九年级相似三角形知识点总结材料及例题讲解

九年级相似三角形知识点总结材料及例题讲解
九年级相似三角形知识点总结材料及例题讲解

知识点一:放缩与相似

1.图形的放大或缩小,称为图形的放缩运动。

2.把形状相同的两个图形说成是相似的图形,或者就说是相似性。

注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。

⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。

⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的. ⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形.

3.相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。

注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是1.

知识点二:比例线段有关概念及性质 (1)有关概念

1、比:选用同一长度单位量得两条线段。a 、b 的长度分别是m 、n ,那么就说这两条线段的比是a :b =m :

n (或n m b a =

2、比的前项,比的后项:两条线段的比a :b 中。a 叫做比的前项,b 叫做比的后项。 说明:求两条线段的比时,对这两条线段要用同一单位长度。

3、比例:两个比相等的式子叫做比例,如d

c b a =

4、比例外项:在比例d

c b a =

(或a :b =c :d )中a 、d 叫做比例外项。

5、比例项:在比例d

c b a =

(或a :b =c :d )中b 、c 叫做比例项。

6、第四比例项:在比例

d c b a =(或a :b =c :d )中,d 叫a 、b 、c 的第四比例项。 7、比例中项:如果比例中两个比例项相等,即比例为a b

b a =

(或

a:b =b:c 时,我们把b 叫做a 和d 的比例

中项。

8.比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即

d

c

b a =(或a :b=

c :

d )

,那么,这四条线段叫做成比例线段,简称比例线段。(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)

(2)比例性质

1.基本性质: bc

ad d c

b a =?= (两外项的积等于两项积)

2.反比性质: c d

a b d

c b a =

?= (把比的前项、后项交换)

3.更比性质(交换比例的项或外项):

()()()a b

c d a c d c b d b a

d b

c a ?=??

?=?=???=??,

交换内项,交换外项.

同时交换内外项

4.合比性质:

d

d

c b b a

d c b a ±=±?=(分子加(减)分母,分母不变)

注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间

发生同样和差变化比例仍成立.如:???????+-=+--=-?=d

c d

c b a b a c

c

d a a b d c b a .

5.等比性质:(分子分母分别相加,比值不变.) 如果

)0(≠++++====n f d b n

m

f e d c b a ,那么

b a n f d b m e

c a =++++++++ . 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法.

(2)应用等比性质时,要考虑到分母是否为零.

(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.

知识点三:黄金分割

1)定义:在线段AB 上,点C 把线段AB 分成两条线段AC 和BC (AC >BC ),如果

AC

BC

AB AC =

,即AC 2=AB×BC ,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比。其中AB AC 2

1

5-=

≈0.618AB 。

.AB DE AB DE

BC EF AC DF =

=或等2)黄金分割的几何作图:已知:线段AB.求作:点C 使C 是线段AB 的黄金分割点.

作法:①过点B 作BD ⊥AB ,使;

②连结AD ,在DA 上截取DE=DB ;

③在AB 上截取AC=AE ,则点C 就是所求作的线段AB 的黄金分割点.黄金分割的比值为:

.(只要求记住)

3)矩形中,如果宽与长的比是黄金比,这个矩形叫做黄金矩形。

知识点四:平行线分线段成比例定理

(一)平行线分线段成比例定理

1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比.

例. 已知l 1∥l 2∥l 3,

A D l 1

B E l 2

C F l 3

可得

2.推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.

由DE ∥BC 可得:

AC

AE AB AD EA EC AD BD EC AE DB AD ===或或.此推论较原定理应用更加广泛,条件是平(1)是“A ”字型 (2)是“8”字型 经常考,关键在于找

行.

3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这

条直线平行于三角形的第三边. (即利用比例式证平行线)

4.定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边......与原三角形三边......

对应成比例.

5.平行线等分线段定理:三条平行线截两条直线,如果在一条直线上截得的线段相等,难么在另一条直线上截得的线段也相等。

★三角形一边的平行线性质定理

定理:平行于三角形一边的直线截其他两边所得的线段对应成比例。

几何语言 ∵ △ABE 中BD ∥CE

∴DE AD

BC

AB =

简记:下上下上= 归纳:AE AD AC

AB = 和AE DE

AC BC =推广:类似地还可以得到全上全上=和全下全下=

E

★三角形一边的平行线性质定理推论

平行于三角形一边的直线截其他两边所在的直线,截得的三角形的三边与原三角形的三边对应成比例.

★三角形一边的平行线的判定定理

三角形一边平行线判定定理 如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线

平行于三角形的第三边.

E

D C

B A

三角形一边的平行线判定定理推论 如果一条直线截三角形两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边.

★平行线分线段成比例定理

1.平行线分线段成比例定理:

两条直线被三条平行的直线所截,截得的对应线段成比例.

