传热学实验指导报告

传热学实验指导报告
传热学实验指导报告

A

传热学实验指导书

成都大学

工业制造学院材料工程系

二〇一一年三月

一、导热系数的测量

导热系数是反映测量热性能的物理量,导热是热交换三种基本形式之一,是工程热物理、材料科学、固体物理及能源、环保等各研究领域的课题之一。要认识导热的本质特征,需要了解粒子物理特性,而目前对导热机理的理解大多数来自固体物理实验。材料的导热机理在很大程度上取决于它的微观结构,热量的传递依靠原子、分子围绕平衡位置的振动以及电子的迁移,在金属中电子流起支配作用,在绝缘体和大部分半导体中则以晶格振动起主导作用。因此,材料的导热系数不仅与构成材料的物质种类有关,而且与它的微观结构、温度、压力及杂质含量相联系。在科学实验和工程设计中所采用材料导热系数都需要用实验方法测定。

1882年法国科学家J·傅里叶奠定了热传导理论,目前各种测量导热系数的方法都是建立在傅里叶热传导定律的基础上,从测量方法来说,可分为两大类:稳态法和动态法,本实验是稳态平板法测量材料的导热系数。

【实验目的】

1、了解热传导现象的物理过程

2、学习用稳态平板法测量材料的导热系数

3、学习用作图法求冷却速率

4、掌握一种用热电转换方式进行温度测量的方法

【实验仪器】

1、YBF-3导热系数测试仪一台

2、冰点补偿装置一台

3、测试样品(硬铝、硅橡胶、胶木板)一组

4、 塞尺 一把

5、 游标卡尺(量程200mm ) 一把

6、 天平(量程1kg ,分辨率0.1g ) 一台 【实验原理】

为了测定才材料的导热系数,首先从热导率的定义和它的物理意义入手。热传导定律指出:如果热量是沿着Z 方向传导,那么在Z 轴上任一位置Z 0,处取一个垂直截面A (如图1)以dt/dz 表示Z 处的温度梯度,以dQ/d τ表示该处的传热速率(单位时间通过截面积A 的热量),那么传导定律可表示为:

()0z z dz

dt

d dQ

A =-==

Φλτ

1-1

式中的负号表示热量从高温向低温区传导(即热传导的方向与温度梯度的方向相反)。式中的λ即为导热系数,可见热导率的物理意义:在温度梯度为一个单位的情况下,单位时间内通过单位截面面积的热量。

利用1-1式测量测量的导热系数,需解决的关键问题有两个:一个是在材料中造成的温度梯度dt/dz ,并确定其数值;另一个是测量材料内由高温区向低温区的传热速率dQ/d τ。

1、温度梯度dt/dz 的测量

为了在样品内造成一个温度梯度分布,可以把样品加工成平板状,并把它夹在两块良导体——铜板之间(图2),使两块铜板分别保持在恒定温度t 1和t 2,就可能在垂直样品方向上形成温度的梯度分布。样品的厚度可做成h 《D (样品直径)。这样,由于样品侧面积比平板面积小得多,由侧面散去的热量可以忽略不计,可以认为热量是沿垂直于样品方向传导,即只在此方向有温度梯度。由于铜板是热的良导体,在达到平衡时,可以认为同一铜板各处的温度相同,样品内同一平行平面上各处的温度相同。这样只要测出样品的厚度h 和两块铜板的温度t 1和t 2,就可以确定样品内的温度梯度为:

h

t t dz

dt

21-=

当然,这需要铜板与样品表面要紧密接触(无缝隙),否则中间的空气层将产生热阻,使得温度梯度测量不准确。

为了保证样品中温度场的分布具有良好的对称性,把样品及两块铜板都加工成等大的圆形。 2、传热速率dQ/d τ的确定

单位时间内通过一个截面积的热量dQ/d τ是一个无法直接测量的,我们只有设法将这个量转化为容易测量的量。为了维持一个恒定的温度梯度分布,必须不断地给高温侧铜板加热,热量通过样品传到低温侧铜板,低温侧铜板则要将热量不断向周围环境散发出。

当加热速率、传热速率、散热速率相等时,系统就达到一个动态平衡状态,我们称之为稳态。此时低温侧铜板的散热速率就是样品的传热速率。

这样,只要测出低温侧铜板在稳态t 2下的散热速率,也就测量出了样品内的传热速率。但是,铜板的散热速率也不易测量,还需要作进一步的参量转换。我们知道,铜板的散热速率与其冷却速率(温度变化率dt/d τ有关),其表达式为:

22

t d dt

t d dQ

mc

ττ-= 1-2

式中m 为铜板的质量,c 铜板的比热容。因为质量容易直接测量,c 为常量,这样对铜板的散热速率的测量又转化为对低温侧铜板冷却速率的测量。

铜板的冷却速率可以这样测量:在达到稳态后,移去样品,用加热铜板直接对下铜板加热,使其温度高于稳定稳定t 2(大约10℃),再让下铜板在空气中自然冷却,直到温度低于t 2,测出温度从大于t 2到小于t 2区间随时间变化关系,并绘制出t —τ曲线,此曲线在t 2处的斜率就是铜板在稳态温度t 2的冷却速率。

应该注意的是,这样得出的dt/d τ是铜板全部表面暴露于空气中的冷却速率,其散热面积为

p p p h R R ππ222+(R p 和

h p 分别为下铜板半径和厚度),然而在实验时的稳态传热时,铜板的上表面是被

样品覆盖的,由于物体的散热速率与它们的面积成正比,所以在实验稳态时,铜板的散热速率的表达式应修正为:

p

p p p

p p

h R R h R R d dt

d dQ

mc ππππτ

τ

22222++-= 1-3 根据前面分析,这个表达式就是样品的传热速率计算式。 将上式代入1-1式,并考虑到A=πR 2可以得到导热系数计算式:

22121

222t t d dt t t h R R h R h p p p

p m c

=-++=τ

πλ 1-4

式中R 为样品的半径,h 为样品高度,m 为下铜板质量,c 为铜板比热容,R p 和h p 分别为下铜板半径和厚度。都是为常量或可以测量的。

【实验步骤】

1、导热系数测定装置的信号通道的接线见上图三所示。

2、用游标卡尺、天平等量具测量样品、下铜板的几何尺寸和质量的必要的物理量,多次测量,然后

取平均值。其中铜板的比热容c=0.385kJ/K·kg。

3、加热温度的设定:

①按一下温控器面板上的设定键(S),此时设定值(SV)后一位数码管开始闪烁。

②根据实验所需温度的大小,再按设定键(S)左右移动到所需设定的位置,然后通过加(▲)键和

减(▼)键来设定所需加热温度。

③设定好温度后8秒显示将返回到测定温度状态显示。

3、圆筒发热盘侧面和散热盘P侧面,都有供安装热电偶的小孔,安放时此两小孔都一个与冰点补偿

器在同一侧,以免线路错乱。热电偶插入小孔时,要抹上些硅脂,并插到孔洞底部,保证接触良好,热电偶冷端接到冰点补偿器的信号输入端。

将温度控制方式打到“自动”,“手动控制”开关打到高档,PID控温仪表将会使发热盘的温度自动加热到设定值。每隔2分钟读一下温度指示值,如果在一段时间内样品上下表面温度t1、t2示值不变,就可认为达到稳定状态。记录下稳态时的t1、t2值。

