数学建模运筹学模型

数学建模运筹学模型
数学建模运筹学模型

运筹学模型(一)

本章重点:

线性规划基础模型、目标规划模型、运输模型及其应用、图论模型、最小树问题、最短路问题

复习要求:

1.进一步理解基本建模过程,掌握类比法、图示法以及问题分析、合理假设的内涵.

2.进一步理解数学模型的作用与特点.

本章复习重点是线性规划基础模型、运输问题模型和目标规划模型.具体说来,要求大家会建立简单的线性规划模型,把实际问题转化为线性规划模型的方法要掌握,当然比较简单.运输问题模型主要要求善于将非线性规划模型转化为运输规化模型,这种转化后求解相当简单.你至少把一个很实际的问题转化为用表格形式写出的模型,至于求解是另外一回事,一般不要求.目标模型一般是比较简单的线性规模模型在提出新的要求之后转化为目标规划模型.另外,关于图论模型的问题涉及到最短路问题,具体说来用双标号法来求解一个最短路模型.这之前恐怕要善于将一个实际问题转化为图论模型.还有一个最小数的问题,该如何把一个网络中的最小数找到.另外在个别场合可能会涉及一笔划问题.

1.营养配餐问题的数学模型

或更简洁地表为

其中的常数C

j 表示第j种食品的市场价格,a

ij

表示第j种食品含第i种营养的数量,

b

i

表示人或动物对第i种营养的最低需求量.

2.合理配料问题的数学模型

有m种资源B1,B2,…,B m,可用于生产n种代号为A1,A2,…,A n的产品.单位产品A j需用资源B i的数量为a ij,获利为C j单位,第i种资源可供给总量为b i个单位.问如何安排生产,使总利润达到最大?

设生产第j 种产品x j 个单位(j =1,2,…,n ),则有 或更简单地写为 3.运输问题模型

运输问题也是一种线性规划问题,只是决策变量设置为双下标变量.假如问题具有m 个产地和n 个销地,第i 个产地用A i 表示,其产量为a i (i =1,2,…,m ),第j 个销地用B j 表示,其销量为b j (j =1,2,…,n ),从A i 运往B j 的运价为c ij , 而∑∑===

m

i n

j j

i b

a 11

表示产

销平衡.那么产销平衡运输问题的一般模型可以写成为 4.目标规划模型

某工厂生产代号为Ⅰ、Ⅱ的两种产品,这两种产品都要经甲、乙两个车间加工,并经检验与销售两部门处理.已知甲、乙两车间每月可用生产工时分别为120小时和150小时,每小时费用分别为80元和20元,其它数据如下表 表4-1

工厂领导希望给出一个可行性生产方案,使生产销售及检验等方面都能达标. 问题分析与模型假设

经与工厂总经理交谈,确定下列几条: p 1: 检验和销售费每月不超过4600元; p 2: 每月售出产品I 不少于50件;

p 3: 两车间的生产工时充分利用(重要性权系数按两车间每小时费用比确定); p 4:甲车间加班不超过20小时; p 5:每月售出产品Ⅱ不少于80件;

p 6:两车间加班总时数要有控制(对权系数分配参照第三优先级). 模型建立

设x 1,x 2分别为产品Ⅰ和Ⅱ的月产量,先建立一般约束条件组,依题设 4600305021≤+x x 检验销售费用

802≥x

120221≤+x x

设d 1表检验销售费偏差,则希望+1d 达最小,有,11+d p 相应的目标约束为 +--++1121305d d x x = 4600;

2d 表产品I 售量偏差,则希望-2d 达最小,有,22-d p 相应的目标约束

以d 3、d 4表两车间生产工时偏差,则由于充分利用,故希望--43,d d 达最小,考虑到费用比例为80:20=4:1,有)4(433--+d d p .相应的目标约束应为 12023321=-+++-d d x x 和+--++44213d d x x =150, 以d 5表甲车间加班偏差,则有,54+d p 相应目标约束为 20553=-++-+d d d ,

以d 6表产品Ⅱ售量偏差,则希望-6d 达最小,有相应约束为 80662=-++-d d x .

最后优先级p 6可利用+++43d d 表示,考虑到权系数,有),4(436+++d d p 其目标约束由于利用超生产工时,已在工时限制中体现,于是得到该问题的目标规划模型为 5.最小树问题

一个图中若有几个顶点及其边的交替序列形成闭回路,我们就说这个图有圈;若图中所有连顶点间都有边相接,就称该图是连通的;若两个顶点间有不止一条边连接,则称该

售出量

两车间总工

图具有多重边.

一个图被称为是树.意味着该图是连通的无圈的简单图.

在具有相同顶点的树中,总赋权数最小的树称为最小树.

最小树的求法有两种,一种称为“避圈法”,一种是“破圈法”,两法各具优缺点,它们具有共同的特征——去掉图中的圈并且每次都是去掉圈中边权较大的边.

6.最短路问题的数学模型

最短路问题一般描述如下:在一个图(或者说网络)中,给定一个始点v s和一个终点v t,求v s到v t的一条路,使路长最短(即路的各边权数之和最小).

狄克斯屈()双标号法

该法亦称双标号法,适用于所有权数均为非负(即一切0

w w ij表示顶点v i与v j的

ij

边的权数)的网络,能够求出网络的任一点v s到其它各点的最短路,为目前求这类网络最短路的最好算法.

该法在施行中,对每一个点v j都要赋予一个标号,并分为固定标号P(v j)和临时标号T(v j)两种,其含义如下:

P(v j)——从始点v s到v j的最短路长;

T(v j)——从始点v s到v j的最短路长上界.

一个点v j的标号只能是上述两种标号之一.若为T标号,则需视情况修改,而一旦成为P标号,就固定不变了.

