自控MATLAB实验二

自控MATLAB实验二
自控MATLAB实验二

《自动控制原理》课程实验报告

实验名称基于MATLAB仿真的系统时域分析专业班级过程自动化03班

学号2011500169

姓名鲁雅洁

指导教师李离

学院名称电气信息学院

2013 年11 月2 日

实验二基于MATLAB仿真的系统时域分析

一、实验目的

(1)学习如何利用MATLAB分析控制系统的时域性能和比较系统的近似模型和实际模型;

(2)巩固系统绝对稳定性和相对稳定性的概念;

(3)掌握利用MATLAB进行Routh-Hurwitz稳定性检验的方法;

(4) 学习利用MATLAB进行系统参数设计的方法。

二、实验设备

(1)硬件:个人计算机;

(2)软件:MATLAB仿真软件(版本6.5或以上)。

三、实验内容和步骤

本实验借助MATLAB仿真,分析控制系统关于给定输入信号的瞬态响应和稳态跟踪误差,观察系统所实现的性能指标水平;同时,观察系统简化带来的性能变化情况。

利用函数step可得到系统的阶跃响应,其使用方法见实验指导书的实验二部分。函数impulse可用来获得系统的脉冲响应,其使用方法如图2.1所示。

图2.1 函数impulse说明

1.标准二阶系统的阶跃响应及性能分析

考虑图2.2所示的标准二阶系统。假设ωn= 1(这等价于以ωnt为自变量),利用程序lab3_1.m观察当ζ= 0.1, 0.2, 0.4, 0.7,1.0, 2.0时的系统单位阶跃响应, 估计各自对应的性能水平,并将其与理论值进行比较。

图 2.2 单位反馈的闭环二阶系统

Lab3_1.m

程序:

t=[0:0.1:12]; num=[1];

zeta1=0.1; den1=[1 2*zeta1 1]; sys1=tf(num,den1);

zeta2=0.2; den2=[1 2*zeta2 1]; sys2=tf(num,den2);

zeta3=0.4; den3=[1 2*zeta3 1]; sys3=tf(num,den3);

zeta4=0.7; den4=[1 2*zeta4 1]; sys4=tf(num,den4);

zeta5=1.0; den5=[1 2*zeta5 1]; sys5=tf(num,den5);

zeta6=2.0; den6=[1 2*zeta6 1]; sys6=tf(num,den6);

[y1,T1]=step(sys1,t); [y2,T2]=step(sys2,t);

[y3,T3]=step(sys3,t); [y4,T4]=step(sys4,t);

[y5,T5]=step(sys5,t); [y6,T6]=step(sys6,t);

plot(T1,y1,T2,y2,T3,y3,T4,y4,T5,y5,T6,y6)

xlabel('\omega_n t'), ylabel('y(t)')

title('\zeta = 0.1, 0.2, 0.4, 0.7, 1.0, 2.0'), grid

text(3.2,1.7,'0.1');

text (3.3,1.5,'0.2')

text (3.5,1.2,'0.5')

text (3.5,1.0,'0.7')

text (3.3,0.9,'1.0')

text (3.3,0.6,'2.0')

仿真结果:

2.标准二阶系统的脉冲响应

仍然考虑图2.2所示系统和假设ωn= 1,运行程序lab3_2.m。观察当ζ= 0.1, 0.25, 0.5,1.0时的系统单位脉冲响应。

Lab3_2.m

程序:

t=[0:0.1:10]; num=[1];

zeta1=0.1; den1=[1 2*zeta1 1]; sys1=tf(num,den1);

zeta2=0.25; den2=[1 2*zeta2 1]; sys2=tf(num,den2);

zeta3=0.5; den3=[1 2*zeta3 1]; sys3=tf(num,den3);

zeta4=1.0; den4=[1 2*zeta4 1]; sys4=tf(num,den4);

[y1,T1]=impulse(sys1,t);

[y2,T2]=impulse(sys2,t);

[y3,T3]=impulse(sys3,t);

[y4,T4]=impulse(sys4,t);

plot(t,y1,t,y2,t,y3,t,y4)

xlabel('\omega_n t'), ylabel('y(t)/\omega_n') title('\zeta = 0.1, 0.25, 0.5,1.0'), grid

text (1.5,0.9,'0.1');

text (1.5,0.7,'0.25')

text (1.1,0.5,'0.5')

text(1.0,0.4,'1.0')

仿真结果:

3.移动机器人驾驶控制系统关于三角波输入的响应

移动机器人驾驶控制系统如图2.3所示。其中

运行程序lab3_3.m。观察当系统输入如图2.4所示时的系统响应, 估计其稳态误差,并将其与理论值进行比较。利用函数lsim可对闭环系统关于斜坡输入的响应进行仿真,其使用方法如图2.5所示。

图 2.3 移动机器人驾驶控制系统

图2.4 移动机器人驾驶控制系统

图 2.5 函数lsim说明

Lab3_3.m

程序:

numg=[10 20]; deng=[1 10 0]; sysg=tf(numg,deng); sys=feedback(sysg,[1]);

t1=[0:0.1:2]';

t2=[2.1:0.1:6]';

t3=[6.1:0.1:8]';

t=[0:0.1:8];

v1=[0:0.1:2]';v2=[1.9:-0.1:-2]';v3=[-1.9:0.1:0]';

u=[v1;v2;v3];

[y,T]=lsim(sys,u,t);

plot(t1,v1,'b--',t2,v2,'b--',t3,v3,'b--',T,y,'k-'),

xlabel('Time (seconds)'), ylabel('\theta (radians)'), grid 仿真结果:

4.高阶模型的低阶近似

三阶系统

的二阶近似模型为

运行程序lab3_4.m,观察系统(1)和(2)的单位阶跃响应, 并就其各个性能指标水平进行比较。

Lab3_4.m

程序:

num1=[6]; den1=[1 6 11 6]; sys1=tf(num1,den1);

num2=[1.6]; den2=[1 2.584 1.6]; sys2=tf(num2,den2);

t=[0:0.1:8];

[y1,T1]=step(sys1,t);

[y2,T2]=step(sys2,t);

plot(T1,y1,T2,y2,'--'), grid

xlabel('Time (seconds)'), ylabel('Step Response')

text (1.3,0.65,'L(s)');

text (2.2,0.66,'H(s)')

仿真结果:

5.Routh-Hurwitz稳定性检验

Routh-Hurwitz稳定判据是一个关于系统稳定性的充要判据。如果系统特征方程的系数均已确定,则其在左半s平面上、右半s平面上以及s平面虚轴上根的数目可由Routh-Hurwitz稳定判据来确定。

调用Matlab函数pole和roots, 可通过直接求解系统特征方程的根(即闭环传递函数的极点)来验证利用Routh-Hurwitz稳定判据得到的结果。

例如,对于图2.6所示系统,由Routh-Hurwitz稳定判据可以确定,该系统有两个闭环极点位于右半s 平面。这一结果经调用函数pole得到了证明。

图 2.6 某闭环系统

图2.7 函数pole 的调用

本项实验内容为:首先对下述系统或系统的特征方程运用Routh-Hurwitz稳定判据判断其特征根在s平面上的分布情况,然后编写Matlab仿真程序加以验证。

3)某闭环系统如图2.8所示;其中,

图 2.8 闭环系统一

Lab3_5_1.m

程序:

roots([1,2,2,4,11,10])

运行结果:

ans = 0.8950 + 1.4561i

0.8950 - 1.4561i

-1.2407 + 1.0375i

-1.2407 - 1.0375i

-1.3087 + 0.0000i

Lab3_5_2.m

程序:

roots([1,1,2,2,1,1])

运行结果:

ans = -1.0000 + 0.0000i

0.0000 + 1.0000i

0.0000 - 1.0000i

-0.0000 + 1.0000i

-0.0000 - 1.0000i

Lab3_5_3.m

程序:

num1=[24]; den1=[1 10 35 50 0];

sys1=tf(num1,den1);

sys=feedback(sys1,[1]);

pole(sys)

运行结果:

ans = -4.0000

-3.0000

-2.0000

-1.0000

6.系统相对稳定性分析

Routh-Hurwitz稳定判据还可用来确定使系统稳定的参数取值范围。例如,对于特征方程为的系统,由Routh-Hurwitz稳定判据可以确定,要使之稳定,必须满足0 < K < 8。这个结果可通过Matlab以图解的方式加以验证,如图2.9所示。

(a)

(b)

图2.9 (a) Matlab 程序文本(b)根轨迹图

图2.9a所示文本先是借助for-end 语句结构建立了一个关于参数K的向量(取值范围),然后调用函数roots计算对应于各个K值的特征根。图2.10给出了for-end 语句结构的使用方法和示例。

图 2.10 for-end 语句结构和示例

Routh-Hurwitz 稳定判据可以判定系统的绝对稳定性,但不能给出相对稳定性。后者与系统特征根在s 平面上的位置有关,而Routh-Hurwitz 判据不能明确告诉我们根的位置。利用Matlab函数pole和roots则可轻易地做到这一点。

本项实验内容包括:

1)对下列系统的特征方程运用Routh-Hurwitz稳定判据确定系统稳定时参数K 的取值范围,并编写Matlab仿真程序加以验证:

Lab3_6_1.m

程序:

K=[0:0.5:20];

for i=1:length(K)

q=[1 1 1 1 K(i)];

p(:,i)=roots(q);

end

plot(real(p),imag(p),'x'),grid

xlabel('Real axis'),ylabel('Imaginary axis')

仿真结果:

2)对图2.11所示系统运用Routh-Hurwitz 稳定判据决定系统稳定时参数K、p和z 的取值范围,假设p和z均大于零。试依照图2.7运行Matlab仿真程序段或lab4_1.m 加以验证,并在程序运行后生成的图形中标注说明K、p和z的值域。

图2.11 闭环系统二

图2.12 关于图2.11 所示系统稳定区域的程序文本

Lab4_1.m

程序:

[p,z]=meshgrid(1.2:0.2:10,0.1:.2:10); k=p.*(p-1)./(p-1-z);

rc=size(k);r=rc(1);c=rc(2);

for i=1:r

for j=1:c

if abs(z(i,j)-p(i,j)+1)<1.0e-0.3

k(i,j)=0;

end

if k(i,j)<0;

k(i,j)=0;

end

end

end

M=[-50 25];

mesh(k,M)

仿真结果:

四、实验预习

(1)分析源程序,熟悉本实验设计的MATLAB函数和符号的功能与用法;(2)根据实验内容作出理论分析和计算。

五、实验报告

(1)将实验曲线和结果按实验内容进行归纳、整理,分析参数变化对系统的影响,并与理论结果进行比较,如有矛盾处请分析原因。

(2)可自行增加或设计实验情形,借以充分说明你的结论。

六、思考题

(1)关于标准二阶系统的脉冲响应,如果ζ值不变,而ωn发生变化,响应曲线会有何变化?请用实验数据或图表加以说明。

解:标准二阶系统,ζ值不变,ωn变化时脉冲响应曲线的变化。

当ζ=0.707,ωn变化时的系统脉冲如图所示。

当ζ值不变,ωn增大时,标准二阶系统的脉冲响应的峰值时间减小,峰值增大,调节时间缩短,所以系统的响应速度加快。

(2)某闭环控制系统如图2.13所示。试确定参数a 和K 的值使该系统稳定,并且系统对于斜坡输入的稳态误差不大于输入幅值的25%。(要求编制并运行Matlab 程序加以说明)

图 2.13 闭环系统三

解:系统的开环传递函数为

所以系统的特征方程为

劳斯表:

所以????

?