4、移去样品,将上下铜板贴合后,继续对下铜板加热,当下铜板温度比t2高出10℃左右时,将上铜

盘移开,让下铜盘所有表面均暴露于空气中,使下铜盘自然冷却。

5、每隔30秒记录一次下铜盘的温度示值并记录,直到温度下降到t2以下的一定值(10℃左右)。作

铜盘的t—τ冷却速率曲线(选取临近t2的测量数据求出冷却速率)。

时间(S)0 30 60 90 120 150 180

温度℃

电压mV

6、根据1-4式计算样品的导热系数λ。

7、本实验选用铜—康铜热电偶,温差100℃时,其温差电动势约4.0mV。由于热电偶冷端温度为0℃,

对一定材料的热电偶而言,当温度变化不大时,其温差电动势与待测温度是一个常数。由此,用1-4式计算时,可以直接以电动势值代表温度值。

【实验注意事项】

1、稳态法测量时,要使温度稳定约需40分钟左右。当温度示值在3分钟内不变时,即可认为已达稳态,记下此时的毫伏表读数V1和V2,以及温度读数t 1、t 2值。

2。测量金属的稳态导热系数时,热电偶应该插到金属样品上两端的小孔中;测量散热速率时,热电偶要重新插到铜散热盘P 的小孔中。t 1、t 2值为稳态时金属样品上下两侧的温度,此时散热盘P 的温度为t 3,因此测量P 的冷却速率应为:3t t t

=??τ

,所以:

32211t t t

R t t

h mc =??-?

??=τ

πλ

测t 3值时要在t 1、t 2达到稳定时,将上面测t 1或t 2的热电偶移下来插到散热盘小孔中进行测量。高度h 按金属样品上的小孔中心距离计算。

3、每次实验只能测量一种材料。当出现异常报警时,温控器测量值显示:HHHH ,设置值显示:Err 。 思考题:

1、测导热系数λ要满足哪些条件?在实验中如何保证?

2、测冷却速率时,为什么要在稳态温度T2(或T3)附近选值?如何计算冷却速率?

3、讨论本实验的误差因素,并说明导热系数可能偏小的原因。

二、非稳态导热试验

本实验属于综合性试验,它主要涉及工程数学、传热学及其材料测试技术。因此,学生在试验前必须先掌握以上相关知识,在此基础上根据实验目的和要求操作实验,处理数据,分析结果。 【实验目的】

通过本实验,不但可使学生加深对传热全过程,及导热、对流等基础知识的掌握,同时,也可使学生对强化传热概念、数据处理方法等有时刻的了解。其次通过本实验,还可以使学生了解非稳态传热系统的组成、实验方法及仪表使用。 【实验内容】

1、了解材料加热及冷却过程中表面与中心温度的变化;

2、加深不同传热系数冷却介质对冷却温度场的影响;

3、掌握实验基本原理、实验装置结构,学会使用实验仪器与设备;

4、掌握对实验结果数据进行处理和误差分析的方法。 【实验仪器】

有温度自动控制系统的SX2-8-10电阻炉 1台 ZJ16A 多点温度测试仪 1台 直径2mm 的K 型热电偶 2根 45钢试样:φ50mm ×100mm (中心钻φ3深30孔) 1块 【实验原理】

材料在加热冷却过程中的温度场分布不仅取决于材料的性能(密度、导热系数、比热容),而且与材料和周围环境的热交换密切相关。本实验通过对试样在炉中的加热及在不同冷却介质中的冷却,采用一组热电偶的热端固定于试样表面的不同位置,利用多点温度记录仪测量和记录任意时刻试样各测点的温度——

时间曲线,根据所测的温度——时间曲线,可以计算出该位置是冷却速度,观察分析不同冷却介质对试样冷却结果的影响,并和计算结果进行比较。

温度场计算可采用叠加法,即将短圆柱体的温度场分布分解成直径为50mm的无限长圆柱体的温度场分布的解与厚度为100mm无限大平板的温度场解的乘积,如下图所示。

【实验步骤设计要求】

1、阅读相关的加工原理和成型工艺的文献和书籍;

2、将热电偶分别安装在试样表面和中心的钻孔中,并将热电偶与温度记录仪接好;

3、关上炉门,并将温度控制仪温度读数调整到2-500℃,并将炉子加热开关打开,同时打开温度记录仪开关,将记录仪调整到记录状态;

4、炉温升到2-500℃,并保温5min以使炉内温度均匀、恒定,再开启温度记录仪记录开关,将固定在试架上是试样放入炉内;

5、将试样加热20—25min,然后拿出炉外并在冷却介质中(水或大气)中冷却20——25min,而后关闭温度记录仪开关;

6、分别将温度记录仪所记录的加热和冷却数据填写在下表中(每分钟一次);

7、绘出加热和冷却曲线:以时间为横坐标,温度为纵坐标;

8、对试样按无量纲准则进行加热/冷却计算,确定在4min时中心和表面温度。并且和实验结果对比,分析其误差原因。

时间/min 加热阶段℃冷却阶段℃

炉温中心温度表面温度介质温度中心温度表面温度1

2

3

4

5

6

7

8

9

……

25

【实验要求】

1、字迹工整、图表清晰、格式规范;

2、简述实验目的和原理(不能抄指导书);

3、写出实验步骤;

4、实验数据记录;

5、整理结果;

6、绘制温度随时间的变化曲线;

7、结果分析。

【实验注意事项】

1、本实验为每组6人,每组实验的时间为2学时,由学生协作做实验;

2、热电偶在试样延长杆上要固定好,以保证偶丝端部与试样紧密接触;

3、高温试样浸入水容器时,注意安全,避免烫伤。

【思考题】

1、试样冷却过程中有相变时的冷却曲线特点;

2、试样与空气或水间的换热系数的选择及注意事项;

3、当试样温度较高时,试样在水中的冷却特点。

传热实验实验报告

传热实验 一、实验目的 1、了解换热器的结结构及用途。 2、学习换热器的操作方法。 3、了解传热系数的测定方法。 4、测定所给换热器的传热系数K。 5、学习应用传热学的概念和原理去分析和强化传热过程,并实验之。 二、实验原理 根据传热方程Q=KA△tm,只要测得传热速率Q,冷热流体进出口温度和传热面积A,即可算出传热系数K。在该实验中,利用加热空气和自来水通过列管式换热器来测定K,只要测出空气的进出口温度、自来水进出口温度以及水和空气的流量即可。 在工作过程中,如不考虑热量损失,则加热空气释放出的热量Q1与自来水得到的热量Q2应相等,但实际上因热损失的存在,此两热量不等,实验中以Q2为准。 三、实验流程和设备 实验装置由列管换热器、风机、空气电加热器、管路、转子流量计、温度计等组成。空气走管程,水走壳程。列管式换热器的传热面积由管径、管数和管长进行计算。 实验流程图: 四、实验步骤及操作要领 1、熟悉设备流程,掌握各阀门、转子流量计和温度计的作用。 2、实验开始时,先开水路,再开气路,最后再开加热器。 3、控制所需的气体和水的流量。 4、待系统稳定后,记录水的流量、进出口温度,记录空气的流量和进出口温度,记录设备的

