液相色谱柱反相色谱C18色谱柱

液相色谱柱反相色谱C18色谱柱

液相色谱柱反相色谱C18色谱柱

液相色谱柱丨反相色谱柱丨C18色谱柱丨C8色谱柱丨C18柱丨C18色谱柱的选用丨C18色谱柱处理丨C18色谱柱保存;C18色谱柱国达,采用十八烷基硅烷键合硅胶为填充剂,GD新系列C18色谱柱是中国药典特征谱图唯一指定的色谱柱;也是中国最畅销的液相色谱柱之一。该系列色谱柱峰型对称性良好,理论塔板数高!400-1158-566专业品质,金牌特色服务!

GD新系列C18色谱柱的特点:高的表面覆盖率和彻底的双封尾的特点,提高了色谱柱分离的稳定性;对中性、极性、酸性和碱性以及螯合化合物的分析具有最优的分离效率。GD 新系列C18色谱柱应用的pH值有0.8-8.0 、1.0~10.0、2-11.5…..多种范围选择,满足不同条件的色谱分析,对于强碱性化合物通常会产生拖尾现象,而在我们供应的GD新系列C18色谱柱进行分析时因其仍具有良好的对称峰形和高柱效;呈现出如此最大的优势,对常规分析用GD新系列C18色谱柱无疑是一个绝佳的选择;优良的批与批和柱与柱间的重现性;对多组分体系从分析到制备所有试样量范围适用。

C18色谱柱技术参数描述:

正相色谱柱与反相色谱柱有哪些区别

正相色谱柱与反相色谱柱有哪些区别? 色谱柱的安装: 1、首先应确认柱和仪器的接头以及管路是否匹配。为减少死体积,进样阀、柱子、检测器之间的连接管路内径尽可能使用内径较小的管线,同时控制进样器、色谱柱和检测器之间连接管线的长度。安装色谱柱之前,确认流路系统中的溶剂是否正常。对分析较复杂的样品建议安装保护柱。 2、为了使色谱柱与仪器系统达最佳的连接效果,应尽量使用与色谱柱接口相匹配的螺帽和锥形接头,如原来的接头长期匹配其他类型的色谱柱,建议在连接新色谱柱前应检查匹配情况,避免造成色谱柱的损坏或因色谱柱不匹配造成的漏液。 3、使用PEEK 材料的通用接头,只需用手拧紧不需要特定扳手,使用压力为5000psi;使用温度不得超过100℃。 流动相平衡: 1、在进行样品检测前,至少使用20倍柱体积流动相使色谱柱充分平衡。流动相一定要使用色谱级别的溶剂。如使用水相的缓冲液应当天配制以保持新鲜避免细菌产生。 2、流动相使用前需用微孔滤膜过滤,消除流动相中颗粒对色谱系统和色谱柱的损坏。缓冲液与其他流动相混合后应重新过滤避免溶解度变化造成产生新的沉淀。不应使用纯水作为流动相冲洗C18色谱柱,以免柱性能损坏(添加5%的有机溶剂冲洗色谱柱,同时可以达到对缓冲盐清洗的作用。还可以使色谱柱更容易平衡)。 3、流动相需脱气后使用,可避免因气泡导致的泵和检测器的工作不正常。如果测试时使用的流动相与色谱柱保存使用的流动相有较大区别,应该使用过度分布的形式进行平衡。避免由于流动相的突然变化造成柱压增加过大或流动相缓冲盐结晶造成对色谱柱和仪器系统的损坏。正相色谱柱比反相色谱柱需要更长的平衡时间。 样品制备与操作: 1、样品应当尽可能溶解在能与流动相相互溶的溶剂中。除特殊指明外,如使用强溶剂溶解样品柱子的分辨率将可能降低。 2、样品溶液在进样前应使用针头式过滤器对样品预先过滤。频繁改变流动相组成,会加速降低柱效。

怎样选择色谱柱

怎样选择色谱柱 现代高效液相色谱中,分离效果好坏很大程度上取决于色谱填料的选择。但 是色谱填料的选择范围很宽,要做合适的选择,必须对此有一定的认识和了解。 1、正相色谱 正相色谱用的固定相通常为硅胶(Silica),以及其他具有极性官能团,如胺基团 (NH2,APS)和氰基团(CN,CPS)的键合相填料。 由于硅胶表面的硅羟基(SiOH)或其他团的极性较强,因此,分离的次序是依据样品 中的各组份的极性大小,即极性强弱的组份最先被冲洗出色谱柱。 正相色谱使用的流动相极性相对比固定相低,如:正乙烷(Hexane),氯仿(Chloroform),二氯甲烷(Methylene Chloride)等。 2、反相色谱 反相色谱填料常是以硅胶为基础,表面键合有极性相对较弱的官能团的键合相。 反相色谱所使用的流动相极性较强,通常为水,缓冲液与甲醇,已腈等混合物。 样品流出色谱柱的顺序是极性较强组合最先被冲出,而极性弱的组份会在色谱柱上有 更强的保留。 常用的反相填料有C18(ODS)、C8(MOS)、C4(B)、C6H5(Phenyl)等。 二、聚合物填料

聚合物调料多为聚苯乙烯-二乙烯基苯或聚甲基丙酸酯等,其主要优点是在PH值为1~ 14均可使用。 相对与硅胶基质的C18填料,这类填料具有更强的疏水性;大孔的聚合物填料对蛋白 质等样品的分离非常有效。 现在的聚合物填料的缺点是相对硅胶基质填料,色谱柱柱效较低。 三、其他无机填料 其它HPLC的无机填料色谱柱也已经商品化。由于其特殊的性质,一般仅限于特殊的 用途。如石墨化碳也用于正逐渐成为反相色谱填料。这种填料的分离不同与硅胶基质烷基 键合相,石墨化碳的表面即是保留的基础,不再需其它的表面改性,该柱填料一般比烷基 键合硅胶或多孔聚合物填料的保留能力更强,石墨化碳可用于分离某些几何导构体,又由 于HPLC流动相中不会被溶解,这类柱可在任何PH与温度下使用。氧化铝也可用于HPLC, 氧化铝微粒刚性强,可制成稳定的色谱柱柱床,其优点是可在PH高达12的流动相中使用。 但由于氧化铝与碱性化合物作用也很强,应用范围受到一定的限制,所以未能广泛应用, 新型氧化锆填料也可用于HPLC,商品化的仅有聚合物涂层的多孔氧化锆微球色谱柱,应 用PH范围1~14,温度可达100℃。由于氧化锆填料几年才开始研究,加之面临的实验难 度,其重要用途与优势尚在进行中。