用符号语言表示:AD ∥BE ∥CF,,,AB DE BC EF AB DE

BC EF AC DF AC DF

===

. 2.平行线等分线段定理:两条直线被三条平行的直线所截,如果在一直线上所截得的线段相等,那么在另一直线上所截得的线段也相等. 用符号语言表示:

AD BE CF AB BC DE DF ?

?=?=?

.

重心定义:三角形三条中线相交于一点,这个交点叫做三角形的重心.

重心的性质:三角形的重心到一个顶点的距离,等于它到对边中点的距离的两倍.

知识点三:相似三角形

1、 相似三角形

1)定义:如果两个三角形中,三角对应相等,三边对应成比例,那么这两个三角形叫做相似三角形。 几种特殊三角形的相似关系:两个全等三角形一定相似。

两个等腰直角三角形一定相似。 两个等边三角形一定相似。

两个直角三角形和两个等腰三角形不一定相似。

补充:对于多边形而言,所有圆相似;所有正多边形相似(如正四边形、正五边形等等); 2)性质:两个相似三角形中,对应角相等、对应边成比例。

3)相似比:两个相似三角形的对应边的比,叫做这两个三角形的相似比。 如△ABC 与△DEF 相似,记作△ABC ∽△DEF 。相似比为k 。 4)判定:①定义法:对应角相等,对应边成比例的两个三角形相似。

②三角形相似的预备定理:平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似。

三角形相似的判定定理:

判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两 个三角形相似.简述为:两角对应相等,两三角形相似.(此定理用的最多) 判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹

角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.

判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这

两个三角形相似.简述为:三边对应成比例,两三角形相似.

直角三角形相似判定定理:

○1.斜边与一条直角边对应成比例的两直角三角形相似。

○2.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。

补充一:直角三角形中的相似问题:

斜边的高分直角三角形所成的两个直角三角形与原直角三角形相似.

射影定理:

CD2=AD·BD,

AC2=AD·AB,

BC2=BD·BA

(在直角三角形的计算和证明中有广泛的应用).

补充二:三角形相似的判定定理推论

推论一:顶角或底角相等的两个等腰三角形相似。

推论二:腰和底对应成比例的两个等腰三角形相似。

推论三:有一个锐角相等的两个直角三角形相似。

推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。

推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

相似三角形的性质

①相似三角形对应角相等、对应边成比例.

②相似三角形对应高、对应角平分线、对应中线、周长的比都等于相似比(对应边的比).

③相似三角形对应面积的比等于相似比的平方.

2、相似的应用:位似

1)定义:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。

需注意:①位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形。

②两个位似图形的位似中心只有一个。

③两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧。

④位似比就是相似比。

2)性质:①位似图形首先是相似图形,所以它具有相似图形的一切性质。

②位似图形是一种特殊的相似图形,它又具有特殊的性质,位似图形上任意一对对应点到位似

中心的距离等于位似比(相似比)。

圆与方程知识点总结典型例题

圆与方程 1. 圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-. 特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+. 2. 点与圆的位置关系: (1).设点到圆心的距离为d ,圆半径为r : a.点在圆内 d <r ; b.点在圆上 d=r ; c.点在圆外 d >r (2).给定点),(00y x M 及圆222)()(:r b y a x C =-+-. ①M 在圆C 内22020)()(r b y a x <-+-? ②M 在圆C 上22020)()r b y a x =-+-? ( ③M 在圆C 外22020)()(r b y a x >-+-? (3)涉及最值: ① 圆外一点B ,圆上一动点P ,讨论PB 的最值 min PB BN BC r ==- max PB BM BC r ==+ ② 圆内一点A ,圆上一动点P ,讨论PA 的最值 min PA AN r AC ==- max PA AM r AC ==+ 思考:过此A 点作最短的弦?(此弦垂直AC ) 3. 圆的一般方程:022=++++F Ey Dx y x . (1) 当0422>-+F E D 时,方程表示一个圆,其中圆心??? ??--2,2E D C ,半径2 422F E D r -+=. (2) 当0422=-+F E D 时,方程表示一个点??? ??--2,2 E D . (3) 当0422<-+ F E D 时,方程不表示任何图形.

