4.5KW高频逆变器电路设计分享

4.5KW 高频逆变器电路设计 2012.06.16

5KW 高频逆变器电路设黄亭Javike

1. 输入电压:

2. 输出电压:

3. 输出频率:

4. 输出最大持续功率:

5. 转换效率:≥

6. 空载电流:

7. 输入欠压保护:

8. 输入过压保护:2

9.0 ±0.5V

9. 风扇启动温度:60 ±5℃ (内部元件)

10. 风扇启动后关闭温度:50 ±5℃ (内部元件)

11. 过温保护:95 ±5℃ (内部元件)逆变逆变器规格电压:DC20-30V 电压:AC220V ±3% 频率:50Hz 最大持续功率:4500W 效率:≥90%电流:<0.5A 欠压保护:21.0 ±0.5V 过压保护:启动温度:启动后关闭温度:

电源网第二届逆变/新能源技术专题会

逆变器整机电路方框图

逆变

前级辅助供电电路规格

1. 输入电压:

2. 输出电压:

3. 输出电流:

4. 输入过压保护:

5. 输出过压保护:

6. 转换效率:≥

7. 开关频率:

电压:DC 20 - 30V 电压:DC 13.5 ±3%电流:3A 过压保护:DC 31.6 - 35.6V 过压保护:DC 17.4 - 19.7V 效率:≥85%频率:100KHz

前级辅助供电电路图

前级辅助供电采用电流型PWM 控制器UC3843作反激控制,开关频率为100KHz 。变压器采用

启动后通过UC3843的8脚输出的5V 基准电压关断

启动电路,利用辅助绕组维持供电,降低待机功耗。输入过压、输出过压以及关机

控制通过拉低

UC3843的1脚电位实现保护。考虑到输出功率较大,采用大风量散热风

扇,设计输出额定电流达3A 。电源网第二届逆变/新能源技术专题会控制843100K 压器采用EE2519铁氧体磁芯。IC 基准电压关动电路,利用辅助绕组维持供电,降机功耗。输入过压、输出过压以及关制通过拉低脚电位实现保虑到输出功率较大,采用大风量散热,设计输出额定电流达

前级PWM 控制

前级PWM 控制采用电压型PWM 控制器SG3525作推挽准开环控制,供电电压为13.5V ,开关频率为50KHz ,最大占空比为49%,PWM 死区时间约0.5us ,输出闭环电压

为360V ±3%。

控制,最大占空比,输出闭环

电池电压检测和温度检测控制电路

电池电压检测和温度检测控制电路由1

片四比较器个比较器单

元分别作电池过压、电池欠压、以及前级功

率管过温检测,并通过抬高

SD 端的电位实现保护,同时通过蜂鸣器告警。另

1个比较器单元用来检测前级功率管的温度控制散热风扇启动,启动温度为度,温

度下降到比较器LM339完成,其中3个比较器别作电池过压、电池欠压、以及前过温检测,并通过抬高SG3525的位实现保护,同时通过蜂鸣器告警比较器单元用来检测前级功率管的温散热风扇启动,启动温度为60度,降到50度风扇停止。

前级功率MOSFET 驱动和升压变换

颗初级单独驱动输入并联输出次级串联连接的的变压器实现DC24V-

前级电压升压变换。12颗RU190N08Q MOSFET

作功率开关,每颗变压器分别对漏-源极并联,再分别采用对可分别调节开启和关

断时间的图腾柱式驱动来驱动功率。每个图腾驱动电路分别采用1颗积层电容和1

颗电解电容作退藕,提高峰值

驱动能力。采用3颗初级单入并联输出次级串联ETD49DC320V 前级电压升压共使用了RU19TO-247封装的大功率作功率开关,每颗变采用2源极并联1对可分别调节开断时间的图腾柱式驱MOSFET 。每个

输出滤波和准闭环控制

前级输出整流共用了8颗RHRP1560,每2

颗并联形成桥式整流,并就近连接

1颗105/400V 的聚丙烯薄膜电容提供高频退藕回路,前级输出采用

4颗390uF/420V 的大电解电容和1颗474/400V 的聚丙烯薄膜电容并联

进行滤波。

准闭环控制采用的是第2个主变压器的辅

助绕组供电,利用典型的

TL431和PC817形成电压反馈环路,输出电压闭环工作点由分压

检测电阻决定。联形成桥式整流,并就近连接00V 的聚丙烯薄膜电容提供高频退前级输出采用的大电的聚丙烯薄膜电容并滤波。个主变压器组供电,利用典型的反馈环路,输出电压闭环工作点由分

浪涌抑制电路控制

浪涌抑制电路是采用在整流后与输出大的水泥电阻开始启1压上。浪涌抑制电路是采用在整流后与输出电容之间串入电解电容之间串入1颗300Ω/10W 的水泥,当限流电阻上的压降减小后控制继限流,当限流电阻上的压降减小后控制继电合短接限流电阻,减小工作时的损耗器吸合短接限流电阻,减小工作时的损耗;继电器的常通端随着继电器的吸合而同时继电器的常通端随着继电器的吸合而断并通过光耦控制后级开,并通过光耦控制后级SPWM 控制IC 整个控制电路的供电由第动。整个控制电路的供电由第颗变压器颗变压器的辅组完成,且相对电位叠加在前级输出助绕组完成,且相对电位叠加在前级输出电

SPWM 控制电路的辅助供电

SPWM 控制电路的辅助供电是由第3个变压器的辅助绕组完成的,考虑到后级驱动的需求,采用了

4个2A/60V 的肖特基整流,利用简单可靠的稳压管和三极管形成三端稳压,为后级驱动提供15V 左右的驱动电压,再采用78L05降压给SPWM 控制IC 提供稳定的5V