高效液相色谱柱

高效液相色谱柱 怎样选择色谱柱 现代高效液相色谱中,分离效果好坏很大程度上取决于色谱填料的选择。但是色谱填料的选择范围很宽,要做合适的选择,必须对此有一定的认识和了解。 1、正相色谱 正相色谱用的固定相通常为硅胶(Silica),以及其他具有极性官能团,如胺基团(NH2,APS)和氰基团(CN,CPS)的键合相填料。由于硅胶表面的硅羟基(SiOH)或其他团的极性较强,因此,分离的次序是依据样品中的各组份的极性大小,即极性强弱的组份最先被冲洗出色谱柱。正相色谱使用的流动相极性相对比固定相低,如:正乙烷(Hexane),氯仿(Chloroform),二氯甲烷(Methylene Chloride)等。 2、反相色谱 反相色谱填料常是以硅胶为基础,表面键合有极性相对较弱的官能团的键合相。反相色谱所使用的流动相极性较强,通常为水,缓冲液与甲醇,已腈等混合物。样品流出色谱柱的顺序是极性较强组合最先被冲出,而极性弱的组份会在色谱柱上有更强的保留。常用的反相填料有C18(ODS)、C8(MOS)、C4(B)、C6H5(Phenyl)等。 二、聚合物填料 聚合物调料多为聚苯乙烯-二乙烯基苯或聚甲基丙酸酯等,其主要优点是在PH值为1~14均可使用。相对与硅胶基质的C18填料,这类填料具有更强的疏水性;大孔的聚合物填料对蛋白质等样品的分离非常有效。现在的聚合物填料的缺点是相对硅胶基质填料,色谱柱柱效较低。 三、其他无机填料 其它HPLC的无机填料色谱柱也已经商品化。由于其特殊的性质,一般仅限于特殊的用途。如石墨化碳也用于正逐渐成为反相色谱填料。这种填料的分离不同与硅胶基质烷基键合相,石墨化碳的表面即是保留的基础,不再需其它的表面改性,该柱填料一般比烷基键合硅胶或多孔聚合物填料的保留能力更强,石墨化碳可用于分离某些几何导构体,又由于HPLC流动相中不会被溶解,这类柱可在任何PH与温度下使用。氧化铝也可用于HPLC,氧化铝微粒刚性强,可制成稳定的色谱柱柱床,其优点是可在PH高达12的流动相中使用。但由于氧化铝与碱性化合物作用也很强,应用范围受到一定的限制,所以未能广泛应用,新型氧化锆填料也可用于HPLC,商品化的仅有聚合物涂层的多孔氧化锆微球色谱柱,应用PH范围1~14,温度可达100℃。由于氧化锆填料几年才开始研究,加之面临的实验难度,其重要用途与优势尚在进行中。 怎样选择填料粒度 目前,商品化的色谱料粒度从1um到超过30um均有销售,而目前分析分离主要用3um、5um

反相高效液相色谱法测定茶叶中咖啡因的含量

实验一反相高效液相色谱法测定茶叶中咖啡因的含量 一.实验目的 1. 熟悉液相色谱仪的基本构造和操作方法 2. 学会利用外标法对物质进行色谱定量分析 二.仪器与试药 仪器: 高效液相色谱仪(日本岛津10AVP型)、溶剂过滤器、样品溶液过滤器、微量进样器 试药:甲醇、乙腈、超纯水、咖啡因对照品 三、色谱条件 色谱柱:C18(250×4.6,5um) 流动相:甲醇-乙腈-水=45:10:45 (v/v) 检测器及检测波长:紫外检测器280nm 流速:0.6ml/min 四、实验操作 1.对照品溶液的配制:准确称取咖啡因对照品适量,用乙腈:水(1:1)混合溶剂配制成1.0mg/mL 咖啡因储备液;分别移取10μL、20μL、30μL、40μL咖啡因储备液,用超纯水定容至5mL,配制成浓度为2.0μg/mL、4.0μg / mL、6.0μg /mL、8.0 μg/mL的一系列对照品溶液,备用。 2. 样品溶液的配制:准确称取0.035g茶叶, 加乙腈:水(1:1)混合溶剂8mL,超声提取10min,用超纯水定容至10mL,过滤并稀释20倍,备用。 3. 调用或创建咖啡因测定方法并运行方法 4. 测定:待基线平稳后,分别吸取25μL对照品溶液和样品溶液进样。 五、数据处理及计算 以对照品溶液峰面积与对应含量绘制工作曲线,根据样品溶液峰面积在曲线上查出其进样时含量,并计算得到茶叶中咖啡因的百分含量。 六、思考题 1.液相色谱与气相色谱相比较有哪些不同? 2. 如果用液相色谱法测定可乐中咖啡因,样品应该如何处理?

附:岛津10AVP型高效液相色谱仪操作 一、开机 1.打开计算机。 2.开启高效液相色谱仪各部件电源开关(脱气机→A泵→B泵→检测器→柱温箱→主控器)。 3.待高效液相色谱仪各部件自检完毕,在计算机上启动化学工作站ClassVP 并点击Instrument ,输入用户名和密码,点击确定。 二、实验参数的设置 在Method下,进行操作: 1.单击溶剂瓶图标,设置所用溶剂瓶中溶剂量后,点击OK;单击高压泵图标,设置泵流速0.6mL·min-1,梯度洗脱溶剂B(水)0%,最高柱压设为2.0×107 Pa。 2.单击色谱柱图标,设置柱温箱温度为25℃。 3.单击检测器图标,设置检测波长为280nm,,数据采集时间7min。 四、运行样品 1.打开Purge阀。 2.运行Instrument菜单下System On命令启动系统(或单击各图标的on图标启动系统)。 3.待废液管中无气泡流出,关闭Purge阀。 4.待基线稳定之后,单击single run, 进行样品信息编辑。 5. 用微量进样器进样后,扳动手动进样阀至Inject位置,仪器自动开始纪录。 6.待测物出峰完全后,按F8停止采集数据。 五、实验数据处理 1.定性、定量分析参数的设定 (1)一级校正表的建立 ①在Data Analysis界面下,点击File菜单下的Load Signal,调用低浓度标样的实验结果。 ②优化谱图:打开Graphics菜单,选择Signal Options选项,进入Signal Option编辑框,在Range选择中选择Use Range,输入适当的参数。 ③优化积分:在Data Analysis 界面下,单击Integration菜单,选择Integration Event,选择适当的参数,编辑积分项目。

