矢量控制VC 磁场定向控制FOC 直接转矩控制DTC

矢量控制VC 磁场定向控制FOC 直接转矩控制DTC

矢量控制VC 磁场定向控制FOC 直接转矩控制DTC

对于上述三种概念一直分不清楚,这次找了些资料区分了下。

矢量控制Vector control

具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流) 和产生转矩的电流分量(转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。

具体实现方式见

https://www.360docs.net/doc/b611925829.html,/view/4a305c4bc850ad02de804197.html

磁场定向控制Field-Oriented Control

磁场定向控制是变频驱动或变速驱动领域使用的一种方法,可通过控制电流来控制三相AC电动机的扭矩。因此,磁场定向控制往往与矢量控制组合使用。

磁场定向控制有三种类型,一是气隙磁场定向系统、二是定子磁场定向系统;三是转子磁场定向系统。

目前常采用转子磁场定向矢量控制时,缺点是磁链闭环控制系统中转子磁通的检测精度受转子时间常数的影响较大,降低了系统性能。但它达到了完全的解耦控制,无需增加解耦器,并且不存在静态稳定性限制的条件,控制方式简单,具有较好动态性能和控制精度,故应用最为广泛。因此在很多场合讲矢量控制与FOC混为一谈。

直接转矩控制Direct Torque Control

直接转矩控制也称之为“直接自控制”,这种“直接自控制”的思想是以转矩为中心来进行磁链、转矩的综合控制。和矢量控制不同,直接转矩控制不采用解耦的方式,从而在算法上不存在旋转坐标变换,简单地通过检测电机定子电压和电流,借助瞬时空间矢量理论计算电机的磁链和转矩,并根据与给定值比较所得差值,实现磁链和转矩的直接控制。

直接转矩控制技术,是利用空间矢量、定子磁场定向的分析方法,直接在定子坐标系下分析异步电动机的数学模型,计算与控制异步电动机的磁链和转矩,采用离散的两点式调节器(Band—Band控制),把转矩检测值与转矩给定值作比较,使转矩波动限制在一定的容差范围内,容差的大小由频率调节器来控制,并产生PWM脉宽调制信号,直接对逆变器的开关状态进行控制,以获得高动态性能的转矩输出。

因此直接转矩控制也就是定子磁场定向控制。

矢量控制与直接转矩控制的优缺点除了上述之外,还有两篇文档的可以参考:

https://www.360docs.net/doc/b611925829.html,/p-27743753109.html

https://www.360docs.net/doc/b611925829.html,/p-27299679.html

初步结论是:矢量控制控制原理成熟,应用广泛;直接转矩控制还有些技术难点,特别体现在对转矩脉动的控制上。

转矩控制矢量控制和VF控制解析

转矩控制、矢量控制和VF控制解析 1.变转矩就是负载转矩随电机转速增大而增大,是非线性变化的,如风机水泵 恒转矩就是负载转矩不随电机转速增大而增大,一般是相对于恒功率控制而言。如皮带运输机提升机等机械负载 2.VF控制就是变频器输出频率与输出电压比值为恒定值或正比。例如:50HZ时输出电压为380V,25HZ时输出电压为190V即恒磁通控制;转矩不可控,系统只是一个以转速物理量做闭环的单闭环控制系统,他只能控制电机的转速 根据电机原理可知,三相异步电机定子每相电动势的有效值: E1=4.44f1N1Φm式中:E1--定子 每相由气隙磁通感应的电动势的有效值,V ;f1--定子频率,Hz;N1——定子每相绕组有效匝数;Φm- 每极磁通量由式中可以看出,Φm的值由E1/f1决定,但由于E1难以直接控制,所以在电动势较高时, 可忽略定子漏阻抗压降,而用定子相电压U1代替。那么要保证Φm不变,只要U1/f1始终为一定值即可。这是基频以下调时速的基本情况,为恒压频比(恒磁通)控制方式,属于恒转矩调速。 基准频率为恒转矩调速区的最高频率,基准频率所对应的电压为即为基准电压,是恒转矩调速区 的最高电压,在基频以下调速时,电压会随频率而变化,但两者的比值不变。在基频以上调速时,频 率从基频向上可以调至上限频率值,但是由于电机定子不能超过电机额定电压,因此电压不再随频率 变化,而保持基准电压值不变,这时电机主磁通必须随频率升高而减弱,转矩相应减小,功率基本保 持不变,属于恒功率调速区。 3.矢量控制,把输出电流分励磁和转矩电流并分别控制,转矩可控,系统是一个以 转矩做内环,转速做外环的双闭环控制系统。它既可以控制电机的转速,也可以控制电 机的扭矩。 矢量控制时的速度控制(ASR)通过操作转矩指令,使得速度指令和速度检出值(PG 的反馈或速度推定值)的偏差值为0。 带PG 的V/f 控制时的速度控制通过操作输出频率,使得速度指令和速度检出值(PG 的反馈或速度推定值)的偏差值为0。 矢量控制原理是模仿直流电动机的控制原理,根据异步电动机的动态数学模型,利用一系列坐标变换把定子电流矢量分解为励磁分量和转矩分量,对电机的转矩电流分量和励磁分量分别进行控制,在转子磁场定向后实现磁场和转矩的解耦,从而达到控制异步电动机转矩的目的,使异步电机得到接近他励直流电机的控制性能。 具体做法是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。 矢量控制分有速度传感器矢量控制和无速度传感器矢量控制两种,前者精度高后者精度低。矢量控制系统的无速度传感器运行方式,首先必须解决电机转速和转子磁链位置角的在线辨识问题。常用的方法有基于检测定子电流信号的辨识方法,有同时使用电流检测信号和电压检测信号的辨识方法,还有根据电流检测信号和逆变器的开关控制信号重构电压信号的方法。

