果葡糖浆的结晶性研究进展

果葡糖浆的结晶性研究进展
果葡糖浆的结晶性研究进展

果葡糖浆的结晶性研究进展

摘 要:果葡糖浆在贮藏过程中出现的结晶现象,属于葡萄糖在过饱和溶液中的正常析出,本文综述了果葡糖浆结晶的特点并对延缓结晶的措施进行了简述。关键字:果葡糖浆 结晶 过饱和

贾慧慧 袁卫涛 杨海军

(保龄宝生物股份有限公司 山东 禹城 251200)

Research Progress on the Crystallization of Fructose Syrup

Jia Hui-hui Yuan Wei-tao Yang Hai-jun

(Baolingbao Biology Co ,Ltd ,Yucheng 251200,China )

Abstract :The crystallization phenomenon of fructose syrup during storage is a normal precipition of glucose in supersaturated solution. This review summarizes the characteristics of crystallization, and the measures on delaying crystal is brie ? y introduced.

Key words :Fructose Syrup; crystal; supersaturated

果葡糖浆也称高果糖浆或异构糖浆,它是以酶法糖化淀粉所得的糖化液经葡萄糖异构酶的异构作用,将其中一部分葡萄糖异构成果糖,由葡萄糖和果糖而组成的一种混合糖浆,因其优良的风味、甜性、溶解性、代谢性等,在乳饮料、发酵酸奶、乳制品等产品中的应用尽显优势[1]。果葡糖浆的甜度接近于同浓度的白砂糖,风味类似天然果汁,具有清香、爽口的感觉[2],同时果葡糖浆在40℃以下时具有冷甜特性,甜度随温度的降低而升高,F42果葡糖浆、F55果葡糖浆甜度分别相当于同等浓度白砂糖的90%和110%,可以完全替代白砂糖。

果葡糖浆中的果糖较蔗糖难于结晶,使果葡糖浆应用在某些产品上可表现出抗结晶性[3],果葡糖浆的最适贮存温度为28~32℃[4],但是目前许多食品企业的仓储实际状况与该最佳贮藏温度相比,都存在阶段性不符(例如夏季最高温、冬季

最低温阶段),当在低于最佳贮藏温度条件下贮藏一段时间后,果葡糖浆中葡萄糖晶体析出,出现白色浑浊或底部结晶,最终底部结块,这种现象属于葡萄糖在过饱和溶液的正常析出,理论上要完全消除这种结晶是不可能的,只能延缓结晶的产生。1 结晶的特点

1.1 结晶不影响产品品质

果葡糖浆的结晶,其本质上是葡萄糖从糖浆中析出的现象,国家标准GB/T 20882-2007果葡糖浆[4]7.3.3中指出,贮存过程中的晶体析出不影响产品质量,同时,韩利英等人对果葡糖浆的贮存实验表明[5],当F42果葡糖浆在-10℃条件下贮藏20d 后,感官虽然表现为严重的白色结晶,但其他各项理化指标均在标准范围内,与贮藏初期相比无明显变化。包志华[6]对F42果葡

糖浆的贮藏研究也表明,在-10℃下贮一段时间后,葡萄糖晶体析出,感官指标不断变化,但当温度恢复到25℃~37℃之间后,结晶会消失,不影响使用。

在果葡糖浆贮存过程中由于果糖溶解度很高,是糖类中最高的,所以果糖难于结晶,而葡萄糖溶解度比果糖低的多,易于结晶[7],贮藏过程中果葡糖浆出现的晶体析出,只是糖浆物理状态的改变,产品品质依然能满足生产要求。

1.2 结晶产生的原因

通常,晶体的形成过程要经历晶核产生和晶体生长两个步骤,一是指在饱和溶液中生成一定数量的结晶微粒,二是指在晶核的基础上成长为晶体[8]。在淀粉水解后的葡萄糖溶液中,葡萄糖是α型和β型的平衡体系,在25℃条件下这种平衡体系中葡萄糖溶解度只有51%[9],所以当F42果葡糖浆在低于25℃贮存时都处于葡萄糖溶液的过饱和状态。

过饱和溶液是不稳定的,容易析出其中过量的溶质而产生晶核,果葡糖浆中葡萄糖本来是毫无秩序的运动,当外界因素改变,葡萄糖超过既定溶解度后,就有一部分葡萄糖在糖浆中有规则的运动排列起来,形成微小的结晶微粒,继而发展成为一个结晶的中心。

如果晶核形成后,糖浆溶液依然保持低温下的过饱和状态,在过饱和度的推动下溶质会以已生成的晶核为核心进行排列并使其逐渐长大[10]。贮存过程中的搬卸、温度昼夜交替都会加速晶核与分子之间的接触,最终导致结晶形成。若短时间内形成大量晶核,在结晶生长过程中结晶会全面展开,形成膏状或油脂状结晶;若晶核数量少,而且结晶速度慢,每个晶核都有足够的葡萄糖分子排列生长,就会在包装或盛装容器内形成粗粒状或块状结晶。

1.3 影响结晶形成的因素

一般来说,物质的溶解度,随着温度的降低而降低,在饱和溶液中,温度越低越容易出现结晶。研究表明F42型和F55型果葡糖浆在5℃左右条件下结晶最快、最严重,在5℃以下贮藏的产品晶体析出时间减慢,并且晶体析出量不多[11]。笔者也对果葡糖浆的结晶性进行过实验,分别在-8~-10℃、5~8℃、15~18℃三个温度条件下观察F42果葡糖浆的结晶性,结果表明5~8℃贮藏的果葡糖浆结晶出现最早、最严重,这种现象可能与糖浆中果糖成分随温度变化的特性有关。当温度下降,即使果葡糖浆中葡萄糖达到过饱和的程度,但是由于果葡糖浆中果糖等成分在低温下粘滞度和密度大大提高,从而降低和阻碍结晶核的运动和扩散作用,结晶反而迟缓。当温度升高时,虽然糖浆粘滞度降低了,但葡萄糖的溶解度却提高了,从而减少溶液的过饱和程度,也使结晶变慢。因此在贮藏过程中密切关注温度变化,避开易结晶温度就显得尤为重要。

果葡糖浆的结晶是过饱和溶液中葡萄糖的析出,因此葡萄糖浓度与结晶有直接关系,糖浆固形物含量越高,结晶越容易出现,有实验数据显示,当葡萄糖/水比值低于1.7时就不容易结晶[12],在正常生产中也能够发现71%(干物质)F42果葡糖浆结晶性远高于63%(干物质)F42糖浆。

2 延缓结晶的措施

对于果葡糖浆中的葡萄糖析出,目前还没有比较理想的办法杜绝结晶,但根据糖浆的特性及影响结晶的因素可以采取一系列的措施来延缓或减轻晶体的形成。

2.1 适宜的贮藏温度

28~32℃的条件下贮藏产生结晶的可能性最低,因此选择该温度贮藏能明显减缓葡萄糖晶体的析出,但是贮藏温度不宜太高,在40℃以上贮藏时,果葡糖浆会发生美拉德反应而使糖浆逐渐变色,影响产品品质。

2.2 向果葡糖浆中添加多糖成分

多糖溶液因其复杂的分子结构,往往黏度大,能有效降低果葡糖浆的流动性,从而延缓结晶形成。高中法[13]等人向果葡糖浆中加入DE值16~18%的麦芽糊精作为抗结晶物质,结果表明普通42%果葡糖浆在10℃低温条件下放置15~20天即出现结晶,而添加麦芽糊精的产品45天以后才出现结晶,并且结晶程度明显减轻,有利于生产操作使用。