液相色谱柱的选择

液相色谱柱的选择、使用、维护和常见故障及排除液相色谱的柱子通常分为正相柱和反相柱。正相柱大多以硅胶为柱,或是在硅胶表面键合 -CN,-NH3等官能团的键合相硅胶柱;反相柱填料主要以硅胶为基质,在其表面键合非极性的十八烷基官能团(ODS)称为C18柱,其它常用的反相柱还有C8,C4,C2和苯基柱等。另外还有离子交换柱,GPC柱,聚合物填料柱等。本文重点介绍反相色谱柱的选择和使用: 一、反相色谱柱的选择 1.柱子的PH值使用范围 反相柱优点是固定相稳定,应用广泛,可使用多种溶剂。但硅胶为基质的填料,使用时一定要注意流动相的PH范围。一般的C18柱PH值范围都在2-8,流动相的PH值小于2时,会导致键合相的水解;当PH值大于7时硅胶易溶解;经常使用缓冲液固定相要降解。一旦发生上述情况,色谱柱人口处会塌陷。同样填料各种不同牌号的色谱柱不尽相同。如果流动相PH较高或经常使用缓冲液时,建议选择PH范围大的柱子,例如戴安公司的Acclaim柱PH 2-9或Zorbax的PH 2-11. 5的柱子。 2.填料的端基封尾(或称封口) 把填料的残余硅羟基采用封口技术进行端基封尾,可改善对极性化合物的吸附或拖尾;含碳量增高了,有利于不易保留化合物的分离;填料稳定性好了,组分的保留时间重现性就好。如果待分析的样品属酸性或碱性的化合物,最好选用填料经端基封尾的色谱柱。 3.戴安公司Acclaim柱子介绍—极性封尾C16固定相柱 戴安公司有28种类型的柱子,Acclaim反相柱填料高纯,金属含量极低,完全封尾。PH 2-9范围内兼容,低流失,高柱效。尤其是2003年推出的Acclaim极性封尾C16柱,是最先商品化的磺酰氨-O链接键的色谱柱,具极低的硅羟基活性,能在极性溶剂甚至100%水的条件下长期使用。对酸

影响反相高效液相色谱分离的因素

实验二 影响反相高效液相色谱分离的因素 一、实验目的 1. 了解高效液相色谱仪器结构; 2. 熟悉溶质结构、溶剂组成和固定相对溶质保留值的影响; 3. 了解影响反相高效液相色谱分离的因素。 二、实验原理 1. 反相色谱保留机制:疏溶剂理论 溶质的疏水性、流动相的极性(表面张力)和固定相的烷基链长影响溶质的保留。 2. 影响溶质分离的因素 n :柱长、柱效 α:流动相组成与性质、固定相性质、柱温等 k :流动相组成与性质、固定相性质、柱温等 三、实验条件 色谱柱:C18(150 mm×4.6mm ;250 mm×4.6mm ) 流动相:甲醇-水(100,95/5,90/10);流速:1.0(0.8,0.6,)mL·min -1 检测:UV 254 nm 样品:苯、萘、蒽 四、操作步骤 1. 流动相组成对分离的影响 在C18(150 mm×4.6mm )和1.0 mL·min -1流速下,依次更换流动相,在每个体系中,均注入 2. 流动相流速对分离的影响 在C18(150 mm×4.6mm )和甲醇-水(90/10)下,依次更换流动相流速,在每个体系中,均 ??? ??+??? ? ??-= k k ααR ,,11n 4 11212

注入5 μL苯-甲苯-萘混合样品,记录色谱图,计算对应的n、k和R。 3. 柱长对分离的影响 更换色谱柱,在甲醇-水(90/10,v=1.0 mL·min-1)体系中,注入5 μL苯-甲苯-萘混合样品, 、α和R。 记录色谱图,计算对应的k 五、数据处理 1.根据操作步骤1,绘制lgk~CH3OH%曲线。 2.根据操作步骤1、2和3,说明流动相组成、流速和柱长对k和R的影响。 六、思考题 1.根据本实验的主要结论,指出下列各组物质在反相色谱中的洗脱顺序。 (1)苯、苯酚和萘;(2)苯酚、邻甲酚和2,4-二甲酚;(3)正丁醇、仲丁醇和叔丁醇 2. 在反相柱上欲分离三个相邻的组分,初试未达到完全分离。如何实现完全分离?

反相色谱柱的清洗和再生方法

反相色谱柱的清洗和再生方法 2010-11-5 18:13:23 反相色谱柱的清洗和再生方法 反相色谱是迄今在高效液相色谱中应用最广泛的技术,主要是因为它适用于分析极大多数的非极性物质和很多的可离子化的及离子化合物。大多数用于反相色谱的固定相本质上都是疏水物质,因此,分析物是按照它们与固定相的疏水相互作用的大小程度来分离的,样品基体中其它疏水杂质组分也能以同样的方式保留。 除C18、C8、C4、C2、C1、CN、NH2和Phenyl等常见的一些键合硅胶固定相外,还有几个分支品种,如混合相固定相(例如苯基-己基)、封尾和未封尾的填料种类以及极性嵌入固定相等。还有其它很多填料也用于反相色谱,包括聚合物、聚合物包覆硅胶和聚合物包覆氧化铝、无机-有机杂化物、涂覆氧化锆和石墨化碳等。不同的固定相分别都有自己的优点和缺点。 反相色谱柱通过调节流动相组成的变化和添加一些试剂的方式,成功实现了许许多多不同的色谱应用。一些技术是利用添加剂改变了填料的表面特性,有时候这些添加剂本身有可能会污染硅胶和键合相表面。 硅胶表面除了有疏水键合相外,还有别的一些化学特性。残留的硅醇基存在于所有的硅胶键合填料中。这些硅醇基具有弱酸性,因此能与某些待分析物和样品基体中的杂质相互作用,特别是与碱性物质发生作用。因为硅醇基的pKa值大约是4.5,离子化能在中性pH条件下发生,而存在与阳离子产生静电相互作用的可能。较老的A型硅胶含有高浓度金属杂质离子(有时候达100ppm或更多),而这能使硅胶表面的酸性更大,甚至能与某些金属鳌合化合物发生作用。残留硅醇基在非末封尾的键合硅胶表面和在C2或C4等短链硅胶键合相填料中,麻烦更大。 必须清楚地了解所用固定相的表面特性和可能存在的分析物-固定相表面的相互作用模式,这样当用反相色谱方法时才能充分考虑到潜在的样品基质污染的影响。例如,疏水性非常强的样品基质如玉米油、高芳香物质和蜡能粘在反相填料的表面并且改变表面性质。含有类蛋白质物质的生物质样品也能吸附在填料表面。尽管分析者想尽最大努力来保护HPLC柱子免受外源物质的污染,但某些分析物-样品基体的结合作用最终会使固定相受到污染。 当柱子被污染,它的色谱行为和没被污染的柱子会有些不同。被污染的反相色谱柱会产生反压问题,必须进行清洗和再生才能恢复到原来或接近原来的状态,本文将提出了一些切实可行的恢复方案供大家讨论或参考。着重点在最常用的键合硅胶柱上,其它类型的反相柱的清洁和再生步骤最后也有介绍。 什么原因导致污染物在反相柱上的聚集? 通常,样品基体中会含有一些对分析者来说不感兴趣的东西,如盐、脂类、含脂物质、腐殖酸、疏水蛋白质和其它一些生物质,是一些可能与HPLC柱发生相互作用的物质。这些物质和目标分析物比,保留能力有些强,有些弱。那些保留能力小的杂质,如盐类,通常在死体积处就会被洗脱出来,在谱图上表现为干扰峰、小斑点、基线扰动、甚至是倒峰等等。而样品基体中的强保留物质,如果流动相的洗脱能力从来没有调高到足以把它们洗脱出来,多次上样后,它们就会在柱头累积。这种现象通常在等度洗脱时容易观察到。