直接转矩控制基本原理和仿真研究报告

直接转矩控制的基本原理和仿真研究 摘要:直接转矩控制技术是继矢量控制技术之后,在交流传动领域内发展迅速的一种高性能调速技 术,该控制方法以其思路新颖、结构简单及性能良好等优点引起了广泛关注和研究。与矢量控制技 术不同,直接转矩控制技术采用定子磁场定向,直接将磁通和电磁转矩作为控制量,对电磁转矩的 控制更加简捷快速,提高了系统的动态响应能力。由于直接转矩控制技术本身的固有优势,使直接 转矩控制的理论研究和技术开发越来越受到重视,进展的步伐也越来越快。本文将直接转矩控制技 术应用于异步电机中,从异步电机的数学模型出发,介绍了直接转矩控制技术的基本理论。在深入 剖析原理的基础上将直接转矩算法模块化,在Simulink环境下建立了异步电机直接转矩近似圆形 磁链控制系统仿真模型。仿真结果表明,直接转矩控制技术动态响应能力快,控制方法直接,但是 低速性能较差,低速状态下存在转矩脉动过大,定子电流畸变严重等缺点。 关键字:直接转矩控制,异步电机,simulink The Basic Principle and Simulation Study of Direct Torque Control Kong Fei,Ye Zhen,Shao Zhuyu technology is a high-speed technology in the field of AC drive following the technique of vector control and it has rapid development in recent years.This control strategy attracts wide attention and research for its novel idea, simple structure and good performance. Differ from the vector control technologies, DTC technology uses the stator flux orientation and directly makes the flux and electromagnetic torque as the control volume, therefore the control of the electromagnetic torque is simple and fast, the system dynamic response capability is improved. Due to the inherent advantages of DTC technology, its theoretical research and technological development is receiving increasing attention, also the pace of progress faster and faster.In this article, we make direct torque control techniques applied to asynchronous motors. From a mathematical model of induction motor starting, introduced the basic theory of DTC technology. Based on depth analysis of the basis and principles, we module the DTC algorithm. In the Simulink environment, the asynchronous motor direct torque control system of quasi-circular flux simulation model is established. Simulation results show that the DTC technologies has fast dynamic response capability and directly control method, but the low-speed performance is poor, such as torque ripple is too large in low speed state and the stator current distortion is serious. Key words:direct torque control (DTC>,asynchronous motor,simulink 1前言 直接转矩控制技术作为一种新颖的电机控制策略,基本思想就是直接将电磁转矩作为被控制量,与矢量控制相比,无需进行复杂的坐标变换,对电机的控制更加快捷迅速,控制系统的动态响应能力得到进一步提高。为了将直接转矩控制方法应用于异步电机中,我们在分析三相异步电机的数学模型基础上,详细阐述直接转矩控制的基本原理,并将各个部分模块化,在MATLAB/Smulink环境下建立了直接转矩控制仿真模型进行了仿真研究。 2直接转矩控制的基本原理和仿真模型 2.1 直接转矩控制的基本原理和仿真图 2.1.1直接转矩控制的基本原理

定子磁场定向控制方法报告

异步电机定子磁场定向控制方法 目前应用广泛的高动态性能的交流调速系统控制方法有矢量控制和直接转矩控制,这两种控制方法各有所长,但也存在着一些缺点。 矢量控制采用转子磁场定向的方法,实现定子电流的励磁分量与转矩分量的动态解耦,采用PI连续调节方式,实现转矩与转子磁场的控制。但是其解耦性能取决于转子磁场的精确定向,由于转子磁链的观测或计算是在电机模型的基础上进行的,因而转子磁场的定向受到电机参数特别是易于变化的转子电阻的影响。 直接转矩控制是根据转矩及定子磁链的偏差,分别采用砰砰控制的方法,根据定子磁链所在的扇区,直接产生PWM驱动信号,系统结构简单,对转子参数不敏感,但砰砰控制决定了转矩脉动不可避免,虽然增加电压综合矢量个数可以降低转矩脉动,但不能消除,本报告中的定子磁场定向控制方法是在两种系统的基础上,取长补短的一种新方法。 异步电机定子磁场定向控制方法有两个特点: 1、定子磁链用电压模型计算,采用连续的闭环控制,在补偿定子电阻压降的基础上直接控制定子磁链的变化率; 2、转速控制采用与矢量控制相仿的三环结构,内环为定子电流转矩分量控制,实现了转矩电流的快速跟随,第二环是转矩闭环控制,用以抑制定子磁链对转矩的扰动,最外环为转速闭环。 这种控制方法克服了矢量控制对转子电阻的直接依赖性,同时采用连续的控制方法克服了砰砰控制带来的转矩脉动。 为了研究异步电机定子磁场定向控制方法,我们要建立异步电机按定子磁场定向的动态模型。 根据定子磁场定向的定义可知,在d-q坐标系中,规定d轴与定子磁链矢量ψ的方向重合,q轴与ψ的方向垂直。因此,在d-q坐标系中,A相的电流、电压、磁链可以表示为:

基于MATLAB的异步电机转子磁场定向矢量控制系统仿真

科技论坛基于MATLAB 的异步电机转子磁场定向矢量控制系统仿真 常伟 (华北电力大学电气学院,北京100043) 1概述 异步电机是一个高阶、非线性、强藕合的多变量系统,数学模型比较 复杂。本文利用M ATLAB /Simulink 软件对异步电动机转子磁场定向控 制系统动态过程建立仿真模型,并对控制方案进行仿真研究。按转子磁 场定向的矢量控制系统是已经获得实际应用的高性能调速系统,控制思 想是在转子磁场定向的基础上,经过一系列的坐标变换,实现将三相异步 电机像直流电机一样对磁场和转矩的解耦控制,注重转矩与转子磁链的 解耦,实行连续控制,可获得较宽的调速范围,使异步电机的动静态性能 有很大提高,所以,异步电机矢量控制技术已被广泛应用于高性能异步 电机调速系统中。 2异步电机的数学模型 对于笼型异步电机,转子侧电压为零,根据文献[1]可以建立异步电 机在α-β静止坐标系下的数学模型以同步角速度旋转的两相直流旋 转坐标d 、q 之间的变换,可以推导出异步电机在d 、q 坐标系上的数学模 型的电压方程: 式中U sd ,U sq 为定子电压在同步坐标系上分量,R s ,R r 为定子电阻和 转子电阻,,为定子磁链在同步坐标系上的分量,,为转子 磁链在同步坐标系上的分量,,分别为同步角速度和转差角速度, P 为微分算子。 磁链方程: 式中,L s ,L r ,L m 分别为定子电感,转子电感和互感。,为定 子电流在同步坐标系上的分量,为转子电流在同步坐标系上 的分量。 转矩方程: T e 表示为电机的电磁转矩,p 为电机极对数。 根据上面公式,可以得到下列关系式 异步电机矢量控制系统的模型: 图1为矢量控制系统的原理图。图中转速调节器ASR 的输出是转 矩调节器的给定转矩。磁链调节器用于控制电机转子磁链,并设置 了电流变换和磁链观测环节,转矩调节器ATR 和磁链调节器的输 出分别是定子电流的转矩分量和励磁分量。和,电流滞环控制PWM 逆变器控制电机定子三相电流。图2是在M atlab/Simulink 环境下建立的异步电机转子磁场定向矢量控制系统仿真模型[3]。3仿真结果根据建立的异步电机矢量控制模型做仿真分析,实验参数为:极对数p=2,定子电阻r 1=0.075,定子绕组漏电感=0.72mH ,转子电阻r2=0.231,转子绕组漏电感=0.72mH ,互感L m =36mH ,恒负载转矩为T m =30Nm ,结果如下:从图3可以看出转速上升的速度比较快,且超调量比较小,输出转速出与转速给定指令基本相同,电机的跟随性好,说明建立矢量控制方法是正确的。4结论本文采用M atlab/Simulink 系统仿真工具,对异步电机转子磁场定向的矢量控制系统进行了建模仿真。按转子磁链定向,实现了定子电流 励磁分量和转矩分量的解耦,使系统具有良好的调速性能。仿真试验证明该矢量控制系统可以大范围地调速,具有很好的跟随性能,动态性能良好。因此,该系统在工业应用领域中具有很好的应用前景。参考文献: [1]陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社,2003.[2]尔桂花.运动控制系统[M].北京:清华大学出版社,2004.[3]洪乃刚.电力电子和电力拖动系统的MATLAB 仿真[M].北京:机械工业出版社。 摘要:异步电动机的模型特点是一多变量、强耦合的非线性系统。本文根据异步电机理论,建立了异步电动机的数学模型,给出了异步电动机转子磁场矢量控制系统基本结构和矢量控制系统仿真模型,仿真结果证明了所建电机模型的正确性。 关键词:异步电机;矢量控制;磁场定向;磁链 作者简介:常伟(1980-),男,工程师,华北电力大学在职研究生,首钢动力厂供电技术员。 ááL áá L 88··

直接转矩控制

太原科技大学 题目:直接转矩控制 专业:电气工程 班级:研1403 姓名:安顺林 学号:S2*******

直接转矩控制 摘要直接转矩控制系统具有宽调速范围、高稳速精度、快动态响应控制等优点,是交流调速领域中一种新颖的控制算法。直接转矩控制技术采用空间矢量分析的方法,直接在定子坐标系下计算并控制交流电动机的转矩和磁链,计算所得的转矩和磁链分别与给定值进行施密特调节产生脉冲信号,对逆变器的开关状态进行最佳控制,以获得转矩的高动态性能。本文从异步机数学模型出发,系统阐述了异步机直接转矩控制基本理论,详细分析了空间电压矢量与定子磁链、电动机转矩的关系。针对异步机的特点,分析讨论了空间矢量调制的直接转矩控制及实现方法,包括参考矢量的生成及空间电压矢量调制的方法。 关键字直接转矩控制,异步电动机 一直接转矩控制系统介绍 1.1 异步电动机调速系统的发展状况 在异步电动机调速系统中变频调速技术是目前应用最广泛的调速技术,也是最有希望取代直流调速的调速方式。就变频调速而言,其形式也有很多。传统的变频调速方式是采用v/f控制。这种方式控制结构简单,但由于它是基于电动机的稳态方程实现的,系统的动态响应指标较差,还无法完全取代直流调速系统。 1971年,德国学者EBlaschke提出了交流电动机的磁场定向矢量控制理论,标志着交流调速理论有了重大突破。所谓矢量控制,就是交流电动机模拟成直流电动机来控制,通过坐标变换来实现电动机定子电流的励磁分量和转矩分量的解藕,然后分别独立调节,从而获得高性能的转矩特性和转速响应特性。 矢量控制主要有两种方式:磁场定向矢量控制和转差频率矢量控制。无论采用哪种方式,转子磁链的准确检测是实现矢量控制的关键,直接关系到矢量控制系统性能的好坏。一般地,转子磁链检测可以采用直接法或间接法来实现。 直接法就是通过在电动机内部埋设感应线圈以检测电动机的磁链,这种方式会使简单的交流电动机结构复杂化,降低了系统的可靠性,磁链的检测精度也不能得到长期的保证。因此,间接法是实际应用中实现转子磁链检测的常用方法。