注:方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0=B 且0≠=C A 且0422 AF E D -+. 4. 直线与圆的位置关系: 直线0=++C By Ax 与圆222)()(r b y a x =-+- 圆心到直线的距离22B A C Bb Aa d +++= 1)无交点直线与圆相离??>r d ; 2)只有一个交点直线与圆相切??=r d ; 3)有两个交点直线与圆相交???时,直线与圆有2个交点,,直线与圆相交; (2)当0=?时,直线与圆只有1个交点,直线与圆相切; (3)当0r r d ; ② 条公切线外切321??+=r r d ; ③ 条公切线相交22121??+<<-r r d r r ; ④ 条公切线内切121??-=r r d ; ⑤ 无公切线内含??-<<210r r d ;

相似三角形经典大题(含答案)

相似三角形经典大题解析 1.如图,已知一个三角形纸片ABC ,B C 边的长为8,B C 边上的高为6,B ∠和C ∠都为锐角,M 为A B 一动点(点M 与点A B 、不重合),过点M 作M N B C ∥,交A C 于点N ,在A M N △中,设M N 的长为x ,M N 上的高为h . (1)请你用含x 的代数式表示h . (2)将AMN △沿M N 折叠,使A M N △落在四边形B C N M 所在平面,设点A 落在平面的点为1A ,1A M N △与四边形B C N M 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少? 【答案】解:(1)M N B C ∥ A M N A B C ∴△∽△ 68 h x ∴= 34 x h ∴= (2)1AM N A M N △≌△ 1A M N ∴△的边M N 上的高为h , ①当点1A 落在四边形B C N M 内或B C 边上时, 1A M N y S =△= 2 11332 2 4 8 M N h x x x = = ·· (04x <≤) ②当1A 落在四边形B C N M 外时,如下图(48)x <<, 设1A EF △的边E F 上的高为1h , 则132662h h x =-= - 11EF M N A EF A M N ∴ ∥△∽△ 11A M N ABC A EF ABC ∴ △∽△△∽△

12 16A EF S h S ??= ??? △△ABC 168242 A B C S = ??= △ 2 2 3632241224 62EF x S x x ?? - ?∴==?=-+ ? ??? 1△A 112 223 3912241224828A M N A EF y S S x x x x x ??=-= --+=-+- ??? △△ 所以 2 91224 (48)8 y x x x =- +-<< 综上所述:当04x <≤时,2 38 y x =,取4x =,6y =最大 当48x <<时,2 912248 y x x =-+-, 取163 x = ,8y =最大 86> ∴当163 x = 时,y 最大,8y =最大 M N C B E F A A 1

圆的知识点总结

圆的知识点总结 (一)圆的有关性质 [知识归纳] 1. 圆的有关概念: 圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆; 弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高; 圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆;圆心角、圆周角、圆内接四边形的外角。 2. 圆的对称性 圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴; 圆是以圆心为对称中心的中心对称图形; 圆具有旋转不变性。 3. 圆的确定 不在同一条直线上的三点确定一个圆。 4. 垂直于弦的直径 垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧; 推论1 (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 垂径定理及推论1可理解为一个圆和一条直线具备下面五个条件中的任意两个,就 可推出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径); ④平分弦所对的优弧;⑤平分弦所对的劣弧。

推论2圆的两条平行弦所夹的弧相等。 5. 圆心角、弧、弦、弦心距之间的关系 定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。 推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆心角或 两条弧所对的弦相等;④两条弦的弦心距相等。 圆心角的度数等于它所对的弧的度数。 6. 圆周角 定理一条弧所对的圆周角等于它所对的圆心角的一半; 推论1同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等;推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径; 推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 圆周角的度数等于它所对的弧的度数的一半。 7. 圆内接四边形的性质 圆内接四边形的对角互补,并且任何一个外角都等于它的内对角。 ※8. 轨迹 轨迹符合某一条件的所有的点组成的图形,叫做符合这个条件的点的轨迹。 (1)平面内,到一定点的距离等于定长的点的轨迹,是以这个定点为圆心,定长为半径的圆; (2)平面内,和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线;(3)平面内,到已知角两边的距离相等的点的轨迹,是这个角的平分线。 [例题分析] 例1. 已知:如图1,在⊙O中,半径OM⊥弦AB于点N。 图1 ①若AB=,ON=1,求MN的长; ②若半径OM=R,∠AOB=120°,求MN的长。 解:①∵AB=,半径OM⊥AB,∴AN=BN= ∵ON=1,由勾股定理得OA=2 ∴MN=OM-ON=OA-ON=1 ②∵半径OM⊥AB,且∠AOB=120°∴∠AOM=60°

初三数学相似三角形典型例题(含问题详解)

初三数学相似三角形 (一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是: 1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。 2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。 3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。 4. 能熟练运用相似三角形的有关概念解决实际问题 本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。 本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。 相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。 (二)重要知识点介绍: 1. 比例线段的有关概念: 在比例式 ::中,、叫外项,、叫内项,、叫前项,a b c d a b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。 把线段AB 分成两条线段AC 和BC ,使AC 2 =AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。 2. 比例性质: ①基本性质: a b c d ad bc =?= ②合比性质: ±±a b c d a b b c d d =?= ③等比性质: ……≠……a b c d m n b d n a c m b d n a b ===+++?++++++=()0 3. 平行线分线段成比例定理: ①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。 则 ,,,…AB BC DE EF AB AC DE DF BC AC EF DF ===