开始先给始点v s标上P标号0,然后检查点v s,对其一切关联边(v s, v j)的终点v j,给出v j的T标号w ij;再在网络的已有T标号中选取最小者,把它改为P标号.以后每次都检查刚得到P标号那点,按一定规则修改其一切关联边终点的T标号,再在网络的所有T 标号中选取最小者并把它改为P标号.这样,每次都把一个T标号点改为P标号点,因为网络中总共有n个结点,故最多只需n-1次就能把终点v t改为P标号.这意味着已求得了v s 到v t的最短路.

狄克斯屈标号法的计算步骤如下:

1°令S ={v s }为固定标号点集,}{\s v V S =为临时标号点集,再令0)(=i v P ,S v t ∈; 2°检查点v i ,对其一切关联边(v i , v j )的终点S v j ∈,计算并令 3°从一切S v j ∈中选取并令 选取相应的弧(v i , v r ).再令

4°若?=S ,则停止,)(j v P 即v s 到v j 的最短路长,特别)(t v P 即v s 到v t 的最短路长,而已选出的弧即给出v s 到各点的最短路;否则令i r v v ?,返2°.

注意:若只要求v s 到某一点v t 的最短路,而没要求v s 到其他各点的最短路,则上述步骤4°可改为

4°若r = t 则结束,)(r

v P 即为所求最短路长;否则令i r

v v ?,返

2°.

数学建模 运筹学模型(五)

运筹学模型(五) 3. 试求如表4所示运输问题的最优运输方案和最小运输费用: 表4 单位:百元/吨 解:易见,这是一个产销平衡且为最小值类型的运输问题.我们有 (1) 利用最小元素法可得初始方案如表5, 表5 (2)使用闭回路法可得负检验数为12λ= -1,故令12x 进基 (3)使用闭回路法进行调整知11x 出基,便得新的运输方案如表6 表6 (4)再进行检验知,所有检验数0≥ij λ,故得最优运销图如图2:

图2 最小费用为385(百元). 4.从城市s到城市t可经城市1-6到达,其间有直达客车的城际乘车费用依次为 1s l= 4, 2s l=1, 3s l=3, 14 l=2, 25 l=6, 36 l=1, 12 l=3, 23 l=5, 45 l=5, t l 4 =6, 56 l=3, t l 5 = 4, t l 6 =7 单位是拾元.试建立图模型以确定乘直达车从城市s到各城市间的最小乘车费用及相应的乘车路线. 解:本题属于图模型中较为简单的最短路问题.为使用图理论求解,首先要建立其图模型,然后才能使用相应的解法求解之.根据题设,除去始点和终点,中间点应为6个.分别以t s,为始点、终点,根据各点之间通车情况(注意下标),从左到右画出其图模型如图3: 再根据 到城市1:s 到城市2:s 到城市3:s 到城市4 到城市5:s 到城市6:s 到城市t s?②?⑤? s③?⑥? s③?⑥?⑤?t 其最小乘车费用均为110元. 注意:要求写出所有路线,每少写一条都要扣除相应的分数. 图4 11 2 A1 B3 B2 5 15A2 B2 B1 10 5A3 B4 B2 10 15

数学建模与计算机的重要性

数学建模与计算机的联系及重要性 摘要:在当今科技发达的今天,计算机已经得到了广泛的应用,也为数学建模的计算提供了有力工具。本文浅谈了数学建模与计算机在人类生产和生活中的重要性。 关键词:数学建模计算机重要性 当今社会计算机已经被广泛的应用了,在计算机的协助下许多问题的求解变得简单、方便、快捷。而数学建模是把现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题。在科技迅猛发展的今天计算机和数学建模在人类的生存和发展中都具有举足轻重的作用。 一、数学建模与计算机息息相关 其一、我们在模型求解时,有些计算单纯的用纸和笔是难以完成的,这就需要利用计算机上机计算、编制软件、绘制图形等,当结果通过计算机算出后也必须通过打印机随时进行输出。其二、数学建模的学习对计算机能力的培养也起着极大推动作用,如报考计算机方向的研究生时,对数学的要求非常高;在进行计算机科学的研究时,也要求有极强的数学功底才能写出具有相当深度的论文,计算机科学的发展也是建立在数学基础之上的,许多为计算机的发展方面做出杰出贡献的人,在数学方面也颇有造诣。我们在遇到一些实际问题时往往需要计算机和数学建模同时应用才能解决问题,否则问题将无法进行。数学问题与计算机通常采用一些数学软件(lingo,Matlab,MathCAD 等等)的命令来描述算法,既简单又容易操作。例如下面有这样一道

题就是利用数学软件lingo 求解的。 例1 某工厂有两条生产线,分别用来生产M 和P 两种型号的产品,利润分别为200元每个和300元每个,生产线的最大生产能力分别为每日100和120,生产线没生产一个M 产品需要1个劳动日(1个工人工作8小时称为1个劳动日)进行调试、检测等工作,而每个P 产品需要2个劳动日,该工厂每天共计能提供160个劳动日,假如原材料等其他条件不受限制,问应如何安排生产计划,才能使获得的利润最大? 解 设两种产品的生产量分别为1x 和2x ,则该问题的数学模型 为: 目标函数 12max 200300z x x =+ 约束条件 1212100,120,160, 0,1,2. i x x x x x i ≤??≤??+≤??≥=? 编写LINGO 程序如下: MODEL: SETS: SHC/1,2 /:A,B,C,X; YF/1,2,3 /:J; ENDSETS DATA: A=1,2 ; B=100,120; C=200,300; ENDDATA

什么是数学模型与数学建模

1. 什么是数学模型与数学建模 简单地说:数学模型就是对实际问题的一种数学表述。 具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。 更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。 数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。 2.美国大学生数学建模竞赛的由来: 1985年在美国出现了一种叫做MCM的一年一度大大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。这并不是偶然的。在1985年以前美国只有一种大学生数学竞赛(The william Lowell Putnam mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。该竞赛每年2月或3月进行。 我国自1989年首次参加这一竞赛,历届均取得优异成绩。经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。