第五章-定子磁场定向矢量控制

第五章 定子磁场定向矢量控制 5.1 转子电流控制 在双馈电机定子磁场定向的矢量控制策略中,通常将同步旋转坐标系的d 轴与双馈电机定子磁场相重合,逆时针旋转90度的方向作为q 轴方向,即在同步旋转dq 坐标系中定子磁链可表述为: ???ψ=ψ=ψs sd sq 0 (5-1) 其中,s ψ为定子磁链的幅值。 由此,在定子磁链定向的情况下,重写双馈电机在同步旋转坐标系中的定转子电压方程、磁链方程: ????? ??????++=+-=+-=+-=qr dr s qr r qr dr qr s dr r dr ds qs s qs ds ds s ds dt d i r u dt d i r u i r u dt d i r u ψψωψψωψωψ1 (5-2) ??? ????+-=ψ+-=ψ+-=+-=ψqr r qs m qr dr r ds m dr qr m qs s dr m ds s s i L i L i L i L i L i L i L i L 0 (5-3) 求解后,得: qr s m qs i L L i =、()ms dr s m ds i i L L i -= (5-4) 其中:m s ms L i ψ=,称为通用励磁电流 计算转子磁链如下: ??????????? ??+-=ψ???? ??+-+=ψqr r s m qr dr r s m ms s m dr i L L L i L L L i L L 222 (5-5) 设??? ? ??-=s m r s L L L L 2σ为漏磁系数,则5-5式又可表示为: ?????=ψ+=ψqr r qr dr r ms s m dr i L i L i L L σσ2 (5-6) 利用式5-2计算转子电压如下:

六相永磁同步电动机磁场定向控制实例

六相永磁同步电动机磁场定向控制方案实例: 本文在分析了六相永磁同步电动机(PMSM)的数学模型的基础上,建立了六相PMSM 矢量控制系统的仿真模型。同时,利用数字信号处理器TMS320LF2407的强大资源来实现矢量控制算法。最后,仿真分析和实验结果相符合,而且使得系统能够获得很好的性能。 在满足一定的假设条件下,我们建立p 对极N 相正弦波永磁同步电动机在abc 坐标下和dq 坐标下的状态数学模型: fs ss sr s s f r rs rr r r L L i L L i ψψψψ????????=+????????????????,s s s r r u i p R u i ψψr ?????=+? ???????????? 式中 () kd kq R diag r r r r r =" 定转子绕组之间的互感矩阵 rs L ? 232 3kd1 kd kd kdn rs sr kq1 kq kq kqn L L L L L L L L L L ?? ==? ??? "" 转子绕组的电感系数矩阵 rr L ? 00 kd rr kq L L L ??=? ??? ss L -定子绕组电感系数矩阵 fs ψ-永磁体产生的磁通链过定子绕组的磁链 rs ψ-永磁体产生的磁通链过定子绕组的磁链 -定子绕组,直轴阻尼绕组和交轴阻尼绕组 ,,kd kq r r r p -对时间的求导算子d p dt = dq系统的磁链方程 假设气隙磁场按正弦分布,忽略磁场的高次谐波分量,通过合适的变换矩阵

得到: 220 00 00 skd d kd kd d d fsd dq q q skq q kq kq pL L r pL i i pL L r pL ψψψψ?? ? ??+?????? ? ?==+??? ?????????????? +??? ? fsd ψ-定子相绕组轴线与直轴一致时,永磁体产生的基波磁通链过该相绕组的磁链 fr d ψ-永磁体产生的基波磁通链过转子绕组的直轴磁链 建立了p 对极N 相正弦波永磁同步电动机的数学模型后,有助于我们从控制的角度出发对其进行分析,进而实现各种先进的控制策略,只是基本而重要的步骤。 为建立六相PMSM的dq轴数学模型,假设: (1) 电机定子绕组产生的磁动势波和磁场在空间上都按正弦分布; (2) 忽略电机铁心剩磁,磁路线性; (3) 不计定子表面齿、槽的影响。 在上述前提下,由图1所示的变换可得到dq 坐标系下六相PMSM 的磁链方程、电压方程和电磁转矩方程分别为: d d d s q s q q q s d 00 u i R p u i R ψψωψψ??????????=++?????????????????? ? ?? (1) d d d f q q q 000L i L i ψψψ???????? =+?????????? ?????? (2) em p f q d q d q ())T n i L L i i =+? (3) em l ?d T T R J dt Ω ??Ω= (4)

转矩控制矢量控制和VF控制解析

转矩控制矢量控制和V F 控制解析 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

转矩控制、矢量控制和VF控制解析 1.变转矩就是负载转矩随电机转速增大而增大,是非线性变化的,如风机水泵 恒转矩就是负载转矩不随电机转速增大而增大,一般是相对于恒功率控制而言。如皮带运输机提升机等机械负载 控制就是变频器输出频率与输出电压比值为恒定值或正比。例如:50HZ时输出电压为380V,25HZ时输出电压为190V即恒磁通控制;转矩不可控,系统只是一个以转速物理量做闭环的单闭环控制系统,他只能控制电机的转速 根据电机原理可知,三相异步电机定子每相电动势的有效值:E1=4.44f1N1Φm式中:E1--定子每相由气 隙磁通感应的电动势的有效值,V;f1--定子频率,Hz;N1——定子每相绕组有效匝数;Φm-每极磁通量由式 中可以看出,Φm的值由E1/f1决定,但由于E1难以直接控制,所以在电动势较高时,可忽略定子漏阻抗压降,而用定子相电压U1代替。那么要保证Φm不变,只要U1/f1始终为一定值即可。这是基频以下调时速的 基本情况,为恒压频比(恒磁通)控制方式,属于恒转矩调速。 基准频率为恒转矩调速区的最高频率,基准频率所对应的电压为即为基准电压,是恒转矩调速区的最高电压,在基频以下调速时,电压会随频率而变化,但两者的比值不变。在基频以上调速时,频率从基频向上可以 调至上限频率值,但是由于电机定子不能超过电机额定电压,因此电压不再随频率变化,而保持基准电压值不变,这时电机主磁通必须随频率升高而减弱,转矩相应减小,功率基本保持不变,属于恒功率调速区。 3.矢量控制,把输出电流分励磁和转矩电流并分别控制,转矩可控,系统是一 个以转矩做内环,转速做外环的双闭环控制系统。它既可以控制电机的转速,也可以控制电机的扭矩。矢量控制时的速度控制(ASR)通过操作转矩指令,使得速 度指令和速度检出值(PG的反馈或速度推定值)的偏差值为0。带PG的V/f控 制时的速度控制通过操作输出频率,使得速度指令和速度检出值(PG的反馈或速 度推定值)的偏差值为0。 矢量控制原理是模仿直流电动机的控制原理,根据异步电动机的动态数学模型,利用一系列坐标变换把定子电流矢量分解为励磁分量和转矩分量,对电机的转矩电流分量和励磁分量分别进行控制,在转子磁场定向后实现磁场和转矩的解耦,从而达到控制异步电动机转矩的目的,使异步电机得到接近他励直流电机的控制性能。具体做法