??????+

?0ak 0k -k a 64-116126008k

-1262)( )

15/)(12/)(1(10)

1/()5)(2)(1()(++++=

++++=

s s s s a s aK s s s s a s K G S 系统为I 型系统,对于斜坡输入 的稳态误差40ak 25.0ak

10

e ss ≥≤*=,A A 综上:

程序:

[k,a]=meshgrid(2:0.2:100,0.1:.2:5); z=1260+(116-64*a).*k-k.^2;

rc=size(z);r=rc(1);c=rc(2);

for i=1:r

for j=1:c

if k(i,j)>=126;

z(i,j)=0;

end

if k(i,j)*a(i,j)<40;

z(i,j)=0;

end

if z(i,j)<0;

z(i,j)=0;

end

end

end

M=[-20 30];

mesh(z,M)

仿真结果:

使Z>0的a,k为合适的。

现代信号处理Matlab仿真——例611

例6.11 利用卡尔曼滤波估计一个未知常数 题目: 设已知一个未知常数x 的噪声观测集合,已知噪声v(n)的均值为零, 方差为 ,v(n)与x 不相关,试用卡尔曼滤波估计该常数 题目分析: 回忆Kalman 递推估计公式 由于已知x 为一常数,即不随时间n 变化,因此可以得到: 状态方程: x(n)=x(n-1) 观测方程: y(n)=x(n)+v(n) 得到A(n)=1,C(n)=1, , 将A(n)=1,代入迭代公式 得到:P(n|n-1)=P(n-1|n-1) 用P(n-1)来表示P(n|n-1)和P(n-1|n-1),这是卡尔曼增益表达式变为 从而 2v σ1??(|1)(1)(1|1)(|1)(1)(1|1)(1)()()(|1)()[()(|1)()()]???(|)(|1)()[()()(|1)](|)[()()](|1)H w H H v x n n A n x n n P n n A n P n n A n Q n K n P n n C n C n P n n C n Q n x n n x n n K n y n C n x n n P n n I K n C n P n n --=----=----+=--+=-+--=--2()v v Q n σ=()0w Q n =(|1)(1)(1|1)(1)()H w P n n A n P n n A n Q n -=----+21 ()(|1)[(|1)]v K n P n n P n n σ-=--+22(1)()[1()](1)(1)v v P n P n K n P n P n σσ-=--=-+

Matlab上机实验答案

Matlab上机实验答案 实验一 MATLAB运算基础 1. 先求下列表达式的值,然后显示MATLAB工作空间的使用情况并保存全部变量。 >> z1=2*sin(85*pi/180)/(1+exp(2)) z1 = >> x=[2 1+2i; 5]; >> z2=1/2*log(x+sqrt(1+x^2)) z2 = - + + -

>> a=::; >> z3=(exp.*a)-exp.*a))./2.*sin(a++log(+a)./2) (>> z33=(exp*a)-exp*a))/2.*sin(a++log(+a)/2)可以验证z3==z33,是否都为1) z3 = Columns 1 through 5 + + + + + Columns 6 through 10 + + + + + Columns 11 through 15 + + + + + Columns 16 through 20 + + + + +

Columns 21 through 25 + + + + + Columns 26 through 30 + + + + + Columns 31 through 35 + + + + + Columns 36 through 40 + + + + + Columns 41 through 45 + + + + + Columns 46 through 50

+ + + + + Columns 51 through 55 + + + + + Columns 56 through 60 + + + + + Column 61 + (4) 2 2 4 2 01 112 2123 t t z t t t t t ?≤< ? =-≤< ? ?-+≤< ? ,其中t=0:: >> t=0::; >> z4=(t>=0&t<1).*(t.^2)+(t>=1&t<2).*(t.^2-1)+(t>=2&t<3).*(t.^ 2-2.*t+1) z4 =

MATLAB仿真实验报告

MATLAB 仿真实验报告 课题名称:MATLAB 仿真——图像处理 学院:机电与信息工程学院 专业:电子信息科学与技术 年级班级:2012级电子二班 一、实验目的 1、掌握MATLAB处理图像的相关操作,熟悉相关的函数以及基本的MATLAB语句。 2、掌握对多维图像处理的相关技能,理解多维图像的相关性质 3、熟悉Help 命令的使用,掌握对相关函数的查找,了解Demos下的MATLAB自带的原函数文件。 4、熟练掌握部分绘图函数的应用,能够处理多维图像。 二、实验条件

MATLAB调试环境以及相关图像处理的基本MATLAB语句,会使用Help命令进行相关函数查找 三、实验内容 1、nddemo.m函数文件的相关介绍 Manipulating Multidimensional Arrays MATLAB supports arrays with more than two dimensions. Multidimensional arrays can be numeric, character, cell, or structure arrays. Multidimensional arrays can be used to represent multivariate data. MATLAB provides a number of functions that directly support multidimensional arrays. Contents : ●Creating multi-dimensional arrays 创建多维数组 ●Finding the dimensions寻找尺寸 ●Accessing elements 访问元素 ●Manipulating multi-dimensional arrays操纵多维数组 ●Selecting 2D matrices from multi-dimensional arrays从多维数组中选择二维矩 阵 (1)、Creating multi-dimensional arrays Multidimensional arrays in MATLAB are created the same way as two-dimensional arrays. For example, first define the 3 by 3 matrix, and then add a third dimension. The CAT function is a useful tool for building multidimensional arrays. B = cat(DIM,A1,A2,...) builds a multidimensional array by concatenating(联系起来)A1, A2 ... along the dimension DIM. Calls to CAT can be nested(嵌套). (2)、Finding the dimensions SIZE and NDIMS return the size and number of dimensions of matrices. (3)、Accessing elements To access a single element of a multidimensional array, use integer subscripts(整数下标). (4)、Manipulating multi-dimensional arrays

Matlab仿真实例-卫星轨迹

卫星轨迹 一.问题提出 设卫星在空中运行的运动方程为: 其中是k 重力系数(k=401408km3/s)。卫星轨道采用极坐标表示,通过仿真,研究发射速度对卫星轨道的影响。实验将作出卫星在地球表面(r=6400KM ,θ=0)分别以v=8KM/s,v=10KM/s,v=12KM/s 发射时,卫星绕地球运行的轨迹。 二.问题分析 1.卫星运动方程一个二阶微分方程组,应用Matlab 的常微分方程求解命令ode45求解时,首先需要将二阶微分方程组转换成一阶微分方程组。若设,则有: 2.建立极坐标如上图所示,初值分别为:卫星径向初始位置,即地球半径:y(1,1)=6400;卫星初始角度位置:y(2,1)=0;卫星初始径向线速度:y(3,1)=0;卫星初始周向角速度:y(4,1)=v/6400。 3.将上述一阶微分方程及其初值带入常微分方程求解命令ode45求解,可得到一定时间间隔的卫星的径向坐标值y(1)向量;周向角度坐标值y(2)向量;径向线速度y(3)向量;周向角速度y(4)向量。 4.通过以上步骤所求得的是极坐标下的解,若需要在直角坐标系下绘制卫星的运动轨迹,还需要进行坐标变换,将径向坐标值y(1)向量;周向角度坐标值y(2)向量通过以下方程转换为直角坐标下的横纵坐标值X,Y 。 5.卫星发射速度速度的不同将导致卫星的运动轨迹不同,实验将绘制卫星分别以v=8KM/s ,v=10KM/s ,v=12KM/s 的初速度发射的运动轨迹。 三.Matlab 程序及注释 1.主程序 v=input('请输入卫星发射速度单位Km/s :\nv=');%卫星发射速度输入。 axis([-264007000-1000042400]);%定制图形输出坐标范围。 %为了直观表达卫星轨迹,以下语句将绘制三维地球。 [x1,y1,z1]=sphere(15);%绘制单位球。 x1=x1*6400;y1=y1*6400;???????-=+-=dt d dt dr r dt d dt d r r k dt r d θ θθ2)(2 22222θ==)2(,)1(y r y ?????????????**-=**+*-===)1(/)4()3(2)4()4()4()1()1()1()3()4()2() 3()1(y y y dt dy y y y y y k dt dy y dt dy y dt dy ???*=*=)] 2(sin[)1(Y )]2(cos[)1(X y y y y