多糖组分虽然能够延缓糖浆的结晶,但如果加入到果葡糖浆中就会对糖浆中的单糖起到一定的稀释作用,即果葡糖浆中果糖的含量以及果糖+葡萄糖总含量下降,而GB/T20882-2007果葡糖浆[4]规定F42糖浆中葡萄糖+果糖≥92%(占干物质),有的用户为了生产需要甚至要求葡萄糖+果糖≥95%(占干物质)。一方面这可能增加糖浆生产企业的成本,为了保证产品中果糖含量≥42%(占干物质),将果糖含量提高至45%甚至更高,另一方面,由于多糖的稀释,该产品中果糖与葡萄糖的总含量有可能达不到国标的要求。因此这就需要生产企业与用户共同探讨最适合的产品方案。

3 结论

高果糖浆结晶是在脱离最佳储存条件下自然发生的现象,葡萄糖随贮藏时间延长形成晶核并聚集,久而久之便形成肉眼可见的结晶,这种现象使糖浆的感官品质大打折扣,很大程度上缩短了糖浆的储存期,对结晶现象的深入研究可以为高果糖浆尤其是F42糖浆的生产和贮存提供理论指导,并及时消除糖浆使用者对结晶现象的误解。

温度是影响果葡糖浆中葡萄糖析出的主要因素,虽然晶体析出并不影响产品质量,但这种变化往往增加处理作业上的不便,因此当实际贮存条件与适宜贮存条件相差较大时,建议企业应合理规划生产,不要积压大量存货。同时,当糖浆出现轻微结晶后,适当升温(不超过40℃)或将结晶糖浆移至室温条件(20~30℃),都能使析出的葡萄糖晶体重新溶解,但切忌频繁摇动和温度交替,会使晶核扩散,结晶速度加快。

参考文献

[1] 胡思刚, 张丹. 旋光法在分析果葡糖浆中果糖含量的应用[J]. 检测与分析, 2006, 9(12): 49-50.

[2] 杨海军. 果葡糖浆的特性及应用[J]. 中国食品工业, 2002, 02: 44.

[3] 蒋丽萍, 张静. 果葡糖浆的特性及其在食品中的应用[J]新疆畜牧业, 2009, 3: 39-40.

[4] GB/T20882-2007果葡糖浆[S].北京:中国标准出版社,2007.

[5] 韩利英, 白雪, 康小红等. 最适保存温度之外不同贮藏温度对果葡糖浆品质的影响[J]. 农产品加工, 2011, 3: 76-77.

[6] 包志华. 果葡糖浆贮存期间各项指标变化的研究[J]. 食品工业, 2011, 7: 58-60.

[7] 曾志刚, 徐欣, 王艾莉. 果葡糖浆对环孢素A发酵影响的研究[J]. 中国抗生素杂质, 2010, 35(9):668-670. [8] 薛前, 徐德昌. 蔗糖连续冷却结晶动力学研究进展[J]. 中国甜菜糖业, 2008, 2:31-33 .

[9] 宋黎, 李新兰. 酸法生产葡萄糖的冷却结晶[J]辽宁化工, 1997, 26(3):160-162.

[10] 张小昊. 葡萄糖酸钠的发酵动力学及其结晶工艺研究[D].江南大学, 2011.

[11] 鲁海波. 果葡糖的结晶性研究[J]. 软饮料工业, 1993, 01: 9-11.

[12] 张力田. 淀粉糖(第1版)[M].北京:轻工业出版社,1983:247-277.

[13] 高中法, 赵玉斌, 李庆. 一种抗果葡糖浆结晶的方法[P]. 2007, CN1974790A.

热塑性塑料简要介绍(pdf 9页)

1.7.1 热塑性塑料 1.聚乙烯(PE ) 聚乙烯(Polyethylene,简称PE)是塑料中产量最大的、日常生活中使用最普通的一种,特点是质软、无毒、价廉、加工方便。注射用料为乳白色颗粒。由于主链为C-C键结构,无侧基,柔顺性好,分子呈规整的对称性排列,所以是一种典型的结晶高聚物。 聚乙烯比较容易燃烧,燃烧时散发出石蜡燃烧味道,火焰上端黄色、下端蓝色,熔融滴落,离火后能继续燃烧。 目前大量使用的PE料主要有两种,即高密度聚乙烯(HDPE)和低密度聚乙烯(LDPE)。 (1)HDPE和LDPE的基本性能: HDPE(高密度聚乙烯)分子结构中支链较少,相对密度0.94g/cm3~0.965g/cm3,结晶度80%~90%。其最突出的性能是电绝缘性优良,耐磨性、不透水性、抗化学药品性都较好,在60℃下几乎不溶于任何溶剂;耐低温性良好,在-70℃时仍有柔软性。 缺点主要有:耐骤冷骤热性较差,机械强度不高,热变形温度低。 HDPE主要用来制作吹塑瓶子等中空制品,其次用作注塑成型,制作周转箱、旋塞、小载荷齿轮、轴承、电气组件支架等,如图1-14a所示。 LDPE(低密度聚乙烯)分子结构之间有较多的支链,密度0.910g/cm3~0.925g/cm3,结晶度55%~65%。易于透气透湿,有优良的电绝缘性能和耐化学性能,柔软性、伸长率、耐冲击性、透光率比HDPE好,机械强度稍差,耐热性能较差,不耐光和热老化。 大量用作挤塑包装薄膜、薄片、包装容器、电线电缆包皮和软性注塑、挤塑件,如图1-14b所示。 HDPE、LDPE在性能上的相同点: 1)吸水率较低,成型加工前可以不进行干燥处理。 2)聚乙烯为剪敏性材料,粘度受剪切速率的影响更明显。 3)收缩率较大且方向性明显,制品容易翘曲变形。 4)由于聚乙烯是结晶型聚合物,它的结晶均匀程度直接影响到制品密度的分布。所以,要求模具的冷 却水布置尽可能均匀,使密度均匀,保证制品尺寸和形状精度。 (2)模具设计时注意点: 1)聚乙烯分子有取向现象,这将导致取向方向的收缩率大于垂直方向的收缩率而引起的翘曲、扭曲变形,以及对制品性能产生的影响。为了避免这种现象,模具设计时应注意浇口位置的确定和收缩率的选择。 2)聚乙烯质地柔软光滑,易脱模。对于侧壁带浅凹槽的制品,可采取强行脱模的方式进行脱模。 3)由于聚乙烯流动性较好,排气槽的深度应控制在0.03mm以下。 a.高密度聚乙烯波纹管b.低密度聚乙烯薄膜 图1-14 聚乙烯产品 2.聚丙烯(PP)