供电。个变压完成的,考虑到后级驱动的需求,采用的肖特基整流,利用简单可靠的稳压管和

后级SPWM控制电路

后级SPWM 所有

SP 采用采用纯正弦波控制芯片2285S2285TDS2285,辅助电源为它提供5V 的供电的供电,级的后级的SPWM 信号输出、短路和过流保信号输出、短路和过流保护声告警、后级输入电压过压光告警、后级输入电压过压/欠压检测欠压检测都由来完成。由于它来完成。由于SPWM 控制IC 与前级隔与前级隔离,IC 自带的电池电压检测功能不能直自带的电池电压检测功能不能直接测前级电池电压,这里采用它来检测检测前级电池电压,这里采用它来检测前输出端的电压。级输出端的电压。

后级SPWM驱动电路

逆变器制作全过程

逆变器制作全过程 制作600W的正弦波逆变器, 该机具有以下特点: 1.SPWM的驱动核心采用了单片机SPWM芯片,TDS2285,所以,SPWM驱动部分相对纯硬件来讲,比较简单,制作完成后要调试的东西很少,所以,比较容易成功。 2.所有的PCB全部采用了单面板,便于大家制作,因为,很多爱好者都会自已做单面的PCB,有的用感光法,有点用热转印法,等等,这样,就不用麻烦PCB厂家了,自已在家里就可以做出来,当然,主要的目的是省钱,现在的PCB厂家太牛了,有点若不起(我是万不得已才去找PCB厂家的)。 3.该机所有的元件及材料都可以在淘宝网上买到,有了网购真的很方便,快递送到家,你要什么有什么。 如果PCB没有做错,如果元器件没有问题,如果你对逆变器有一定的基础,我保证你制作成功,当然,里面有很多东西要自已动手做的,可以尽享自已动手的乐趣。 4.功率只有600W,一般说来,功率小点容易成功,既可以做实验也有一定的实用性。 一、电路原理: 该逆变器分为四大部分,每一部分做一块PCB板。分别是“功率主板”;“SPWM驱动板”;“DC-DC驱动板”;“保护板”。

1.功率主板: 功率主板包括了DC-DC推挽升压和H桥逆变两大部分。该机的BT电压为12V,满功率时,前级工作电流可以达到55A以上,DC-DC升压部分用了一对190N08,这种247封装的牛管,只要散热做到位,一对就可以输出600W,也可以用IRFP2907Z,输出能力差不多,价格也差不多。主变压器用了EE55的磁芯,其实,就600W而言,用EE42也足够了,我是为了绕制方便,加上EE55是现存有的,就用了EE55。关于主变压器的绕制,下面再详细介绍。前级推挽部分的供电采用对称平衡方式,这样做有二个好处,一是可以保证大电流时的二个功率管工作状态的对称性,保证不会出现单边发热现象;二是可以减少PCB反面堆锡层的电流密度,当然,也可以大大减小因为电流不平衡引起的干扰。高压整流快速二极管,用的是TO220封装的RHRP8120,这种管子可靠性很好,我用的是二手管,才1元钱一个。高压滤波电容是470uf/450V的,在可能的情况下,尽可能用的容量大一些,对改善高压部分的负载特性和减少干扰都有好处。H桥部分用的是4个IRFP460,耐压500V,最大电流20A,也可以用性能差不多的管子代替,用内阻小的管子可以提高整机的逆变效率。H桥部分的电路采用的常规电路。 下面是功率主板的PCB截图,长宽为200X150MM,因为,这部分的电路比较简单,所以,我没有画原理图,是直接画了

高频电路设计与制作

《高频电路设计与制作》[转] 第一章高频电路基本常识第一部分 为何要学习高频电路的知识 电子电路可以分为模拟电路与数字电路,而模拟电路又可以分类为低频率电路与高频电路。 一般的电子技术人员,首先尝试设计或制作的,大多以数位电路或低频率电路为主,此较少从高频电路开始的。其主要原因是,高频电路较难去理解,往往所制作出的电路无法如预期的设计目标动作。 但是,如果忽略了高频电路的基本常识,也可能使所设计出的数位电路或低频率电路不能成为最适当,甚至於可能会造成动作的不稳定。 相反地,如果能够熟悉高频电路,也可以提高数位电路或低频率电路的设计水准。近些年,无论是数位电路或以直流为主的测试仪器电路,对於处理系要求高速化,结果也使得高频电路的基本常识相当重要。 低频率电路与高频电路的区别 为了了解高频电路的特征,在此,对低频率电路与高频电路作一此较。如下图1所示的为低频率电路与高频电路的此较。图(a)为低频率电路,图(b)为高频电路。首先,说明信号的流通。由於在低频率电路的信号其波长较长,一般可以忽略时间因素。因此,振荡器的输出端舆放大器的输入端可视为同一信号。也即是,在低频率电路中的信号流通如箭头的方向所示,成为闭回路,此也称的为集中常数的考虑方法。而在高频电路中,由於波长较短,不可以忽略时间的要素。在同一时间的振荡器输出端,中途的电缆线上,放大器的输入端的信号就非同一信号,也就是说信号像电波一样传输着,这种考虑电路问题的方法称为分布常数。 一般地,在集中常数电路中的低频电路中,对於电缆线的限制较少,可以使用一般的隔离线,重视杂讯兴频率特性。而在分布常数电路中的高频电路中,为了不使信号发生传送路径上的失真,使用同轴电缆线,重视特性阻抗。 在放大器的输出端所连接的负载如下: 图1-(a)低频电路图1-(b)高频电路 图(a)低频率电路为定电压驱动……即图b高频电路为功率驱动……信号的单