有关参数。重复一次。 5、保持空气的流量不变,改变自来水的流量,重复第四步。 6、保持第4步水的流量,改变空气的流量,重复第四步。 7、实验结束后,关闭加热器、风机和自来水阀门。 五、实验数据记录和整理 1、设备参数和有关常数 换热流型错流;换热面积㎡

六、实验结果及讨论 1、求出换热器在不同操作条件下的传热系数。 计算数据如上表,以第一次记录数据序号1为例计算说明: 2、对比不同操作条件下的传热系数,分析数值,你可得出什么结论? 答:比较一、二、三组可知当空气流量不变,水的流量改变时,传热系数变化不大,比较四、五组可知空气流量改变而水的流量不改变时,传热系数有很大变化,且空气流量越大,传热系数越大,传热效果越好;综上可知,K值总是接近热阻大的流体侧的α值,实验中,提高空气侧的α值以提高K值。。 3、转子流量计在使用时应注意什么问题?应如何校正读数? 答:转子流量计不能用于流量过大的流体测量,使用时流量计必须安装在垂直走向的管段上,流体介质自下而上地通过转子流量计。 读数时应读转子的最大截面与玻璃管刻线相交处的数值,可以读初始值和最终值,取两者之差来校正读数。 4、针对该系统,如何强化传热过程才能更有效,为什么? 答:该系统传热效果主要取决于热流体,所以可以通过增加空气流量,提高其所占比例来强化传热效果;减小水的流量;内管加入填充物或采用螺纹管,加热面在上,制冷面在下。因为由实验可知提高热阻大的流体的传热系数可以更有效的强化传热过程。 5、逆流换热和并流换热有什么区别?你能用实验装置加以验证吗? 答:①逆流换热时热流体是冷热流体流动方向相反;而并流传热时,其冷热流体流动方向相同;②在相同操作条件下,逆流换热器比并流换热器所需传热面积小。可以改变冷热流体进出口方向,测得在相同传热效果下,逆并流所需传热面积大小,从而加以验证。 6、传热过程中,哪些工程因素可以调动? t ;④换热过程的流型(并流,逆答:①增大传热面积S;②提高传热系数α;③提高平均温差 m 流,错流)。 7、该实验的稳定性受哪些因素的影响? 答:①冷凝水流通不畅,不能及时排走;②空气成分不稳定,导致被冷凝效果不稳定;③冷热流体流量不稳定;④传热器管表面的相对粗糙度。 8、你能否对此实验装置作些改进,使之能够用于空气一侧对流传热系数的测定? 答:让空气走壳程,水走管程,根据流体在管外的强制对流公式,可提出空气一侧的对流传热系数α值。

传热学实验指导书

[实验一]用球体法测定粒状材料的导热系数 一、实验目的 1、巩固和深化稳态导热的基本理论,学习测定粒状材料的热导率的方法。 2、确定热导率和温度之间的函数关系。 二、实验原理 热导率是表征材料导热能力的物理量,其单位为W/(m ·K),对于不同的材料,热导率是不同的。对于同一种材料,热导率还取决于它的化学纯度,物理状态(温度、压力、成分、容积、重量和吸湿性等)和结构情况。各种材料的热导率都是专门实验测定出来的,然后汇成图表,工程计算时,可以直接从图表中查取。 球体法就是应用沿球半径方向一维稳态导热的基本原理测定粒状和纤维状材料导热系数的实验方法。 设有一空心球体,若内外表面的温度各为t 1和t 2并维持不变,根据傅立叶导热定律: dr dt r dr dt A λπλφ24-=-= (1) 边界条件221 1t t r r t t r r ====时时 (2) 1、若λ= 常数,则由(1)(2)式求得 1 22121122121)(2)(4d d t t d d r r t t r r --=--=πλπλφ[W] ) (2)(212112t t d d d d --=πφλ [W/(m ·K)] (3) 2、若λ≠ 常数,(1)式变为 dr dt t r ) (42λπφ-= (4) 由(4)式,得 dt t r dr t t r r ??-=21 21)(42 λπφ 将上式右侧分子分母同乘以(t 2-t 1),得 )()(4121222 12 1t t t t dt t r dr t t r r ---=??λπφ (5)

式中 122 1)(t t dt t t t -?λ项显然就是λ在t 1和t 2范围内的积分平均值,用m λ表示即 1 221)(t t dt t t t m -=?λλ,工程计算中,材料的热导率对温度的依变关系一般按线性关系处理,即)1(0bt +=λλ。因此, )](21[)1(210 1202 1 t t b t t dt bt t t m ++=-+=?λλλ。这时,(5)式变为 ) (2) (4)(21211222121t t d d d d r dr t t r r m --= -=?πφπφλ [W/(m ·K)] (6) 式中,m λ为实验材料在平均温度)(21 21t t t m +=下的热导率, φ为稳态时球体壁面的导热量, 21t t 、分别为内外球壁的温度, 21d d 、分别为球壁的内外直径。 实验时,应测出21t t 、和φ,并测出21d d 、,然后由(3)或(6)得出m λ。 如果需要求得λ和t 之间的变化关系,则必须测定不同m t 下的m λ值,由 ) 1() 1(202101m m m m bt bt +=+=λλλλ ( 7) 可求的b 、0λ值,得出λ和t 之间的关系式)1(0bt +=λλ。 三、实验设备 导热仪本体结构和测量系统如图1-1所示。

《病理学》实验指导

6、遵守教研室和实习室各项规章制度。 四、绘图和实习报告 描绘病理切片病变简图及书写实习报告是病理学基本技能(或基本功),可以提高观察病变、分析和描述病变的能力。对培养临床医师书写病历、手术记录、分析临床症状及科学研究均有帮助。 描绘病变要求选择有代表性部分,真实简明的绘出病变特点。应根据自己观察的病变特点,联系理论课内容,客观的分析,精练地写出实习报告。实习报告的书写格式如下:(举例) 第十四章传染病实习报告 一、实习目的要求:(抄写本章“实习目的要求”的内容) 二、实习内容:(抄写本章实习的“内容’,大标本、切片的具体名称可不写) 三、绘图(或其它内容):淋巴结结核绘图 组织切片观察与描述: 1、低倍镜:可见正常淋巴组织结构,在淋巴细胞中可见散在结节状病灶及灶性红染无结构、颗粒状物质,即干酪样坏死。 2、高倍镜:结节状病灶由上皮样细胞、朗罕巨细胞、干酪样坏死及周围的成纤维细胞和淋巴细胞等构成,即结核结节(对上皮样细胞和郎罕巨细胞可详细描述)。 病理诊断:(左颈部)淋巴结结核 实习报告人:××× 报告日期:2000年7月15日 (程瑞雪)