MATLAB全部实验及答案

MATLAB全部实验及答案 实验一、MATLAB基本操作 实验内容及步骤 4、有关向量、矩阵或数组的一些运算 (1)设A=15;B=20;求C=A+B与c=a+b? (2)设A=[1 2 3;4 5 6;7 8 9],B=[9 8 7;6 5 4;3 2 1];求A*B与 A.*B? A*B就是线代里面的矩阵相乘 A.*B是对应位置的元素相乘(3)设a=10,b=20;求i=a/b=0.5与j=a\b=2? (4)设a=[1 -2 3;4 5 -4;5 -6 7] 请设计出程序,分别找出小于0的矩阵元素及其位置(单下标、全 下标的形式),并将其单下标转换成全下标。 clear,clc a=[1 -2 3;4 5 -4;5 -6 7]; [x,y]=find(a<0); c=[]; for i=1:length(x) c(i,1)=a(x(i),y(i)); c(i,2)=x(i); c(i,3)=y(i); c(i,4)=(y(i)-1)*size(a,2)+x(i); end c

(5)在MATLAB命令行窗口运行A=[1,2;3,4]+i*[5,6;7,8];看结果如何?如果改成运行A=[1,2;3,4]+i[5,6;7,8],结果又如何?前面那 个是虚数矩阵,后面那个出错 (6)请写出完成下列计算的指令: a=[1 2 3;3 4 2;5 2 3],求a^2=?,a.^2=? a^2= 22 16 16 25 26 23 26 24 28 a.^2= 1 4 9 9 16 4 25 4 9 (7)有一段指令如下,请思考并说明运行结果及其原因 clear X=[1 2;8 9;3 6]; X( : ) 转化为列向量 (8)使用三元组方法,创建下列稀疏矩阵 2 0 8 0 0 0 0 1 0 4 0 0 6 0 0 0 方法一: clear,clc

MATLAB仿真实验全部

实验一 MATLAB 及仿真实验(控制系统的时域分析) 一、实验目的 学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点 1、 系统的典型响应有哪些 2、 如何判断系统稳定性 3、 系统的动态性能指标有哪些 三、实验方法 (一) 四种典型响应 1、 阶跃响应: 阶跃响应常用格式: 1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。 2、),(Tn sys step ;表示时间范围0---Tn 。 3、),(T sys step ;表示时间范围向量T 指定。 4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。 2、 脉冲响应: 脉冲函数在数学上的精确定义:0 ,0)(1)(0 ?==?∞ t x f dx x f 其拉氏变换为:) ()()()(1)(s G s f s G s Y s f === 所以脉冲响应即为传函的反拉氏变换。 脉冲响应函数常用格式: ① )(sys impulse ; ② ); ,();,(T sys impulse Tn sys impulse ③ ),(T sys impulse Y = (二) 分析系统稳定性 有以下三种方法: 1、 利用pzmap 绘制连续系统的零极点图; 2、 利用tf2zp 求出系统零极点; 3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析 Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.

实验二 Matlab程序设计基本方法1

实验二Matlab程序设计基本方法 覃照乘自092 电气工程学院 一、实验目的: 1、熟悉MATLAB 程序编辑与设计环境 2、掌握各种编程语句语法规则及程序设计方法 3、函数文件的编写和设计 4、了解和熟悉跨空间变量传递和赋值 二、实验基本知识: ◆for循环结构 语法:for i=初值:增量:终值 语句1 …… 语句n end 说明:1.i=初值:终值,则增量为1。 2.初值、增量、终值可正可负,可以是整数,也可以是小数,只须符合数学逻辑。 ◆while 循环结构 语法:while 逻辑表达式 循环体语句 end 说明:1、whiIe结构依据逻辑表达式的值判断是否执行循环体语勾。若表达式的值为真,执行循环体语句一次、在反复执行时,每次都要进行判断。若表达 式的值为假,则程序执行end之后的语句。 2、为了避免因逻辑上的失误,而陷入死循环,建议在循环体语句的适当位 置加break语句、以便程序能正常执行。(执行循环体的次数不确定; 每一次执行循环体后,一定会改变while后面所跟关系式的值。) 3、while循环也可以嵌套、其结构如下:

while逻辑表达式1 循环体语句1 while逻辑表达式2 循环体语句2 end 循环体语句3 end ◆if-else-end分支结构 if 表达式1 语句1 else if 表达式2(可选) 语句2 else(可选) 语句3 end end 说明:1.if结构是一个条件分支语句,若满足表达式的条件,则往下执行;若不满足,则跳出if结构。 2.else if表达式2与else为可选项,这两条语句可依据具体情况取舍。 3.注意:每一个if都对应一个end,即有几个if,记就应有几个end。 ◆switch-case结构 语法:switch表达式 case常量表达式1 语句组1 case常量表达式2 语句组2 …… otherwise 语句组n end