高频逆变器中高频变压器的绕制方法

高频逆变器中高频变压器的绕制方法 用EE55等高频磁芯制作高频逆变器,其中高频变压器的线包绕制最好参考一下电子管音响功率放大器中音频输出变压器的绕制方法.这种变压器因为要在音频20Hz~20KHz范围内力求做到平坦响应,绕法讲究,顶级的电子管音频输出变压器的频响范围甚至做到了10Hz~100KHz,而用的磁芯不过就是高矽硅钢片而已. 以大家在坛子中讨论最多也用得最多的“SG3525A(或KA3525A、UC3525)+场管IRF3205(或MTP75N06等)+EE55磁芯变压器”组合为例,功率可做到500W以上,工作频率一般在20~50KHz.其中的EE55磁芯变压器,大家一般是低压绕组(初级)3T+3T,中心抽头,高压绕组(次级)75T. 要制作好它就要注意两点: 一是每个绕组要采用多股细铜线并在一起绕,不要采用单根粗铜线,因为高频交流电有集肤效应.所谓集肤效应,简单地说就是高频交流电只沿导线的表面走,而导线内部是不走电流的(实际是越靠近导线中轴电流越弱,越靠近导线表面电流越强).采用多股细铜线并在一起绕,实际就是为了增大导线的表面积,从而更有效地使用导线.例如初级的3T+3T,你如果用直径2.50mm的

单根漆包线,导线的截面积为4.9平方毫米,而如果用直径0.41mm的漆包线(单根截面积0.132平方毫米)38根并绕,总的截面积也达到要求.然而,第二种方法导线的表面积大得多(第一种方法导线的表面积为:单股导线截面周长×股数×绕组总长度=2.5×3.14×1×L=7.85L,第二种方法导线的表面积为:单股导线截面周长×股数×绕组总长度=0.41×3.14×38×L=48.92L,后者是前者的48.92L/7.85L=6.2倍),导线有效使用率更高,电流更通畅,并且因为细导线较柔软,更好绕制.次级75T高压绕组用3~5根并绕即可. 二是高频逆变器中高频变压器最好采用分层、分段绕制法,这种绕法主要目的是减少高频漏感和降低分布电容.例如上述变压器的绕法,初级分两层,次级分三层三段.具体是: ①绕次级高压绕组第一段.接好引出线(头),先用5根并绕次级高压绕组25T,线不要剪断,然后包一层绝缘纸(绝缘纸要薄,包一层即可,否则由于以下多次要用到绝缘纸,有可能容不下整个线包),准备绕初级低压绕组的一半. ②绕初级低压绕组的一半.预留引出线(头),注意是预留,因为后面要统一并接后再接引出线,以下初级用“预留”一词时同理.用19根并绕3T,预留中心抽头,再并绕3T,预留引出线(尾),线剪断.在具体操作时这里还有一个技巧,即由于股数多,19股线一次并绕不太方便,扭矩张力也大,就可以分做多次,如这里可分做三次,每次用线6到7股,这样还可绕得更平整.注意三次的头、中、尾放在一起,且绕向要相同.然后又包一层绝缘纸,准备绕次级高压绕组

逆变器自己制作过程大全

通用纯正弦波逆变器制作 概述 本逆变器的PCB设计成12V、24V、36V、48V这几种输入电压通用。制作样机是12V输入,输出功率达到1000W功率时,可以连续长时间工作。 该逆变器可应用于光伏等新能源,也可应用于车载供电,作为野外应急电源,还可以作为家用,即停电时使用蓄电池给家用电器供电。使用方便,并且本逆变器空载小,效率高,节能环保。 设计目标 1、PCB板对12V、24V、36V、48V低压直流输入通用; 2、制作样机在12V输入时可长时间带载1000W; 3、12V输入时最高效率大于90%; 4、短路保护灵敏,可长时间短路输出而不损坏机器。 逆变器主要分为设计、制作、调试、总结四部分。下面一部分一部分的展现。 第一部分设计 1.1 前级DC-DC驱动原理图 DC-DC驱动芯片使用SG3525,关于该芯片的具体情况就不多介绍了。其外围电路按照pdf里面的典型应用搭起来就OK。震荡元件Rt=15k,Ct=222时,震荡频率在21.5KHz左右。用20KHz左右的频率较好,开关损耗小,整流管的压力也小些,有利于效率的提高。不过频率低,不利于器件的小型化,高压直流纹波稍大些。 电池欠压保护,过压保护以及过流保护在DC-DC驱动上实现。用比较器搭成自锁电路,比较器输出作用于SG3525的shut_down引脚即可。保护电路均是比较器搭建的常规电路。DC-DC驱动部分使用了准闭环,轻载时,准闭环将高压直流限制在380V左右,一旦负载加重前级立即进入开环模式,以最高效率运行。并且使用了光耦隔离,前级输入和输出在电气上是隔离开的,这样设计也是为了安全。如图1.1所示,是DC-DC驱动电路原理图。

逆变器初学者必看制作秘笈(全部资料)

逆变器初学者必看制作秘笈(全部资料) 自从公布了1KW正弦波逆变器的制作过程后,有不少朋友来信,提这样那样的问题,很多都是象我这样的初学者。为此,我花了近一个月的时间,制作了这台600W的正弦波逆变器,并将此台机器的制作过程和各位好友在此分享,谨此献给曾经和我一样的逆变器初学者,如您能有所收获,并举一反三,将是我此次分享的最大的收获。 该机具有以下特点: 1.SPWM的驱动核心采用了单片机SPWM芯片,TDS2285,所以,SPWM驱动部分相对纯 硬件来讲,比较简单,制作完成后要调试的东西很少,所以,比较容易成功。 2.所有的PCB全部采用了单面板,便于大家制作,因为,很多爱好者都会自已做单面的 PCB,有的用感光法,有点用热转印法,等等,这样,就不用麻烦PCB厂家了,自已在家里就可以做出来,当然,主要的目的是省钱,现在的PCB厂家太牛了,有点若不起(我是万不得已才去找PCB厂家的)。 3.该机所有的元件及材料都可以在淘宝网上买到,有了网购真的很方便,快递送到家,你 要什么有什么。 如果PCB没有做错,如果元器件没有问题,如果你对逆变器有一定的基础,我保证你制作成功,当然,里面有很多东西要自已动手做的,可以尽享自已动手的乐趣。 4.功率只有600W,一般说来,功率小点容易成功,既可以做实验也有一定的实用性。 下面是样机的照片和工作波形: 一、电路原理: 该逆变器分为四大部分,每一部分做一块PCB板。分别是“功率主板”; “SPWM驱动板”;“DC-DC驱动板”;“保护板”。 1.功率主板: 功率主板包括了DC-DC推挽升压和H桥逆变两大部分。该机的BT电压为12V,满功率时,前级工作电流可以达到55A以上,DC-DC升压部分用了一对190N08,这种247封装的牛管,只要散热做到位,一对就可以输出600W,也可以用IRFP2907Z,输出能力差不多,价格也差不多。主变压器用了EE55的磁芯,其实,就600W而言,用EE42也足够了,我是为了绕制方

高频电子线路课程设计.