直接转矩控制仿真

为了能让大家在已经泛滥的知识上少走弯路,本人把自己在SVPWM上的认识与看到此贴的读者们一起分享,废话少说,切入正题:在看下面内容之前,您应该至少对SVPWM的原理有大致的了解,如果不了解也没关系,你只要按照我交给你的步骤来做,也可以轻而易举的跨过SVPWM这道坎,在仿真之前您必须安装MATLAB7.0或以上版本,必须确保simpowersysm工具箱已被安装,如果以上要求已经达到,那么就可以执行以下步骤了: 步骤1:打开matlab主界面,然后在command window界面中的“>>”旁边输入simulink,打开simulink开发环境后新建一个mdl文件,在simulink下拉菜单中的ports&subsystems中找到subsystem模块,用其建立一个如图1的总的模块,这个模块有两个输入口,一个输出口(实际上包含六路PWM信号),接来的东西都将在这个模块中添加,输入输出模块的名称可以在双击模块后自己更改,其中Vahar,Vbetar是需要输出的电压在两相静止坐标系下的两个分量,输出是控制逆变器六个IGBT的pwm脉冲信号。 也许有人会问,输入参数不是还包括直流电压和功率开关频率吗?别急,下面接着让您看到上述模块的内部情况 步骤2:根据图2,添加subsystem的内核模块,里面用到的模块有以下几种:in,out,mux,demux,repeatingsequence,rationaloperator,logical operator 和里面的主角S-Function builder模块。

可以看到输入有四个参数Vapha,Vbeta,Tz,Vdc,输出为六路PWM信号,这个仿真模块没考虑死区的问题; 取Tz为1/(1e+4)这就是说开个频率是10kHz,Vdc为500,这两个参数要根据实际情况自己设置,这里是我任意设的,repeating sequence的设置如图3所示,这样设的目的是想产生一个周期为Tz,峰值为Tz/2的等腰直角三角形调制波,接下来设置两个比较模块和取反模块,比较模块是大于等于关系,各模块的其他参数,我没说的就当默认设置,细心的读者会在图4中的第一幅图中看到仿真时间设为Ts,这是我设的系统仿真步长,这里就用默认值-1,此外比较模块和取反模块的信号属性signal atrributes均应设为Boolean格式。 图3

电机磁场定向控制系统概述

电机磁场定向控制系统概述 永磁同步电机(PMSM)是近年来发展较快的一种电机,由于其转子采用永磁钢,属于无刷电机的一种,具有一般无刷电机结构简单,体积小,寿命长等优点。 本文讨论空间矢量控制的永磁同步电机,采用磁场定向算法借助DSP高速度实现对转速的实时控制。由于控制算法必须获取转子位置信息,所以传统的控制系统都需要以光电编码器等作为转子位置传感器。为了最大限度减少传感器,本文从改变相电流检测方法,建立采用砰-砰控制的滑模观测器,介绍一个可以实现的模型。 2磁场定向原理 磁场定向控制,简称FOC。两直角坐标系:αβ坐标系为定子静止坐标系,α轴与定子绕组a相轴重合;dq为转子旋转坐标系,d轴与转子磁链方向重合,并以同步速ωr逆时针旋转。两坐标系之间的夹角为θe。可以把定子电流综合矢量is,在旋转坐标系dq轴上如下式分解 is=isd+isq (1) 在交流永磁同步电机中,转子为永磁钢,可认为转子电流综合矢量的模大小不变,常用常数值IF代表。根据交流电机电磁转矩T与定、转子电流综合矢量的普遍关系式 式中p———极对数 L12———定、转子互感 i1———定子电流综合矢量 i2———转子电流综合矢量 δ———定、转子综合矢量间夹角 这样电磁转矩只随|i1|和角δ变化。为了获得简单可控的转矩特性,可以给定定子电流综合矢量指令使其始终在q轴上,即δ=90°,从而得 式中Is———定子电流综合矢量的模 按上式可以实现用定子电流综合矢量的模来直接控制电动机电磁转矩,从而使永磁同步电动机获得类似直流电动机的伺服性能,并可得到快速无静差的调节特性。 该速度控制系统由速度、电流双闭环实现,采用的算法由相应的模块实现,包括:Park变换模块,Clark变换模块,反Park变换模块,转子位置角估计模块,转速计算模块,弱磁控制模块,PI调节模块,空间矢量PWM生成模块等。整个控制系统,以DSP芯片为核心再配以简单的外围电路,其复杂的控制算法及功能全部由软件来实现。其中每一个控制模块,对应一C调用函数,主函数流程用C语言编制。与有位置传感器的控制系统相比,无位置传感器系统仅在对反馈量的处理中采用了转角观测器模块函数,而对其他控制模块,而系统可以以完全相同的方法实现,这更显示了软件构成系统的灵活性。 3无传感器算法 3.1减少一路电流传感器方法 在逆变器控制中都需要相电流信息,传统采用的方法是直接用传感器获得需要的相电流,这种方法依赖负载的布置,并且至少需要两个传感器直接应用于电机组绕组。本文介绍的方法是仅通过采集直流侧母线电流信息,来估计交流侧三相电流值。因为逆变器开关状态是我们直接控制的,所以已知输入电流的路径,即输入线电流和电机相电流间的关系。这样在通常八个开关状态(Sa,Sb,Sc)中除(0,0,0)和(1,1,1),在其他六个开关状态下,直流侧线电流信息总对应a,b,c中某一路相电流值。 开关状态(Sa,Sb,Sc)=(0,0,1)下,相电流ic等于直流线电流,另外两相电流ia,ib则等于直流线电流的一半。这样线电流信号经一路AD通道,送给DSP,再经过适当计算即可获三相电流信息。