Matlab实验五分支结构程序设计答案

实验五分支结构程序设计 实验内容 (1)从键盘输入一个数,将它反向输出,例如输入693,输出为396 >> clear >> format long g s=input('s=') n=fix(log10(s)); A=0; for i=1:n a=fix(s/10^n); x=fix(mod(s,10^i)/10.^(i-1)); A=A+x*10^(n+1-i); end A+a s=693 s = 693 ans = 396 (2)输入一个百分制成绩,要求输出成绩等级A,B,C,D,E其中90-100位A,80-89为B,70-79为C,60-69为D,60以下为E 1)分别用if语句和switch语句实现 2)输入百分制成绩后要判断成绩的合理性,对不合理的成绩应输出出错信息 If语句 >> a=input('输入成绩') if a>=90&a<=100 disp('A 成绩合理'); elseif a>=80&a<90 disp('B 成绩合理'); elseif a>=70&a<80 disp('C 成绩合理');

elseif a>=60&a<70 disp('D 成绩合理'); elseif a<60 disp('E 成绩合理'); else disp('成绩错误') end 输入成绩98 a = 98 A 成绩合理 >> a=input('输入成绩') if a>=90&a<=100 disp('A 成绩合理'); elseif a>=80&a<90 disp('B 成绩合理'); elseif a>=70&a<80 disp('C 成绩合理'); elseif a>=60&a<70 disp('D 成绩合理'); elseif a<60 disp('E 成绩合理'); else disp('成绩错误') end 输入成绩148 a = 148 成绩错误 switch语句 >> a=input('输入成绩') switch a; case num2cell(0:59) disp('E 成绩合理'); case num2cell(60:69) disp('D 成绩合理'); case num2cell(70:79) disp('C 成绩合理'); case num2cell(80:89) disp('B 成绩合理'); case num2cell(90:100) disp('A 成绩合理'); otherwise disp('成绩错误'); end

MATLAB实现通信系统仿真实例

补充内容:模拟调制系统的MATLAB 仿真 1.抽样定理 为了用实验的手段对连续信号分析,需要先对信号进行抽样(时间上的离散化),把连续数据转变为离散数据分析。抽样(时间离散化)是模拟信号数字化的第一步。 Nyquist 抽样定律:要无失真地恢复出抽样前的信号,要求抽样频率要大于等于两倍基带信号带宽。 抽样定理建立了模拟信号和离散信号之间的关系,在Matlab 中对模拟信号的实验仿真都是通过先抽样,转变成离散信号,然后用该离散信号近似替代原来的模拟信号进行分析的。 【例1】用图形表示DSB 调制波形)4cos()2cos(t t y ππ= 及其包络线。 clf %%计算抽样时间间隔 fh=1;%%调制信号带宽(Hz) fs=100*fh;%%一般选取的抽样频率要远大于基带信号频率,即抽样时间间隔要尽可能短。 ts=1/fs; %%根据抽样时间间隔进行抽样,并计算出信号和包络 t=(0:ts:pi/2)';%抽样时间间隔要足够小,要满足抽样定理。 envelop=cos(2*pi*t);%%DSB 信号包络 y=cos(2*pi*t).*cos(4*pi*t);%已调信号 %画出已调信号包络线 plot(t,envelop,'r:','LineWidth',3); hold on plot(t,-envelop,'r:','LineWidth',3); %画出已调信号波形 plot(t,y,'b','LineWidth',3); axis([0,pi/2,-1,1])% hold off% xlabel('t'); %写出图例 【例2】用图形表示DSB 调制波形)6cos()2cos(t t y ππ= 及其包络线。 clf %%计算抽样时间间隔 fh=1;%%调制信号带宽(Hz) fs=100*fh;%抽样时间间隔要足够小,要满足抽样定理。 ts=1/fs; %%根据抽样时间间隔进行抽样

matlab实验二

实验2 MATLAB数值计算、符号运算功能 一、实验目的 1、掌握建立矩阵、矩阵分析与处理的方法。 2、掌握线性方程组的求解方法。 3、掌握数据统计和分析方法、多项式的常用运算。 4、掌握求数值导数和数值积分、常微分方程数值求解、非线性代数方程数值求解的方法。 5、掌握定义符号对象的方法、符号表达式的运算法则及符号矩阵运算、符号函数极限及导数、符号函数定积分和不定积分的方法。 二、预习要求 (1)复习4、5、6章所讲内容; (2)熟悉MATLAB中的数值计算和符号运算的实现方法和主要函数。 三、实验内容 1、已知 29618 20512 885 A -?? ?? =?? ?? - ?? ,求A的特征值及特征向量,并分析其数学意义。 >> A=[-29,6,18;20,5,12;-8,8,5]; >> [V,D]=eig(A) V = 0.7130 0.2803 0.2733 -0.6084 -0.7867 0.8725 0.3487 0.5501 0.4050 D = -25.3169 0 0 0 -10.5182 0 0 0 16.8351 V为A的特征向量,D为A的特征值,3个特征值是-25.3169、10.5182和16.8351。 >> A*V ans = -18.0503 -2.9487 4.6007 15.4017 8.2743 14.6886 -8.8273 -5.7857 6.8190 >> V*D

ans = -18.0503 -2.9487 4.6007 15.4017 8.2743 14.6886 -8.8273 -5.7857 6.8190 经过计算,A*V=V*D 。 2、 不用rot90函数,实现方阵左旋90°或右旋90°的功能。例如,原矩阵为A ,A 左旋后得到B ,右旋后得到C 。 147102581136912A ????=??????,101112789456123B ??????=??????,321654987121110B ??????=?????? 提示:先将A 转置,再作上下翻转,则完成左旋90°;如将A 转置后作左右翻转,则完成右旋转90°,可用flipud 、fliplr 函数。 >> a=[1 4 7 10;2 5 8 11;3 6 9 12] a= 1 4 7 10 2 5 8 11 3 6 9 12 >> B=rot90(a) B = 10 11 12 7 8 9 4 5 6 1 2 3 >>C= rot90(s,3) C= 3 2 1 6 5 4 9 8 7 12 11 10

Matlab实验第一次实验答案

实验一Matlab使用方法和程序设计 一、实验目的 1、掌握Matlab软件使用的基本方法; 2、熟悉Matlab的数据表示、基本运算和程序控制语句 3、熟悉Matlab绘图命令及基本绘图控制 4、熟悉Matlab程序设计的基本方法 二、实验内容: 1、帮助命令 使用help命令,查找sqrt(开方)函数的使用方法; 解:sqrt Square root Syntax B = sqrt(X) Description B = sqrt(X) returns the square root of each element of the array X. For the elements of X that are negative or complex, sqrt(X) produces complex results. Remarks See sqrtm for the matrix square root. Examples sqrt((-2:2)') ans = 0 + 1.4142i 0 + 1.0000i