目录 一设计总体思路及比较 (2) 二单元电路思路 (6) 输入回路 (6) 本机荡回路 (8) 中频滤波器匹配参数 (10) 限频电路 (12) 鉴频电路 (13) 低频放大电路 (14) 三总结体会 (15) 四总原理图 (16) 参考资料 (17)

第一章设计总体思路及方案比较 一.调频收音机的主要指标 调频接收机的主要指标有: 1工作频率范围 接收系统可以接受到的无线电波的频率范围称为接收机的工作频率范围。接受系统的工作频率必须与发射机的工作频率工作频率相对应。调频接收机的频率范围为88~108MH,是因为调频广播收音机的工作范围也为88~108MH。 2 灵敏度 接收系统接受微弱信号的能力称为灵敏度。一般用输入信号电压的大小来表示。接收的输入信号越小,灵敏度越高。调频接收机的灵敏度一般为5~30uv。 3选择性 接收系统从各种信号和干扰信号中选出所需信号,抑制不需要的信号的能力称为选择性,单位用dB表示,dB数越高,选择性越好。调频接收机的中频干扰应大于50dB。 4 频率特性 接收系统的频率响应范围称为频率特性或通频带。 5 输出功率 负载输出的最大不失真功率称为输出功率。

二调频接收机的系统方框图 调频接收机的系统方框图如所示,它是由输入回路,高频放大器,混频器,本机振荡,中频放大器,鉴频器,低频放大器等电路组成。其工作原理是:天线接受到的高频信号,经输入调谐回路选频为f1,再经高频放大器放大进入混频级。本机振荡器输出的另一高频f2也进入混频级,则混频级的输出为含有f1、f2、(f1+f2)、(f2-f1)等频率分量的信号。混频级的输出接调频回路选出中频信号(f2-f1),再经中频放大器放大,获得足够高增益,然后鉴频器解调出低频调制信号,由低频功放级放大。 三MC3362芯片特点 MC3362是低功耗窄带双变频超外差式调频接收机系统集成电路,它的片内包含两个本征,两个混频器,两个中放和正交鉴频等功能电路。MC3362的接收频率可达450MHz,采用内部本征时,也可

高频脉冲交流环节逆变器的控制策略

高频脉冲交流环节逆变器控制策略 摘要:为克服高频脉冲交流环节逆变器存在的电压过冲现象,本文提出和研究了单极性、双极性移相控制策略。两类控制策略可分别使得逆变器功率器件实现ZVS或ZVZCS软开关,仿真和实验结果表明了控制策略的可行性。 1 引言 高频脉冲交流环节逆变器,如图1所示。该电路结构由高频逆变器(推挽式、半桥式、全桥式)、高频变压器、周波变换器(全波式、桥式)构成,具有电路拓扑简洁、双向功率流、两级功率变换(DC/HFAC/LFAC)、变换效率高等优点。 图1 高频脉冲交流环节逆变器电路结构 但这类逆变器在采用传统的PWM技术时,周波变换器器件换流将打断高频变压器漏感中连续的电流而造成不可避免的电压过冲。由于这个原因,这类方案都需采用一些缓冲电路或有源电压箝位电路来吸收存储在漏感中的能量。有源电压箝位电路是以增加功率器件数和控制电路的复杂性为代价的,故不十分理想。 因此,在不增加电路拓扑复杂性的前提下,如何解决高频脉冲交流环节逆变器固有的电压过冲问题和实现周波变换器的软换流技术,是高频环节逆变技术的一个研究重点。为此,本文提出和研究了单极性、双极性移相控制策略,可分别使得逆变器功率器件实现ZVS或ZVZCS软开关。 2 单极性移相控制原理 根据高频逆变器(推挽式、半桥式、全桥式)、周波变换器(全波式、桥式)的组合不同,高频脉冲交流环节逆变器具有6种电路拓扑,其中全桥全波式、全桥桥式电路如图2所示。 图2 全桥全波式和全桥桥式逆变器电路

图3单极性移相控制原理 以全桥全波式高频脉冲交流环节逆变器为例,其单极性移相控制原理,如图3所示。高频逆变器将输入电压Ui调制成双极性三态电压波uEF,周波变换器将此电压波解调为单极性SPWM波uDC,经输出滤波后得到正弦电压uo,周波变换器功率开关在uEF为零期间进行ZVS换流。逆变器右桥臂相对左桥臂存在移相角θ,而且输出滤波器前端电压uDC为单极性SPWM波,故为单极性移相控制。S1与S4、S2与S3之间在一个开关周期Ts内的共同导通时间为 Tcom=Ts(180o-θ)/ (2×180o )(1) 当输入电压Ui降低或负载变大时,导致输出电压uo降低,闭环反馈控制使得移相角θ减小、共同导通时间Tcom增大,从而使得输出电压增大。因此,调节移相角θ可实现输出电压的稳定。 实现单极性移相控制的方案为:1、将输出电压反馈信号uof与正弦基准电压uref比较放大后得到电压误差放大信号ue1,ue1与载波uc比较后得到信号k1,k1下降沿二分频、反相互补后分别得到功率开关S1、S3的驱动信号;2、将ue1反极性信号ue2与载波uc比较后得到信号k2,k2下降沿二分频、反相互补后分别得到功率开关S2、S4的驱动信号;3、将载波uc下降沿二分频、反相互补后分别得到功率开关S5(S6)、S7(S8)的驱动信号。 在逆变器稳态工作且输出滤波电感电流iLf连续时,一个高频开关周期Ts内可分为六个开关状态(以uDC>0时为例),如图4(a)~(f)所示。图4(a)、(b) 、(d)、(e)和图4 (c)、(f)可分别用图4(g)、(h)所示等效电路表示,其中r为包括变压器漏阻抗、功率开关通态电阻、滤波电感寄生电阻等在内的等效阻抗。