第七章磁场定向矢量控制系统

第七章磁场定向矢量控制系统 判断题 1.不同电机模型彼此等效的的原则是在不同的坐标系下所产生的磁动势完全一致。√ 2.矢量控制系统可以分为电压型和电流型,现代牵引传动系统中,电流型矢量控制系 统应用最为普遍。? 3.低速情况下,采用电压模型法观测转子磁链性能比采用电流模型法好。? 4.转子磁链准确的检测与计算是进行矢量变换控制的前提。√ 5.直接矢量控制系统是转速和磁链闭环控制的矢量控制系统。√ 6.CRH2型动车组在低速时采用异步调制,高速时采用分段同步调制,弱磁控制采用 单脉冲控制。√ 7.间接矢量控制系统是转速闭环、磁链开环控制的矢量控制系统。√ 8.转子磁链观测模型中电流模型比较适用于微机数字控制。? 9.在电传动系统中,电机是实现机电能量转换的主体。√ 10.转子系统与静止系统之间的变换是一种旋转变换,而不是静止的三相/两相变换。√ 11.矢量控制是以定子磁链的矢量来定向的。? 12.电机转子时间常数会随着转子绕组温度而变化。√ 13.德国的BR152电力机车采用的是间接矢量控制方式。? 14.一般情况下,我们希望电动机工作在额定满磁场的状态。√ 15.直接转矩控制方式比矢量控制方式具有更优良的动、静态性能。√选择题 1.我国CRH2型动车组采用的控制策略是______ (B) A. 恒压频比控制策略 B. 转子磁场定向间接矢量控制策略 C. 转子磁场定向直接矢量控制策略 D. 直接转矩控制策略 2.下面几种异步电机控制方式中,属于智能控制的是______ (C) A. 恒压频比控制 B. 直接转矩控制

C. 人工神经网络控制 D. 矢量控制 3.下面几种转子磁链观测的方法中,哪一种是在两相旋转坐标系上实现的 (D) A. 电压模型法 B. 电流模型法 C. 电压—电流模型法 D. 根据指令电流和转速检测值计算磁链法 4.在电压—电流转子磁链观测模型中,没有用到的信号是______ (B) A. 定子电流信号 B. 转子电流信号 C. 定子电压信号 D. 转速信号 5.下列车型中,采用间接矢量控制的是______ (A) A. CRH2型动车组 B. 德国BR152电力机车 C. 奥地利1012电力机车 D. CRH3型动车组 6.在电力牵引交流传动电力机车和高速动车组上,异步牵引电动机控制方法经历了几 个发展过程。(B) A.2个 B.3个 C.4个 D.5个 7.影响电机转子时间参数的因素为______ (D) A.磁路饱和 B.温度变化 C.频率变化 D.以上三项都是 8.在矢量控制系统中,用于两个正交量求取模及幅角的运算的坐标变换是______ (D) A.3/2变换 B.2/3变换 C.VR变换 D.K/P变换 9.下面哪项不是人工神经网络的优点______ (B) A.具备快速并行计算能力 B.控制电路简单 C.容错能力强 D.对参数变化的影响较小 10.数字信号处理器(DSP)的优点有______ (D) A.硬件简单、控制算法灵活 B.抗干扰性强 C.无漂移、兼容性好 D.上述三项都是

矢量控制与直接转矩控制之我见

矢量控制与直接转矩控制之我见 My Opinion on Vector Control and Direct Torque Control 艾默生网络能源有限公司变频器开发部 刘宏鑫 MDI R&D Department of Emerson Network Power Co.,LTD Liu Hong Xin 摘要:本文阐述采用矢量控制与直接转矩控制技术的变频器性能的优劣,提出了两种技术的发展方向。 关键词:矢量控制 直接转矩控制 变频器 Abstract: The merits and demerits of inverter using VC and DTC are discussed in detail. The trend of VC and DTC is presented in this paper. Keywords:Vector Control Direct Torque Control Inverter 一、矢量控制与直接转矩控制技术发展 自从70年代初期西德Blaschke等人首先提出矢量控制(Vector Control,简称VC)理论,到80年代中期德国人M.depenbrock等人首先提出直接转矩控制理论(Direct Torque Control,简称DTC)以来,全世界各地的高校、科研机构、各大变频器公司投入巨大资金和精力来研究,高性能交流变频调速技术如雨后春笋般的涌现出来。由于矢量控制与直接转矩控制技术均是基于异步电机的动态模型,而且均采用外环为速度环,内环为转矩和磁链控制,从而实现转速和磁链的近似解耦,获得了较好的动态性能[1]。 矢量控制的研究重点在于矢量控制环路的结构、无速度传感器速度辨识和电机参数的离线和在线辨识。DTC的重点在于无速度传感器速度辨识、磁链和转矩自控制、脉冲优化选择器等方面。两者的目的在于提高系统转矩控制动态响应、稳态速度精度(速度辨识的精度、转矩脉动大小、冷态热态情况下的自适应能力)、系统的鲁棒性。由于两者算法对于数字化要求非常高、对运算的速度要求也非常高,因此受CPU速度的限制,真正高性能全数字化的无PG变频器在90年代中后期才陆续出现的。表1是1999年8家公司商用化无速度传感器的性能比较[2]。 近几年来,变频器的控制水平又有很大提高,如日立SJ300具有电压检测电路,可以达到1∶500以上的调速范围,而且零速可以达到150%的转矩,富士VG7由于具有电压检测电路,开环辨识精度较高,号称达到开环伺服水平。由于欧洲变频器研发工作着重于V/F 控制或者闭环矢量控制模式,欧洲开环矢量控制变频器的技术水平与日本的差距较多。由于欧洲的制造业非常发达,推动了伺服控制技术的发展,相比日本有一定的优势。 二、通用变频器控制技术的现状