数学建模的作用意义

数学建模的背景: 人们在观察、分析和研究一个现实对象时经常使用模型,如展览馆里的飞机模型、水坝模型,实际上,照片、玩具、地图、电路图等都是模型,它们能概括地、集中地反映现实对象的某些特征,从而帮助人们迅速、有效地了解并掌握那个对象。数学模型不过是更抽象些的模型。 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子(称为数学模型),然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个全过程就称为数学建模。 近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。 不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并计算求解。人们常常把数学建模和计算机技术在知识经济时代的作用比喻为如虎添翼。 数学建模日益显示其重要作用,已成为现代应用数学的一个重要领域。为培养高质量、高层次人才,对理工、经济、金融、管理科学等各专业的大学生都提出“数学建模技能和素质方面的要求”。 数学建模在现代社会的一些作用 (1)在一般工程技术领域,数学建模仍然大有用武之地。在以声、光、热、力、电这些物理学科为基础的诸如机械、电机、土木、水利等工程技术领域中,数学建模的普遍性和重要性不言而喻,虽然这里的基本模型是已有的,但是由于新技术、新工艺的不断涌现,提出了许多需要用数学方法解决的新问题;高速、大型计算机的飞速发展,使得过去即便有了数学模型也无法求解的课题(如大型水坝的应力计算,中长期天气预报等)迎刃而解;建立在数学模型和计算机模拟基础上的CAD技术,以其快速、经济、方便等优势,大量地替代了传统工程设计中的现场实验、物理模拟等手段。(2)在高新技术领域,数学建模几乎是必不可少的工具。无论是发展通讯、航天、微电子、自动化等高新技术本身,还是将高新技术用于传统工业去创造新工艺、开发新产品,计算机技术支持下的建模和模拟都是经常使用的有效手段。数学建模、数值计算和计算机图形学等相结合形成的计算机软件,已经被固化于产品中,在许多高新技术领域起着核心作用,被认为是高新技术的特征之一。在这个意义上,数学不再仅仅作为一门科学,它是许多技术的基础,而且直接走向了技术的前台。国际上一位学者提出了“高技术本质上是一种数学技术”的观点。 (3)数学迅速进入一些新领域,为数学建模开拓了许多新的处女地。随着数学向诸如经济、人口、生态、地质等所谓非物理领域的渗透,一些交叉学科如计量经济学、人口控制论、数学生态学、数学地质学等应运而生。一般地说,不存在作为支配关系的物理定律,当用数学方法研究这些领域中的定量关系时,数学建模就成为首要的、关键的步骤和这些学科发展与应用的基础。在这些领域里建立不同类型、不同方法、不同深浅程度模型的余地相当大,为数学建模提供了广阔的新天地。马克思说过,一门科学只有成功地运用数学时,才

数学建模常用方法

数学建模常用方法 建模常用算法,仅供参考: 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必 用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用M a t l a b作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通 常使用L i n d o、L i n g o软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种 暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计 算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文 中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用M a t l a b进行处理) 一、在数学建模中常用的方法: 1.类比法 2.二分法 3.量纲分析法 4.差分法 5.变分法 6.图论法 7.层次分析法 8.数据拟合法 9.回归分析法 10.数学规划(线性规划、非线性规划、整数规划、动态规划、目标规划) 11.机理分析 12.排队方法

数学建模 运筹学模型(一)

运筹学模型(一) 本章重点: 线性规划基础模型、目标规划模型、运输模型及其应用、图论模型、最小树问题、最短路问题 复习要求: 1.进一步理解基本建模过程,掌握类比法、图示法以及问题分析、合理假设的内涵. 2.进一步理解数学模型的作用与特点. 本章复习重点是线性规划基础模型、运输问题模型和目标规划模型.具体说来,要求大家会建立简单的线性规划模型,把实际问题转化为线性规划模型的方法要掌握,当然比较简单.运输问题模型主要要求善于将非线性规划模型转化为运输规化模型,这种转化后求解相当简单.你至少把一个很实际的问题转化为用表格形式写出的模型,至于求解是另外一回事,一般不要求.目标模型一般是比较简单的线性规模模型在提出新的要求之后转化为目标规划模型.另外,关于图论模型的问题涉及到最短路问题,具体说来用双标号法来求解一个最短路模型.这之前恐怕要善于将一个实际问题转化为图论模型.还有一个最小数的问题,该如何把一个网络中的最小数找到.另外在个别场合可能会涉及一笔划问题. 1.营养配餐问题的数学模型 n n x C x C x C Z 211m in ) ,,2,1(0, ,, 22112222212111212111n j x b x a x a x a b x a x a x a b x a x a x a t s j m n mn m m n n n n 或更简洁地表为 n j j j x C Z 1 min ),,2,1,,2,1(01 n j m i x b x a t s j n j i j ij 其中的常数C j 表示第j 种食品的市场价格,a ij 表示第j 种食品含第i 种营养的数量,b i 表示人或动物对第i 种营养的最低需求量. 2.合理配料问题的数学模型 有m 种资源B 1,B 2,…,B m ,可用于生产n 种代号为A 1,A 2,…,A n 的产品.单位产品A j 需用资源B i 的数量为a ij ,获利为C j 单位,第i 种资源可供给总量为b i 个单位.问如何安排生产,使总利润达到最大? 设生产第j 种产品x j 个单位(j =1,2,…,n ),则有 n n x C x C x C Z 2211m ax