逆变器的基本知识

浅谈光伏发电系统用逆变器的基本知识 逆变器的概念 通常,把将交流电能变换成直流电能的过程称为整流,把完成整流功能的电路称为整流电路,把实现整流过程的装置称为整流设备或整流器。与之相对应,把将直流电能变换成交流电能的过程称为逆变,把完成逆变功能的电路称为逆变电路,把实现逆变过程的装置称为逆变设备或逆变器。 现代逆变技术是研究逆变电路理论和应用的一门科学技术。它是建立在工业电子技术、半导体器件技术、现代控制技术、现代电力电子技术、半导体变流技术、脉宽调制(PWM)技术等学科基础之上的一门实用技术。它主要包括半导体功率集成器件及其应用、逆变电路和逆变控制技术3大部分。 逆变器的分类 逆变器的种类很多,可按照不同的方法进行分类。 1.按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。工频逆变器的频率为50~60Hz的逆变器;中频逆变器的频率一般为400Hz到十几kHz;高频逆变器的频率一般为十几kHz到MHz。 2.按逆变器输出的相数分,可分为单相逆变器、三相逆变器和多相逆变器。3.按照逆变器输出电能的去向分,可分为有源逆变器和无源逆变器。凡将逆变器输出的电能向工业电网输送的逆变器,称为有源逆变器;凡将逆变器输出的电能输向某种用电负载的逆变器称为无源逆变器。 4.按逆变器主电路的形式分,可分为单端式逆变器,推挽式逆变器、半桥式逆变器和全桥式逆变器。 5.按逆变器主开关器件的类型分,可分为晶闸管逆变器、晶体管逆变器、场效应逆变器和绝缘栅双极晶体管(IGBT)逆变器等。又可将其归纳为“半控型”逆

变器和“全控制”逆变器两大类。前者,不具备自关断能力,元器件在导通后即失去控制作用,故称之为“半控型”普通晶闸管即属于这一类;后者,则具有自关断能力,即无器件的导通和关断均可由控制极加以控制,故称之为“全控型”,电力场效应晶体管和绝缘栅双权晶体管(IGBT)等均属于这一类。 6.按直流电源分,可分为电压源型逆变器(VSI)和电流源型逆变器(CSI)。前者,直流电压近于恒定,输出电压为交变方波;后者,直流电流近于恒定,输也电流为交变方波。 7.按逆变器输出电压或电流的波形分,可分为正弦波输出逆变器和非正弦波输出逆变器。 8.按逆变器控制方式分,可分为调频式(PFM)逆变器和调脉宽式(PWM)逆变器。 9.按逆变器开关电路工作方式分,可分为谐振式逆变器,定频硬开关式逆变器和定频软开关式逆变器。 10.按逆变器换流方式分,可分为负载换流式逆变器和自换流式逆变器。 逆变器的基本结构 逆变器的直接功能是将直流电能变换成为交流电能 逆变装置的核心,是逆变开关电路,简称为逆变电路。 该电路通过电力电子开关的导通与关断,来完成逆变的功能。电力电子开关器件的通断,需要一定的驱动脉冲,这些脉冲可能通过改变一个电压信号来调节。产生和调节脉冲的电路。通常称为控制电路或控制回路。逆变装置的基本结构,除上述的逆变电路和控制电路外,还有保护电路、输出电路、输入电路、输出电路等,如图2所示。 逆变器的工作原理。

高频电子线路设计(三极管混频器的设计)

通信电子线路课程设计说明书 三极管混频器 院、部:电气与信息工程学院 学生姓名:蔡双 指导教师:俞斌职称讲师 专业:电子信息工程 班级:电子1002 完成时间:2012-12-20

摘要 随着社会的发展,现代化通讯在我们的生活中显得越来越重要。混频器在通信工程和无线电技术中,得到非常广泛的应用,混频器是高频集成电路接收系统中必不可少的部件。要传输的基带信号都要经过频率的转换变成高频已调信号,才能在空中无线传输,在接收端将接收的已调信号要进行解调得到有用信号,然而在解调过程中,接收的已调高频信号也要经过频率的转换,变成相应的中频信号,这就要用到混频器。其原理是运用一个相乘器件将本地振荡信号与调制信号相乘,经过选频回路选出差频项(中频),在超外差式接收机中,混频器应用十分广泛,如:AM广播接收机将已调振幅信号535K~1605KHZ要变成465KHZ的中频信号;还有移动通信中的一次混频、二次混频等。由此可见,混频电路是应用电子技术和无线电专业必须掌握的关键电路。 关键词混频器;中频信号;选频回路

ABSTRACT With the development of society, the modernization of communication in our life becomes more and more important. Mixer in communication engineering and radio technology, widely used, the mixer is high frequency integrated circuit receiving system essential components. To transmit baseband signal to go through frequency conversion into a high frequency modulated signal, can in the air, wireless transmission, at the receiving end receives the modulated signal to demodulate the received useful signal, however in the demodulation process, receives the modulated high frequency signal to go through frequency conversion, into the corresponding intermediate frequency signal, this will be used mixer. Its principle is to use a multiplication device will be local oscillation signal and modulated signal by frequency selective circuit multiplication, choose the difference frequency term (MF ), in a superheterodyne receiver, mixer, a wide range of applications, such as: AM radio receiver will be modulated amplitude signal 535K ~ 1605KHZ to become 465KHZ intermediate frequency signal; and mobile communication a mixer, a two mixer etc.. Therefore, the mixer circuit is the application of electronic technology and radio professional must grasp the key circuit. Key words mixer;intermediate frequency signal;frequency selective circuit