三种磁场定向矢量控制技术的比较知识讲解

磁场定向矢量控制技术按照获得磁链的不同方式大致可分为两种:直接和间接方式。直接方式的实现依赖于直接测量或对转子,定子,气隙磁链矢量的幅值和位置的估算。传统的直接矢量控制策略使用检测线圈,具有抽头的定子绕组或霍尔效应传感器对磁通进行检测,但由于电机结构或散热的需要就会产生一定的限制,但随着目前高速DSP的不断面世,在一个PWM周期内,实现负载的控制及磁链估算应成为可能,所以近年来基于磁链观测器的直接方式由重新得到了人们的重视。而间接方式则使用电动机模型,例如对于转子磁通定向控制,它利用了固有的转差关系。与直接的方法相比,间接方式对电机参数有较高的依赖性。多数场合使用间接策略,因为这会使硬件电路相对简单并且在低频下也具有较好的总体性能,但是由于包含了会随着温度,饱和度和频率变化而变化的电机参数,所以需要研究不同的参数自适应策略。 如果从选择的磁链矢量分类的话,磁场定向矢量控制技术一般可分为三种,即气隙磁场定向控制,定子磁场定向控制,转子磁场定向控制。 1. 气隙磁场定向控制方案。气隙磁场的定向控制是将旋转坐标系的M轴定向于气隙磁场的方向,此时气隙磁场的T轴分量为零。如果保持气隙磁通M轴分量恒定,转矩直接和T轴电流成正比。因此,通过控制T轴电流,可以实现转矩的瞬时控制,从而达到控制电机的目的。 2. 定子磁场定向控制方案。定子磁场定向的控制方法,是将旋转坐标的M 轴放在定子磁场方向上,此时,定子磁通的T轴分量为零。如果保持定子磁通恒定,转矩直接和T轴电流成正比,从而控制电机。定子磁场定向控制使定子方程大大简化,从而有利于定子磁通观测器的实现。然而此方案在进行磁通控制时,不论采用直接磁通闭环控制,还是采用间接磁通闭环控制,均须消除耦合项的影响。因此,需要设计一个解耦器,对电流进行解耦。 3. 转子磁场定向控制方案。转子磁场定向的控制方法是在磁场定向矢量控制方法中,将M,T坐标系放在同步旋转磁场上,将电机转子磁通作为旋转坐标系的M坐标轴。若忽略由反电动势引起的交叉祸合,只需检测出定子电流的M轴分量,就可以观测转子磁通幅值。当转子磁通恒定时,电磁转矩与定子电流的T 轴分量成正比,通过控制定子电流的T轴分量就可以控制电磁转矩。因此称定子电流的M轴分量为励磁分量,定子电流的T轴分量为转矩分量。可由电压方程M 轴分量控制转子磁通,T轴分量控制转矩,从而实现磁通和转矩的解耦控制。 下面对它们进行简要的总结和比较: 气隙磁场定向系统中磁通关系和转差关系中存在耦合,需要增加解耦器这使得它比转子磁通的控制方式要复杂,但具有一些状态能直接测量的优点,比如气隙磁通。同时电机磁通的饱和程度与气隙磁通一致,故基于气隙磁通的控制方式更适合于处理饱和效应。 定子磁场定向的矢量控制方案,在一般的调速范围内可利用定子方程作磁通观测器,非常易于实现,且不包括对温度变化敏感的转子参数,可达到相当好的动静态性能,同时控制系统结构也相对简单,然而在低速时,由定子电阻压降占

正版直接转矩控制系统仿真

目录 1直接转矩控制的基本原理及特点与规律 (1) 1.1直接转矩控制系统原理与特点 (1) 1.2直接转矩系统的控制规律和反馈系统 (3) 2系统建模与仿真 (5) 2.1模块模型实现 (5) 2.1.1电机模型 (6) 2.1.2磁通和转矩滞环控制器 (7) 2.1.3磁链选择器 (8) 2.1.4电压矢量选择 (9) 2.1.5其他模块 (10) 3感受和体会 (11) 附录 (12) 参考文献 (18)

直接转矩控制技术仿真分析 1直接转矩控制的基本原理及特点与规律 直接转矩控制系统简称DTC(Direct Torque Control)系统,是继矢量控制系统之后发展起来的另外一种高动态性能的交流电动机变压变频调速系统。在它的转速环里面利用转矩反馈直接控制电机的电磁转矩,因此而得名为直接转矩控制。 1.1直接转矩控制系统原理与特点 如图1-1为直接转矩控制的原理框图,和VC系统一样,它也是分别控制异步电动机的转速和磁链,转速调节器ASR的输出作为电磁转矩的给定信号* T,在* T后面设置转矩控制内环,它可以抑制磁链变化对于转矩的影响,从而使得转速和磁链系统实现解耦。因此,从整体控制结构上来看,直接转矩控制(DTC)系统和矢量控制系统(VC)系统是一致的都获得了较高质量的动态性能以及静态性能。 图1-1直接转矩控制系统图 的幅值从图中中可以看出,直接转矩控制系统,就是通过使定转子磁链 s 保持恒定,然后选择合理的零矢量的作用次序和作用时宽,以调节定子磁链矢量的运动速度,从而改变磁通角的大小,以实现对电机转矩的控制。在直接转矩控