3、心肌肥大(hypertrophy of myocardium) (1)高血压患者心脏体积大于正常,重量增加;(2)切面以左心室肥厚为主(为什么?);乳头肌增粗;(3)心腔扩大不明显(向心性)。 4、肝水变性(hydropic degeneration of liver) 肝脏体积增大,被膜紧张,切面隆起,边缘外翻,色苍白浑浊。请推测其发生机制和临床表现。 5、肾水变性(hydropic degeneration of kidney) 肾脏体积增大,被膜紧张,切面隆起,色苍白浑浊,皮髓质分界不清。 6、脾被膜透明变性(hyaline degeneration of spleen capsule) 脾脏淤血、肿大,包膜(或部分包膜)增厚,呈灰白色,半透明毛玻璃样、质硬(似在局部涂上一层糖衣,故俗称“糖衣脾”)。 7、胸膜透明变性(hyaline degeneration of pleura) 慢性炎症致胸膜纤维组织增生、增厚、纤维化玻变,呈灰白色、半透明毛玻璃样,质硬。 8、脾梗死(infarct of spleen) (1)脾脏表面和切面见一灰白色三角形坏死灶;(2)坏死组织质地干燥、致密稍硬,与正常脾脏组织分界清楚,周围可见暗红色或棕黄色充血出血带。请推测此病变的结局。 9、肾干酪样坏死(caseous necrosis of kidney) 肾脏体积增大,切面肾实质呈多灶性坏死,坏死物色黄、质松软、脆、细腻似奶酪,部分坏死物排出形成囊腔。试问有何临床表现? 10、足坏疽(gangrene of foot) 足趾、足背、足底均坏死,皮肤呈黑褐色,坏死区干燥、皮肤皱缩,与正常组织分界清楚,为干性坏疽。湿性坏疽有何特点? 11、阿米巴肝“脓肿”(amoebic abscess of liver) 体积增大,切面见一个较大“脓腔”,系阿米巴原虫引起的肝脏液化性坏死,坏死物呈果酱样,流失后形成“脓腔”,腔壁上残留未彻底坏死的结缔组织、胆管、血管等呈“破絮状”。试问病人可能有何临床表现? 四、切片观察要点 1、支气管粘膜鳞状上皮化生(squamous metaplasia of bronchus)62-1#

传热实验实验报告

一、 实验名称: 传热实验 二、实验目的: 1.熟悉套管换热器的结构; 2.测定出K 、α,整理出e R N -u 的关系式,求出m A 、. 三、实验原理: 本实验有套管换热器4套,列管式换热器4套,首先介绍套管换热器。 套管换热器管间进饱和蒸汽,冷凝放热以加热管内的空气,实验设备如图2-2-5-1(1)所示。 传热方式为:冷凝—传导—对流 1、传热系数可用下式计算: ]/[2m k m W t A q K m ???= (1) 传热实验

图2-2-5-1(1) 套管换热器示意图 式中:q ——传热速率[W] A ——传热面积[m 2] △t m —传热平均温差[K] ○ 1传热速率q 用下式计算: ])[(12W t t C V q p S -=ρ (2) 式中:3600/h S V V =——空气流量[m 3/s] V h ——空气流量[m 3/h] ρ——空气密度[kg/m 3 ],以下式计算: ]/)[273(4645.031 m kg t R p P a ++=ρ (3) Pa ——大气压[mmHg] Rp ——空气流量计前表压[mmHg] t 1——空气进换热器前的温度[℃] Cp ——空气比热[K kg J ?/],查表或用下式计算: ]/[04.01009K kg J t C m p ?+= (4) t m =(t 1+t 2)/2——空气进出换热器温度的平均值(℃) t 2——空气出口温度[℃] ②传热平均面积A m :

][2m L d A m m π= (5) 式中:d m =传热管平均直径[m] L —传热管有效长度[m ] ③传热平均温度差△t m 用逆流对数平均温差计算: T ←——T t 1——→t 2 )(),(2211t T t t T t -=?-=? 2 1 2 1ln t t t t t m ???-?= ? (6) 式中:T ——蒸汽温度[℃] 2、传热膜系数(给热系数)及其关联式 空气在圆形直管内作强制湍流时的传热膜系数可用下面准数关联式表示: n r m e P AR Nu = (7) 式中:N u ——努塞尔特准数 R e ——雷诺准数 P r ——普兰特准数 A ——系数,经验值为0.023

传热仿真实习实验指导

基本原理: 对流传热的核心问题是求算传热膜系数α,当流体无相变时对流传热准数关联式的一般形式为: (4-1) 对于强制湍流而言,Gr准数可以忽略,故 (4-2) 本实验中,可用图解法和最小二乘法计算上述准数关联式中的指数m、n和系数A。 用图解法对多变量方程进行关联时,要对不同变量Re和Pr分别回归。本实验可简化上式,即取n=0.4(流体被加热)。这样,上式即变为单变量方程,再两边取对数,即得到直线方程: (4-3) 在双对数坐标中作图,找出直线斜率,即为方程的指数m。在直线上任取一点的函数值代入方程中,则可得到系数A,即: (4-4) 用图解法,根据实验点确定直线位置有一定的人为性。而用最小二乘法回归,可以得到最佳关联结果。应用微机,对多变量方程进行一次回归,就能同时得到A、m、n。 对于方程的关联,首先要有Nu、Re、Pr的数据组。其准数定义式分别为: 实验中改变冷却水的流量以改变Re准数的值。根据定性温度(冷空气进、出口温度的算术平均值)计算对应的Pr准数值。同时,由牛顿冷却定律,求出不同流速下的传热膜系数α值。进而算得Nu准数值。 牛顿冷却定律: (4-5) 式中: α—传热膜系数,[W/m2·℃]; Q—传热量,[W]; A—总传热面积,[m2]; △t m—管壁温度与管内流体温度的对数平均温差,[℃]。 传热量Q可由下式求得: (4-6)式中:

W—质量流量,[kg/h]; Cp—流体定压比热,[J/kg·℃]; t1、t2—流体进、出口温度,[℃]; ρ—定性温度下流体密度,[kg/m3]; V—流体体积流量,[m3/s]。 设备参数: 孔板流量计: 流量计算关联式:V=4.49*R0.5 O),V——空气流量 (m3 /h) 式中:R——孔板压差(mmH 2 换热套管: 套管外管为玻璃管,内管为黄铜管。 套管有效长度:1.25m,内管内径:0.022m 计算方法、原理、公式: 对流传热的核心问题是求算传热膜系数α,当流体无相变时对流传热准数关联式的一般形式为: (4-1) 对于强制湍流而言,Gr准数可以忽略,故 (4-2) 本实验中,可用图解法和最小二乘法计算上述准数关联式中的指数m、n和系数 A。 用图解法对多变量方程进行关联时,要对不同变量Re和Pr分别回归。本实验可简化上式,即取n=0.4(流体被加热)。这样,上式即变为单变量方程,再两边 取对数,即得到直线议程: (4-3)