常见塑料物性的检测及标准

常见塑料物性的检测及标准 流动系数 (1)测试的标准:ASTMD1238 (2)常用的测试标准的量测仪器是溶液指数计(Melt In deGer ). (3)流动系数检测方法:是一种表示塑胶材料加工时的流动性的数值。它是美 国量测标准协会(ASTM)根据美国杜邦公司(DuPont)惯用的鉴定塑料特性的方法制定而成,其测试方法是先让塑料粒在一定时间(10分钟)内、一定温度及压力(各种材料标准不同)下,融化成塑料流体,然后通过一直径为 2.1mm圆 管所流出的克(g)数。其值越大,表示该塑胶材料的加工流动性越佳,反之则越差。(4)测试的具体操作过程是:将待测高分子(塑料)原料置入小槽中,槽末接 有细管,细管直径为2.095mm,管长为8mm。加热至某温度后,原料上端藉由活塞施加某一定重量向下压挤,量测该原料在10分钟内所被挤出的重量,即 为该塑料的流动指数。有时您会看到这样的表示法?MI25g/10min ,它表示在 10分钟内该塑料被挤出25克。一般常用塑料的MI值大约介于1~25之间。MI愈大,代表该塑料原料粘度愈小及分子重量愈小,反之则代表该塑料粘度愈大及分子重量愈大。收缩率 测试的标准:ASTMD955 塑胶制品经冷却、固化并脱模成形后,其尺寸与原模具尺寸之差的百分比。 (3)因结构不同的关系,结晶性塑料与非结晶性塑料的收缩率存在明显的差异。一般地,结晶性塑料的收缩率比非结晶性塑料的收缩率大上好几倍(如下表所示)。同时有添加玻璃纤维或其它强化剂的塑胶材料,其收缩率可降低好几倍。

影响成型收缩的因素有热收缩、结晶度(热塑性)或硬化度(热固性) 、弹性回 复、分子配向、与成型条件等因素。 <1>热塑性塑料 <2>热固性塑料 塑料名称 成形收缩率(%) 塑料名称 成形收缩率(%) EP 0.1~0.5 SP 0.0~0.5 MF 0.5~1.5 UF 0.6~1.4 塑料名称 成形收缩率 (%) ABS 0.3~0.8 AS 0.2~0.7 CA 0.3~0.8 CAB 0.4~0.5 CAP 1 CP 0.4~0.5 EC 0.4~0.5 EPS 0.4 FEP 3.0~4.0 FRP 0.1~0.4 EVA 0.5~1.5 HDPE 1.2~2.2 HIPS 0.2~1.0 LCP 0.1~1.0 LDPE 1.5~3.0 塑料名称 成形收缩率 (%) PA 0.6~2.5 PA-6 0.5~2.2 PA-66 0.5~2.5 PA-610 1.2 PA-612 1.1 PA-11 1.2 PA-12 0.3~1.5 PAR 0.8~1.0 PBT 1.3~2.4 PC 0.4~0.7 PCTFE 0.2~2.5 PE 0.5~2.5 PET 2.0~2.5 PES 0.5~1.0 PMMA 0.2~0.8 塑料名称 成形收缩率 (%) POM 0.8~3.5 PP 1.0~2.5 PPO 0.5~0.7 PPS 0.6~1.4 PS 0.2~1.0 PVA 0.5~1.5 PVAC 0.5~1.5 PVB 0.5~1.5 硬质PVC 0.1~0.5 软质PVC 1.0~5.0 PVCA 1.0~5.0 PVDC 0.5~ 2.5 PVFM 0.5~1.5 SAN 0.2~0.6 SB 0.2~1.0

结晶分离技术在制药工业中的应用

《结晶分离技术在制药工业中的应用》 学院:化学化工学院 专业:制药工程 班级:121班 姓名:陈子阳 学号:20120934105 日期:2014年12月10日

摘要:结晶分离技术在制药工业中的应用非常广泛,为数众多的原料药及医药中间体的最终分离或提纯都是应用结晶方法进行,并且形成晶态物质的最终产品,所以,结晶过程又是直接影响产品质量的重要环节之一。目前制药工业由于其产量小、间歇操作等特点,其实用的结晶器多数属于比较落后的老设备。 关键词:结晶结晶过程结晶分离结晶器 一、结晶的基本原理 结晶是固体物质以晶体状态从蒸气、溶液或熔融物中析出的过程。结晶是对固体物料进行分 离、纯化的单元操作过程,显然固体物质(溶质) 在溶剂中的溶解度直接影响到结晶过程。而溶液 的过饱和度则是工业结晶工程进行的主要推动力。

能够与固相处于平衡的溶液就称为该固体的饱和溶液,而此时的溶解度则是该溶质的饱和溶解度。我们通过溶解度平衡曲线来表现不同温度下溶质在同一溶剂的溶解度是不同的。若将过饱和溶液继续冷却,那么澄清的溶液中就会开始析出晶核,这种不稳定的状态区称为不稳区。标志溶液过饱和而欲自发地产生晶核的极限浓度曲线称为超溶解度曲线,它与溶解度平衡曲线之间的区域称为结晶的介稳区。 在工业结晶过程中只有尽量控制在介稳区才能避免自发成核以得到平均粒度较大的晶体。溶液的过饱和是发生晶析过程的必要条件。 二、结晶的过程 在结晶的实践中可以观察到推动力越大,结晶

速率愈大的现象,而且在这种情况下往往获得的结晶颗粒数且颗粒细微;相反则会获得较少的颗粒数和较大的晶粒。将析出结晶的细微颗粒连同母液一起放置,结果是颗粒数减少而颗粒增大。因此在结晶析出的过程中存在着晶核的生成和晶体的成长两个并存的过程。 在工业结晶过程中首先要力图避免发生初级成核,以防止由于晶核的过多而造成晶体无法继续成长。结晶时间的延长有利于晶体的成长。同时为了达到较高的纯度,往往需要对晶体进行重结晶操作。 三、结晶分离技术的发展与研究 结晶分离技术近年来发展很快,除了传统的冷却结晶、蒸发结晶、真空结晶等进一步得到发 展与完善外,新型结晶技术如等电点结晶,加压结 晶、萃取结晶等也都在工业上得已应用或正在推