常见液相色谱柱性能比较

常见液相色谱柱性能比较 一、高性能色谱柱特点:柱效高,价格高,通用性好,使用寿命长,pH范围宽 1、Waters公司Xbridge 2005年waters公司推出,杂化颗粒柱。 优点:pH 1-12,在高pH状态下,没有能与此色谱柱匹敌的,目前市场的宽pH色谱柱在高pH的状态下(9-12)普遍寿命很短,如Gemini,资生堂公司Capcell,YMCPro-C18,包括waters 的第一代杂化柱Xterra都是寿命不长,Zorbax Extend更是不堪。柱效与一流的硅胶柱相当,甚至有过之无不及,杂化颗粒柱和聚合物色谱柱的问题在于柱效,Xterra和常见的PSDVB的色谱柱都有不错的pH范围,但是柱效低的问题无法解决,这是聚合物填料一般比较软且不耐压的原因造成。在如此宽的pH范围,最大的好处是可以在化合物的保留平台区去开发方法 (pH1-3,pH9-12),这样能得到更稳定更容易重现的方法,对酸性,中性,尤其是碱性化合物都能得到理想的峰形。 注:Waters UPLC色谱柱与Xbridge采用同类型填料,只是颗粒度是1.7um,所以不再重复。缺点:价格高,平均每支¥7000多的,不是大多数中国客户可以接受的。 2、MerckChromolith整体化色谱柱 Merck公司2001年推出。 优点:高流速、低压力,可以快速分析样品,因为压力低,所以可以串联色谱柱以获得更高的柱效而不用担心色谱柱耐压问题,低压力是因为硅胶棒的大量中孔的存在,中孔的存在也让这支色谱柱不怕堵,在处理比较脏的样品的时候会优势很大(如中药),实际的寿命也因此延长。这个色谱柱最大的特点是柱效高出峰时间快,特别适合之前分析时间超长的实验条件,目前很好的例子就是人参的指纹图谱,因为成分复杂,之前出峰要2个小时,现在用整体化色谱柱30min 就可以分析完了(已有报导),且不影响柱效,类似于UPLC,但不像UPLC那么容易堵。 缺点:规格单一,单价比较高,单价¥7000左右,所以通过串联获得更高柱效的方式显得比较奢侈。 3、Phenomenex公司Gemini ,采用硅胶球聚合物包被技术。pH范围1-12。 优点:因为聚合物涂层抑制了碱性溶液水解硅胶,所以可以承受一定的碱性条件,由于是硅胶球颗粒,所以柱效不错,比Xterra或者PSDVB这类色谱柱柱效好。单价比较低,¥3000以内。 缺点:聚合物涂层稳定性比较差,所以当涂层损失时,色谱柱会很坏被碱性溶液溶解,这也是其寿命远不及Xbridge的原因。另外涂层损失也会影响结果重现性。 4、资生堂Capcell ,采用硅胶球聚合物包被技术。pH范围1-10。 类似于Gemini同样的技术,只是参数指标比phenomenex低调。 单价偏高,¥5000以内。 5、Agilent ZorbaxExtend,采用双配位键和相技术。pH2-10 优点:不详 缺点:在使用高pH时,基本上都会介绍Extend,但是实测数据说明该款色谱柱的耐高pH 能力较差。 二、高纯硅胶柱特点:柱效高,峰形好,适用广泛,价格合适,为各色谱柱公司目前主流色谱柱 1、Merck的Purosphere STAR ,为Merck公司1999年推出,pH 1.5-10.5,通用性好,柱效高;缺点:市场推广较差,知名度比较低, 2、Phenomenex的Luna ,Phenomenex公司的主打色谱柱,pH1.5-10,通用性好,在进口色谱柱市场上占有一定份额;缺点:装填相对松散,柱头填料容易塌陷

正相色谱和反向色谱及C18柱子

正相色谱和反向色谱及C18柱子 反相与正相的区别在于,固定相与流动相的极性大小。反相:固定相的极性小于流动相的极性正相:固定相的极性大于流动相的极性反向色谱流动相极性大于固定相极性测定样品时极性大的先出峰,正向反之 在正相色谱中,一般采用极性键合固定相,硅胶表面键合的是极性的有机基团,键合相的名称由键合上去的基团而定。最常用的有氰基(-CN)、氨基(-NH2)、二醇基(DIOL)键合相。流动相一般用比键合相极性小的非极性或弱极性有机溶剂,如烃类溶剂,或其中加入一定量的极性溶剂(如氯仿、醇、乙腈等),以调节流动相的洗脱强度。通常用于分离极性化合物。一般认为正相色谱的分离机制属于分配色谱。组分的分配比K值,随其极性的增加而增大,但随流动相中极性调节剂的极性增大(或浓度增大)而降低。同时,极性键合相的极性越大,组分的保留值越大。 该法主要用于分离异构体,极性不同的化合物,特别是用来分离不同类型的化合物。 反相键合相色谱法 在反相色谱中,一般采用非极性键合固定相,如硅胶-C18H37(简称ODS或C18)硅胶-苯基等,用强极性的溶剂为流动相,如甲醇/水,乙腈/水,水和无机盐的缓冲液等。 目前,对于反相色谱的保留机制还没有一致的看法,大致有两种观点:

一种认为属于分配色谱,另一种认为属于吸附色谱。 分配色谱的作用机制是假设混合溶剂(水+有机溶剂)中极性弱的有机溶剂吸附于非极性烷基配合基表面,组分分子在流动相中与被非极性烷基配合基所吸附的液相中进行分配。吸附色谱的作用机制是把非极性的烷基键合相,看作是在硅胶表面上覆盖了一层键合的十八烷基的“分子毛”,这种“分子毛”有强的疏水特性。当用水与有机溶剂所组成的极性溶剂为流动相来分离有机化合物时,一方面,非极性组分分子或组分分子的非极性部分,由于疏溶剂的作用,将会从水中被“挤”出来,与固定相上的疏水烷基之间产生缔合作用。另一方面,被分离物的极性部分受到极性流动相的作用,使它离开固定相,减少保留值,此即解缔过程。显然,这两种作用力之差,决定了分子在色谱中的保留行为。. 一般地,固定相的烷基配合基或分离分子中非极性部分的表面积越大,或者流动相表面张力及介电常数越大,则缔合作用越强,分配比也越大,保留值越大。在反相键合相色谱中,极性大的组分先流出,极性小的组分后流出。 1.C18是连接了18烷基碳链的反相固定相的总称。ODS 是以硅胶为基质键合的C18填料,而C18还包括其他基质的填料,比如高聚物小球为基质,氧化铝为基质,氧化锆为基质等键合C18链形成的反相固定相,这些可以称为"C18",但是不是ODS。 2.RP-18也是C18中的一种,不同的公司对C18填料有不同的商

常用高效液相色谱柱SOP

常用高效液相色谱柱SOP 1 目的: 色谱柱的使用和保养:液相色谱仪由高压液体泵、检测器及液相色谱柱等三部分组成,其中液相色谱柱的正确安装和使用,是液相色谱工作的关键;也是液相色谱工作者获得正确可靠的实验数据的必经之路。 建立高效液相色谱柱日常维护与保养规程,保证能正常使用。 2 适用范围: 本规程适用高效液相色谱柱的维护与保养。 3 责任人: 液相色谱柱使用者。 4 液相色谱柱的安装: 4.1 液相色谱柱的结构: 4.1.1 液相色谱柱由柱管、压帽、卡套(密封环)、筛板(滤片)、接头、螺丝(封头)与柱填料等组成。 柱管:多用不锈钢制成,若果使用时柱压不高于70 kg/cm2时,也可采用厚壁玻璃或石英管,管内壁要求有很高的光洁度。用于柱填料的装填。空柱各组件均为不锈钢材质,能耐受一般的溶剂作用。但由于含氯化物的溶剂对其有一定的腐蚀性,故使用时要注意,柱及连接管内不能长时间存留此类溶剂,以避免腐蚀。 压帽:即色谱柱两端套合于柱管端外壁的塑性圆柱帽,中部有小孔,多为聚四氟乙烯制成,用于固定筛板。 密封环:位于接头螺旋环内壁的弹性环,多为聚四氟乙烯制成,用于色谱柱两端压帽与柱外壁的密封。 4.1.2柱填料: 液相色谱柱的分离作用是在填料与流动相之间进行的,柱子的分类是依据填料类型而定。 正相柱:多以硅胶为柱填料。根据外型可分为无定型和球型两种,其颗粒直径在3-10 μm的范围内。另一类正相填料是硅胶表面键合-CN,-NH2等官能团即所谓的键合相硅胶。

反相柱:主要是以硅胶为基质,在其表面键合十八烷基官能团(ODS)的非极性填料。也有无定型和球型之分。 常用的其他的反相填料还有键合C8、C4、C2、苯基等,其颗粒粒径在3-10 μm之间。 4.2色谱柱的安装: 4.2.1拆开柱包装盒,确认色谱柱的类型、尺寸、出厂日期以及柱内贮存的溶剂。 4.2.2拧下柱两端接头的密封堵头放回包装盒供备用。 4.2.3 按柱管上标示的流动相流向,将色谱柱的入口端通过连接管与进样阀出口相连接(如条件允许,建议在柱前使用保护柱);柱的出口与检测器连接。连接管是外径为1.57 mm、内径为0.1-0.3 mm的不锈钢管。连接管的两端均有空心螺钉及密封用压环。在接管时一定要设法降低柱外死体积。连接管通过空心螺钉、压环后尽量用力插到底,然后顺时针拧紧空心螺钉,直到拧不动为止。 5 液相色谱柱的使用: 色谱柱在使用前,最好进行柱的性能测试,并将结果保存起来,作为今后评价柱性能变化的参考。但要注意:柱性能可能由于所使用的样品、流动相、柱温等条件的差异而有所不同;另外,在做柱性能测试时是按照色谱柱出厂报告中的条件进行(出厂测试所使用的条件是最佳条件),只有这样,测得的结果才有可比性。 5.1样品的前处理: 5.1.1最好使用流动相溶解样品。 5.1.2使用予处理柱除去样品中的强极性或与柱填料产生不可逆吸附的杂质。 5.1.3使用0.45 μm的过滤膜过滤除去微粒杂质。 5.2 流动相的配制: 液相色谱是样品组分在柱填料与流动相之间质量交换而达到分离的目的,因此要求流动相具备以下的特点: 5.2.1流动相对样品具有一定的溶解能力,保证样品组分不会沉淀在柱中(或长时间保留在柱中)。

反相高效液相色谱法测定雪碧中的苯甲酸

分析化学实验报告 实验名称:反相高效液相色谱法测定雪碧中的苯甲酸 专业:化学教育 班级:11化学班 姓名: 指导教师:郭老师 日期:2013.9.7

一、实验目的 1、学习高效液相色谱仪的操作。 2、了解高效液相色谱法测定苯甲酸的基本原理。 3、掌握高效液相色谱法进行定性及定量分析的基本方法。 一、实验原理 苯甲酸为具有苯或甲醛的气味的鳞片状或针状结晶,具有苯或甲醛的臭味。熔点122.13℃,沸点249℃,相对密度1.2659(15/4℃)。在100℃时迅速升华,它的蒸气有很强的刺激性,吸入后易引起咳嗽。微溶于水,易溶于乙醇、乙醚等有机溶剂。苯甲酸是弱酸,比脂肪酸强。苯甲酸是重要的酸型食品防腐剂。在酸性条件下,对霉菌、酵母和细菌均有抑制作用,但对产酸菌作用较弱。抑菌的最适pH值为2.5~4.0,一般以低于pH值4.5~5.0为宜。在食品工业用塑料桶装浓缩果蔬汁,最大使用量不得超过2.0g/kg;在果酱(不包括罐头)、果汁(味)型饮料、酱油、食醋中最大使用量1.0g/kg;在软糖、葡萄酒、果酒中最大使用量0.8g/kg;在低盐酱菜、酱类、蜜饯,最大使用量0.5g/kg;在碳酸饮料中最大使用量0.2g/kg。 用高效液相色谱法将饮料中的苯甲酸与其它组分(如:柠檬酸(钠)、蔗糖等)分离后,将已配制的浓度不同的苯甲酸标准溶液进入色谱系统。如流动相流速和泵的压力在整个实验过程中是恒定的,测定它们在色谱图上的保留时间t R和峰面积A后,可直接用t R定性,用峰面积A作为定量测定的参数,采用工作曲线法(即外标法)测定饮料中的苯甲酸含量。 三、仪器和试剂 1、Agilent 1220高效液相色谱仪。 2、色谱柱:Kromasil C18,5μ 150×4.6mm。 3、流动相:75%甲醇(色谱纯)+25%PH=3.3的磷酸缓冲溶液(过三次)。 4、苯甲酸标准贮备溶液:准确称取0.0109g含量99.5%苯甲酸,用过三次的蒸馏水溶解,定量至50mL容量瓶中,并稀释至刻度。标样浓度217μg·mL-1。 4、测饮料试液:雪碧 四、实验内容