传热膜系数实验报告

化工原理实验报告 实验三 传热膜系数测定实验 实验日期:2015年12月30日 班级: 学生姓名: 学号: 同组人: 报告摘要 本实验选用牛顿冷却定律作为对流传热实验的测试原理,通过建立不同体系的传热系统,即水蒸汽—空气传热系统、分别对普通管换热器和强化管换热器进行了强制对流传热实验研究。确定了在相应条件下冷流体对流传热膜系数的关联式。此实验方法可以测出蒸汽冷凝膜系数和管内对流传热系数。采用由风机、孔板流量计、蒸汽发生器等组成的自动化程度较高的装置,让空气走内管,蒸汽走环隙,用计算机在线采集与控制系统测量了孔板压降、进出口温度和两个壁温,计算了传热膜系数α,并通过作图确定了传热膜系数准数关系式中的系数A 和指数m (n 取0.4),得到了半经验关联式。实验还通过在内管中加入混合器的办法强化了传热,并重新测定了α、A 和m 。 二、 目的及任务 1.掌握传热膜系数α及传热系数K 的测定方法; 2.通过实验掌握确定传热膜系数准数关系式中的系数A 和指数m 的方法; 3.了解工程上强化传热的措施。 三、基本原理 对流传热的核心问题是求算传热膜系数α,当流体无相变时对流传热准数关 系式的一般形式为:p n m Gr A Nu Pr Re 对于强制湍流而言。Gr 数可忽略,即

n m A Nu Pr Re = 本实验中,可用图解法和最小二乘法计算上述准数关系式中的指数m 、n 和系数A 。 用图解法对多变量方程进行关联时,要对不同变量Re 和Pr 分别回归。本实验可简化上式,即取n=0.4(流体被加热)。这样,上式即变为单变量方程,在两边取对数,得到直线方程为 Re lg lg Pr lg 4.0m A Nu += 在双对数坐标中作图,求出直线斜率,即为方程的指数m 。在直线上任取一点函数值带入方程中,则可得系数A ,即 m Nu A Re Pr 4.0= 用图解法,根据实验点确定直线位置有一定人为性。而用最小二乘法回归,可得到最佳关联结果。应用计算机辅助手段,对多变量方程进行一次回归,就能的道道A 、m 、n 。 对于方程的关联,首先要有Nu 、Re 、Pr 的数据组。其特征数定义式分别为 μρ du = Re , λμ Cp = Pr , λαd Nu = 实验中改变空气的流量,以改变Re 值。根据定性温度(空气进、出口温度的算数平均值)计算对应的Pr 值。同时,由牛顿冷却定律,求出不同流速下的传热膜系数值,进而求得Nu 值。 牛顿冷却定律为 Q=αA △t m 式中α——传热膜系数,W/(m 2.℃);

化工原理实验传热实验报告

传热膜系数测定实验(第四组) 一、实验目的 1、了解套管换热器的结构和壁温的测量方法 2、了解影响给热系数的因素和强化传热的途径 3、体会计算机采集与控制软件对提高实验效率的作用 4、学会给热系数的实验测定和数据处理方法 二、实验内容 1、测定空气在圆管内作强制湍流时的给热系数α1 2、测定加入静态混合器后空气的强制湍流给热系数α1’ 3、回归α1和α1’联式4 .0Pr Re ??=a A Nu 中的参数A 、a *4、测定两个条件下铜管内空气的能量损失 二、实验原理 间壁式传热过程是由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热三个传热过程所组成。由于过程复杂,影响因素多,机理不清楚,所以采用量纲分析法来确定给热系数。 1)寻找影响因素 物性:ρ,μ ,λ,c p 设备特征尺寸:l 操作:u ,βgΔT 则:α=f (ρ,μ,λ,c p ,l ,u ,βgΔT ) 2)量纲分析 ρ[ML -3],μ[ML -1 T -1],λ[ML T -3 Q -1],c p [L 2 T -2 Q -1],l [L] ,u [LT -1], βg ΔT [L T -2], α[MT -3 Q -1]] 3)选基本变量(独立,含M ,L ,T ,Q-热力学温度) ρ,l ,μ, λ 4)无量纲化非基本变量 α:Nu =αl/λ u: Re =ρlu/μ c p : Pr =c p μ/λ βgΔT : Gr =βgΔT l 3ρ2/μ2 5)原函数无量纲化 ??? ? ???=223,,μρβλμμρλαtl g c lu F l p 6)实验 Nu =ARe a Pr b Gr c 强制对流圆管内表面加热:Nu =ARe a 圆管传热基本方程: m t A K t T t T t T t T A K Q ???=-----?=111 22112211 1ln ) ()( 热量衡算方程: )()(12322111t t c q T T c q Q p m p m -=-= 圆管传热牛顿冷却定律: 2 2112211 22211221121 1ln ) ()(ln )()(w w w w w w w w T T T T T T T T A t t t t t t t t A Q -----?=-----?=αα 圆筒壁传导热流量:)] /()ln[)()()/ln(11221122121 2w w w w w w w w t T t T t T t T A A A A Q -----?-?=δλ 空气流量由孔板流量测量:54 .02.26P q v ??= [m 3h -1,kPa] 空气的定性温度:t=(t 1+t 2)/2 [℃]

《传热学》实验指导书

传热学实验指导书 XX大学 XX学院XX系 二〇一X年X月

一、导热系数的测量 导热系数是反映测量热性能的物理量,导热是热交换三种基本形式之一,是工程热物理、材料科学、固体物理及能源、环保等各研究领域的课题之一。要认识导热的本质特征,需要了解粒子物理特性,而目前对导热机理的理解大多数来自固体物理实验。材料的导热机理在很大程度上取决于它的微观结构,热量的传递依靠原子、分子围绕平衡位置的振动以及电子的迁移,在金属中电子流起支配作用,在绝缘体和大部分半导体中则以晶格振动起主导作用。因此,材料的导热系数不仅与构成材料的物质种类有关,而且与它的微观结构、温度、压力及杂质含量相联系。在科学实验和工程设计中所采用材料导热系数都需要用实验方法测定。 1882年法国科学家J ·傅里叶奠定了热传导理论,目前各种测量导热系数的方法都是建立在傅里叶热传导定律的基础上,从测量方法来说,可分为两大类:稳态法和动态法,本实验是稳态平板法测量材料的导热系数。 【实验目的】 1、了解热传导现象的物理过程 2、学习用稳态平板法测量材料的导热系数 3、学习用作图法求冷却速率 4、掌握一种用热电转换方式进行温度测量的方法 【实验仪器】 1、YBF-3导热系数测试仪 一台 2、冰点补偿装置 一台 3、测试样品(硬铝、硅橡胶、胶木板) 一组 4、塞尺 一把 5、游标卡尺(量程200mm ) 一把 6、天平(量程1kg ,分辨率0.1g ) 一台 【实验原理】 为了测定才材料的导热系数,首先从热导率的定义和它的物理意义入手。热传导定律指出:如果热量是沿着Z 方向传导,那么在Z 轴上任一位置Z 0,处取一个垂直截面A (如图1)以dt/dz 表示Z 处的温度梯度,以dQ/d τ表示该处的传热速率(单位时间通过截面积A 的热量),那么传导定律可表示为: ()0z z dz dt d dQ A =-==Φλτ 1-1 式中的负号表示热量从高温向低温区传导(即热传导的方向与温度梯度的方向相反)。式中的λ即为导热系数,可见热导率的物理意义:在温度梯度为一个单位的情况下,单位时间内通过单位截面面积的热量。 利用1-1式测量测量的导热系数,需解决的关键问题有两个:一个是在材料中造成的温度梯度dt/dz ,并确定其数值;另一个是测量材料内由高温区向低温区的传热速率dQ/d τ。 1、温度梯度dt/dz 的测量