数学建模期末考试A试的题目与答案

华南农业大学期末考试试卷(A 卷) 2012-2013学年第 二 学期 考试科目:数学建模 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业 一篮白菜从河岸一边带到河岸对面,由于船的限制,一次只能带 一样东西过河,绝不能在无人看守的情况下将狼和羊放在一起;羊和白菜放在一起,怎样才能将它们安全的带到河对岸去? 建立多步决策模型,将人、狼、羊、白菜分别记为i = 1,2,3,4,当i 在此岸时记x i = 1,否则为0;此岸的状态下用s =(x 1,x 2,x 3,x 4)表示。该问题中决策为乘船方案,记为d = (u 1, u 2, u 3, u 4),当i 在船上时记u i = 1,否则记u i = 0。 (1) 写出该问题的所有允许状态集合;(3分) (2) 写出该问题的所有允许决策集合;(3分) (3) 写出该问题的状态转移率。(3分) (4) 利用图解法给出渡河方案. (3分) 解:(1) S={(1,1,1,1), (1,1,1,0), (1,1,0,1), (1,0,1,1), (1,0,1,0)} 及他们的5个反状(3分) (2) D = {(1,1,0,0), (1,0,1,0), (1,0,0,1), (1,0,0,0)} (6分) (3) s k+1 = s k + (-1) k d k (9分) (4)方法:人先带羊,然后回来,带狼过河,然后把羊带回来,放下羊,带白菜过去,然后再回来把羊带过去。 ?或: 人先带羊过河,然后自己回来,带白菜过去,放下白菜,带着羊回来,然后放下羊,把狼带过去,最后再回转来,带羊过去。 (12分) 1、 二、(满分12分) 在举重比赛中,运动员在高度和体重方面差别很大,请就下面两种假设,建立一个举重能力和体重之间关系的模型: (1) 假设肌肉的强度和其横截面的面积成比例。6分 (2) 假定体重中有一部分是与成年人的尺寸无关,请给出一个改进模型。6分 解:设体重w (千克)与举重成绩y (千克) (1) 由于肌肉强度(I)与其横截面积(S)成比例,所以 y ?I ?S 设h 为个人身高,又横截面积正比于身高的平方,则S ? h 2 再体重正比于身高的三次方,则w ? h 3 (6分) ( 12分) 14分) 某学校规定,运筹学专业的学生毕业时必须至少学

数学建模 选修课策略模型

科技大学 题目:选课策略数学模型 班级: 姓名: 学号:

摘要 本问题要求我们为了解决学生最优选课问题,本文利用0-1规划模型先找出目标函数,再列出约束条件,分三步得出对最终问题逐层分析化多目标规划为单目标规划,从而建立模型,模型建立之后,运用LINGO软件求解,得到最优解,满足同学选修课程的数量少,又能获得的学分多。 特点:根据以上分析,特将模型分成以下几种情况,(1)考虑获得最多的学分,而不考虑所选修的课程的多少;(2)考虑课程最少的情况下,使得到的学分最多;(3)同时考虑学分最多和选修科目最少,并且所占比例三七分。在不同的情况下建立不同的模型,最终计算出结果。 关键词0-1规划选修课要求多目标规划 模型一:同时要求课程最少而且获得的学分最多,并按3:7的重要性建立模型。 模型二:要求选修课的课程最少,学分忽略;约束条件只有,每人至少学习2门数学,3门运筹学,2 门计算机,和先修课的要求建立模型一。 模型三:要求科目最少的情况下,获得的学分尽可能最多,只是目标函数变了,约束条件没变。 一.问题的重述 某学校规定,运筹学专业的学生毕业时必须至少学过两门数学课,三门运筹学课,两门计

算机。这些课程的编号,名称,学分,所属类别和选修课的要求如表所示。那么,毕业时最少可以学习这些课程中的哪些课程。 如果某个学生即希望选修课程的数量最少,又希望所获得的学分最多,他可以选修哪些课程? 二.模型的假设及符号说明 1.模型假设 1)学生只要选修就能通过; 2)每个学生都必须遵守规定;

2. 符号说明 1)xi:表示选修的课程(xi=0表示不选,xi=1表示选i=1,2,3,4,5,6,7,8,9); 三.问题分析 对于问题一,在忽略所获得学分的高低,只考虑课程最少,分析题目,有先修课要求,和最少科目限制,建立模型一,计算求出结果; 对于问题二,在模型一的条件下,考虑分数最高,把模型一的结果当做约束条件,建立模型二,计算求出结果; 对于问题三,同时考虑两者,所占权重比一样,建立模型三; 四.模型的建立及求解 模型一 目标函数: min=0.7*(x1+x2+x3+x4+x5+x6+x7+x8+x9)-0.3*(5*x1+4*x2+4*x3+3*x4+4*x5+3*x6+2*x7+2* x8+3*x9) 约束条件: x1+x2+x3+x4+x5>=2; x3+x5+x6+x8+x9>=3;