《圆》知识点归纳及相关题型整理

第五章中心对称图形(二) ——知识点归纳以及相关题目总结 一、和圆有关的基本概念 1.圆: 把线段OP的一个端点O固定,使线段OP绕着点O在平面内旋转1周,另一个端点P运动所形成的图形叫做圆。其中,定点O叫做圆心,线段OP叫做半径。 以点O为圆心的圆,记作“⊙O”,读作“圆O”。 圆是到定点的距离等于定长的点的集合。 2.圆的内部可以看作是到圆心的距离小于半径的点的集合。 3.圆的外部可以看作是到圆心的距离大于半径的点的集合。 4.弦:连接圆上任意两点的线段。 5.直径:经过圆心的弦。 6.弧:圆上任意两点间的部分。 优弧:大于半圆的弧。 劣弧:小于半圆的弧。 半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。 7.同心圆:圆心相同,半径不相等的两个圆叫做同心圆。 8.等圆:能够重合的两个圆叫做等圆。(圆心不同) 9.等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。(在大小不等的两个圆中,不存在等弧。 10.圆心角:顶点在圆心的角。 11.圆周角:顶点在圆上,两边与圆相交的角。 12.圆的切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长。 13.正多边形: ①定义:各边相等、各角也相等的多边形 ②对称性:都是轴对称图形;有偶数条边的正多边形既是轴对称图形有是中心对称图形。 14.圆锥: ①:母线:连接圆锥的顶点和底面圆上任意一点的线段。 ②:高:连接顶点与底面圆的圆心的线段。 15.三角形的外接圆:三角形三个顶点确定一个圆,外接圆的圆心叫做三角形的外心,这个三角形叫做这个圆的内接三角形。

16.三角形的内切圆:与三角形各边都相切的圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形。 二、和圆有关的重要定理 1.圆是中心对称图形,圆心是它的对称中心。 2.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。 3.在同圆或等圆中,如果两个圆心角、两条弦、两条弧中有一组量相等,那么它们所对应的其余各组量都分别相等。 推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 4.圆心角的度数与它所对的弧的度数相等。 5.圆是轴对称图形,过圆心的任意一条直线都是它的对称轴。 6.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。 垂径定理的实质可以理解为:一条直线,如果它具有两个性质:(1)经过圆心;(2)垂直于弦,那么这条直线就一定具有另外三个性质:(3)平分弦,(4)平分弦所对的劣弧,(5)平分弦所对的优弧。 推论:圆的两条平行弦所夹的弧相等。 7.同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半。 8.直径(或半圆)所对的圆周角是直角,90°的圆周角所对的弦是直径。 9.如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 10.确定圆的条件 不在同一条直线上的三个点确定一个圆 经过三角形三个顶点可以画一个圆,并且只能画一个.这个三角形叫做这个圆的内接三角形。 经过三角形三个顶点的圆叫做三角形的外接圆.三角形外接圆的圆心叫做这个三角形的外心。 三角形的外心就是三角形三条边的垂直平分线的交点,它到三角形三个顶点的距离相等。 11.三角形的外接圆的圆心是三边的垂直平分线的交点 12.圆的切线垂直于经过切点的半径。 13.经过半径的外端并且垂直于这条半径的是直线是圆的切线。

相似三角形压轴经典大题(含答案)

相似三角形压轴经典大题解析 1.如图,已知一个三角形纸片ABC ,BC 边的长为8,BC 边上的高为6,B ∠和C ∠都为锐角,M 为AB 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在AMN △中,设MN 的长为x ,MN 上的高为h . (1)请你用含x 的代数式表示h . (2)将AMN △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面的点为1A , 1A MN △与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少? 【答案】解:(1) MN BC ∥ AMN ABC ∴△∽△ 68 h x ∴= 34 x h ∴= (2)1AMN A MN △≌△ 1A MN ∴△的边MN 上的高为h , ①当点1A 落在四边形BCNM 内或BC 边上时, 1A MN y S =△=211332248MN h x x x ==··(04x <≤) ②当1A 落在四边形BCNM 外时,如下图(48)x <<, 设1A EF △的边EF 上的高为1h , 则13 2662 h h x =-= - 11EF MN A EF A MN ∴∥△∽△ 11A MN ABC A EF ABC ∴△∽△△∽△

12 16A EF S h S ??= ??? △△ABC 1 68242 ABC S =??=△ 2 2 363224122 462EF x S x x ??- ?∴==?=-+ ? ? ?? 1△A 1122233912241224828A MN A EF y S S x x x x x ?? =-= --+=-+- ??? △△ 所以 2 91224(48)8 y x x x =- +-<< 综上所述:当04x <≤时,2 38 y x =,取4x =,6y =最大 当48x <<时,2 912248 y x x =-+-, 取16 3x = ,8y =最大 86> ∴当16 3 x =时,y 最大,8y =最大 2.如图,抛物线经过(40)(10)(02)A B C -,,,,,三点. (1)求出抛物线的解析式; (2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由; M N C B E F A A 1