液相色谱柱的选择和介绍

液相色谱分离速度提高及选择性优化
安捷伦液相色谱柱介绍与选择
1
How to fast your LC separation Agilent LC colmns 2008.10.23 Dalian

液相色谱方法开发中如何选择色谱柱 液相色谱方法开发中如何选择色谱柱?
1.根据样品特性选择分离模式 2 色谱柱的适应性和选择性 2.色谱柱的适应性和选择性 3.色谱柱规格的选择
我要一根ODS柱
2
How to fast your LC separation Agilent LC colmns 2008.10.23 Dalian

HPLC模式选择
溶于有机溶剂
硅胶的正相色谱 溶于正己烷 用不同键合相的正相色谱
溶于甲醇或甲醇/水 或乙腈或乙腈/水
用不同键合相的反相色谱 用不同键合相的反相色谱
分子量<2,000
溶于四氢呋喃
低分子凝胶渗透色谱 用不同键合相的反相色谱
溶于水
非离子化
抑制电离反相键合相色谱 离子对键合相的反相色谱
样品
离子化 硅胶基质的反相色谱 离子交换色谱 溶于有机溶剂 凝胶渗透色谱 凝胶过滤色谱 溶于水 大孔填料的离子交换色谱 用大孔填料的反相色谱
分子量>2,000
3
How to fast your LC separation Agilent LC colmns 2008.10.23 Dalian

分离模式的选择实例-三聚氰胺分析
三聚氰胺是强极性,弱碱性化合物(pKa=8),微溶于水。
模式一:离子对键合相的反相色谱 对应国标方法GB/T 22388-2008第一法(反相离子对方法) 流动相:离子对试剂(辛烷磺酸钠)溶液:乙腈 = 92:8 色谱柱:ZORBAX SB-C8 4.6x250mm,5um 模式二:硅胶基质的反相色谱(HILIC) 对应安捷伦开发的HILIC模式方法 流动相: 10mM乙酸铵:ACN=11:89 色谱柱:Zorbax Rx-Sil, Rx-Sil 2.1 2 1×150mm, 150mm 5um
4
Page 4
模式三:离子交换色谱 对应安捷伦开发的离子交换方法 流动相:50mM 甲酸铵(pH3.0):乙腈=15:85 色谱柱: ZORBAX 300SCX 4 4.6 6×150mm, 150mm 5um
How to fast your LC separation Agilent LC colmns 2008.10.23 Dalian

正相色谱与反相

正相色谱 液-液色谱有正相和反相之分。如果采用极性固定相和相对非极性流动相,就称为正相;如果采用相对非极性固定相和极性流动相,则称为反相。由于极性化合物更容易被极性固定相所保留,所以正相液-液色谱系统一般可用于分离极性化合物。相反,反相液-液色谱系统一般可用于分离非极性或弱极性化合物。正相色谱的流出顺序是极性小的先流出,极性大的后流出;反相色谱的流出顺序正好相反。另外,其他有些色谱如柱色谱也有正反相之分。 正反相色谱区别: 色谱柱的安装: 1、首先应确认柱和仪器的接头以及管路是否匹配。为减少死体积,进样阀、柱子、检测器之间的连接管路内径尽可能使用内径较小的管线,同时控制进样器、色谱柱和检测器之间连接管线的长度。安装色谱柱之前,确认流路系统中的溶剂是否正常。对分析较复杂的样品建议安装保护柱。 2、为了使色谱柱与仪器系统达最佳的连接效果,应尽量使用与色谱柱接口相匹配的螺帽和锥形接头,如原来的接头长期匹配其他类型的色谱柱,建议在连接新色谱柱前应检查匹配情况,避免造成色谱柱的损坏或因色谱柱不匹配造成的漏液。 3、使用PEEK 材料的通用接头,只需用手拧紧不需要特定扳手,使用压力为5000psi;使用温度不得超过100℃。 流动相平衡: 1、在进行样品检测前,至少使用20倍柱体积流动相使色谱柱充分平衡。流动相一定要使用色谱级别的溶剂。如使用水相的缓冲液应当天配制以保持新鲜避免细菌产生。 2、流动相使用前需用微孔滤膜过滤,消除流动相中颗粒对色谱系统和色谱柱的损坏。缓冲液与其他流动相混合后应重新过滤避免溶解度变化造成产生新的沉淀。不应使用纯水作为流动相冲洗C18色谱柱,以免柱性能损坏(添加5%的有机溶剂冲洗色谱柱,同时可以达到对缓冲盐清洗的作用。还可以使色谱柱更容易平衡)。 3、流动相需脱气后使用,可避免因气泡导致的泵和检测器的工作不正常。如果测试时使用的流动相与色谱柱保存使用的流动相有较大区别,应该使用过度分布的形式进行平衡。避免由于流动相的突然变化造成柱压增加过大或流动相缓冲盐结晶造成对色谱柱和仪器系统的损坏。正相色谱柱比反相色谱柱需要更长的平衡时间。 样品制备与操作: 1、样品应当尽可能溶解在能与流动相相互溶的溶剂中。除特殊指明外,如使用强溶剂溶解样品柱子的分辨率将可能降低。