普通病理学实验指导书

实验一、植物病害症状观察 一、目的和要求 通过植物病害症状的观察,学习描述和记载植物病害症状的方法,掌握植物病害的症状类型、特点以及了解症状在病害诊断中的作用。 二、材料和用具 1.准备下列10种植物病害标本,如玉米大小斑病,稻瘟病等。 2、扩大镜、小刀及记载用具。 三、内容与方法 仔细观察并记录陈列的植物病害标本的病状和病征。 1、病状类型: (1)变色 植物受到外来有害因素的影响后,常导致色泽的改变,如褪色、花叶、条点、白化、色泽变深或变浅等,统称为变色。主要表现有: ①褪绿或黄化褪绿或黄化是由于植物叶绿素的减少而叶片表现为浅绿色或黄色。 ②花叶与斑驳花叶是叶片颜色不均匀地变色,且不同变色部分的轮廓是很清楚的,如烟草花叶病。如果不同变色部分的轮廓不清楚则称为斑驳。 (2)坏死 坏死是由于病植物组织和细胞的死亡而引起的。主要表现有: ①斑点:根、茎、叶、花、果实的病部局部组织或细胞坏死,产生各种形状、大小和颜色不同的斑点。 ②枯死:芽、叶、枝、花的局部或大部分组织发生变色、焦枯、死亡。 ③穿孔和落叶落果:在叶片病斑外围的组织形成离层,使病斑从健组织中脱落下来,形成穿孔;有些植物的花、叶、果等受病后,在叶柄或果梗附近产生离层而引起过早的落叶、落果等。 ④疮痂:果实、嫩茎、块茎等的病组织局部木栓化,表面粗糙,病部较浅,。 ⑤溃疡:多见于木本植物的枝干、叶片或果实上。病部面积大,中央凹陷,坏死深入到皮层,周围的寄主细胞有时增生和木栓化。 ⑥猝倒和立枯:大多发生在各种植物的苗期,幼苗的茎基或根冠组织坏死,地上部萎蔫以致死亡,坏死引起突然倒伏的称为猝倒;坏死而不倒伏的称为立枯。 (3)萎蔫 指植物根部或茎部的维管束组织受到侵染而发生的枯萎现象,萎蔫可以是局部的也可以是全株性的。 (4)腐烂 腐烂是较大面积植物组织的分解和破坏的表现,根据症状及失水快慢又分为干腐和湿腐。 流胶也是腐烂的一种,桃树等木本植物受病菌为害后,内部组织坏死并腐烂分解,从病部向外流出粘胶状物质。 (5)畸形 由于病组织或细胞的生长受阻或过度增生而造成的形态异常。植物病害的畸形症状很多,常见的有: ①徒长:植株生长较正常的植株生长高大。 ②矮化、矮缩和丛生:矮化是植株各个器官的长度成比例变短或缩小,病株比健株矮小得多。矮缩则主要是节间缩短茎叶簇生在一起。丛生是枝条或根异常地增多,导致丛枝或丛根。 ③瘤肿:病部的细胞或组织因受病原物的刺激而增生或增大,呈现出瘤肿。 ④卷叶:叶片卷曲与皱缩,有时病叶变厚、变硬,严重时呈卷筒状。

《传热学》实验指导书

《传热学》实验指导书 建筑环境与设备工程教研室

实验一 强迫对流换热实验 一、实验目的 1、了解热工实验的基本方法和特点; 2、学会翅片管束管外放热和阻力的实验研究方法; 3、巩固和运用传热学课堂讲授的基本概念和基本知识; 4、培养学生独立进行科研实验的能力。 二、实验原理 1、翅片管是换热器中常用的一种传热元件,由于扩展了管外传热面积,故可使光管的传热热阻大大下降,特别适用于气体侧换热的场合。 2、空气(气体)横向流过翅片管束时的对流换热系数除了与空气流速及物性有关以外,还与翅片管束的一系列几何因素有关,其无因次函数关系可表示如下: N u =f(R e 、P r 、、 、、、、o l o t o o o D P D P D B D D H /δn) (1) 式中:N u = γ D h ?为努谢尔特数; R e = γm o u D ?= η m o G D ? 为雷诺数; P r = h ν=λ μ?C 为普朗特数; H 、δ、B 分别为翅片高度、厚度、和翅片间距; P t 、P l 为翅片管的横向管间距和纵向管间距;n 为流动方向的管排数; D o 为光管外径,u m 、G m 为最窄流通截面处的空气流速(m/s )和质量流量 (kg/m 2s ), 且G m =u m ?ρ。λ、ρ、μ、γ、α为气体的特性值。 此外,换热系数还与管束的排列方式有关,有两种排列方式,顺排和叉排,由于在叉排管束中流体的紊流度较大,故其管外换热系数会高于顺流的情况。 对于特定的翅片管束,其几何因素都是固定不变的,这时,式(1)可简化为: N u =f (R e 、P r ) (2) 对于空气,P r 数可看作常数,故 N u =f (R e ) (3) 式(3)可表示成指数方程的形式 N u =CR e n (4) 式中,C 、n 为实验关联式的系数和指数。这一形式的公式只适用于特定几何条件下的管束,为了在实验公式中能反映翅片管和翅片管束的几何变量的影响,需要分别改变几何参数进行实验并对实验数据进行综合整理。 3、对于翅片管,管外换热系数可以有不同的定义公式,可以以光管外表面为基准定义换热系数,也可以以翅片管外表面积为基准定义。为了研究方便,此处采用光管外表面积作为基准,即: ) (wo a o T T L D n Q h -???= π (5)

传热实验指导书分析

实验三 平板导热系数测定实验 一. 实验目的 1.巩固和深化稳定导热过程的基本理论,学习用平板法测定材料导热系数的实验方法和技能。 2.测定试验材料的导热系数。 3.确定试验材料导热系数与温度的关系。 二.实验原理 导热系数是表征材料导热能力的物理量。对于不同的材料,导热系数是不同的;对同一材料,导热系数还会随着温度、压力、湿度、物质的结构和重度等因素而变异。各种材料的导热系数都用试验方法来测定,如果要分别考虑因素的影响,就需要针对各种因素加以试验,往往不能只在一种试验设备上进行。稳态平板法是一种应用一维稳态导热过程的基本原理来测定材料导热系数的方法,可以用来进行导热系数的测定试验,测定材料的导热系数及其和温度的关系。 试验设备是根据在一维稳态情况下通过平板的导热量Q 和平板两面的温差t ? 成正比,和平板的厚度δ成正比,以及和导热系数λ成正比的关系来设计的。 我们知道,通过薄壁平板(壁厚小于十分之一壁长和壁宽)的稳定导热 量为 F t Q ???=δλ [w] 测定时,如果将平板两面的温差 L R t t t -=?、平板厚度δ 、垂直热流方向的 导热面积F 和通过平板的热流量Q 测定以后,就可以根据下式得出导热系数: F t Q ???= δ λ )/(C m W ?? 需要指出,上式所得的导热系数是在当时的平均温度下材料的导热系数值,此平均温度为: ) (21 L R t t t += ][C ? 在不同的温度和温差条件下测出相应的λ值,然后将λ值标在t -λ 坐标图内,就可以得出 )(t f =λ 的关系曲线。 三.实验装置及测量仪表 稳态平板法测定材料导热系数的试验装置如图1和图2所示。 被试验材料做成二块方形薄壁平板试件,面积为300×300 ][2 mm ,实际导热计算面积 F 为200×200][2mm ,板的厚度为δ(实测)][2 mm ,平板试件分别被夹紧在加热器的上、