圆的知识点总结史上最全的

A 图4 图5 圆的总结 集合: 圆:圆可以看作是到定点的距离等于定长的点的集合; 圆的外部:可以看作是到定点的距离大于定长的点的集合; 圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹: 1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆; 2、到线段两端点距离相等的点的轨迹是:线段的中垂线; 3、到角两边距离相等的点的轨迹是:角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线 点与圆的位置关系: 点在圆内 dr 点A 在圆外 直线与圆的位置关系: 直线与圆相离 d>r 无交点 直线与圆相切 d=r 有一个交点 直线与圆相交 dR+r 外切(图2) 有一个交点 d=R+r 相交(图3) 有两个交点 R-r

相似三角形经典模型总结与例题分类(超全)

相似三角形经典模型总结 经典模型 【精选例题】“平行型” 【例1】 如图,111EE FF MM ∥∥,若AE EF FM MB ===, 则1 11 1 1 1 :::_________AEE EE F F FF M M MM CB S S S S ?=四边形四边形四边形 【例2】 如图,AD EF MN BC ∥∥∥,若9AD =, 18BC =,::2:3:4AE EM MB =,则 _____EF =,_____MN = 【例3】 已知,P 为平行四边形ABCD 对角线,AC 上一点,过点P 的 直线与AD ,BC ,CD 的延长线,AB 的延长线分别相交于点E ,F ,G ,H 求证: PE PH PF PG = M 1F 1E 1M E F A B C M N A B C D E F P H G F E D C B A

【例4】 已知:在ABC ?中,D 为AB 中点,E 为AC 上一点,且 2AE EC =,BE 、CD 相交于点F , 求BF EF 的值 【例5】 已知:在ABC ?中,12AD AB = , 延长BC 到F ,使1 3 CF BC =,连接FD 交AC 于点E 求证:①DE EF = ②2AE CE = 【例6】 已知:D ,E 为三角形ABC 中AB 、BC 边上的点,连接DE 并延长交AC 的延长线于点F ,::BD DE AB AC = 求证:CEF ?为等腰三角形 【例7】 如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证: 111c a b =+. F E D C B A 【例8】 如图,找出ABD S ?、BED S ?、BCD S ?之间的关系,并证明你的结论. F E D C B A 【例9】 如图,四边形ABCD 中,90B D ∠=∠=?,M 是AC 上一点,ME AD ⊥于点E ,MF BC ⊥于点F 求证: 1MF ME AB CD += F E D C B A A B C D F E F E D C B A

圆的知识点总结与典型例题

圆的知识点总结 (一)圆的有关性质 [知识归纳] 1. 圆的有关概念: 圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆; 弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高; 圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆;圆心角、圆周角、圆内接四边形的外角。 2. 圆的对称性 圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴;圆是以 圆心为对称中心的中心对称图形; 圆具有旋转不变性。 3. 圆的确定 不在同一条直线上的三点确定一个圆。 4. 垂直于弦的直径 垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧; 推论1 (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;

(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 垂径定理及推论 1 可理解为一个圆和一条直线具备下面五个条件中的任意两个,就可推 出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径);④ 平分弦所对的优弧;⑤平分弦所对的劣弧。 推论2 圆的两条平行弦所夹的弧相等。 5. 圆心角、弧、弦、弦心距之间的关系 定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。 推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆心角或两 条弧所对的弦相等;④两条弦的弦心距相等。 圆心角的度数等于它所对的弧的度数。 6. 圆周角 定理一条弧所对的圆周角等于它所对的圆心角的一半; 推论 1 同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等; 推论 2 半圆(或直径)所对的圆周角是直角;90 °的圆周角所对的弦是直径;推论 3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。圆周角的度数等于它所对的弧的度数的一半。 7. 圆内接四边形的性质圆内接四边形的对角互补,并且任何一个外角都等于它的内对 角。 探8.轨迹 轨迹符合某一条件的所有的点组成的图形,叫做符合这个条件的点的轨迹。 1)平面内,到一定点的距离等于定长的点的轨迹,是以这个定点为圆心,定长为半径的圆; 2)平面内,和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线; 3)平面内,到已知角两边的距离相等的点的轨迹,是这个角的平分线。 [例题分析] 例1.已知:如图1,在。O中,半径0M丄弦AB于点N。 图1 ①若AB = , ON = 1,求MN的长; ②若半径0M = R,/ AOB = 120。,求MN的长。 解:①??? AB =,半径0M 丄AB,二AN = BN =

相似三角形典型模型及例题

1:相似三角形模型 一:相似三角形判定的基本模型 (一)A 字型、反A 字型(斜A 字型) A B C D E C B A D E (平行) (不平行) (二)8字型、反8字型 J O A D B C A B C D (蝴蝶型) (平行) (不平行) (三)母子型 A B C D C A D (四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示:

(五)一线三直角型: 三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下: 当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。 (六)双垂型: C A D 二:相似三角形判定的变化模型 旋转型:由A字型旋转得到8字型拓展 C B E D A 共享性 一线三等角的变形 G A B C E F

一线三直角的变形 2:相似三角形典型例题 (1)母子型相似三角形 例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ?=2 . 例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠. 求证:(1)DA DE DB ?=2 ; (2)DAC DCE ∠=∠. 例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ?=2 . 1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . 2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延 A C D E B

相似三角形经典题型

相似三角形知识点与经典题型 知识点1 有关相似形的概念 (1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形. (2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数). 知识点2 比例线段的相关概念 (1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是 n m b a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。 (2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段. 注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:a d c b =. ②()a c a b c d b d ==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、 d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。 (3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =?,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 2 1 5-=≈0.618AB .即 512AC BC AB AC -== 简记为:51 2 -长短==全长 注:黄金三角形:顶角是360的等腰三角形。黄金矩形:宽与长的比等于黄金数的矩形 知识点3 比例的性质(注意性质立的条件:分母不能为0) (1) 基本性质: ①bc ad d c b a =?=::;②2::a b b c b a c =?=?. 注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除 了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=. (2) 更比性质(交换比例的内项或外项):()() ()a b c d a c d c b d b a d b c a ?=?? ?=?=?? ?=?? , 交换内项,交换外项. 同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b d b d a c =?=.

圆知识点总结及归纳

第一讲圆的方程 (一)圆的定义及方程 1、圆的标准方程与一般方程的互化 (1)将圆的标准方程 (x-a)2+(y-b)2=r2 展开并整理得x2+y2-2ax-2by+a2+b2-r2=0,取D=-2a,E=-2b,F=a2+b2-r2,得x2+y2+Dx+Ey+F=0. (2)将圆的一般方程x2+y2+Dx+Ey+F=0通过配方后得到的方程为:

(x +D 2)2+(y +E 2 )2= D 2+ E 2-4F 4 ①当D 2 +E 2 -4F >0时,该方程表示以(-D 2,-E 2)为圆心, 1 2 D 2+ E 2-4 F 为半径的圆; ②当D 2 +E 2 -4F =0时,方程只有实数解x =-D 2,y =-E 2,即只表示一个点(-D 2,-E 2);③当D 2+E 2-4F <0时,方程没有实数解, 因而它不表示任何图形. 2、圆的一般方程的特征是:x 2和y 2项的系数 都为 1 ,没有 xy 的二次项. 3、圆的一般方程中有三个待定的系数D 、E 、F ,因此只要求出这三个系数,圆的方程就确定了. 2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2

方法一: 方法二: (四)圆与圆的位置关系 1 外离 2外切 3相交 4内切 5内含 (五)圆的参数方程 (六)温馨提示 1、方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的条件是: (1)B=0;(2)A=C≠0;(3)D2+E2-4AF>0.

初三数学相似三角形典型例题(含标准答案)

初三数学相似三角形典型例题(含答案)

————————————————————————————————作者:————————————————————————————————日期:

初三数学相似三角形 (一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是: 1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。 2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。 3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。 4. 能熟练运用相似三角形的有关概念解决实际问题 本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。 本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。 相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。 (二)重要知识点介绍: 1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b c d a b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。 把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。 2. 比例性质: ①基本性质:a b c d ad bc =?= ②合比性质:±±a b c d a b b c d d =?= ③等比性质: ……≠……a b c d m n b d n a c m b d n a b ===+++?++++++=()0

圆知识点总结及典型例题.docx圆知识点总结及典型例题

《圆》章节知识点复习 一、圆的概念 集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念: 1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; (补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂 线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。 二、点与圆的位置关系 1、点在圆内 ?d r ? 点A 在圆外; 三、直线与圆的位置关系 1、直线与圆相离 ?d r >?无交点; 2、直线与圆相切 ?d r =?有一个交点; 3、直线与圆相交 ?d r

四、圆与圆的位置关系 外离(图1)?无交点 ?d R r >+; 外切(图2)? 有一个交点 ?d R r =+; 相交(图3)? 有两个交点 ?R r d R r -<<+;内切(图4)? 有一个交点 ?d R r =-; 内含(图5)? 无交点 ?d R r <-; 五、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 图1 图 3 r R d 图2