果葡糖浆生产工艺综述

果葡糖浆生产工艺综述 宋俊梅徐京凯 (山东轻工业学院济南250353) 摘要::主要介绍了果葡糖浆及其用途和生产工艺过程、异构化条件、系统及生产运行要点等,通过分析认为,正确的工艺设计、精准的工艺控制、熟练的系统操作和科学的工艺管理是保证高效生产果葡糖浆的关键,并就这些关键因素做了相关阐述。 关键词:果糖,果葡糖浆,异构酶,异构化,工艺控制,生产工艺 1 果葡糖浆的物理特性和甜味特性 果葡糖浆( Fructose corn syrups) 也称高果糖浆或异构糖浆, 它是以酶法糖化淀粉所得的糖化液经葡萄糖异构酶的异构作用, 将其中的一部分葡萄糖异构成果糖。 果葡糖浆按其生产发展和产品组分质量分数( w ) 的不同划分为3 代, 第1 代果葡糖浆称为葡果糖浆, 简称42 糖, 其糖分组成中w ( 果糖) 为42% ( 以干基计) , w ( 葡萄糖) 为50% , w ( 低聚 糖) 为5% , 其质量分数为71%, 甜度约等于蔗糖; 第2 代果葡糖浆称为果葡糖浆, 简称55 糖, 其糖分组成为w ( 果糖) 为55% , w ( 葡萄糖) 为40% , w ( 低聚糖) 为5% , 其质量分数为77%, 甜度约为蔗糖的1. 1 倍; 第3 代果葡糖浆称为高果糖浆, 简称90 糖, 其糖分组成为w ( 果糖) 为90%, w( 葡萄糖) 为7% , w ( 低聚糖) 为3% , 其质量分数为80% , 甜度为蔗糖的1. 4 倍。 果葡糖浆无色无嗅, 常温下流动性好, 使用方便, 在饮料生产和食品加工中可以部分甚至全部取代蔗糖, 而且, 较其更具有淳厚的风味, 应用于饮料中可以保持果汁饮料的原果香味。果葡糖浆的优点, 主要来自于其成分组成中的果糖, 并随果糖含量的增加更为明显。果糖服用后, 在人体小肠内吸收速度慢, 而在肝脏中代谢快, 代谢中对胰岛素依赖小, 故不会引起血糖升高, 这对糖尿病患者有利。在医药上, 吡喃果糖可加快乙醇的代谢作用, 可用于治疗乙醇中毒。静脉注射500mL 质量分数为40%的果糖溶液可达效果。美国果糖液也有取代葡萄糖大输液的迹象。此外它在食品工业中还有以下优点: 1) 甜度高。果糖的甜度为蔗糖的1. 5 倍, 并且具有两种分子构型: 型和型, 型果糖的甜度是型果糖的3 倍, 低温时部分型果糖转化为型果糖, 而使甜度增加。根据这一特性, 果葡糖浆最适合于清凉饮料和冷饮食品的生产。 2) 风味好。果葡糖浆的主要成分和性质接近于天然果汁和蜜蜂, 具有蜂蜜和水果清香。味感方面, 味觉甜度比蔗糖浓, 且有清凉感, 用于果汁饮料生产时, 可以突出原果香味。此外, 果葡糖浆和蔗糖混合使用可使甜味丰满, 风味更好。3) 保湿性好。果糖为无定形单糖, 吸湿性大, 具有良好的保水分能力和耐干燥能力, 这一特性可使面点保持新鲜松软, 从而延长了产品货架期。 4) 渗透压大。果葡糖浆的主要成分是单糖, 其渗透压高于双糖( 如蔗糖) , 用于蜜饯、果脯生产时可以缩短糖渍时间。高渗透压还可以抑制微生物生长, 从而具有防腐保鲜作用。 5) 热量低。果糖的甜度高, 发热量低, 食用后增加脂肪少, 适于怕热及肥胖的人饮用。 6) 营养丰富。单糖可直接进入血液为人体吸收, 因而较快参与新陈代谢。在生产以加快恢复肌体功能、消除疲劳为特点的食品中已成为难以取代的糖源。虽然

梯恩梯生产工艺危险性分析及预防措施(通用版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 梯恩梯生产工艺危险性分析及预 防措施(通用版)

梯恩梯生产工艺危险性分析及预防措施(通 用版) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 梯恩梯是一种重要的军用炸药,也是生产其他合成炸药的原料。在生产中所用主要原料为浓硫酸、浓硝酸和甲苯,浓硫酸、浓硝酸具有严重腐蚀性和氧化性,甲苯易燃,梯恩梯和其中间物的有火灾和爆炸危险,因此,很容易发生爆炸、火灾和灼烫事故,这些事故会给国家财产和人民生命造成极大威胁,做好梯恩梯安全生产工作,非常重要。 1梯恩梯生产工艺流程 我国目前采用的梯恩梯工艺流程如图1所示。 图1梯恩梯生产工艺简图 2火灾事故危险性分析 2.1原料泄漏是导致事故的重要原因 生产梯恩梯的原料主要有甲苯、浓硝酸和浓硫酸,这些原料储存在原料工段的大型储罐中,由离心泵通过压力管道送往硝化工段。如

甲苯的泄漏,可能在局部达到爆炸极限,遇明火或静电易发生火灾。而浓硫酸和浓硝酸,具有强烈的腐蚀性,很容易造成设备和管线腐蚀破坏,浓酸一旦喷出,会给操作人员带来巨大危害。1979年,某梯恩梯生产厂家,由于浓硝酸从离心泵填料处喷出,造成一名工人终身致残。 2.2硝化机具有爆炸危险 硝化机是制造梯恩梯的核心机械,也是容易造成恶性事故的地方。硝化机由容器壳体、搅拌系统、分离系统及蛇管冷却系统等组成。这些系统均在强腐蚀介质中工作,很容易发生故障。如某梯恩梯生产厂三段硝化中采用碳钢蛇管冷却,蛇管在运行中发生泄漏,使少量水进入硝化机,与浓硫酸发生剧烈反应,使机内压力骤然升高,将机盖和搅拌系统炸起10m高。搅拌桨叶片脱落,会使机内局部温度过高,引起爆炸。 2.3自动仪表失灵会引起恶性事故 目前,梯恩梯生产厂家均采用自动控制和人工操作双保险安全措施,由于长时间的自动控制,使操作人员麻痹大意,责任心弱,有时甚至脱岗,一旦仪表失灵,会造成严重后果。20世纪80年代,曾发生过此类事故,造成整个生产线被炸毁。

PP为非极性的结晶塑料

PP为非极性的结晶塑料,吸水率很低,约为0.03%~0.04%,注塑时一般不需进行干燥(必要时,可在80~100℃下干燥1~2h即可)。 PP的熔点为165~170℃,分解温度为350℃,最大结晶速率温度为120~130℃,成型温度范围较宽(205~315℃)。注塑用PP的适宜MFR范围为2~15 g/10min,熔体的流动性较好,料筒温度控制在210~280℃,喷嘴温度比料筒最高温度低10~30℃。当制品壁薄、形状复杂时,料筒温度可提高至280~300℃:而当制品壁厚大或树脂的MFR高时,料筒温度可降低至200~230℃。 PP熔体的粘度对剪切速率的依赖性大于对温度的依赖性,因此,在注塑时,通过提高注射压力或注射速率来增大熔体流动性比提高料筒温度更有效(注射压力通常为70~120 MPa)。此外,注射压力的提高还有利于提高制品的拉伸强度和断裂伸长率,对制品的冲击强度无不利影响,特别是大大降低了收缩率,但过高的注射压力易造成制品溢料,并增加了制品的内应力。 注塑PP时的模具温度为40~90℃。提高模温,PP的结晶度提高,制品的刚性、硬度增加,表面光洁度较好,但易产生溢料、凹痕、收缩等缺陷;而模温过低,结晶度下降.制品的韧性增加,收缩率减小,但制品表面光洁度差,面积较大、壁厚较厚的制品还容易产生翘曲。 在PP的成型周期中,保压时间的选择比较重要。一般,保压时间长,制品的收缩率低,但由于凝封压力增加,制品会产生内应力,故保压时间不能太长。 与其它塑料不同,PP制品在较高的温度下脱模不产生变形或变形很小,实际往往采用较低的模温,因此,PP的成型周期是较短的 物化性能 1在低温时耐冲击性较差 2困难被涂装或被黏著剂黏著 3用玻璃纤维补强的成型表面不光滑 聚丙烯提供了大部份热塑性塑胶所无法达到的特性与价位的平衡性。 聚丙烯容易成型且有很好的耐化学性和机械特性。 玻璃纤维补强的聚丙烯能改善尺寸稳定性,抗翘曲,刚性和强度。40%玻璃纤维补强的聚丙烯在264 psi下之热变形温度可提升到149°C。聚丙烯用40%玻璃纤维补强之热膨胀系数降至原来的一半。 当加入化学偶合剂时,玻璃纤维补强聚丙烯会有意义地改善其抗拉强度和抗弯强度而超越一般玻璃纤维补强的聚丙烯。