病理学实验指导

病理学实验指导 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

其临床表现,掌握各种疾病的发生、发展规律,更重要的是培养学生独立思考、综合分析和解决问题的能力,为以后学习临床课奠定良好的基础。 病理学实习内容和方法包括:①大体标本观察,②病理切片观察,③观看挂图、各种图谱、幻灯片、电视录相及多媒体课件,④动物实验,⑤临床病理讨论,⑥参观(参加)尸体解剖等。其中最重要的是大体标本和病理切片的观察。 《病理学实习指导》一书供学生实习课使用,主要用于指导学生进行病理学实践活动,培养学生的主动性及独立分析能力;指导书中对大标本,切片观察要点进行了条款式的描述,引导学生独立观察事物的能力;并附有许多思考题和病例讨论,均可帮助同学加强逻辑思维训练,提高综合分析和解决问题的能力。 二、大体标本及病理切片的观察方法 病理学每次理论课讲授之后均配合一次相应实习,实习时必须掌握并灵活运用观察大体标本和病理切片的基本方法。 (一)大体标本的观察方法 实习课所观察的大体标本,一般都是用10%的福尔马林固定(具有消毒、杀灭微生物及凝固蛋白质的作用),其大小、颜色、硬度与新鲜标本有所不同,标本的体积缩小变硬,颜色变浅、变灰,出血区则多变成黑褐色。 1、首先观察标本为何种器官、组织或其中的一部分(如肺上叶或下叶) 2、观察脏器的体积和形状,是否肿大或缩小,有否变形。 3、从表面和切面观察脏器的颜色、光滑度、湿润度、透明度、硬度,有无病灶。 4、观察病灶具体位置、数目、分布(弥漫、局灶或单个)、大小(体积;长x宽x厚,以立方厘米表示)、形状、颜色及与周围组织的关系(有无包膜、是否压迫或破坏周围组织等)。 5、空腔器官注意观察其内腔是否扩大、狭窄或阻塞,腔壁是否增厚或变薄,有否内容物及其性状、特点等。 6、诊断:根据上述大体标本病变,结合学过的理论知识作出正确病理诊断。病理诊断格式为:脏器(或组织)名称+病理变化。 (二)病理切片观察方法 病理切片绝大多数为石蜡切片,苏木素—伊红染色(HE染色)。 1、首先用肉眼观察切片,了解整个切片大致情况(形状,颜色等) 2、用低倍镜全面观察切片,辨别是什么组织,有何病变,病变所在部位,与周围组织大致关系(有无包膜、是否压迫或破坏周围组织等)。 3、在病变部位转高倍镜,观察组织的形态及病变的细微结构。低倍镜和高倍镜观察应相结合,灵活运用,避免只在高倍镜下观察。 4、观察镜下改变的同时,应联想其肉眼形态、可能产生的临床症状及疾病的发生发展经过和机制。 三、实习注意事项 1、爱护显微镜、大体标本、病理切片及其他教具,不得损坏。 2、实习前做到预习实习指导内容,复习相关理论,了解实习的目的和要求。 3、实习室保持安静,不得追赶、打闹、喧哗。 4、实习课—律穿白大衣,不许穿背心、拖鞋入室。

哈工大-传热学虚拟仿真实验报告

哈工大-传热学虚拟仿真实验报告

Harbin Institute of Technology 传热学虚拟仿真实验报告 院系:能源科学与工程学院 班级:设计者: 学号: 指导教师:董士奎 设计时间:2016.11.7

传热学虚拟仿真实验报告 1 应用背景 数值热分析在核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、造船、生物医学、轻工、地矿、水利、以及日用家电等各个领域都有广泛的应用。 2 二维导热温度场的数值模拟 2.1 二维稳态导热实例 假设一用砖砌成的长方形截面的冷空气通道,其截面如图2.1所示,假设在垂直于纸面方向上冷空气及砖墙的温度变化很小,可以近似地予以忽略。 图2.1一用砖砌成的长方形截面的冷空气通道截面 2.2二维数值模拟 基于模型的对称性,简化为如图所示的四分之一模

型。 图2.2 二维数值模拟 2.3 建立离散方程 此时对于内部节点,如图2.3: ,1,,1,,,1,,1=? ? - +??-+??-+??--++-x y t t x y t t y x t t y x t t j t j i j t j i j t j i j t j i λ λ λ λ 对于平直边界上的节点,如图2.4: 2 22,,1,,1,,,1=?+Φ??+??-+??-+??-? -+-w j i j t j i j t j i j t j i yq y x x y t t x y t t y x t t λλλ 对于外部和内部角点,如图2.5: 2 43220 2422,,,1,1,,1,,,1,,1,,,1=?+?+Φ??+??-+??-+??-+??-=?+?+Φ??+??-+??-?+-+-?--w n m n m n m n m n m n m n m n m n m w n m n m n m n m n m q y x y x y x t t x y t t x y t t y x t t q y x y x x y t t y x t t λλλλλλ

传热学-强迫对流实验指导书(2014)

《传热学》实验指导书 实验名称:强迫流动单管管外放热系数的测定 实验类型: 验证性实验 学 时:2 适用对象: 热动、集控、建环、新能源等专业 一、实验目的 1.该项实验涉及较多课程知识,测量参数多,如风速、功率、温度,可考查学生的综合能力。 2.测量空气横向流过单管表面的平均表面传热系数h ,并将实验数据整理成准则方程式。 3.学习测量风速、温度、热量的基本技能,了解对流放热的实验研究方法。 二、实验原理 根据相似理论,流体受迫外掠物体时的表面传热系数h 与流速、物体几何形状及尺寸、流体物性间的关系可用下列准则方程式描述: ),(r e u P R f N = 实验研究表明,流体横掠单管表面时,一般可将上式整理成下列具体的指数形式: m n r m n e um P CR N ?= 式中:m n c ,,均为常数,由实验确定 努谢尔特准则---um N m um hd N λ= ---em R 雷诺准则 m em d R νμ= ---rm P 普朗特准则 m n rm P αν=

上述各准则中--d 实验管外径,作定性尺寸(米) --μ流体流过实验管外最窄面处流速,()/s m --λ流体导热系数()/K m W ? --α流体导温系数)/(2s m --ν流体运动粘度)/(2s m --h 表面传热系数)/(2K m W ? 准则角码m 表示用流体边界层平均温度)(2 1 f w m t t t -= 作定性温度。 鉴于实验中流体为空气,rm P =0.7,故准则式可化成: n em um CR N = 本实验的任务在于确定n c 与的数值。首先使空气流速一定,然后测定有关的数据:电流I 、电压V 、管壁温度w t 、空气温度f t 、测试段动压P 。至于表面传热系数h 和流速μ在实验中无法直接测量,可通过计算求得,而物性参数可在有关书中查到。得到一组数据后,即可得一组e R 、u N 值,改变空气流速,又得到一组数据,再得一组e R 、u N 值,改变几次空气流速,就可得到一系列的实验数据。 三、实验设备 本对流实验在一实验风洞中进行。实验风洞主要由风洞本体、风机、构架、实验管及其加热器、水银温度计、动压计、毕托管、电位差计、电流表、电压表以及调压变压器组成。 由于实验段前有两段整流,可使进入实验段前的气流稳定。毕托管置于测速段,测速段截面较实验段小,以使流速提高,测量准确。风量由风机出口挡板调节。