制技术中,其基本控制方法就是通过电压空间矢量来控制定子磁链的旋转速度,控制定子磁链走走停停,以改变定子磁链的平均旋转速度的大小,从而改变磁通角的大小,以达到控制电动机转矩的目的。 直接转矩控制作为一种交流调速的控制技术具有以下特点: ①直接转矩控制直接在定子坐标系下分析交流电动机的数学模型,直接控 制电机的磁链和转矩。它不需要将交流电动机和直流电动机做比较等效简化,不 需要模仿直流电动机的控制,也不需要为解耦而简化交流电动机的数学模型,它 省掉了矢量旋转变换等复杂的变换与计算。因此,它所需要的信号处理工作特别 简单,所用的信号使观察者对于交流电动机的物理过程能够做出直接和明确的判 断。 ②直接转矩以定子磁场定向,只要知道定子参数就可以把它观测出来。而 矢量控制磁场定向所用的是转子磁链,观测转子磁链需要知道电动机的转子电阻 和电感。因此,直接转矩控制大大减少了矢量控制技术中控制性能易受参数变化 影响的问题。 ③直接转矩控制采用空间电压矢量和六边形磁链轨迹,直接控制转矩。 ④转矩和磁链都采用两点式调节,把误差限制在容许的范围内,控制直接 又简化。 ⑤控制信号的物理概念明确,转矩响应快,具有较高的静、动态性能。由于以上的优点所以直接转矩控制技术在现代控制理论中得到广泛的运用。

直接转矩控制原理

直接转矩控制原理 直接转矩控制原理比较简单,就是根据计算得出的反馈值(转速、电流)(没有实际值,因为在电机内部安装传感器并不实用,一般反馈量都是计算出来的)与给定值相比较,根据偏差(两种:磁链和转矩)大小,选择合适的电压矢量(开关状态)。电压矢量对定子磁链进行控制(幅值,相位),从而改变转矩。 传统直接转矩控制方法偏差分类: 磁链: 1,需要增大 2,需要减小 转矩: 1,需要增大 2,不变 3,需要减小 可见共有6中要求控制状态。在4个控制电压矢量和2个零电压矢量中选择合适的,即为滞环比较器的输出。仿真系统中这个功能由滞环比较单元与查表单元结合产生。 一、引言 电动机调速是各行各业中电动机应用系统的必需环节。直流电动机因其磁链与转矩电流各自独立,不存在耦合关系,能够获得很好的调速范围和调速精度,静、动态特性均比较好而获得广泛应用。 交流(异步)电动机结构简单却因其磁链与电流强耦合,而且是多变量非线性系统,调速难度大,长期以来在调速系统的应用受到限制。直到近三十年来,一系列新型的传动调速技术的出现才开始了交流传动的新篇章。 1.交流传动的发展简述 首先是变压变频调速系统(VVVF),后来出现了矢量控制(FOC)和直接 转矩控制(DTC)调速系统。由于VVVF系统只是维持电动机内的磁链恒定,

并没有解决磁链和电流强耦合的问题,其调速范围窄,调速性能也不佳。矢量控制是以转子磁场定向,采用矢量变换的方法,通过两次旋转坐标变换,实现异步电动机的转速和磁链控制的完全解耦。但实际上由于转子磁链很难准确观测,系统特性受电机参数的影响较大,且计算也比较复杂。 1985年,德国的M.Depenbrock和日本的I.Takahashi先后提出直接转矩控制理论。直接转矩控制在定子坐标系下,避开旋转坐标变换,直接控制转子磁链,采用转矩和磁链的bang-bang控制,不受转子参数随转速变化而变化的影响,简化了控制结构,动态响应快,对参数鲁棒性好,因而得到广泛的深入研究和应用。 2.矢量控制(FOC)和直接转矩控制(DTC)的简略对比 (1)控制原理:FOC是在转子磁通坐标系中,通过分别控制q轴和d轴定子电流分量,实现转速和磁链的解耦控制。其实质是通过坐标变换重建的电动机数学模型等效为直流电动机,从而象直流电动机那样进行快速的转矩和磁通控制。DTC是在定子坐标系下通过检测电动机定子电压和电流,采用空间矢量理论计算电动机的转矩和磁链,并根据与给定值比较所得差值,实现转矩和磁链的直接控制。 (2)控制性能:FOC的调速范围较宽(1:20~200),调速精度较高,低速特性连续,响应速度较快,但受参数变化影响较大,且计算复杂,控制相对繁琐。DTC的调速范围较窄(1:15~100),调速精度也较高,响应速度快,低速特性有脉动现象,但其不仅计算简便,而且控制思想新颖,控制结构简单,控制手段直接,信号处理的物理概念明确,动静态性能均佳,有广阔的应用前景。 图1异步电动机的空间矢量等效电路 直接转矩控制的基本思想是在准确观测定子磁链的空间位置和大小并保持其幅值基本恒定以及准确计算负载转矩的条件下,通过控制电动机的瞬时输入电压来控制电机定子磁链的瞬时旋转速度,来改变它对转子的瞬时转差率,达到直接控制电机输出的目的。 二、数学模型 1.异步电动机转矩的数学模型

相关文档
最新文档