第1章 数学建模与误差分析

第1章数学建模与误差分析 1.1 数学与科学计算 数学是科学之母,科学技术离不开数学,它通过建立数学模型与数学产生紧密联系,数学又以各种形式应用于科学技术各领域。数学擅长处理各种复杂的依赖关系,精细刻画量的变化以及可能性的评估。它可以帮助人们探讨原因、量化过程、控制风险、优化管理、合理预测。近几十年来由于计算机及科学技术的快速发展,求解各种数学问题的数值方法即计算数学也越来越多地应用于科学技术各领域,相关交叉学科分支纷纷兴起,如计算力学、计算物理、计算化学、计算生物、计算经济学等。 科学计算是指利用计算机来完成科学研究和工程技术中提出的数学问题的计算,是一种使用计算机解释和预测实验中难以验证的、复杂现象的方法。科学计算是伴随着电子计算机的出现而迅速发展并获得广泛应用的新兴交叉学科,是数学及计算机应用于高科技领域的必不可少的纽带和工具。科学计算涉及数学的各分支,研究它们适合于计算机编程的数值计算方法是计算数学的任务,它是各种计算性学科的联系纽带和共性基础,兼有基础性和应用性的数学学科。它面向的是数学问题本身而不是具体的物理模型,但它又是各计算学科共同的基础。 随着计算机技术的飞速发展,科学计算在工程技术中发挥着愈来愈大的作用,已成为继科学实验和理论研究之后科学研究的第三种方法。在实际应用中所建立的数学模型其完备形式往往不能方便地求出精确解,于是只能转化为简化模型,如将复杂的非线性模型忽略一些因素而简化为线性模型,但这样做往往不能满足精度要求。因此,目前使用数值方法来直接求解较少简化的模型,可以得到满足精度要求的结果,使科学计算发挥更大作用。了解和掌握科学计算的基本方法、数学建模方法已成为科技人才必需的技能。因此,科学计算与数学建模的基本知识和方法是工程技术人才必备的数学素质。 1.2 数学建模及其重要意义 数学,作为一门研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和人们生活的实际需要密切相关。用数学方法解决工程实际和科学技术中的具体问题时,首先必须将具体问题抽象为数学问题,即建立起能描述并等价代替该实际问题的数学模型,然后将建立起的数学模型,利用数学理论和计算技术进行推演、论证和计算,得到欲求解问题的解析解或数值解,最后用求得的解析解和数值解来解决实际问题。本章主要介绍数学建模基本过程和求解数学问题数值方法的误差传播分析。 1.2.1 数学建模的过程 数学建模过程就是从现实对象到数学模型,再从数学模型回到现实对象的循环,一般通过表述、求解、解释、验证几个阶段完成。数学建模过程如图1.2.1所示,数学模型求解方法可分为解析法和数值方法,如图1.2.2所示。 表述是将现实问题“翻译”成抽象的数学问题,属于归纳。数学模型的求解方法则属于演绎。归纳是依据个别现象推出一般规律;演绎是按照普遍原理考察特定对象,导出结论。演绎利用严格的逻辑推理,对解释现象做出科学预见,具有重要意义,但是它要以归纳的结论作为公理化形式的前提,只有在这个前提下

系统的描述与数学建模

系统的描述与数学建模 [摘要]数学建模就是利用数学方法将系统的文字语言描述转化成数学方式表达。由于影响系统的因素多种多样,当用数学表达系统时,我们要求尽可能要使得数学建模既能从本质上反映系统,又能使得系统的数学模型具有简单性。 [关键词]系统的建模数学建模 数学建模就是利用数学方法将系统的文字语言描述转化成数学方式表达。由于影响系统的因素多种多样,当用数学表达系统时,我们要求尽可能要使得数学建模既能从本质上反映系统,又能使得系统的数学模型具有简单性。一个极其复杂的数学模型对于分析系统毫无帮助。 为了说明这种数学建模的方法,我们举一个简单的例子。比如我们研究某一地区人口的健康状况。假定在我们的研究时段内没有人口的自然死亡,按照自然规律人口总是以一定的概率,变成亚健康、或者患上某种轻疾病、或者患上重疾病。在一定的环境和医疗条件下,部分亚健康者和患者会得以康复,这是一种简单运算的系统描述,并没有具体地给出定量表达。为了能用数学的方法表达这个描述,我们按照以下方式将人口分类:(1)健康人。(2)亚健康人。(3)患轻病人。(4)患重病人。 根据上面的关系和一些假定条件,我们可以得到相应的微分方程,至于方程的详细导出我们以后再讨论。这里我们需要指出,前面我们只是一种说明性的举例,在实际建模过程中,要依赖于系统所在的环境,按照前面方法得到的应是确定性模型,在随机环境中,上面所述的量应当对应成相应状态的概率。 再比如排队系统,是最常见的一种系统,这类系统主要描述顾客到达,接受服务然后离开这一过程。系统由顾客与服务员两个单元组成。这类问题主要由以下四个因素决定:(1)顾客来到窗口的频率。(2)窗口的个数。(3)排队规则。(4)服务时间分布;所以我们必须对它们作适当的假定。 在单个服务台的排队系统模型M/M/1,即系统只设一个服务台床的情况。假定顾客是相互独立地到达系统,而且顾客到达系统的间隔时间服从负指数分布 F(t)=1-e -λt (输入过程),又服务窗为每一位顾客的服务时间也同时服从负指 数分布H(t)=1-e -μt (运行方式)。对这种最简单的排队模型,我们将依照不同的系统规则确定排队系统所满足的微分方程。 M/M/1损失制排队模型是指系统内只设一个服务窗,系统容量为1(即有一个排队位置而无排队等待位置),顾客到达和窗口服务时间均为负指数分布,且

运筹学模型与数学建模竞赛

运筹学模型与数学建模竞赛 1、引言 一般来说,大学生数学建模竞赛所涉及到的运筹学模型包括数学规划(线性规划和非线性规划),网络优化(含网络计划技术),排队模型,动态规划等,请看下表 注:从年起,全国大学生数学建模竞赛开始设置专供大专院校学生做的题。 下而重点介绍运筹学模型的数学规划。 二、数学规划的一般形式 nin f(x) (ornnx f(x)) /l, (x) = 0, i = 1,2,…丿 s.t.<0, ) = 12…,加 lb

解:题意即要确立从i 号仓库运到j 号工厂的原棉数量。故设X”表示从i 号仓运到j 号工厂的原棉数量(吨)f 表示总运费?则运输模型为: min f = 2x H +X|2 +3^13 + 2x 2| + 2x 22 + 4x 23 ■ x H +x [2 +X13 S 50 x 21 + x 22 + x 23 < 30 X 11+X 2I =40' s 』:X [2+X 22 =15需求量约束 + AS j =25 列no 仃= 1,2;丿? = 123丿运输量非负约束 一般地,对于有m 个发点和门个收点的运输模型为 n 工? 5q(7 = h2,3,??m) m /=i Xq nO(j = 12??〃;J = 12??n) 其中q 为i 号发点的运出量,bj 为j 号收点的需求咼,5为从i 号发点到j 号收点的单位运 价。 m n n 特别当工% =工耳时,存货必须全部运走.故上述约朿条件中的工耳可改为等式: r-1 j-1 n 工七=£(,= 1,2,...w ) 3选址问题 某地区有m 座煤矿,尸矿每年产量为q 吨,现有火力发电厂一个,每年需用煤b 。吨, 每年运行的固左费用(包括折旧费,但不包括煤的运费)为ho 元。现规划新建一个发电厂, m 座煤矿每年开采的原煤将全部供给这两个电厂发电用。现有门个备选的厂址。若在尸备 选厂址建电厂,每年运行的固左费用为%元,每吨原煤从严矿运送到严备选厂址的运费为 5元(口j=1,2 -n )o 每吨原煤从厂矿运送到原有电厂的运费为细(i=1,2,...m )。 试问: [1] 应把新电厂厂址选在何处? [2] m 座煤矿开采的原煤应如何分配给两个电厂? 才能使每年的总费用(电厂运行的固左费用与原煤运费之和)为最小? 运岀量受存量约束 min m n f = H C u X U