九年级数学圆的知识点总结大全

r B 一、知识回顾 第四章:《圆》 圆的周长 : C=2πr 或 C=πd 、圆的面积 : S=πr 2 圆环面积计算方法: S=πR2- πr 2或 S=π( R2-r 2) (R 是大圆半径, r 是小圆半径) 二、知识要点一、圆的概念 集合形式的概念: 1 、 圆可以看作是到定点的距离等于定长的点的集合; 2 、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3 、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念: 1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; 固定的端点 O 为圆心。连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点之间的部分叫做圆弧,简称弧。 2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线; 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是: 平行于这两条平行线且到两条直线距离都相等的一条直线。二、点与圆的位置关系 1、点在圆内 d r 点C 在圆内; A d 2、点在圆上 d r 点B 在圆上; O d 3、点在圆外 d r 点 A 在圆外; C 三、直线与圆的位置关系 1、直线与圆相离 d r 无交点; 2、直线与圆相切 d r 有一个交点; 3、直线与圆相交 d r 有两个交点; r d d=r r d

C D 四、圆与圆的位置关系 外离(图 1) 无交点 d R r ; 外切(图 2) 有一个交点 d R r ; 相交(图 3) 有两个交点 R r d R r ; 内切(图 4) 有一个交点 d R r ; 内含(图 5) 无交点 d R r ; d d d R r R r R r 图 1 图2 图 3 d d r R r R 图4 图 5 五、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论 1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2) 弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3) 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共 4 个定理,简称 2 推 3 定理:此定理中共 5 个结论中,只要知道其中 2 个即可推出其 它 3 个结论,即: ① AB 是直径 ② AB CD ③ CE DE ④ 弧 BC 弧 BD ⑤ 弧 AC 弧 AD 中任意 2 个条件推出其他 3 个结论。 A 推论 2:圆的两条平行弦所夹的弧相等。 C D 即:在⊙ O 中,∵ AB ∥ CD O O ∴弧 AC 弧BD A B E B 六、圆心角定理 顶点到圆心的角,叫圆心角。 圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。 此定

相似三角形经典习题

相似三角形 一.选择题 1.如图,D、E分别是AB、AC上两点,CD与BE相交于点O,下列条件中不能使△ABE和△ACD相似的是() A.∠B=∠C B.∠ADC=∠AEB C.BE=CD,AB=AC D.AD:AC=AE:AB 2.如图,△ACD和△ABC相似需具备的条件是() A. B. C.AC2=AD?AB D.CD2=AD?BD 3.如图,在等边三角形ABC中,D为AC的中点,,则和△AED(不包含△AED)相似的三角形有() A.1个 B.2个 C.3个 D.4个 4.如图,已知点P是Rt△ABC的斜边BC上任意一点,若过点P作直线PD与直角边AB或AC相交于点D,截得的小三角形与△ABC相似,那么D点的位置最多有() A.2处 B.3处 C.4处 D.5处 5.如图,在矩形ABCD中,E、F分别是CD、BC上的点.若∠AEF=90°,则一定有() A.△ADE∽△ECF B.△BCF∽△AEF C.△ADE∽△AEF D.△AEF∽△ABF 6.在△ABC中,∠ACB=90°,用直尺和圆规在AB上确定点D,使△ACD∽△CBD,根据作图痕迹判断,正确的是()

A. B. C. D. 7.如图,点D,E分别在△ABC的AB,AC边上,增加下列条件中的一个:①∠AED=∠B,②∠ADE=∠C,③,④,⑤AC2=AD?AE,使△ADE与△ACB一定相似的有() A.①②④ B.②④⑤ C.①②③④ D.①②③⑤ 8.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为() A.3:4 B.9:16 C.9:1 D.3:1 9.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为() A.18 B.C. D. 10.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论: ①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH?PC 其中正确的是() A.①②③④ B.②③ C.①②④ D.①③④ :S 11.如图,在平行四边形ABCD中,E为CD上一点,连接AE、BE、BD,且AE、BD交于点F,S △DEF =4:25,则DE:EC=() △ABF

初三数学圆的知识点总结及例题详解

初三数学圆的知识点总 结及例题详解 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

圆的基本性质 1.半圆或直径所对的圆周角是直角. 2.任意一个三角形一定有一个外接圆. 3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆. 4.在同圆或等圆中,相等的圆心角所对的弧相等. 5.同弧所对的圆周角等于圆心角的一半. 6.同圆或等圆的半径相等. 7.过三个点一定可以作一个圆. 8.长度相等的两条弧是等弧. 9.在同圆或等圆中,相等的圆心角所对的弧相等. 10.经过圆心平分弦的直径垂直于弦。 直线与圆的位置关系 1.直线与圆有唯一公共点时,叫做直线与圆相切. 2.三角形的外接圆的圆心叫做三角形的外心. 3.弦切角等于所夹的弧所对的圆心角. 4.三角形的内切圆的圆心叫做三角形的内心. 5.垂直于半径的直线必为圆的切线. 6.过半径的外端点并且垂直于半径的直线是圆的切线. 7.垂直于半径的直线是圆的切线. 8.圆的切线垂直于过切点的半径. 圆与圆的位置关系 1.两个圆有且只有一个公共点时,叫做这两个圆外切. 2.相交两圆的连心线垂直平分公共弦. 3.两个圆有两个公共点时,叫做这两个圆相交. 4.两个圆内切时,这两个圆的公切线只有一条. 5.相切两圆的连心线必过切点. 正多边形基本性质 1.正六边形的中心角为60°. 2.矩形是正多边形. 3.正多边形都是轴对称图形. 4.正多边形都是中心对称图形.