高频电子线路设计

电子线路课程设计总结报告 学生姓名: 学号: 专业:电子信息工程 班级: 报告成绩: 评阅时间: 教师签字: 河北工业大学信息学院 2015年3月

课题名称:小功率调幅AM 发射机设计 内容摘要:小功率调幅AM 发射机在现代通信系统中应用广泛,小功率调幅AM 发射机的设计包括主振级、缓冲级、高频放大级、音频放大级、振幅调制级、高频功率放大级六个部分的电路设计和参数选择,且还考虑到各个单元电路之间的耦合关系,并结合Multisim 软件进行了各部分的调试与仿真,得到了整机电路。理论上满足了最基本的小功率调幅发射机的设计要求。 一、设计内容及要求 1、设计内容 小功率调幅AM 发射机的设计 2、设计的技术指标: 载波频率 Z MH 10=c f 载波频率稳定度 α≥3 -10 输出功率 mW 2000≥P 负载电阻 Ω=50A R 输出信号带宽 Z kH 9=BW (双边带) 残波辐射 dB 40≤ 单音调幅系数 8.0=a m 平均调幅系数 ≥m 0.3 发射效率 %50≥η 二、方案选择及系统框图 1、方案选择 (1)主振级 方案1:采用LC 三点式正弦波振荡器,由于电容三点式振荡器的输出波形比电感三点式振荡器的 输出波形好,最高工作频率一般比电感三点式振荡器的高。另外,在电容三点式振荡器中,极间电容与电容并联,频率变化不改变电抗的性质。因此振荡器的电路型式一般采用电容三点式。在频率稳定度要求不高的情况下,可以采用普通三点式电路、克拉泼电路、西勒电路。 方案2:采用晶体振荡器,晶体振荡器比普通的三点式振荡器具有更高的频率稳定度,频率稳定度可达到10 -10数量级,波形失真也比较小。在频率稳定度要求较高的电路中,可以采用晶体振荡器作为主 振级,比如石英晶体振荡器。 方案3:采用RC 正弦波振荡器,RC 振荡电路中没有谐振回路,主要有电阻和电容组成,因此一般不采用RC 正弦波振荡器作为主振器。

基于MATLAB的SPWM控制高频环节逆变器仿真研究_王诗颂

文章编号:1004—289X(2006)05-0015-04 基于M A TL AB的SPWM 控制高频环节逆变器仿真研究 王诗颂1 李伯全2  (1.江苏联合职业技术学院苏州机电分院,江苏 苏州 215031;2.江苏大学机械学院江苏,镇江 212013) 摘 要:详细介绍了用M AT LAB SIM ULIN K软件包建立一种基于PW M控制高频DC/AC逆变器的仿真模型,采用单极性移相SPW M控制策略,给出了主要的仿真波形。仿真结果表明,采用单极性移相SPWM控制策略的高频脉冲DC/AC逆变器是可行的。 关键词:高频脉冲交流环节;单极性移相PW M控制策略;周波变换器 中图分类号:TM464 文献标识码:B A Simulation Study of Inv erter with High Frequency Link Based o n SPWM Contro l W A N G Shi-song1 L I Bo-quan2 (1.Suzhou M echatro nic Schoo l of J iangsu U nion Technical Institute,Suzhou215031,China;2. The M echnical Institute of J iang su Univ ersity,Suzho u212013,China) Abstract:By means of so ftw are packag e M AT LAB SIM ULIN K,a sim ula tion m ode fo r DC/AC Inv erter w ith high frequency pulse AC link is set up,the mo no pola r phase shifting PW M contro l alg o rithm is ado pted.The m ain wav eform s are giv en.The sim ula tion results v erify the practicability of the high frequcncy pulse AC link DC/AC inv erter with such contro l strateg y. Key w o rds:high frequency pulse AC link;monopolar phase shifting PW M co ntrol algo rithm;cycloco nv erter 1 引言 传统的U PS使用了低频环节逆变技术,利用工频变压器实现输出电压的匹配及输入输出之间的电气隔离。该项技术成熟,应用广泛,性能可靠。但工频变压器的体积大、重量大,限制了U PS的小型轻量化。因为工频变压器的体积只和输出电压的频率有关,而低频逆变技术逆变器输出的都是工频脉冲列。 高频DC/AC逆变器采用了高频逆变技术[3],逆变器输出的是高频交流脉冲,所以解决了变压器体积大,份量重的难题。对于高频DC/AC逆变器,可以采用单极性移相SPW M控制策略。本文提出一个基于M AT LAB SIM U LINK软件包的高频逆变器仿真模型对其进行了计算机仿真,从理论上验证该控制策略的可行性,仿真模型采取了PI(比例积分)调节器进行闭环控制。 2 高频环节逆变技术 2.1 高频逆变器电路结构与工作原理 全桥桥式高频逆变器主电路结构如图1所示,它是由高频逆变器、高频变压器、周波变换器构成。 该逆变器的工作原理如下:图1中S1~S4组成按SPW M规律进行移相控制的高频逆变器,S5~S8组成周波变换器,将高频逆变器输出的高频交流电压脉冲低频解调成单极性的SPWM波,经输出滤波器滤波后供给负载。高频逆变器和周波变换器之间的高频变压器,起电源侧与负载侧电压匹配及两侧电气隔离的作用。 2.2 单极性移相控制技术 单极性移相控制技术[3]的原理见图2。 为了得到基波频率的正弦输出电压波形,逆变桥

1000W正弦波逆变器制作过程详解

1000W正弦波逆变器制作过程详解 1000W正弦波逆变器制作过程详解 作者:老寿 这个机器,输入电压是直流是12V,也可以是24V,12V时我的目标是800W,力争1000W,整体结构是学习了钟工的3000W机器.具体电路图请参考:1000W正弦波逆变器(直流12V转交流220V)电路图 也是下面一个大散热板,上面是一块和散热板一样大小的功率主板,长228MM,宽140MM。升压部分的4个功率管,H桥的4个功率管及4个TO220封装的快速二极管直接拧在散热板;DC-DC升压电路的驱动板和SPWM的驱动板直插在功率主板上。 因为电流较大,所以用了三对6平方的软线直接焊在功率板上: 吸取了以前的教训:以前因为PCB设计得不好,打了很多样,花了很多冤枉钱,常常是PCB打样回来了,装了一片就发现了问题,其它的板子就这样废弃了。所以这次画PCB 时,我充分考虑到板子的灵活性,尽可能一板多用,这样可以省下不少钱,哈哈。