运筹学定义

1.运筹学定义:用数学的方法研究各问题的变化。 2.线性规划:数学模型的目标函数为变量的线性函数,约束条件也为变量的线性等式或不 等式,故此模型称之为线性规划 3.可行解:把满足所有约束条件的解称为该线性规划的可行解。 4.最优解:把目标函数值最大(即利润最大)的可行解称为该线性规划的最优解。 5.最优值:在最优解条件下的目标函数值为最优目标函数值,简称最优值。 6.松弛量:在线性规划中,一个“≤”约束条件中没使用的资源或能力称之为松弛量 7.松弛变量:为了把一个线性规划标准化,需要有代表没使用的资源或能力的变量,诚挚 为松弛变量。 8.标准化: 把所有约束条件都写成等式,称为线性规划模型的标准化。所得结果称为线性 规划的标准形式。 9.剩余变量:对于“≥”约束条件,可以增加一些代表最低限约束的超过量,称之为剩余 变量。 10.灵敏度分析:建立数学模型和求得最优解之后,研究线性规划的一些系数Ci,Gij,bj的 变化对最优解产生的影响。 11.对偶价格:在约束条件常数项中增加一个单位而使最优目标函数值得到改进的数量称之 为这个约束条件的对偶价格 12.单纯形法的基本思路:一,找出一个初始基本可行解二,最优性检验三,基变换 13.线性规划的基本解:由线性规划的知识知道,如果我们在约束方程组系数矩阵中找到一 个基,令这个基的非基变量为零,再求解这个m元线性方程组就可得到唯一的解,这个解称之为线性规划的基本解。 14.基本可行解:一个基本解可以是可行解,也可以是非可行解,他们之间的主要区别在于 其所有变量的解是否满足非负的条件,我们把满足非负条件的一个基本解叫做基本可行解,并把这样的基叫做可行基。 15.初始可行基:在第一次找可行基时,所找到的基或为单位矩阵或由单位矩阵的各列向量 所组成,称之为初始可行基,其相应的基本可行解叫初始基本可行解。 16.最优性检验:判断已求得的基本可行解是否是最优解。 17.最优性检验的依据-----检验数σj:目标函数中所有变量的系数即为各变量的检验数, 把变量xi的检验数记为σi,显然所有基变量的检验数必为零。 18.最优解判别定理:在求最大目标函数的问题中,对于某个基本可行解,如果所有检验数 σj≤0,则这个基本可行解是最优解,这就是最优解判别定理。 19.确定基变量的方法:把已确定的入基变量在各约束方程中的正的系数除其所在约束方程 中的常数项的值,把其中最小比值所在的约束方程中的原基变量确定为出基变量。这样在下一步迭代的矩阵中可以确保新得到的bj值都大于等于零。 20.大M法:像这样,为了构造初始可行基得到初始可行解,把人工变量“强行”地加到原 来的约束方程中去,又为了尽力地把人工变量从基变量中替换出来,就令人工变量在求最大值的目标函数里的系数为-M的方法叫做大M法,M叫做罚因子。 21.几种特殊情况:一,无可行解,二,无界解,三,无穷多最优解,四,退化问题。 22.一般的运输问题:就是要解决把某种产品从若干个产地调运到若干个销地,在每个产地 的供应量与每个销地的需求量已知,并知道各地之间的运输单价的前提下,如何确定一个使得总得运输费用最小的方案的问题。 23.纯整数规划问题:在整数规划中,如果所有的变量都为非负整数,则称之为纯整数规划 问题。 24.混合整数规划问题:如果只有一部分变量为非负整数,则称之为混合整数规划问题

数学建模中的重要问题解答

数模模拟赛论文 我们参赛选择的题号是(从A/B中选择一项填写): B 我们的参赛报名号为:B12 职务姓名学号学院专业和班级 队长张林10251003201 数学与计算科学学院2010数学与应用数 学2班 队员陈强10251003106 数学与计算科学学院2010数学与应用数 学1班 队员庞阳华10251003230 数学与计算科学学院2010数学与应用数 学2班

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 北京市水资源短缺风险综合评价 一.摘要 本文以北京地区水资源短缺风险问题及北京市水资源短缺情况数据来进行综合评价,首先构造隶属函数]5[以评价水资源系统的模糊性,其次利用logistic 回归模型模拟和预测水资源短缺风险发生的概率,而后建立了基于模糊概率的水资源短缺风险评价模型,最后利用判别分析识别出水资源短缺风险敏感因子并提出改进方案。 本文最大的亮点是采用采用Logistic回归模型来模拟缺水量系列的概率分布,logistic回归方法具有对因变量数据要求低、计算结果唯一、模型精度高等优点。 二.问题重述 近年来,我国水资源短缺问题日趋严重,尤其是北京水资源短缺已成为焦