病理学实验强大总结版

IJ3:肝细胞坏死(周围有正常结构,故注意与之区分鉴别,对比着看!) 1、低倍镜下肝细胞基本保存完整,看到完整肝细胞结构时即锁定肝中央静脉区! 2、高倍镜时可看到坏死灶内肝细胞索结构消失,成为一些相互分离、深红的、形态不规则的小碎块,即为坏死的肝细胞。 3、最终确定准则,看到核固缩、核碎裂和核溶解。(多数为深红色) IJ4、脾细动脉玻璃样变: 1、低倍镜下见脾被膜、脾小梁、脾小体及脾窦等正常结构。到此处时注意转向脾细动脉。 2、高倍镜下中央动脉管壁呈明显的不对称性增厚,管壁成均质红染结构,原有血管结构基本消失。 IJ5、肝细胞水变性和气球样变 1、低倍镜下见肝脏结构基本保持完整,但明显感觉局部浅染(多为中央静脉周围)。 2、高倍镜下可见部分细胞体积明显增大,胞浆淡染,可见红染细颗粒样物和一些界限不清的空泡,胞核仍位于中央。其中体积为正常肝细胞3~4倍,胞浆透明,状如气球的为气球样变的肝细胞。 RP1、肉芽组织 1、低倍镜下观察整个切片,可见大量的骨骼肌组织,其上方为创面,可见肉芽组织。 2、高倍镜下可见大量的毛细血管,管壁多为单层内皮细胞,管腔较大。 纵切面毛细血管长轴与肉芽组织表面垂直。可见成纤维细胞(梭形,核椭圆,染色质浅、核仁清楚,胞质丰富)和炎性细胞(中性粒细胞和淋巴细胞)浸润,还有少量均质红染的纤维素。 HD1、慢性肺淤血 一、早期(貌似考试片子是晚期,不是很确定,先写上) 1、低倍镜下可见肺泡壁毛细血管扩张充血,肺泡壁明显增厚,肺泡腔内充满粉红色均质物质,即为含蛋白质的水肿液。 2、高倍镜下可见肺泡腔内有多少不等的红细胞(高度淤血造成的漏出性出血),有的中可见脱落的肺泡上皮细胞。 二、晚期 1、肺泡壁毛细血管扩张,肺泡壁及间质有一定程度的纤维增生。肺泡腔内水肿不明显。 2、重点是观察胞浆充满棕黄色颗粒的心衰细胞(体积较大,含含铁血黄素)。 HD2、慢性肝淤血 1、低倍镜下可见明显的肝窦变宽(正常时肝索:肝窦=2:1,慢性肝淤血时可变小甚至逆转),然后迅速转到门管区及中央静脉周围。 2、中央静脉扩张、充血、管壁增厚。肝窦明显扩张,肝细胞索则被压迫萎缩。 3、高倍镜下见肝小叶周边及淤血区附近肝细胞体积增大,胞浆内出现多数大小不一、界限清楚的圆形空泡。“月锄变形” 4、可尝试寻找脂肪变性。 5、之后可拿片子肉眼观,看是否有“槟榔肝”现象??(待判断,以前未有观察)

西安交大传热学上机实验报告

传热学上机实验报告 二维导热物体温度场的数值模拟 学院:化工学院 姓名:沈佳磊 学号:2110307016 班级:装备11

一、物理问题 有一个用砖砌成的长方形截面的冷空气空道,其截面尺寸如下图所示,假设在垂直于纸面方向上冷空气及砖墙的温度变化很小,可以近似地予以忽略。 在下列两种情况下试计算: (1)砖墙横截面上的温度分布; (2)垂直于纸面方向的每米长度上通过砖墙的导热量。外矩形长为3.0m,宽为2.2m;内矩形长为2.0m,宽为1.2m。 第一种情况:内外壁分别均匀地维持在0℃及30℃; 第二种情况:内外表面均为第三类边界条件,且已知: 外壁:30℃,h1=10W/m2·℃, 内壁:10℃,h2= 4 W/m2·℃ 砖墙的导热系数λ=0.53 W/m·℃ 由于对称性,仅研究1/4部分即可。

二、数学描写 对于二维稳态导热问题,描写物体温度分布的微分方程为拉普拉斯方程 22220t t x x ??+=?? 这是描写实验情景的控制方程。 三、方程离散 用一系列与坐标轴平行的网格线把求解区域划分成许多子区域,以网格线的交点作为确定温度值的空间位置,即节点。每一个节点都可以看成是以它为中心的一个小区域的代表。由于对称性,仅研究1/4部分即可。依照实验时得点划分网格。 建立节点物理量的代数方程 对于内部节点,由?x=?y ,有 ,1,1,,1,11()4m n m n m n m n m n t t t t t +-+-=+++ 由于本实验为恒壁温,不涉及对流,故内角点,边界点代数方程与该式相同。 设立迭代初场,求解代数方程组 图中,除边界上各节点温度为已知且不变外,其余各节点均需建立类似3中的离散方程,构成一个封闭的代数方程组。以t ?=0°C 为场的初始温度,代入方程组迭代,直至相邻两次内外传热值之差小于0.01,认为已达到迭代收敛。 四、编程及结果 program main implicit none

传热实训实操作指导书

化工单元实训装置系列之 传热单元操作实训装置实训操作指导书 杭州言实科技有限公司 2010.10

目录 一:前言 (3) 二、实训目的 (4) 三、实训原理 (4) (一)数据计算 (5) (二)绘制热性能曲线,并作比较 (5) 四、传热单元操作实训装置介绍 (6) (一)装置介绍 (6) (二)换热器结构 (6) 1、套管式换热器 (6) 2、管壳式换热器(列管换热器) (7) 3、板式换热器 (8) (三)工艺流程 (10) 1、实训设备配置 (12) 2、仪表及控制系统一览表 (14) 3、能耗一览表 (15) 五、实训步骤 (17) (一) 开机准备 (17) (二) 正常开机 (17) (三) 正常关机 (23) (四) 正常关机(按下表记录实验数据) (24)

一:前言 职业教育的根本是培养有较强实际动手能力和职业精神的技能型人才,而实训设备是培养这种能力的关键环节。 传统的实验设备更多是验证实验原理,缺乏对学生实际动手能力的培养,更无法实现生产现场的模拟,故障的发现,分析,处理能力等综合素质的培养。 为了实现职业技术人才的培养,必须建立现代化的实训基地,具有现代工厂情景的实训设备。 本传热实训装置把化工技术、自动化技术、网络通讯技术、数据处理等最新的成果揉合在了一起,实现了工厂模拟现场化、故障模拟、故障报警、网络采集、网络控制等培训任务。按照“工学结合、校企合作”的人才培养模式,以典型的化工生产过程为载体,以液——液传质分离任务为导向,以岗位操作技能为目标,真正做到学中做、做中学,形成“教、学、做、训、考”一体化的教学模式。以任务驱动、项目导向、学做合一的教学方法构建课程体系,开发设计传热操作技能训练装置。 本传热实训装置具有以下特点: 课程体系模块化;实训内容任务化;技能操作岗位化;安全操作规范化;考核方案标准化;职业素养文明化。

相关文档
最新文档