反相高效液相色谱法

反相高效液相色谱法 鬼针草为菊科植物鬼针草属多种植物的全草,药材资源丰富,广泛分 布于热带及温带地区,遍布全国各地,极易采集。根据文献报道,鬼 针草属多种植物含有槲皮素成分[1];槲皮素具有抗肿瘤、抗炎、抗菌、抗病毒、镇痛、抗血小板聚集、扩张冠状动脉等作用[2~4]。《中国药典》尚未收载鬼针草药材的质量标准。《贵州中药材标准》 收载三叶鬼针草BidenspoilsaL.、鬼针草BidensbipinataLinn.的干 燥全草,《湖南中药材标准》收载三叶鬼针草BidenspoilsaL.的干燥 地上部分,《甘肃中药材标准》1995年收载鬼针草BidensbipinataLinn.,《广西中药材标准》1990年收载三叶鬼针草BidenspoilsaL.、白花鬼针草BidenspoilsaL.var.radiataSch.-Bip. 的干燥全草,河南中药材标准1991年收载三叶鬼针草BidenspoilsaL.、鬼针草BidensbipinataLinn.、金盏银盘 Bidensbiternata(Lour.)Merr.EtSherff.的干燥全草,《上海中药材 标准》收载鬼针草BidensbipinataLinn.(婆婆针)的干燥地上部分[5]。从国内地方标准收载情况能够看出全国各地均有广泛的应用, 入药部位为全草或地上部分,本实验拟采用RP-HPLC法建立鬼针草属 药材中槲皮素的含量测定方法并比较鬼针草不同药用部位和不同种中 槲皮素的含量,为该类药材的传统入药部位是否准确和质量评价提供 参考依据。 1仪器与材料 美国waters2695高效液相色谱仪,VWD检测器;鬼针草采自云南红河州、广西,经刘圆副教授和戴斌教授鉴定为菊科鬼针草属植物狼杷草BidenstriparticaLinn.,白花鬼针草 BidenspilosaL.var.ratiataSch-Bip.,婆婆针BidensbipinataLinn.,三叶鬼针草BidenspilosaLinn.的干燥全草;槲皮素(批号081-9304,中国药品生物制品检定所,含量测定用);甲醇为色谱纯;水为二次 重蒸水;其余试剂均为分析纯。

液相色谱正相与反相区别

液相色谱仪正相与反相区别在液相色谱仪分析中,根据流动相和固定相相对极性的不同,可分为正相色谱和反相色谱。所谓正相色谱是指固定相极性大于流动相极性的情况,反之,固定相的极性小于流动相的极性,则称为反相色谱。 正相色谱与反相色谱的区别是什么呢?由于极性化合物更容易被极性固定相所保留,所以正相色谱系统一般适用于分离极性化合物,极性小的组分先流出。相反,反相色谱系统一般适用于分离非极性或弱极性化合物,极性大的组分先流出。因此在应用上,正相色谱用于分离极性较大的物质,如蛋白质、生物碱等。反相色谱多用于分离极性较小的物质,在流动相的选择上,反相色谱的优势更大,在实际工作中反相色谱的应用更为广泛。 正相色谱用的固定相通常为硅胶,以及其他具有极性官能团,如胺基团和氰基团的键合相填料。由于硅胶表面的硅羟基或其他团的极性较强,因此,分离的次序是依据样品中的各组份的极性大小,即极性弱的组份最先被冲洗出色谱柱。 反相色谱填料常是以硅胶为基础,表面键合有极性相对较弱的官能团的键合相。反相色色谱所使用的流动相极性较强,通常为水,缓冲液与甲醇,已腈等混合物。样品流出色谱柱的顺序是极性较强组合最先被冲出,而极性弱的组份会在色谱柱上有更强的保留。常用的反相填料有C18、C8、C4、C6H5等。 反相液相色谱柱效高、分离能力强、保留机理清楚,是液相色谱分离模式中使用最为广泛的一种,对于生物大分子、蛋白质及酶的分离分析,反相液相色谱正受到越来越多的关注.反相色谱法是以表面非极性载体为固定相,以比固定相极性强的溶剂为流动相的一种液相色谱分离模式.反相色谱固定相大多是硅胶表面键合疏水基团,基于样品中的不同组分和疏水基团之间疏水作用的不同而分离.在生物大分子分离中,多采用离子强度较低的酸性水溶液,添加一定量乙腈、异丙醇或甲醇等与水互溶的有机溶剂作流动相.普通的反相色谱固定相和孔径大于300?的硅胶键合烷基固定相应用较为普遍,聚合物基质的反相色谱固定相也有较多应用. 在分析实验中需将反相色谱切换正相色谱的方法如下: 1、先将色谱柱用相应的溶剂冲洗干净,然后将色谱柱拆下来密封保存。用双通将进样器与检测器连接; 2、将贮液瓶内装入300ml的二次蒸馏水,将流速渐次提高到2.0ml/min冲洗系统1.5h。注意观察泵压; 3、将流速渐次降到0ml/min,把二次蒸馏水更换为甲醇,将流速渐次提高到2.0ml/min冲洗系统1h; 4、用同样的方法将甲醇更换为异丙醇、四氢呋喃,各冲系统1h; 5、最后将四氢呋喃更换为预先配制好的流动相冲系统1h,同时将柱塞杆清洗系统内的10%异丙醇更换为流动相,保持50-60滴/min的速度清洗柱塞杆。再将双通更换为正相色谱柱,待液相色谱仪色谱柱平衡好以后就可分析样品了。 如有侵权请联系告知删除,感谢你们的配合!