液氨贮罐危险性分析及预防措施

液氨储罐生产运行过程中危险性分析及预防措施 赵新文 (山西天泽煤化工集团股份公司 048026) 1概述 氨是生产尿素、硝铵、碳铵等氮肥的中间产品,也是其它化工产品的基础原料。因具有易燃、易爆、易中毒等危险特性,被列入危险化学品名录。按照《危险化学品重大危险源辨识》(GB18218-2009)规定氨临界储存量大于10吨就构成了重大危险源。所有液氨储罐均属于三类压力容器。因此,液氨储罐从设计、制造、安装使用,运行、充装到贮存,都必须严格执行《特种设备安全监察条例》、《压力容器定期检验规则》等安全规定及危险化学品安全管理的规定,严格执行安全操作规程和定期技术检测、检验制度,严禁超温、超压、超量存放,确保安全运行。现将液氨储罐生产运行过程中的危险特性和危险性分析,提出一些预防性和应急处置措施,与氮肥生产企业同行进行交流探讨。 2 液氨储罐运行过程的危险性分析 2.1氨的危险特性 氨是一种无色透明的带刺激性臭味的气体,易液化成液态氨。氨比空气轻,极易溶于水。由于液态氨易挥发成氨气,氨气与空气混合到一定比例时遇明火能爆炸,爆炸范围为15-27%,车间环境空气中最高允许浓度为30mg/m3。泄漏氨气可导致中毒,对眼、肺部黏膜、或皮肤有刺激性,有化学性冷灼伤危险。 2.2 生产运行过程危险性分析 2.2.1在氨合成生产岗位的液氨主要通过氨分离器和冷交换器下部的放氨阀输送至液氨储罐,因此氨液位的控制非常关键。如果放氨速度过快、

液位操作控制过低或其它仪控失灵等原因,会导致合成高压气窜入液氨储罐,造成储罐超压,氨气大量泄漏,危害极大。 2.2.2 液氨储罐的存储量超过储罐容积的85%,压力超出在控制指标范围或者在液氨倒槽操作,未严格按照操作规程规定程序、步骤操作,会发生超压泄漏爆炸事故。 2.2.3 液氨充装时未按规程规定过量充装、充装管道爆破会导致泄漏中毒事故。 2.3 设备、设施危险性分析 2.3.1 液氨储罐的设计、检测、维护保养缺失或不到位,液位计、压力表和安全阀等安全附件存在缺陷或隐患时,可能会导致储罐泄漏事故。 2.3.2 夏季或气温高时,液氨储罐未按要求设置遮阳棚、固定式冷却喷淋水等预防性设施,会造成储罐超压泄漏。 2.3.3 防雷、防静电设施或接地损坏、失效,可能会导致储罐遭受电击。 2.3.4 生产工艺报警、联锁、紧急泄压、可燃有毒气体报警仪等装置失效,会使储罐发生超压泄漏事故或事故扩大。 2.4 其他作业的危险性分析 2.4.1 在生产巡检和设备内检修过程中,容易发生高处坠落、受限空间作业中毒窒息等事故。 2.4.2 液氨罐区防爆区内动火、动土作业措施未落实到位,会引发着火爆炸事故。 3 事故预防措施 3.1 生产工艺操作预防措施 3.1.1 严格执行操作规程,必须十分重视合成岗位放氨操作,控制好冷交、氨分液位,保持液位稳定控制在1/3~2/3指标范围内,防止液位过低

热塑性塑料成型工艺技术

第一章热塑性塑料成型 热塑性塑料品种每繁多,即使同一品种也由于树脂分子及附加物配比不同而使其使用及工艺特性也有所不同。另外,为了改变原有品种的特性,常用共聚、交联等各种化学方法在原有的树脂结构中导入一定百分比量的其它单体或高分子等,以改变原有树脂的结构成为具有新的改进物性和加工性的改性产品。例如,ABS即为在聚苯乙烯分子中导入了丙烯腈、丁二烯等第二和第三单体后成为改性共聚物,可看作称改性聚苯乙烯,具有比聚苯乙烯优异综合性能,工艺特性。由于热塑性塑料品种多、性能复杂,即使同一类的塑料也有仅供注塑用和挤出用之分,故本章节主要介绍各种注塑用的热塑性塑料。 1、收缩率 热塑性塑料成型收缩的形式及计算如前所述,影响热塑性塑料成型收缩的因素如下: 1.1塑料品种热塑性塑料成型过程中由于还存在结晶化形起的体积变化,内应力强,冻结在塑件内的残余应力大,分子取向性强等因素,因此与热固性塑料相比则收缩率较大,收缩率范围宽、方向性明显,另外成型后的收缩、退火或调湿处理后的收缩率一般也都比热固性塑料大。 1.2塑件特性成型时熔融料与型腔表面接触外层立即冷却形成低密度的固态外壳。由于塑料的导热性差,使塑件内层缓慢冷却而形成收缩大的高密度固态层。所以壁厚、冷却慢、高密度层厚的则收缩大。另外,有无嵌件及嵌件布局、数量都直接影响料流方向,密度分布及收缩阻力大小等,所以塑件的特性对收缩大小、方向性影响较大。 1.3进料口形式、尺寸、分布这些因素直接影响料流方向、密度分布、保压补缩作用及成型时间。直接进料口、进料口截面大(尤其截面较厚的)则收

缩小但方向性大,进料口宽及长度短的则方向性小。距进料口近的或与料流方向平行的则收缩大。 1.4成型条件模具温度高,熔融料冷却慢、密度高、收缩大,尤其对结晶料则因结晶度高,体积变化大,故收缩更大。模温分布与塑件内外冷却及密度均匀性也有关,直接影响到各部分收缩量大小及方向性。另外,保持压力及时间对收缩也影响较大,压力大、时间长的则收缩小但方向性大。注塑压力高,熔融料粘度差小,层间剪切应力小,脱模后弹性回跳大,故收缩也可适量的减小,料温高、收缩大,但方向性小。因此在成型时调整模温、压力、注塑速度及冷却时间等诸因素也可适当改变塑件收缩情况。 模具设计时根据各种塑料的收缩范围,塑件壁厚、形状,进料口形式尺寸及分布情况,按经验确定塑件各部位的收缩率,再来计算型腔尺寸。对高精度塑件及难以掌握收缩率时,一般宜用如下方法设计模具: ①对塑件外径取较小收缩率,内径取较大收缩率,以留有试模后修正的余地。 ②试模确定浇注系统形式、尺寸及成型条件。 ③要后处理的塑件经后处理确定尺寸变化情况(测量时必须在脱模后24小时以后)。 ④按实际收缩情况修正模具。 ⑤再试模并可适当地改变工艺条件略微修正收缩值以满足塑件要求。 2、流动性 2.1热塑性塑料流动性大小,一般可从分子量大小、熔融指数、阿基米德螺旋线流动长度、表现粘度及流动比(流程长度/塑件壁厚)等一系列指数进行分析。分子量小,分子量分布宽,分子结构规整性差,熔融指数高、螺流动长度长、表现粘度小,流动比大的则流动性就好,对同一品名的塑料必须检查其说明书判断其流动性是否适用于注塑成型。按模具设计要求大致可将常