如上图:在板子上预留了一个储能电感的位置,一般情况用准开环,不装储能电感,就直接搭通,如果要用闭环稳压,就可以在这个位置装一个EC35的电感。 上图红色的东西,是一个0.6W的取样变压器,如果用差分取样,这个位置可以装二个200K的降压电阻,取样变压器的左边,一个小变压器样子的是预留的电流互感器的位置,这次因为不用电流反馈,所以没有装互感器,PCB下面直接搭通。 上面是SPWM驱动板的接口,4个圆孔下面是装H桥的4 个大功率管,那个白色的东西是0.1R电流取样电阻。二个 直径40的铁硅铝磁绕的滤波电感,是用1.18的线每个绕90圈,电感量约1MH,磁环初始导磁率为90。 上图是DC-DC升压电路的驱动板,用的是KA3525。这次 共装了二板这样的板,一块频率是27K,用于普通变压器驱动,还有一块是16K,想试试非晶磁环做变压器效果。 H桥部分的大功率管,我有二种选择,一种是常用的IRFP460,还有一种是IGBT管40N60,显然这二种管子不是同一个档次的,40N60要贵得多,但我的感觉,40N60的确要可靠得多,贵是有贵的道理,但压降可能要稍大一点。 这是TO220封装的快恢复二极管,15A 1200V,也是张工

(完整版)高频电子线路课程设计

课程设计 班级:电信12-1班 姓名:徐雷 学号:1206110123 指导教师:李铁 成绩: 电子与信息工程学院 信息与通信工程系

目录 摘要 (1) 引言 (2) 1. 概述 (3) 1.1 LC振荡器的基本工作原理 (3) 1.2 起振条件与平衡条件 (4) 1.2.1 起振条件 (4) 1.2.2平衡条件 (4) 1.2.3 稳定条件 (4) 2. 硬件设计 (5) 2.1 电感反馈三点式振荡器 (5) 2.2 电容反馈三点式振荡器 (6) 2.3改进型反馈振荡电路 (7) 2.4 西勒电路说明 (8) 2.5 西勒电路静态工作点设置 (9) 2.6 西勒电路参数设定 (10) 3. 软件仿真 (11) 3.1 软件简介 (11) 3.2 进行仿真 (12) 3.3 仿真分析 (13) 4. 结论 (13) 4.1 设计的功能 (13) 4.2 设计不足 (13) 4.3 心得体会 (14) 参考文献 (14)

徐雷:LC振荡器设计 摘要 振荡器是一种不需要外加激励、电路本身能自动地将直流能量转换为具有某种波形的交流能量的装置。种类很多,使用范围也不相同,但是它们的基本原理都是相同的,即满足起振、平衡和稳定条件。通过对电感三点式振荡器(哈脱莱振荡器)、电容三点式振荡器(考毕兹振荡器)以及改进型电容反馈式振荡器(克拉波电路和西勒电路)的分析,根据课设要求频率稳定度为10-4,西勒电路具有频率稳定性高,振幅稳定,频率调节方便,适合做波段振荡器等优点,因此选择西勒电路进行设计。继而通过Multisim设计电路与仿真。 关键词:振荡器;西勒电路;Multisim Abstract The oscillator is a kind of don't need to motivate, circuit itself automatically device for DC energy into a waveform AC energy applied. Many different types of oscillators, using range is not the same, but the basic principles are the same, to meet the vibration, the equilibrium and stability conditions. Based on the inductance of the three point type oscillator ( Hartley), three point capacitance oscillator ( Colpitts) and improved capacitor feedback oscillator (Clapp and Seiler) analysis, according to class requirements, Seiler circuit with high frequency stability, amplitude stability frequency regulation, convenient, suitable for the band oscillator etc., so the final choice of Seiler circuit design. Then through the Multisim circuit design and simulation. Key Words:Oscillator; Seiler; Multisim 1

高频电子线路实训论文要点

编号: 高频电路设计与制作 实训论文说明书 题目:调频接收机 学院: 专业: 学生姓名: 学号: 指导教师: 2014年1 月9 日

摘要 收音机从它的诞生至今,不仅方便了媒体信息的传播,也推进了现代电子技术和更先进的电信设备的发展。目前调频式或调幅式收音机,一般都采用超外差式,它具有灵敏度高、工作稳定、选择性好及失真度小等优点。随着科学技术的发展,调频收音机的应用十分广泛,尤其消费类占有相当的市场。从分立元件组成的收音机到集成电路组成的收音机,调频收音机技术以达到十分成熟的地步。从普通的调幅收音机到高级调频收音机,调频收音机以较高的技术含量和较高的音质得到了广泛的欢迎。 在本次设计中,主要是利用集成电路CXA1691BM搭建成为接收机电路。该系统要求能对不同波形的话音信号进行调制、发送、接收和解调。CXA1691BM是一个单芯片FM/AM 收音IC专用无线收录机,由索尼公司生产。使用它来制作收音机可以实现通信的可靠性、通信的距离、设备的微型化、省电和轻巧等。CXA1691BM是一块适用于单声道便携式或手掌式超小型调频收音机的专业电路。应用时外围元件少,成本低廉,电路简单,调试方便,性能稳定等等优点,可以优先选择该电路设计制作收音机。 关键词:CXA1691BM;调频;接收机