1.0000 1.4142 2、矩阵运算 (1)矩阵的乘法 已知A=[1 2;3 4]; B=[5 5;7 8]; 求A^2*B 解:A=[1 2;3 4 ]; B=[5 5;7 8 ]; A^2*B (2)矩阵除法 已知A=[1 2 3;4 5 6;7 8 9]; B=[1 0 0;0 2 0;0 0 3]; A\B,A/B 解:A=[1 2 3;4 5 6;7 8 9 ]; B=[1 0 0;0 2 0;0 0 3 ]; A\B,A/B (3)矩阵的转置及共轭转置

MATLAB实验报告实验二

实验二 MATLAB矩阵及其运算 学号:3121003104 姓名:刘艳琳专业:电子信息工程1班日期:2014.9.20 一实验目的 1、掌握Matlab数据对象的特点以及数据的运算规则。 2、掌握Matlab中建立矩阵的方法以及矩阵处理的方法。 3、掌握Matlab分析的方法。 二实验环境 PC_Windows 7旗舰版、MATLAB 7.10 三实验内容 4、1. (1)新建一个.m文件,验证书本第15页例2-1; (2)用命令方式查看和保存代码中的所有变量;

(3)用命令方式删除所有变量; (4)用命令方式载入变量z。 2. 将x=[4/3 1.2345e-6]在以下格式符下输出:短格式、短格式e方式、长格式、长格式e方式、银行格式、十六进制格式、+格式。 短格式 短格式e 长格式

长格式e方式 银行格式 十六进制格式 3.计算下列表达式的值 (1)w=sqrt(2)*(1+0.34245*10^(-6)) (2)x=(2*pi*a+(b+c)/(pi+a*b*c)-exp(2))/(tan(b+c)+a) a=3.5;b=5;c=-9.8; (3)y=2*pi*a^2*((1-pi/4)*b-(0.8333-pi/4)*a) a=3.32;b=-7.9; (4)z=0.5*exp(2*t)*log(t+sqrt(1+t*t)) t=[2,1-3i;5,-0.65];

4. 已知A=[1 2 3 4 5 ;6 7 8 9 10;11 12 13 14 15;16 17 18 19 20],对其进行如下操作:(1)输出A在[ 7, 10]范围内的全部元素; (2)取出A的第2,4行和第1,3,5列; (3)对矩阵A变换成向量B,B=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20]; (4)删除A的第2,3,4行元素; (1) (2)

增量调制MATLAB仿真实验

增量调制MATLAB仿真实验

增量调制(DM)实验 一、实验目的 (1)进一步掌握MATLAB的应用。 (2)进一步掌握计算机仿真方法。 (3)学会用MATLAB软件进行增量调制(DM)仿真实验。 二、实验原理 增量调制是由PCM发展而来的模拟信号数字化的一种编码方式,它是PCM的一种特例。增量调制编码基本原理是指用一位编码,这一位码不是表示信号抽样值的大小,而是表示抽样幅度的增量特性,即采用一位二进制数码“1”或“0”来表示信号在抽样时刻的值相对于前一个抽样时刻的值是增大还是减小,增大则输出“1”码,减小则输出“0”码。输出的“1”,“0”只是表示信号相对于前一个时刻的增减,不表示信号的绝对值。 增量调制最主要的特点就是它所产生的二进制代码表示模拟信号前后两个抽样值的差别(增加、还是减少)而不是代表抽样值本身的大小,因此把它称为增量调制。在增量调制系统的发端调制后的二进制代码1和0只表示信号这一个抽样时刻相对于前一个抽样时刻是增加(用1码)还是减少(用0码)。收端译码器每收到一个1码,译码器的输出相对于前一个时刻的值上升一个量化阶,而收到一个0码,译码器的输出相对于前一个时刻的值下降一个量化阶。 增量调制(DM)是DPCM的一种简化形式。在增量调制方式下,采用1比特量化器,即用1位二进制码传输样值的增量信息,预测器是

一个单位延迟器,延迟一个采样时间间隔。预测滤波器的分子系数向量是[0,1],分母系数为1。当前样值与预测器输出的前一样值相比较,如果其差值大于零,则发1码,如果小于零则发0码。 三、实验内容 增量调制系统框图如图一所示,其中量化器是一个零值比较器,根据输入的电平极性,输出为 δ,预测器是一个单位延迟器,其输出为前一个采样时刻的解码样值,编码器也是一个零值比较器,若其输入为负值,则编码输出为0,否则输出为1。解码器将输入1,0符号转换为 δ,然后与预测值相加后得出解码样值输出,同时也作为预测器的输入 输入样值 e n e n =δsgn(e n ) 传输 n ) n n-1+δsgn(e n ) x n + - + + 预测输出 + n-1 + 预测输出 解码样值输出 x n-1 预测输入x n =x n-1+δsgn(e n ) 图一 增量调制原理框图 设输入信号为: x(t)=sin2π50t+0.5sin 2π150t 增量调制的采样间隔为1ms,量化阶距δ=0.4,单位延迟器初始值为0。建立仿真模型并求出前20个采样点使客商的编码输出序列以 解码 编码 二电平量化 单位延迟 单位 延迟

MATLAB实验二(修改)

实验二 信号的表示及其基本运算 一、实验目的 1、掌握连续信号及其MATLAB 实现方法; 2、掌握离散信号及其MA TLAB 实现方法 3、掌握离散信号的基本运算方法,以及MA TLAB 实现 4 熟悉应用MATLAB 实现求解系统响应的方法 4、了解离散傅里叶变换的MA TLAB 实现 5、了解IIR 数字滤波器设计 6、了解FIR 数字滤波器设计1 二、实验设备 计算机,Matlab 软件 三、实验内容 (一)、 连续信号及其MATLAB 实现 1、 单位冲激信号 ()0,0()1,0 t t t dt ε ε δδε-?=≠??=?>??? 例1.1:单位冲击信号的MATLAB 实现程序如下: t1=-4; t2=4; t0=0; dt=0.01; t=t1:dt:t2; n=length(t); x=zeros(1,n); x(1,(-t0-t1)/dt+1)=1/dt; stairs(t,x); axis([t1,t2,0,1.2/dt]); 2、 任意函数 ()()()f t f t d τδττ+∞ -∞ =-? 例1.2:用MA TLAB 画出如下表达式的脉冲序列 ()0.4(2)0.8(1) 1.2() 1.5(1) 1.0(2)0.7(3)f n n n n n n n δδδδδδ=-+-+++++++ 3 单位阶跃函数 1,0()0, t u t t ?≥?=?