结晶性和非结晶性塑料的注塑成型

非结晶型塑料的注射成型 (1)苯乙烯系树脂 所谓苯乙烯系树脂是包括聚苯乙烯、AS树脂、ABS树脂等。这类树脂的成型温度宽、易于成型。严谨地讲,通用聚苯乙烯(GPPS)的流动性最好,高抗冲聚苯乙烯(HIPS)中所含橡胶成分愈多,流动性就愈差。ABS 树脂也有类似特点。 一般须注意到通用聚苯乙烯质地脆,在脱模时,易出现开裂现象。对于AS树脂、ABS树脂由于其组成中的丙烯腈成分而加热后容易变色。 (2)聚甲基丙烯酸甲酯(丙烯酸系树脂) 聚甲基丙烯酸甲酯(PMMA)比聚苯乙烯熔体粘度高,其成型性一般比聚苯乙烯差。在丙烯酸系树脂中虽然也有流动性比较好的树脂,但是,在此类树脂中,比较好的耐热性与抗冲击性牌号的树脂比通用牌号的树脂成型性差,需要比通用树脂更高的加工温度与注射压力。然而,过度提高树脂温度会导致热降解,应予以注意。 另外,需加大模具的流道与浇口,从而改善树脂的流动状态。 (3)聚碳酸酯 聚碳酸酯(PC)熔体粘度高,加工时需要比聚乙烯、聚苯乙烯等通用树脂更高的温度与注射压力。但过度提高料筒温度和物料在料筒内停留时间过长,会产生热降解,使制品色泽改变及物理-机械性能下降,故需予以注意。 模具温度一般为85~120℃。虽然在模温较低时也能成型。但当模温过低时,则由于制品的形状与壁厚不同,会不同程度地导致成型困难以及增大制品的残余应力,日后易成为应力开裂的原因。同时,在使用脱模剂时,为避免由于残余应力而产生开裂,宜采用粉末状硅树脂脱模剂,尽量避免采用液体脱模剂。 (4)改性PPO(mPPO) mPPO的很多物理性能特点类似聚碳酸酯,其成型性也颇相似。 mPPO成型时树脂温度按其不同牌号而定,一般为245~300℃。然而,在成型周期特别短时,温度则应稍高一些。 当模具温度达某温度以上时,几乎已不再影响树脂的流动性。但因考虑到制品的形状与壁厚等,为使残余应力降低到最低限度,改善制品的外观及提高熔接线处的强度,一般模温为80~100℃较为理想。

果糖生产工艺

果糖生产工艺 生产工艺2010-01-22 15:59:13阅读415评论14 字号:大中 小订阅 生产果糖的方法是用淀粉做原料,淀粉水解后经固定化葡萄 糖异构酶转化为糖,其中含有42%的果糖和58%的葡萄糖,这种混合物称为果葡糖浆或高果糖浆。 一、葡萄糖和果糖异构化反应 葡萄糖为醛己糖,果糖为酮己糖,二者互分同分异构体,在 一定条件下可以相互转化。 1、碱性异构化反应 在碱性条件下,葡萄糖通过1、2烯二醇生成果糖、D、甘露糖,由于碱异构化达到反应平衡点所需时间长,转化率较低,糖的分解反应显著,还原糖损失过多,产生有色物质和酸性物质, 影响颜色和味道,精致较困难,故在工业上未曾使用。 通过碱性异构化反应,葡萄糖转化成果糖的转化率一般约达2127%,糖分损失约1015%,采用较高的反应温度,较短的反应时间和较高的糖浓度,碱性催化效果有一定的提高,异构转化率可达到3335%,糖分损失为23%,在碱性催化剂中以氢氧化钠的催化效果较好。 2、葡萄糖异构酶反应 葡萄糖在异构酶作用下可转变成果糖的,但这种催化反应是

可逆的,即葡萄糖向也可以向果糖的转变,因此异构酶作用在理 论上可使50%的葡萄糖转为果糖,达到平衡点。 葡萄糖异构酶在较高下可催化果糖发生异构生成阿洛酮糖 和甘露糖,但在7或以下进行,只有微量的产生。对食品应用无影 响。 由于异构化最后阶段反应速度慢,为了抑制和降低糖的分解,减少糖分损失,一般在果糖含量达4243%便终止反应。由葡萄糖向果糖转变的反应是吸热反应,异构化反应温度升高,平衡 点向果糖移动,但超过70 C以上进行反应时,酶易受热活力消失,糖分也会受热分解,产生有色物质,所以实际工业上的反应温度是有一定限制的。 硼酸盐能与果糖生成络和结构,使转化率提高到8090%,且硼酸盐能回收重复使用,可回收率还达不到规模生产的要求,影 响实际应用效果。 二、果葡糖浆生产工艺 在葡萄糖异构酶的催化作用下,葡萄糖液中的一部分转变为果糖,因为它的糖分组成是果糖和葡萄糖的混合糖浆,故称为果 葡糖浆。由玉米淀粉得来的果葡糖浆叫高果玉米糖浆(),从其它淀粉比如大米、木薯、马铃薯、小麦等得到的果葡糖浆称为高果糖浆()。果葡糖浆有42型(含果糖42%), 55型(55%), 90 型 (90%),分别表示为42、55和90。 42果葡糖浆经色谱分离,可得果糖含量高达90%以上的糖浆

十四种常用热塑性塑料(非常详细。家电结构必备)

十四种常用的热塑性塑料之一 默认分类 2009-06-25 16:38 阅读114 评论0 字号:大中小1. PP 1.1性能和用途 PP< Polypropylene聚丙烯)是与我们日常生活密切相关的通用树脂,是丙烯最重要的下 游产品,世界丙烯的50%,我国丙烯的65%都是用来制聚丙烯。聚丙烯是世界上增长最快 的通用热塑性树脂,总量仅仅次于聚乙烯和聚氯乙烯 PP是结晶性塑料,一般为呈不规则圆形表面有蜡质光泽白色颗料。密度0.9-0.91g/cm3,是塑料中最轻的一种。有较明显的熔点,根据结晶度和分子量的不同,熔点在170℃左 右,而其分解温度在290℃以上,因而有着很宽的成型温度范围,成型收缩率1.0-2.5%。P P的使用温度可达100℃,具有良好的电性能和高频绝缘性,且不受湿度影响。但低温下 易脆,不耐磨,易老化。适于制作一般机械零件,耐腐蚀零件和绝缘零件。此外,用PP 料制做的铰链产品具有突出的耐疲劳性能。 1 . 2 成型注意事项 PP的吸湿性很小,成型前可以不要干燥,如果存偖不当,可在70℃左右干燥3小时。成型流动性好,但收缩范围及收缩值大,易发生缩孔,凹痕,变形。冷却速度快,浇注系统及 冷却系统应缓慢散热。PP在成型时要特别注意控制原料的熔化时间,PP长期与热金属接 触易分解。易发生融体破裂,料温低方向方向性明显,低温高压时尤其明显。模具温度方面,在低于50℃度时,塑件不光滑,易产生熔接不良,流痕,在90℃以上易发生翘曲变形。塑料壁厚须均匀,避免缺胶,尖角,以防应力集中。 2.PE 2.1性能和用途 PE< Polyethylene 聚乙烯),有高密度聚乙烯<低压聚合),低密度聚乙烯<高压聚合),线形低密度聚乙烯,超高分子量聚乙烯等多种,密度在0.91-0.97 g/cm3之间,成型收缩率为1.5-3.6%。熔点在120-140℃左右,分解温度在270℃以上。PE的耐腐蚀性,电绝缘性