数学建模 自习室管理系统

一.问题重述: 近年来,大学用电浪费比较严重,集中体现在学生上晚自习上,一种情况是去某个教室上自习的人比较少,但是教室的灯却全部打开,第二种情况是晚上上自习的总人数比较少,但是开放的教室比较多,这要求提供一种最节约、最合理的管理方法。根据题目所给出的数据,有以下问题。数据见表。 1.假如学校有8000名同学,每个同学是否上自习相互独立,上自习的可能性为0.7. 要使需要上自习的同学满足程度不低于95%,开放的教室满座率不低于4/5,同时尽量不超过90%。问该安排哪些教室开放,能达到节约用电的目的。 2.在第一问基础上,假设这8000名同学分别住在10个宿舍区,现有的45个教室分为9个自习区,按顺序5个教室为1个区,即1,2,3,4,5为第1区,…, 41,42,43,44,45为第9区。这10个宿舍区到9个自习区的距离见表2。学生到各教室上自习的满意程度与到该教室的距离有关系,距离近则满意程度高,距离远则满意程度降低。假设学生从宿舍区到一个自习区的距离与到自习区任何教室的距离相同。请给出合理的满意程度的度量,并重新考虑如何安排教室,既达到节约用电目的,又能提高学生的满意程度。另外尽量安排开放同区的教室。3.假设临近期末,上自习的人数突然增多,每个同学上自习的可能性增大为0.85,要使需要上自习的同学满足程度不低于99%,开放的教室满座率不低于4/5,同时尽量不超过95%。这时可能出现教室不能满足需要,需要临时搭建几个教室。 假设现有的45个教室仍按问题2中要求分为9个区。搭建的教室紧靠在某区,每个区只能搭建一个教室,搭建的教室与该区某教室的规格相同(所有参数相同),学生到该教室的距离与到该区任何教室的距离假设相同。问至少要搭建几个教室,并搭建在什么位置,既达到节约用电目的,又能提高学生的满意程度。

数学建模-运筹学模

数学建模-运筹学模型(一)

运筹学模型(一) 本章重点: 线性规划基础模型、目标规划模型、运输模型及其应用、图论模型、最小树问题、最短路问题 复习要求: 1.进一步理解基本建模过程,掌握类比法、图示法以及问题分析、合理假设的内涵. 2.进一步理解数学模型的作用与特点. 本章复习重点是线性规划基础模型、运输问题模型和目标规划模型.具体说来,要求大家会建立简单的线性规划模型,把实际问题转化为线性规划模型的方法要掌握,当然比较简单.运输问题模型主要要求善于将非线性规划模型转化为运输规化模型,这种转化后求解相当简单.你至少把一个很实际的问题转化为用表格形式写出的模型,至于求解是另外一回事,一般不要求.目标模型一般是比较简单的线性规模模型在提出新的要求之后转化为目标规划模型.另外,关于图论模型的问题涉及到最短路问题,具体说来用双标号法来求解一个最短路模型.这之前恐怕要善于将一个实际问题转化为图论模型.还有一个最小数的问题,该如何把一个网络中的最小数找到.另外在个别场合可能会涉及一笔划问题. 1.营养配餐问题的数学模型 n n x C x C x C Z 211m in ) ,,2,1(0, ,,22112222212111212111n j x b x a x a x a b x a x a x a b x a x a x a t s j m n mn m m n n n n 或更简洁地表为 n j j j x C Z 1 min ),,2,1,,2,1(01 n j m i x b x a t s j n j i j ij 其中的常数C j 表示第j 种食品的市场价格,a ij 表示第j 种食品含第i 种营养的数量,b i 表示人或动物对第i 种营养的最低需求量. 2.合理配料问题的数学模型 有m 种资源B 1,B 2,…,B m ,可用于生产n 种代号为A 1,A 2,…,A n 的产品.单位产品A j 需用资源B i 的数量为a ij ,获利为C j 单位,第i 种资源可供给总量为b i 个单位.问如何安排生产,使总利润达到最大? 设生产第j 种产品x j 个单位(j =1,2,…,n ),则有 n n x C x C x C Z 2211m ax

数学模型数学建模重点

数学模型:对于一个现实对象,为了一个特定目的, 根据其内在规律,作出必要的简化假设, 运用适当的数学工具,得到的一个数学结构。 数学建模: 建立数学模型的全过程 (包括表述、求解、解释、检验等) 静 态 优 化 模 型 现实世界中普遍存在着优化问题 静态优化问题指最优解是数(不是函数) 建立静态优化模型的关键之一是根据建模目的确定恰当的目标函数 求解静态优化模型一般用微分法 数学规划模型 实际问题中的优化模型 m i x g t s x x x x f z Max Min i T n ,2,1,0)(..),(),()(1=≤==或 x ~决策变量 f (x )~目标函数 g i (x )≤0~约束条件 多元函数条件极值:决策变量个数n 和约束条件个数m 较大 最优解在可行域的边界上取得 线性规划 非线性规划 整数规划 重点在模型的建立和结果的分析 稳定性模型 对象仍是动态过程,而建模目的是研究时间充分长以后过程的变化趋势 ——平衡状态是否稳定。 不求解微分方程,而是用微分方程稳定性理论研究平衡状态的稳定性。 离散模型 离散模型:差分方程(第7章)、整数规划(第4章)、图论、对策论、网络流、… … 分析社会经济系统的有力工具 只用到代数、集合及图论(少许)的知识 ——层次分析模型 日常工作、生活中的决策问题 涉及经济、社会等方面的因素 作比较判断时人的主观选择起相当大的作用,各因素的重要性难以量化 AHP ——一种定性与定量相结合的、系统化、层次化的分析方法 1. 将决策问题分为3个层次:目标层O ,准则层C ,方案层P ;每层有若干元素, 各层 元素间的关系用相连的直线表示。 2. 通过相互比较确定各准则对目标的权重,及各方案对每一准则的权重。

数学建模-运筹学2013

最优化建模和计算 1、Lindo和Lingo基本程序 生产100套钢架,长2.9、2.1、1.5米各1根/套,原料长7.4米,如何下料?