t=-0.5:0.001:1; t0=0; u=stepfun(t,t0); plot(t,u) axis([-0.5 1 -0.2 1.2]) 4 斜坡函数 0()()g t B t t =- 例1.4:用MA TLAB 实现g(t)=3(t-1) clear all; t=0:0.01:3; B=3; t0=1; u=stepfun(t,t0); n=length(t); for i=1:n u(i)=B*u(i)*(t(i)-t0); end plot(t,u) axis([-0.2 3.1 -0.2 6.2]) 5 抽样信号 抽样信号Sa(t)=sin(t)/t 在MATLAB 中用 sinc 函数表示。 定义为 )/(sin )(πt c t Sa = t=-3*pi:pi/100:3*pi; ft=sinc(t/pi); plot(t,ft); grid on; axis([-10,10,-0.5,1.2]); %定义画图范围,横轴,纵轴 title('抽样信号') %定义图的标题名字 6 指数函数 ()at f t Ae = 例1.5:用MA TLAB 实现0.5()3t f t e = 7 正弦函数 2()cos( )t f t A T π?=+ 例1.6:用MA TLAB 实现正弦函数f(t)=3cos(10πt+1) 8 虚指数信号 例 虚指数信号 调用格式是f=exp((j*w)*t) t=0:0.01:15;

MATLAB上机实验(答案)

MATLAB工具软件实验(1) (1)生成一个4×4的随机矩阵,求该矩阵的特征值和特征向量。程序: A=rand(4) [L,D]=eig(A) 结果: A = 0.9501 0.8913 0.8214 0.9218 0.2311 0.7621 0.4447 0.7382 0.6068 0.4565 0.6154 0.1763 0.4860 0.0185 0.7919 0.4057 L = -0.7412 -0.2729 - 0.1338i -0.2729 + 0.1338i -0.5413 -0.3955 -0.2609 - 0.4421i -0.2609 + 0.4421i 0.5416 -0.4062 -0.0833 + 0.4672i -0.0833 - 0.4672i 0.4276 -0.3595 0.6472 0.6472 -0.4804 D = 2.3230 0 0 0 0 0.0914 + 0.4586i 0 0 0 0 0.0914 - 0.4586i 0 0 0 0 0.2275 (2)给出一系列的a值,采用函数 22 22 1 25 x y a a += - 画一组椭圆。 程序: a=0.5:0.5:4.5; % a的绝对值不能大于5 t=[0:pi/50:2*pi]'; % 用参数t表示椭圆方程 X=cos(t)*a; Y=sin(t)*sqrt(25-a.^2); plot(X,Y) 结果: (3)X=[9,2,-3,-6,7,-2,1,7,4,-6,8,4,0,-2], (a)写出计算其负元素个数的程序。程序: X=[9,2,-3,-6,7,-2,1,7,4,-6,8,4,0,-2]; L=X<0; A=sum(L) 结果: A =

高频电子线路Matlab仿真实验

高频电子线路Matlab 仿真实验要求 1. 仿真题目 (1) 线性频谱搬移电路仿真 根据线性频谱搬移原理,仿真普通调幅波。 基本要求:载波频率为8kHz ,调制信号频率为400Hz ,调幅度为0.3;画出调制信号、载波信号、已调信号波形,以及对应的频谱图。 扩展要求1:根据你的学号更改相应参数和代码完成仿真上述仿真;载波频率改为学号的后5位,调制信号改为学号后3位,调幅度设为最后1位/10。(学号中为0的全部替换为1,例如学号2010101014,则载波为11114Hz ,调制信号频率为114,调幅度为0.4)。 扩展要求2:根据扩展要求1的条件,仿真设计相应滤波器,并获取DSB-SC 和SSB 的信号和频谱。 (2) 调频信号仿真 根据调频原理,仿真调频波。 基本要求:载波频率为30KHz ,调制信号为1KHz ,调频灵敏度32310f k π=??,仿真调制信号,瞬时角频率,瞬时相位偏移的波形。 扩展要求:调制信号改为1KHz 的方波,其它条件不变,完成上述仿真。 2. 说明 (1) 仿真的基本要求每位同学都要完成,并且记入实验基本成绩。 (2) 扩展要求可以选择完成。

1.0 >> ma = 0.3; >> omega_c = 2 * pi * 8000; >> omega = 2 * pi * 400; >> t = 0 : 5 / 400 / 1000 : 5 / 400; >> u_cm = 1; >> fc = cos(omega_c * t); >> fa = cos(omega * t); >> u_am = u_cm * (1 + fa).* fc; >> U_c =fft(fc,1024); >> U_o =fft(fa,1024); >> U_am =fft(u_am, 1024); >> figure(1); >> subplot(321);plot(t, fa, 'k');title('调制信号');grid;axis([0 2/400 -1.5 1.5]); >> subplot(323);plot(t, fc, 'k');title('高频载波');grid;axis([0 2/400 -1.5 1.5]); >> subplot(325);plot(t, u_am, 'k');title('已调信号');grid;axis([0 2/400 -3 3]); >> fs = 5000; >> w1 = (0:511)/512*(fs/2)/1000; >> subplot(322);plot(w1, abs([U_am(1:512)']),'k');title('调制信号频谱');grid;axis([0 0.7 0 500]); >> subplot(324);plot(w1, abs([U_c(1:512)']),'k');title('高频载波频谱');grid;axis([0 0.7 0 500]); >> subplot(326);plot(w1, abs([U_am(1:512)']),'k');title('已调信号频谱');grid;axis([0 0.7 0 500]); 1.1 >> ma = 0.8; >> omega_c = 2 * pi * 11138; >> omega = 2 * pi * 138; >> t = 0 : 5 / 400 / 1000 : 5 / 400; >> u_cm = 1; >> fc = cos(omega_c * t);