Abstract The radio from its birth until now, went to the lavatory not only media dissemination of information, but also promote the modern electronic technology and more advanced telecommunications equipment development. Currently FM type or amplitude type radio, typically use the specialized super heterodyne type; it has a high sensitivity, stable and good selectivity and the distortion degree of small advantages. With the development of science and technology, the FM radio is widely used, especially the consumer a considerable market. Radio from discrete components to integrated circuits consisting of radio, FM radio technology to reach a mature stage. From ordinary AM radio to advanced FM radio, FM radio with high technological content and high sound quality has been widely welcomed. In the design, mainly to take advantage of the integrated circuit CXA1691BM structures become the receiver circuit. The system required for modulating the voice signal of the different waveforms, the transmission, reception and demodulation. CXA1691BM is a single-chip FM / AM radio IC dedicated wireless radio cassette recorders manufactured by Sony. Use it to produce the radio can be achieved the reliability of communication, the communication distance, the miniaturization of the device, saving and lightweight, etc... CXA1691BM a mono portable or palm small FM radio professional circuit. Fewer external components in the application, and low cost, simple circuit, commissioning, stable performance advantages, Radio Select the circuit design. Keywords: CXA1691BM;frequency modulation;Receiver

13.基础电路设计(十三)5GHz的高频电路设计技巧

基礎電路設計(十三)5GHz的高頻電路設計技巧 宇量

圖3 電感串聯與分路的模擬電路 圖4 電感串聯電路的通過特性

圖5 電感並聯電路的通過特性 幾乎所有的chip condenser廠商未在產品型錄或是資料表(data sheet)記載該元件的自我共振頻率,因此必需利用類似 MCSIL(Murata Chip S-parameter & Impedance Libra ry)進行chip condenser的等價電路值。圖6是MCSIL的畫陎。雖然chip inductor的等價電路為並聯共振電路,不過圖7的chip condenser卻是串聯共振電路。接著利用村田公司MCSIL軟體,分析太陽誘電公司1680type GRM18系列GRM1884C1H1R0CZ01高頻積層chip inductor的自我共振特性,其結果如下所示: ?自我共振頻率: 5785MHz。 ?阻抗值C: 0.93pF。 ?電感值L: 0.81nH。 圖8是50Ω插入並聯(series)與分路(shunt)時的模擬(simulation)電路;圖9與圖10分別是並聯(series)與分路(shunt)時的通過特性圖。為了簡化比較因此用祇有電感值(inductance)成份的特性方式表示,也就是說測詴結果並無無寄生容量的特性。由圖10的測詴結果可知50Ω插入分路(shunt)時,會以共振頻率為中心出現極大差異,相較之下50Ω插入並聯(series)時,若與祇有電容(capacitor)成份比較,雖然並未出現很大差異,不過在共振頻率附近的損失卻明顯減少。由此可知若將電容單純當作藕合電容(coup ling condenser)使用時,電感成份的影響會比較少,相較之下或若將電容當作matching特性調整使用時,電感成份的影響則明顯增加。

PWM高频逆变原理

现有两种无触点补偿式交流稳压电源在取代三相柱式交流电力稳压器。一种是变压器补偿式稳压器,其原理是用多个补偿变压器组合,通过“多全桥”变换电路,切换补偿变压器的初级头、尾连接方式进行补偿,去掉了机械传动和触点,提高了寿命和动态性能。补偿是有级的,而且所需的补偿变压器和切换开关较多,电路相对复杂,补偿精度低。另一种是PWM 开关式交流稳压器,其原理是从输入侧取得工频交流电压,经过整流、正激高频PWM变换、相位跟踪和转换产生交流补偿电压进行补偿,补偿是无级的,补偿精度高,响应速度快。但电路复杂,还需要一个固定的逆补偿变压器,不易实现大功率应用。我曾介绍过的PWM斩波器式交流稳压电源很好地克服了上述缺点,是一种很有发展前途的交流稳压技术,但其存在着只能稳压,不能消除市电电压中谐波成分的缺点。为了扩大交流稳压电源的功能,我们又开发研制了利用PWM高频逆变器进行补偿的多功能交流稳压电源,这种稳压电源具有用户电力综合调节器(Custompower)的功能,使稳压电源的性能又上了一个台阶。 2 用PWM高频逆变器的补偿式交流稳压电源 采用PWM高频逆变器的补偿式交流稳压电源的原理电路如图1所示。其中补偿电压uco由单相全桥逆变器产生(也可以采用半桥式或推挽式逆变器),逆变器采用高频SPWM调制。单相全桥逆变器的输出电压uab通过输出变压器Tr,把电压uab变成补偿电压uco在Tr的次级输出。Tr的次级串联在主电路中以对市电电压的变化进行补偿,保持输出电压uo稳定不变。图中LFCF为低通滤波器,以滤掉逆变器输出电压uab中的高次谐波。变压器Tr次级绕组的电阻和漏感以及市电电源内阻共同组成线路阻抗Z,则当负载变化时在Z上产生的压降会使输出电压随之变化。ur为用正弦电压发生器和锁相环产生的标准参考电压,锁相环是使ur在相位上与市电电压us同步。用瞬时值us Zis ur作为SPWM全桥逆变器控制电路中的调制电压,控制电路的原理框图如图2所示。按此图的高频SPWM调制原理,当用(us Zis ur)作为正弦调制波时,就可以使逆变器的输出电压与市电电压的变化和负载电压的变化成比例。 2.1 逆变器输出电压的谐波分析 假定逆变器的直流电源电压为Ud,载波三角波的电压幅值为Uc,则调制比M的值为: 式中:Us、Is、Ur为市电电压us,市电电流i s和基准参考电压ur的有效值。 因为变压器Tr的变比为ξ,故补偿电压uco的表示式为: uco的频谱如图4所示,可知:载波比N越大,谐波频率越高,滤波越容易,所需的LFCF 的值越小,当fc=12.8kHz时,LF=10mH,CF=2μF,即可将uco中的高次谐波滤掉。 2.2 考虑线路阻抗Z的补偿分析 由于逆变器开关管的正向压降,开关死区、变压器Tr初级绕组的电阻及漏感和交流滤波电感LF的绕组电阻及电感的影响,会使补偿电压uco的值减小。但这种影响不大,而且是基

相关文档
最新文档