块提供的环境中工作;它只能调用基层的模块为其工作,反之不行。严格的层次结构,第N+l层只能在N层模块提供的基础上建立,只能在N层提供的环境中工作,也只能向N 层的模块发调用请求。 在采用层次结构的操作系统中,各个模块都有相对固定的位置、相对固定的层次。处在同一层次的各模块,其相对位置的概念可以不非常明确。处于不同层次的各模块,一般而言,不可以互相交换位置,只存在单向调用和单向依赖。Unix/Linux系统采用的就是这种体系结构。 在层次结构中,强调的是系统中各组成部分所处的位置,但是想要让系统正常运作,不得不协调两种关系,即依赖关系和调用关系。 依赖关系是指处于上层(或外层)的软件成分依赖下层软件的存在、依赖下层软件的运行而运行。例如,浏览器这部分软件就依赖GUI的存在和运行,GUI又依赖操作系统的存在和运行。在操作系统内部,外围部分依赖内核的存在而存在,依赖内核的运行而运行,内核又依赖HAL而运行。处在同层之内的软件成分可以是相对独立的,相互之间一般不存在相互依赖关系。 三、虚拟机结构 虚拟机的基本思想是系统能提供两个功能:①多道程序处理能力;②提供一个比裸机有更方便扩展界面的计算机。操作系统是覆盖在硬件裸机上的一层软件,它通过系统调用向位于

操作系统设备管理实验报告

实验报告 课程名称:操作系统Array 实验项目名称:设备管理实验时间: 班级:计算091 姓名:学号: 实验目的: 1.对理论课中学习的设备管理中的概念作进一步的理解; 2.明白设备管理的主要任务; 3.了解设备管理任务的主要实现方法; 4.通过编程,学会独占设备的分配、回收等主要算法的原理。 实验环境:winTC 实验内容及过程: 1. 独占设备分配 设备申请某台设备时,系统先查“设备类表”,如果该类设备的现存可使用数量可以满足申请要求,则从“设备类表”中得到该类设备的设备表起始地址,然后找到“设备表”中该类设备的起始地址,依次查询该类设备的每个登记项,找出“好的且未分配”的设备分配给该作业。分配后要修改设备类表中的现存设备数量(减1),把分配给该作业的设备状态更改为“已分配”,且填上占用该设备的作业的作业名和程序中定义的相对号,最后将设备的绝对号与相对号的对应关系通知用户。 2. 独占设备回收 作业运行完成,释放设备时,根据该设备的类型查找设备类表,根据其中的地址,找到该类设备在设备表中的地址,找到作业名相同且已分配的表项,将其已分配改为未分配,然后将设备表中对应设备类的可使用数量增加1。 实验过程: 1.编写程序,由必要的数据结构,主函数、设备分配函数及设备回收函数构成,实现对 独占设备的分配与回收的模拟。 2. 在上机环境中输入程序,调试,编译。

3.设计输入数据,写出程序的执行结果。根据具体实验要求,填写好实验报告。 实验结果及分析: 初始状态: J1请求input设备相对地址为2的分配情况: 实验心得: 陈少琼: 附录: 运行程序: 备注:以上各项空白处若填写不够,可自行扩展

半导体照明技术及其应用

《半导体照明技术及其应用》课程教学大纲 (秋季) 一、课程名称:半导体照明技术及其应用Semiconductor Lighting Technology and Applications 二、课程编码: 三、学时与学分:32/2 四、先修课程: 微积分、大学物理、固体物理、半导体物理、微电子器件与IC设计 五、课程教学目标: 半导体照明是指用全固态发光器件LED作为光源的照明,具有高效、节能、环保、寿命长、易维护等显著特点,是近年来全球最具发展前景的高新技术领域之一,是人类照明史上继白炽灯、荧光灯之后的又一场照明光源的革命。本课程注重理论的系统性﹑结构的科学性和内容的实用性,在重点讲解发光二极管的材料、机理及其制造技术后,详细介绍器件的光电参数测试方法,器件的可靠性分析、驱动和控制方法,以及各种半导体照明的应用技术,使学生学完本课程以后,能对半导体照明有深入而全面的理解。 六﹑适用学科专业:电子科学与技术 七、基本教学内容与学时安排: 绪论(1学时) 半导体照明简介、学习本课程的目的及要求 第一章光视觉颜色(2学时) 1光的本质 2光的产生和传播 3人眼的光谱灵敏度 4光度学及其测量 5作为光学系统的人眼 6视觉的特征与功能 7颜色的性质 8国际照明委员会色度学系统 9色度学及其测量 第二章光源(1学时) 1太阳 2月亮和行星 3人工光源的发明与发展 4白炽灯 5卤钨灯 6荧光灯 7低压钠灯

8高压放电灯 9无电极放电灯 10发光二极管 11照明的经济核算 第三章半导体发光材料晶体导论(2学时) 1晶体结构 2能带结构 3半导体晶体材料的电学性质 4半导体发光材料的条件 第四章半导体的激发与发光(1学时) 1PN结及其特性 2注入载流子的复合 3辐射与非辐射复合之间的竞争 4异质结构和量子阱 第五章半导体发光材料体系(2学时) 1砷化镓 2磷化镓 3磷砷化镓 4镓铝砷 5铝镓铟磷 6铟镓氮 第六章半导体照明光源的发展和特征参量(1学时)1发光二极管的发展 2发光二极管材料生长方法 3高亮度发光二极管芯片结构 4照明用LED的特征参数和要求 第七章磷砷化镓、磷化镓、镓铝砷材料生长(3学时)1磷砷化镓氢化物气相外延生长(HVPE) 2氢化物外延体系的热力学分析 3液相外延原理 4磷化镓的液相外延 5镓铝砷的液相外延 第八章铝镓铟磷发光二极管(2学时) 1AlGaInP金属有机物化学气相沉积通论 2外延材料的规模生产问题 3电流扩展 4电流阻挡结构 5光的取出 6芯片制造技术

相关文档
最新文档