下料的所有方案 1 2 3 4 5 6 7 8 2.9 2 1 1 1 0 0 0 0 2.1 0 2 1 0 3 2 1 0 1.5 1 0 1 3 0 2 3 4 料头0.1 0.3 0.9 0 1.1 0.2 0.8 1.4

给出下料问题的计算程序: Lindo程序: !min 0.1x1+0.3x2+0.9x3+0x4+1.1x5+0.2x6+0.8x7+1.4x8 min 1x1+1x2+1x3+1x4+1x5+1x6+1x7+1x8 subject to 2x1+1x2+1x3+1x4+0x5+0x6+0x7+0x8>100 0x1+2x2+1x3+0x4+3x5+2x6+1x7+0x8>100 1x1+0x2+1x3+3x4+0x5+2x6+3x7+4x8>100 end gin x1 gin x2 gin x3 gin x4 gin x5 gin x6 gin x7 gin x8

Lingo程序: model: sets: E/1..8/:c,x; F/1..3/:b; link(F,E):a; endsets min=@sum(E(j):c(j)*x(j)); @for(F(i):@sum(E(j):a(i,j)*x(j))>100); @for(E(j):x(j)>0); @for(E(j):@gin(x)); data: !c=0.1,0.3,0.9,0,1.1,0.2,0.8,1.4; c=1,1,1,1,1,1,1,1; a=2,1,1,1,0,0,0,0, 0,2,1,0,3,2,1,0, 1,0,1,3,0,2,3,4; enddata end

数学建模学习心得体会

数学建模学习心得体会 【1】数学建模学习心得体会 数学建模是一个经历观察、思考、归类、抽象与总结的过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生 与选择的过程。它给学生再现了一种“微型科研”的过程。数学建 模教学有利于激发学生学习数学的兴趣,丰富学生数学探索的情感 体验;有利于学生自觉检验、巩固所学的数学知识,促进知识的深化、发展;有利于学生体会和感悟数学思想方法。同时教师自身具备数学 模型的构建意识与能力,才能指导和要求学生通过主动思维,自主 构建有效的数学模型,从而使数学课堂彰显科学的魅力。 为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些 实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代 替而进行相应的实验,实验本身也是实际操作的一种理论替代。1. 只有经历这样的探索过程,数学的思想、方法才能沉积、凝聚,从 而使知识具有更大的智慧价值。动手实践、自主探索与合作交流是 学生学习数学的重要方式。学生的数学学习活动应当是一个主动、 活泼的、生动和富有个性的过程。因此,在教学时我们要善于引导 学生自主探索、合作交流,对学习过程、学习材料、学习发现主动 归纳、提升,力求建构出人人都能理解的数学模型。 教师不应只是“讲演者”,而应不时扮演下列角色:参谋——提一些求解的建议,提供可参考的信息,但并不代替学生做出决断。 询问者——故作不知,问原因、找漏洞,督促学生弄清楚、说明白,完成进度。仲裁者和鉴赏者——评判学生工作成果的价值、意义、 优劣,鼓励学生有创造性的想法和作法。 2.数学建模对教师、对学生都有一个逐步的学习和适应的过程。教师在设计数学建模活动时,特别应考虑学生的实际能力和水平,

办公室电话系统模拟(数学建模)

排队论在电话问题中的应用 摘要 本文建立一个模拟办公室电话系统模型,解决由三个电话机占线而可能打不进电话的问题。根据该办公室的电话系统状况得知其服从排队论模型规律,则应用排队论知识建立模型。 用)(t Pn 表示在时刻t ,服务系统的状态为n (系统占线条数为n )的概率。通过输入过程(顾客打进电话),排队规则,和服务机构的具体情况建立关于)(t Pn 的微分差分方程求解。令0)('=t P n 把微分方程变成差分方程,而不再含微分了, 把)(t Pn 转化为与t 无关的稳态解。关于标准的M/M/s 排队模型各种特征的规定于标准的M/M/1模型的规定相同。另外规定各服务器工作是相互独立(不搞协作)且平均服务率相同 .==...==s 21μμμμ于是整个服务机构的平均服务率为μs 。令ρ=λ/su 只有当时λ/su<1时才不会排成无限的队列,成这个系统为服务强度,各顾客服务时间服从相同的负指数分布 ' 通过模型我们可以得到:无占线、一条占线、两条占线、三条占线的概率分别 是%,%,%,%。 · 关键词:泊松分布,指数分布,概率,期望,Little 公式

… 一、问题重述 一个办公室有三条电话线可打进,也就是说在任意时刻最多能接待三个顾客,顾客打电话是随机的,其时间服从上午9点至下午5点的均匀分布,每次电话持续时间是均值为6分钟的随机变量。 经理关心由于三个电话机占线而可能打不进电话的顾客数。他们当中部分人稍后可能重拨电话,而其他人则可能放弃通话,一天中接通的电话平均数是70。 请你建立一个模型模拟办公室电话系统,帮助经理在休息时思考这个问题,用你的模型做下述估计: (1)} (2)无电话占线、有一条、两条占线和三条都占线的时间百分比; (3)未打进电话的顾客所占百分比。 二、问题的分析 这是一个多服务台混合制模型M/M/s/K,顾客的相继到达时间服从参数为的负指数分布(即顾客的到达过程为Poisson流),服务台的个数为s,每个服务台的服务时间相互独立,且服从参数为的负指数分布,系统的空间为K。求平稳分布,考虑系统处的任一状态n。假设记录了一段时间内系统进入状态n和离开状态n的次数,则因为“进入”和“离开”是交替发生的,所以这两个数要么相等要么相差1。但就这两件事件平均发生率来说,可以认为是相等的。 三、基本假设 ①顾客的相继到达时间服从参数为λ的负指数分布; ②服务时间服从参数μ的负指数分布; ③顾客选择打进哪一条线是随机的而且是等可能的; ④, ⑤某条线接通时,其他顾客不能接通,则称为占线 四、符号定义及变量说明 ①:顾客的相继到达时间服从参数为λ的负指数分布,服务时间服从参数μ的负指 数分布; ②:) Pn表示在时刻t服务系统的状态为n(系统中顾客数为n)的概率,(t

相关文档
最新文档