塑料结晶取向应力分析

塑料结晶取向应力分析 第一节结晶效应 1、结晶概念 聚合物的超分子结构对注塑条件及制品性能的影响非常明显。聚合物按其超分子结构可分为结晶型和非结晶型,结晶型聚合物的分子链呈有规则的排列,而非结晶态聚合物的分子链呈不规则的无定型的排列。不同形态表现出不同的工艺性质误物理—机械性质。一般结晶型聚合物具有耐热性和较高的机械强度,而非结晶型则相反。分子结构简单,对称性高的聚合物都能生成结晶,如PE等,分子链节虽然大,但分子间的作用力很强也能生成结晶,如POM,PA等。分子链刚性大的聚合物不易生成结晶,如PC,PSU,PPO等。 评定聚合物结晶形态的标准是晶体形状,大小及结晶度。 2 、聚合物结晶度对制品性能的影响 (1)密度. 结晶度高说明多数分子链已排列成有序而紧密的结构,分子间作用力强,所以密度随结晶度提高而加大,如70%结晶度的PP,其密度为0.896,当结晶度增至95%时则密度增至o.903。 (2)拉伸强度结晶度高,拉伸强度高。如结晶度70%的聚丙烯其拉伸强度为27.5mpa,当结晶度增至95%时,则拉伸强度可提高到42mpa。 (3)冲击强度冲击强度随结晶度提高而减小,如70%结晶度的聚丙烯,其缺口冲击强度15.2kgf-cm/cm2,当结晶度95%时,冲击强度减小到4.86kgf-cm/cm2。 (4)热性能结晶度增加有助于提高软化温度和热变形温度。如结晶度为70%的聚丙烯,载荷下的热变形温度为125度,而结晶度95%时侧为151度。刚度是注塑制品脱模条件之一,较高的结晶度会减少制品在模内的冷却周期。结晶度会给低温带来脆弱性,如结晶度分别为55%,85%,95%的等规聚丙烯其脆化温度分别为0度,10度,20度。 (5)翘曲结晶度提高会使体积减小,收缩加大,结晶型材料比非结晶型材料更易翘曲,这是因为制品在模内冷却时,由于温度上的差异引起结晶度的差异,使密度不均,收缩不等,导致产生较高的内应力而引起翘曲,并使耐应力龟裂能力降低。 (6)光泽度结晶度提高会增加制品的致密性。使制品表面光泽度提高,但由于球晶的存在会引起光波的散射,而使透明度降低。 3、影响结晶度的因素 (1)温度及冷却速度结晶有一个热历程,必然与温度有关,当聚合物熔体温度高于熔融温度时大分子链的热运动显著增加,到大于分子的内聚力时,分子就难以形成有序排列而不易结晶;当温度过低时,分子链段动能很低,甚至处于冻结状态,也不易结晶。所以结晶的温度范围是在玻璃化温度和熔融温度之间。在高温区(接近熔融温度),晶核不稳定,单位时间成核数量少,而在低温区(接近玻璃化温度)自由能低,结晶时间长,结晶速度慢,不能为成核创造条件。这样在熔融温度和玻璃化温度之间存在一个最高的结晶速度和相应的结晶温度。 温度是聚合物结晶过程最敏感性因素,温度相差1度,则结晶速度可能相差很多倍。聚合物从熔点温度以上降到玻璃化温度以下,这一过程的速度称冷却速度,它是决定晶核存在或生长的条件。注塑时,冷却速度决定于熔体温度和模具温度之差,称过冷度。根据过冷度可分以下三区。 ①等温冷却区,当模具温度接近于最大结晶速度温度时,这时过冷度小,冷却速度慢,结晶几乎在静态等温条件下进行,这时分子链自由能大,晶核不易生成,结晶缓慢,冷却周期加长,形成较大的球晶。 ②快速冷却区,当模具温度低于结晶温度时过冷度增大,冷却速度很快结晶在非等温

(生产管理知识)淀粉糖的生产工艺和种类

淀粉糖的生产工艺和种类 生产工艺有酸法、酶法、酸酶法三种,不同的工艺,其甜度、胶粘性、增稠性、保潮性、吸湿性、渗透压力、颜色稳定性、焦化性、还原性、发酵性是不同的,不管哪种工艺都是一个复杂的水解过程。淀粉水解过程存在三种主要反应:一是水解为葡萄糖;二是水解成葡萄糖后重新复合成异麦芽糖等复合糖;三是葡萄糖分解生成5-烃甲基糖醛及酸丙酸色素物质。 1.酸法水解。有盐酸、草酸,其中盐酸的水解淀粉能力高,但酸法水解缺乏专一性,同时产生复合反应,温度愈高,复合反应愈多,生成的有色物质多,颜色深,用酸量多,需中和碱量大,因之产生的灰分也多。 2.酶法水解。具有高度的专一性,副产物少,纯度高,糖色浅,因之减少了净化工序和净化剂的用量,与酸法相比,可以转化较高浓度的固形物,提高效率,减少损耗,降低成本,所得母液还可以利用,而且在常温常压下进行,设备工艺都比较简单。 3.酸酶法。投料资度18~20Bx°,为酸法的两倍,节省费用,缩短时间,DE值(糖化率)可达96%,纯度高,糖液色浅,容易结晶析出,用酸量少,仅为酸法的20%,产品质量高。 淀粉糖产品由于是淀粉水解而得,因此,淀粉水解的速度、水解的程度、液化、糖化、净化、结晶、淀粉原料、催化效率以及工艺设备性能等,均能影响淀粉糖液的质量。淀粉品种不同,化学结构不同,对液化亦有不同的影响。淀粉中的蛋白质、脂肪、灰分等杂质均能影响催化效率,降低酸的有效浓度,尤其是淀粉中的含氮物质对热稳定性有明显的影响。硫酸铵受热分解产生氮与羧甲基糠醛作用,能产生大量有色物质,迅速焦化。玉米中的植酸盐要消耗部分酸。总之不管什么液化方法,都存在不溶性淀粉颗粒,这种淀粉颗粒能与脂肪形成络合物,呈螺旋结构,不容易水解,降低了糖化率。

危险源分析及预防措施

危险源分析及预防措施 1概述 1.1锅炉的基本知识 1.1.1锅炉的定义 锅炉是能量转换设备,是把燃料燃烧(氧化反应),是燃料的化学能转换为热能的统一体。 1.1.2锅炉的工作过程 锅炉的工作过程包括三个部分: (1)燃料不断剧烈氧化的燃烧过程, (2)火焰和高温烟气不断把热量传递给锅内水的传热过程, (3)水在锅内不断流动循环,吸热、升温和汽化(热水锅炉达不到沸腾汽化温度)的过程。这三个过程在锅炉内不断进行,通过锅炉燃烧设备、附属设备及仪表附件三个工作系统来实行。 1.2锅炉行业概况 我国的工业锅炉制造业随着国民经济的蓬勃发展,取得了很大的进步,到目前为止,全国持有各级锅炉制造许可证的企业超过一千家,生产各种不同压力等级和容量的锅炉。 从八十年代起,我国开始对锅炉制造企业的管理实行许可证制度,许可证分为A、B、C、D、E(包括E1、E2)级。2000年国家对锅炉制造许可证等级的划分作了调整,同时对常压热水锅炉也采用了制造许可证制度,调整后新的许可证分为A、B、C、D四级。新的A级相当于原来的A、B级;B级相当于原来的C、D 级;C级相当于原来的E1级;D级相当于原来的E2级。级别调整前后企业的构成情况见表1-1。 表1-1