高效液相色谱柱的选择

现代高效液相色谱中,分离效果好坏的一个重要指标是色谱填料的选择。但是色谱填料的选择范围很宽,因此,要做合适的选择,必须对此有一定的认识和了解。 一、硅胶基质填料 1、正相色谱正相色谱用的固定相通常为硅胶(Silica)以及其他具有极性官能团胺基团,如(NH2,APS)和氰基团(CN,CPS)的键合相填料。 由于硅胶表面的硅羟基(SiOH)或其他极性基团极性较强,因此,分离的次序是依据样品中各组分的极性大小,即极性较弱的组份最先被冲洗出色谱柱。正相色谱使用的流动相极性相对比固定相低,如正已烷(Hexane),氯仿(Chloroform),二氯甲烷(Methylene Chloride)等。 2、反向色谱反向色谱用的填料常是以硅胶为基质,表面键合有极性相对较弱官能团的键合相。反向色谱所使用的流动相极性较强,通常为水、缓冲液与甲醇、乙腈等的混合物。样品流出色谱柱的顺序是极性较强的组分最先被冲洗出,而极性弱的组分会在色谱柱上有更强的保留。 常用的反向填料有:C18(ODS)、C8(MOS)、C4(Butyl)、C6H5(Phenyl)等。 二、聚合物填料聚合物填料多为聚苯乙烯—二乙烯基苯或聚甲基丙烯酸脂等,其重要优点是在PH值为1—14均可使用。相对于硅胶基质的C18填料,这类填料具有更强的疏水性;大孔的聚合物对蛋白质等样品的分离非常有效。现有的聚合物填料的缺点是相对硅胶基质填料,色谱柱柱效较低。 三、其它无机填料其它HPLC的无机填料色谱柱也已经商品化由于其特殊的性质,一般仅限于特殊的用途。如,石墨化碳黑正逐渐成为反向色谱柱填料。这种填料的分离不同于硅胶基质烷基键合相,石墨化碳的表面即是保留的基础,不再需其它的表面改性。该柱填料一般比烷基键合相硅胶或多孔聚合物填料的保留能力更强。石墨化碳可用于分离某些几何异构体,由于在HPLC流动相中不会被溶解,这类柱可在任何PH与温度下使用。氧化铝也可以用于HPLC。氧化铝微粒刚性强,可制成稳定的色谱柱柱床,其优点是可以在PH高达12的流动相中使用。但由于氧化铝与碱性化合物的作用也很强,应用范围受到一定限制,所以未能广泛应用。新型色谱氧化锆基质填料也可用于HPLC。商品化的只有聚合物涂层的多孔氧化锆微球色谱柱,应用PH1-14,温度可达100℃。由于氧化锆填料是最近几年才开始研究,加之面临的实验难度,其重要用途与优势尚在进行之中。 怎样选择填料粒度目前,商品化的色谱填料粒度从1um到超过30um均有销售,而目前分析分离主要用3和5um填料进行。填料的粒度主要影响填充柱的两个参数,即柱效和背压。粒度越小,柱压越大,柱压的增加限制了粒度小于3um的填料应用。在相同选择性条件下,提高柱效可提高分离度,但不是唯一的因素。如果固定相选择是正确,但是分离度不够,那么选用更小的粒度的填料是很有用的。3um填料填充柱的柱效比相同条件下的5um 填料的柱效提高近30%;然而,3um的色谱柱的背压却是5um的2倍。与此同时,柱效提高意味着在相同条件下可以选用更短的色谱柱,即相同的塔板数或分离能力,但是柱长更短,以缩短分析时间。另外,可以采用低粘度的溶剂做流动相或增加色谱柱的使用温度,比如用乙腈代替甲醇,以降低色谱柱的压力。 色谱柱维护 防止色谱柱堵塞

反相高效液相色谱法测定化妆品中的24种防腐剂

反相高效液相色谱法测定化妆品中的24种防腐剂 建立了同时检测化妆品中24种防腐剂含量的反相高效液相色谱法(RP2HPLC)。采用KromasilC18(4.6mm×250mm,5μm)色谱柱,以磷酸盐缓冲溶液(pH=4.26)为流动相,梯度洗脱。样品经甲醇超声提取,然后采用RP2HPLC2二极管阵列检测法测定,对样品前处理和色谱条件进行研究和优化。 1引言化妆品中的防腐剂是为了使化妆品在生产、使用和保存过程中免受微生物污染的一类化妆品添加剂。但大多数防腐剂对人的皮肤会产生不同程度的刺激。因此,化妆品中防腐剂的用量必须以安全性作为前提。我国《化妆品卫生规范》对化妆品中防腐剂的使用浓度和范围做了相关的规定。目前,国内外对化妆品中防腐剂的测定一般多采用高效液相色谱法、气相色谱法、气相色谱质谱法、胶束电动色谱法、毛细管电泳法和伏安法等,而同时测定的防腐剂一般仅为4~8种,最多可同时测定18种,采用的方法均为气相色谱-质谱法。 本实验研究了化妆品中的24种常用防腐剂的样品前处理方法和HPLC分离条件,建立了化妆品中24种常用防腐剂同时检测的HPLC法。结果表明,本方法简便、快速、准确,应用于实际化妆品中防腐剂的测定,结果满意。 2实验部分2.1仪器与试剂高效液相色谱仪(美国Agilent1100系列),由四元低压泵、柱温箱、二极管阵列检测器及自动进样器组成;KQ-600型超声波清洗仪器(昆山市超声仪器有限公司)。 对羟基苯甲酸甲酯、对羟基苯甲酸乙酯、对羟基苯甲酸丙酯、对羟基苯甲酸丁酯、水杨酸、5-氯-2-甲基-4-异噻唑啉-3-酮、2-甲基-4-异噻唑啉-3-酮、苯甲醇、苯氧基乙醇、4-氯-3-甲苯酚、三氯生及三氯卡班(Sigma公司);苯甲酸甲酯、苯甲酸乙酯、苯甲酸苯酯及溴硝丙醇(AcrosOrgnics公司);2,4-二氯-3,5-二甲酚、对羟基苯甲酸异丙酯、2-苯酚、4-氯-3,5-二甲酚、对羟基苯甲酸异丁酯及2-苄基-4-氯酚(东京化成工业株式会社);苯甲酸、山梨酸(国家标准物质中心)。乙腈为色谱纯,甲醇为优级纯;无水乙醇、四氢呋喃等试剂均为国产分析纯;Millipore超纯水。 2.2标准品混合溶液和供试品溶液的制备分别准确称取一定量的24种防腐剂标准品,用甲醇溶液定容,配制成2g/L的标准储备液。分别移取一定体积的上述标准储备液至100mL 容量瓶中,用甲醇定容至刻度,配成混合标准储备液。准确称取化妆品0.2g(精确到0.001g)于50mL锥形瓶中,加入10mL甲醇,超声提取30min,取部分溶液放入离心管中,在离心机上以5000r/min高速离心10min后,取上清液经0.22μm滤膜过滤,滤液供RP-HPLC检测。 2.3色谱条件色谱柱:伊利特KromasilC18色谱柱(4.6mm×250mm,5μm);流动相:A.甲醇,B.0.025mol/LNaH2PO4溶液,pH4.26。线性梯度洗脱条件见表1。流速:1.0mL/min;柱温:25℃;检测波长:程序可变波长扫描;进样量:10μL。 3结果与讨论3.1流动相的选择3.1.1缓冲溶液pH的选择在24种防腐剂中,受pH影响的只有苯甲酸、山梨酸和水杨酸。因此,着重考察了不同pH值(2.5~5.5)对以上3种酸分离情况的影响。发现在pH4.26时,苯甲酸、山梨酸和水杨酸能与溴硝丙醇、苯甲醇、苯氧基乙醇和对羟基苯甲酸甲酯达到很好的分离,峰形良好。 3.1.2NaH2PO4浓度的选择在考察了0.01、0.025和0.05mol/LNaH2PO4溶液对分离的影响后,发现0.025mol/LNaH2PO4可达到较好的分离,且峰形良好。 3.2检测波长的选择通过全波长扫描可得到24种物质各自的吸收图谱。综合各物质在不同波长下的响应值和不同波长对基线的影响,最终确定采用程序可变波长进行扫描,即根据不同组分的出峰顺序,在不同时间段,分别用各组分的最佳吸收波长进行检测,从而提高检测的灵敏度,达到最佳的扫描效果。

相关文档
最新文档