Matlab实验

MATLAB实验报告 学校:湖北文理学院 学院:物理与电子工程学院 专业:电子信息工程 学号: 2013128182 姓名:张冲 指导教师:宋立新

实验一 MATLAB环境的熟悉与基本运算 一、实验目的: 1.熟悉MATLAB开发环境 2.掌握矩阵、变量、表达式的各种基本运算 二、实验内容 1、学习使用help命令,例如在命令窗口输入help eye,然后根据帮助说明, 学习使用指令eye(其它不会用的指令,依照此方法类推) 2、学习使用clc、clear,观察command window、command history和workspace 等窗口的变化结果。 3、初步程序的编写练习,新建M-file,保存(自己设定文件名,例如exerc1、 exerc2、exerc3……),学习使用MATLAB的基本运算符。 三、练习 1)help rand,然后随机生成一个2×6的数组,观察command window、 command history和workspace等窗口的变化结果。 2)学习使用clc、clear,了解其功能和作用。 3)用逻辑表达式求下列分段函数的值 4)求[100,999]之间能被21整除的数的个数。(提示:rem,sum的用法) 四、实验结果 1)

2)clc:清除命令窗口所有内容,数值不变;clear:初始化变量的值。3) 4)

实验二 MATLAB数值运算 一、实验目的 1、掌握矩阵的基本运算 2、掌握矩阵的数组运算 二、实验内容 1)输入C=1:2:20,则C(i)表示什么?其中i=1,2,3, (10) 2)输入A=[7 1 5;2 5 6;3 1 5],B=[1 1 1; 2 2 2; 3 3 3],在命令窗 口中执行下列表达式,掌握其含义: A(2, 3) A(:,2) A(3,:) A(:,1:2:3) A(:,3).*B(:,2) A(:,3)*B(2,:) A*B A.*B A^2 A.^2 B/A B./A 3)二维数组的创建和寻访,创建一个二维数组(4×8)A,查询数组A第2 行、第3列的元素,查询数组A第2行的所有元素,查询数组A第6列的所有 元素。 4)两种运算指令形式和实质内涵的比较。设有3个二维数组A 2×4,B 2×4 ,C 2×2 , 写出所有由2个数组参与的合法的数组运算和矩阵指令。 5)学习使用表4列的常用函数(通过help方法) 6)学习使用表5数组操作函数。 7)生成一个3行3列的随机矩阵,并逆时针旋转90°,左右翻转,上下翻转。 8)已知a=[1 2 3],b=[4 5 6],求a.\b和a./ b 9)用reshape指令生成下列矩阵,并取出方框内的数组元素。 三、实验结果 1)C(i)表示C中的第i个的数值;

河南城建学院MATLAB上机实验答案

一熟悉Matlab工作环境 1、熟悉Matlab的5个基本窗口 思考题: (1)变量如何声明,变量名须遵守什么规则、是否区分大小写。 答:变量一般不需事先对变量的数据类型进行声明,系统会依据变量被赋值的类型自动进行类型识别,也就是说变量可以直接赋值而不用提前声明。变量名要遵守以下几条规则:?变量名必须以字母开头,只能由字母、数字或下划线组成。 ?变量名区分大小写。 ?变量名不能超过63个字符。 ?关键字不能作为变量名。 ?最好不要用特殊常量作为变量名。 (2)试说明分号、逗号、冒号的用法。 分号:分隔不想显示计算结果的各语句;矩阵行与行的分隔符。 逗号:分隔欲显示计算结果的各语句;变量分隔符;矩阵一行中各元素间的分隔符。 冒号:用于生成一维数值数组;表示一维数组的全部元素或多维数组某一维的全部元素。 (3)linspace()称为“线性等分”函数,说明它的用法。 LINSPACE Linearly spaced vector. 线性等分函数 LINSPACE(X1, X2) generates a row vector of 100 linearly equally spaced points between X1 and X2. 以X1为首元素,X2为末元素平均生成100个元素的行向量。 LINSPACE(X1, X2, N) generates N points between X1 and X2. For N < 2, LINSPACE returns X2. 以X1为首元素,X2为末元素平均生成n个元素的行向量。如果n<2,返回X2。 Class support for inputs X1,X2: float: double, single 数据类型:单精度、双精度浮点型。 (4)说明函数ones()、zeros()、eye()的用法。 ones()生成全1矩阵。 zeros()生成全0矩阵。 eye()生成单位矩阵。 2、Matlab的数值显示格式

Matlab 编程方法及仿真实验

《现代机械工程基础实验》之机械工程控制基础综合实验报告 姓名 学号 班级 山东建筑大学机电工程学院 2012.06.04~06

第一部分 Matlab 编程方法及仿真实验 实验1. 三维曲面的绘制(略) 实验2. 系统零极点绘制例:求部分分式展开式和)(t g 一个线性定常系统的传递函数是 1 5422 3)(2 3 ++++= s s s s s G (1) 使用MATLAB 建立传递函数,并确定它的极点和零点,写出)(s G 的部分分式展开式并绘制 系统的脉冲响应。 实验结果:零点-0.6667 极点-0.8796 + 1.1414i -0.8796 - 1.1414i -0.2408 实验3. 系统的阶跃响应 例. )(s G 的阶跃响应 对例2中由(1)式给出的传递函数)(s G ,增加一个0=s 处的极点,使用impulse 命令绘制其拉普拉斯反变换式曲线,得到阶跃响应图。将该响应与对)(s G 使用step 命令所得到的响应比较,确定系统的DC 增益。利用初值定理和终值定理来校验结果。 实验结果:DC 增益= 2

实验4. 双输入反馈系统单位阶跃响应 考虑一个如图1所示的反馈系统,它既有参考输入也有干扰输入,其中对象和传感器的传递函数是 )12)(15.0(4)(++=s s s G p ,105.01 )(+=s s H 控制器是一个增益为80,有一个在3-=s 处的零点,极点/零点比15=α超前控制器。推导 两个独立的MATLAB 模型,其中一个模型的输入为)(s R ,另一个输入为)(s D 。使用这些模型确定闭环零点和极点,并在同一坐标系内绘制它们的阶跃响应。 D (s ) 图1 具有参考和干扰输入的反馈系统方框图 实验结果: 参考输入的CL 极点:-49.3658 -7.3336 + 7.9786i -7.3336 - 7.9786i -3.4670 参考输入的DC 增益:320 干扰输入的CL 零点:-45 干扰输入的CL 极点:-49.3658 -7.3336 + 7.9786i -7.3336 - 7.9786i -3.4670 干扰输入的DC 增益:4 -20

相关文档
最新文档