1.3锅炉制造业的发展特征 1)中国锅炉制造企业实行许可证制度。自锅炉制造企业实行许可证以来,锅炉制造业得到了规范并壮大,生产能力不断提高,但行业发展极不平衡,生产集中度不高,大而全、小而全的现象普遍存在。近十多年来,全国工业锅炉年产量一直在710万蒸吨间徘徊。行业规模却由1987年的551家企业增加到2001年的969家,扩大将近一倍,可见厂点太多,大多没有形成规模生产,而且所增加的企业绝大多数是规模很小的C、D 两级企业,锅炉年产量平均不过50万蒸吨左右。 2)1991-2001 年工业锅炉产品发展情况经过五十多年来的发展,中国工业锅炉行业已形成比较完整的产品体系,但近十年来,随着国民经济的蓬勃发展和人民生活的不断改善,同时受国家能源结构变化和日益严格的环境保护政策的制约,工业锅炉锄品发展出现了新的变化。无论从锅炉容量、参数、炉型还是从燃烧方式、燃料种类来看,中大容量锅炉所占比例显著上升( ≥10t/h 的锅炉由1991年的25 %增至2001年的54 %) ,热水锅炉产量的比例有所增长,水火管锅炉所占比例显著下降(在容量上由1991年的45%降至2001年的21%) ,流化床锅炉快速发展(在锅炉总容量中所占比例由1991 年的3 %增至2001 年的10 %以上) ,燃油气锅炉所占比例增加(由1991 年的不足6 %增高至2001 年的15 %以上) 。另外,电热锅炉及垃圾锅炉等特种锅炉开始出现,但所占比例不高1.4锅炉发生事故的原因 1.4.1锅炉本身有先天性缺陷 (1)结构不合理。如主要受压部件采用不合理的角焊连接形成,水循环不良,锅炉某些部位不能自由膨胀等。 (2)金属材料不符合要求,质量不合格。 (3)制造质量不好。如几何形状严重超差,焊接质量不合格等。 (4)受压元件强度不够。 (5)安装不合理。如最低安全水位低于最高火界,不能自由膨胀,该绝缘处未绝缘等。

反应萃取技术地研究进展与应用

反应萃取技术的研究进展与应用 摘要:化工过程强化技术是节能减排的重要途径,其包括设备强化和方法强化,反应萃取技术就是方法强化的技术之一。本文综述了反应萃取技术的基本原理及其分类。并介绍了其研究现状和在各个领域的应用,并对其今后的发展前景做出了预测。与传统的萃取技术相比较,反应萃取技术作为一种新型耦合技术能显著提高效率、减少废物排放,是一种高效、节能、清洁、安全、可持续发展的化工新技术。 关键词:反应萃取;进展;应用;超临界 Research Progress and Application of Reactive Extraction Technology ABSTRACT:Chemical process intensification technology is an important way of energy saving and emission reduction. It includes equipment strengthening and methods strengthening, and reaction extraction technology is one of the methods strengthening. The basic principle and classification of reaction extraction technique are reviewed in this paper.Its research status and application in various fields are introduced, and the prospect of its future development is forecasted. Compared with the traditional extraction technology, the reaction extraction technology can improve efficiency and reduce waste emissions, which is a new technology for chemical engineering, energy saving, clean, safe and sustainable development. KEY WORDS:Reaction extraction; Development; Application; Super critical

酶的固定化生产果葡糖浆

基本格式: 例如:实验三柠檬酸发酵 1. 实验目的 2. 实验原理 3. 实验装置与流程 4. 实验步骤及方法 5. 实验数据处理 6. 实验报告 7. 结果与讨论 8. 主要符号说明 9. 参考文献 10. 预习与思考 注:以上格式根据不同实验要求,可以删减或增加。 四、几点说明 1参考文献一般不要早于1995年。 2每一个实验的字数原则上控制在1000~3000字范围内。为使本书成为精品,不刻意分配字数,一切从需要出发。 3专业名称和物料名称等专业词汇以手册和国标为准。 4篇末署名例:XXX大学XXX XXXX@XXXXX。 5以提高学生的实践能力,启发创新性思维为目标。本次修订计划在原第一版编者之外,邀请熟悉所列题目,具有科学研究和技术开发经验的教师和企业人员撰稿。本书部分实验方法用于教学实验,部分用于学生的毕业论文的实验和课外科研活动,也作为科学研究和技术开发的参考。本书主要面向生物工程专业本科生,兼顾研究生、技术职业学院学生,教师和企业技术人员。 所有参加人员自然为本教材编委会委员。

实验48 酶连续反应操作技术(酶的固定化生产果葡糖浆) 1、实验目的 掌握包埋法制备固定化酶的技术,学习果糖含量的测定方法,了解填充床固定化酶反应柱连续生产果葡糖浆的工艺。 2、实验原理 蔗糖在生产、生活中有着广泛的应用,为补充蔗糖来源的不足,人们利用微生物酶将淀粉水解获得葡萄糖,但葡萄糖的甜度不及蔗糖,利用葡萄糖异构酶把葡萄糖异构成果糖,则可解决这一问题。葡萄糖异构化反应平衡时,可将40~50%的葡萄糖转化为果糖。人们将这种葡萄糖与果糖混合的糖浆称为果葡糖浆或高果糖浆。 固定化酶,就是把游离的水溶性酶,限制或固定于某一局部的空间或固体载体上,使其保持活性并可反复利用的方法。固定化酶技术解决了游离的溶液酶,在反应过程中会随着产品一起流失,影响产品的质量;反应后分离困难,无法重复使用;对热、强酸、强碱和有机溶剂等均不够稳定等缺点,保持了催化效率高、稳定性强等优点,自20世纪60年代末,日本田边制药公司将固定化氨基酰化酶用于氨基酸生产以来,固定化技术已在生化工程及酶工程领域中成为各国学者的研究热点。常用的固定化酶的方法主要有:载体结合法、交联法和包埋法。 包埋法是将酶(细胞)包在凝胶微小格子内,或是将酶(细胞)包裹在半透性聚合物膜内的固定化方法。包埋法是制备固定化细胞最常用的方法,此法的优点是:酶分子本身不参加格子的形成,大多数酶都可用该法固定化,且方法较为简便;酶分子仅仅是被包埋起来而未受到化学作用,故活力较高。可用于包埋的聚合物有:胶原、卡拉胶、海藻酸钙、聚丙烯酰胺凝胶等,其中海藻酸钙包埋法应用较为广泛。海藻酸钠为天然高分子多糖,具有固化、成形方便、对微生物毒性小等优点。利用海藻酸钠固定化酶操作简便、安全、成本低廉。本实验采用海藻酸钙包埋法,以葡萄糖异构酶为材料连续生产果葡糖浆。 3.实验仪器及材料 (1)实验仪器 10mL注射器、恒流泵、烧杯、烧瓶、玻璃夹套柱、磁力搅拌器、超级恒温水浴、分光光度计。 (2)实验材料 葡萄糖异构酶、40%葡萄糖溶液、4%海藻酸钠溶液、0.05mol/LCaCl2溶液、pH7.8磷酸缓冲液、无菌生理盐水、MgSO4·7H2O、1.5%半胱氨酸盐酸溶液、0.12%咔唑无水乙醇溶液、69%(v/v)硫酸溶液、50μg/mL标准果糖溶液。 4.实验流程 40%葡萄糖溶液固定化酶颗粒4℃过夜 生理盐水清洗装柱60℃收集反应液咔唑比色法 计算果糖含量计算葡萄糖转化率

相关文档
最新文档