圆的基本性质 1.如图,四边形ABCD 内接于⊙O,已知∠C=80°,则∠A 的度数 是 . A. 50° B. 80° C. 90° D. 100° 2.已知:如图,⊙O 中, 圆周角∠BAD=50°,则圆周角∠BCD 的度数是 . ° ° ° ° 3.已知:如图,⊙O 中, 圆心角∠BOD=100°,则圆周角∠BCD 的度数是 . ° ° ° ° 4.已知:如图,四边形ABCD 内接于⊙O ,则下列结论中正确的是 . A.∠A+∠C=180° B.∠A+∠C=90° C.∠A+∠B=180° D.∠A+∠B=90 5.半径为5cm 的圆中,有一条长为6cm 的弦,则圆心到此弦的距离 为 . A.3cm B.4cm C.5cm D.6cm 6.已知:如图,圆周角∠BAD=50°,则圆心角∠BOD 的度数是 . ° ° ° 7.已知:如图,⊙O 中,弧AB 的度数为100°,则圆周角∠ACB 的度数是 . ° ° ° 8. 已知:如图,⊙O 中, 圆周角∠BCD=130°,则圆心角∠BOD 的度数是 . ° ° ° ° 9. 在⊙O 中,弦AB 的长为8cm,圆心O 到AB 的距离为3cm,则⊙O 的半径为 cm. .4 C D. 10 点、直线和圆的位置关系 1.已知⊙O 的半径为10㎝,如果一条直线和圆心O 的距离为10㎝, 那么这条直线和这个圆的位置关系为 . A.相离 B.相切 C.相交 D.相交或相离 2.已知圆的半径为6.5cm,直线l 和圆心的距离为7cm,那么这条直线和这个圆的位置关系是 . A.相切 B.相离 C.相交 D. 相离或相交 3.已知圆O 的半径为6.5cm,PO=6cm,那么点P 和这个圆的位置关系是 A.点在圆上 B. 点在圆内 C. 点在圆外 D.不能确定 4.已知圆的半径为6.5cm,直线l 和圆心的距离为4.5cm,那么这条直线和这个圆的公共点的个数是 . 个 个 个 D.不能确定 ? B ? ? C B A O ? B O C A D ? B O C A D ? B O C A D D C A O ? D B C A O ? D B C A O

(完整版)圆的知识点归纳总结大全

圆的知识点归纳总结大全 一、圆的定义。 1、以定点为圆心,定长为半径的点组成的图形。 2、在同一平面内,到一个定点的距离都相等的点组成的图形。 二、圆的各元素。 1、半径:圆上一点与圆心的连线段。 2、直径:连接圆上两点有经过圆心的线段。 3、弦:连接圆上两点线段(直径也是弦)。 4、弧:圆上两点之间的曲线部分。半圆周也是弧。 (1)劣弧:小于半圆周的弧。 (2)优弧:大于半圆周的弧。 5、圆心角:以圆心为顶点,半径为角的边。 6、圆周角:顶点在圆周上,圆周角的两边是弦。 7、弦心距:圆心到弦的垂线段的长。 三、圆的基本性质。 1、圆的对称性。 (1)圆是轴对称图形,它的对称轴是直径所在的直线。 (2)圆是中心对称图形,它的对称中心是圆心。 (3)圆是旋转对称图形。 2、垂径定理。 (1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。 (2)推论: ?平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。 ?平分弧的直径,垂直平分弧所对的弦。 3、圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。

(1)同弧所对的圆周角相等。 (2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。 4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距 五对量中只要有一对量相等,其余四对量也分别相等。 5、夹在平行线间的两条弧相等。 6、设⊙O 的半径为r ,OP=d 。 7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。 (2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三 个点的距离相等。 (直角三角形的外心就是斜边的中点。) 8、直线与圆的位置关系。d 表示圆心到直线的距离,r 表示圆的半径。 直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切; 直线与圆没有交点,直线与圆相离。 2 9、平面直角坐标系中,A (x 1,y 1)、B (x 2,y 2)。 则AB=221221)()(y y x x -+- 10、圆的切线判定。 (1)d=r 时,直线是圆的切线。 d = r 直线与圆相切。 d < r (r > d 直线与圆相交。 d > r (r d 点P 在⊙O 内 d > r (r

相关文档
最新文档