线性拟合和二次拟合函数

线性拟合和二次拟合函数
线性拟合和二次拟合函数

6.2线性拟合和二次拟合函数

线性拟合

给定一组数据,做拟合直线,均方误差为

(6.2)

是二元函数,的极小值要满足

整理得到拟合曲线满足的方程:

(6.3)

称式(6.3)为拟合曲线的法方程。用消元法或克莱姆法则解出方程:

a=

=

例6.1下表为P. Sale及R. Dybdall在某处作的鱼类抽样调查,表中为鱼的数量,为鱼的种类。请用线性函数拟合鱼的数量和种类的函数关系。

解:设拟合直线,并计算得下表:

将数据代入法方程组(6.3)中,得到:

解方程得:= 8.2084,= 0.1795

拟合直线为:= 8.2084 + 0.1795

二次拟合函数

给定数据序列,用二次多项式函数拟合这组数据。

设,作出拟合函数与数据序列的均方误差:

(6.4)由多元函数的极值原理,的极小值满足

整理得二次多项式函数拟合的法方程:

(6.5)

解此方程得到在均方误差最小意义下的拟合函数。方程组(6.5)称为多项式拟合的法方程,法方程的系数矩阵是对称的。当拟保多项式阶时,法方程的系数矩阵是病态的,在计算中要用双精度或一些特殊算法以保护解的准确性。

例6.2给定一组数据,如下表。用二次多项式函数拟合的这组数据。

解:设,由计算得下表:

将数据代入式(6.5),相应的法方程为:

解方程得:=0.66667,=-1.39286,=-0.13095

∴= 0.66667-1.39286-0.13095

拟合曲线的均方误差:=3.09524

结果见图6.3。

图6.3 拟合曲线与数据序

粒子群算法在神经网络非线性函数拟合中的应用【精品文档】(完整版)

粒子群算法在神经网络非线性函数 拟合中的应用 一、本文研究和解决的问题 在自动控制问题中,系统辨识的目的是为了建立被控对象的数学模型。多年来,控制领域对于复杂的非线性对象的辨识一直未能很好的解决,神经网络所具有的非线性特性和学习能力使其在系统辨识方面有很大的潜力。为解决具有复杂的非线性、不确定性和不确知对象的辨识问题开辟了一条有效的途径。基于神经网络的系统辨识是以神经网络作为被辨识对象的模型,利用其非线性特性,可建立非线性系统的静态或动态模型。理论上,多层前馈神经网络能够以任意精度逼近任意非线性映射。 但传统神经网络学习算法中存在的收敛速度慢、容易陷入局部最优等缺点,于是设计了基于标准粒子群算法的神经网络非线性函数拟合系统。 二、传统的BP神经网络 BP 神经网络即采用误差反向传播算法的网络,是一种至今仍然最为流行的前馈型神经网络模型。BP 神经网络有很强的非线性映射能力,它能学习和存贮大量输入-输出模式映射关系,而无需事先了解描述这种映射关系的数学方程。只要能提供足够多的样本模式对供给网络进行学习训练,它便能完成由n 维输入空间到m 维输出空间的非线性映射。BP 学习算法属于误差修正型学习,其关键在于根据误差修正输出层和隐含层的连接权值。其学习的基本实现方法是基于最小平方误差准则和梯度下降优化方法来确定权值调整法则。 BP网络建模特点: 非线性映照能力:神经网络能以任意精度逼近任何非线性连续函数。在建模过程中的许多问题正是具有高度的非线性。 并行分布处理方式:在神经网络中信息是分布储存和并行处理的,这使它具有很强的容错性和很快的处理速度。 自学习和自适应能力:神经网络在训练时,能从输入、输出的数据中提取出规律性的知识,记忆于网络的权值中,并具有泛化能力,即将这组权值应用于一般情形的能力。神经网络的学习也可以在线进行。 数据融合的能力:神经网络可以同时处理定量信息和定性信息,因此它可以利用传统的工程技术(数值运算)和人工智能技术(符号处理)。 多变量系统:神经网络的输入和输出变量的数目是任意的,对单变量系统与多变量系统提供了一种通用的描述方式,不必考虑各子系统间的解耦问题。

多元线性回归模型

多元线性回归模型 1 多元线性回归模型 1.1 多元回归模型的构建名称多元线性回归模型优先级高描述由于经济现象的复杂性,一个被解释变量往往受多个解释变量的影响.多元回归模型就是在方程式中有两个或两个以上自变量的线性回归模型.多元线性回归预测是用多元线性回归模型,对具有线性趋势的税收问题,使用多个影响因素所作的预测.要求输入有指标需要进行预测的cube.该cube由实施人员在实施过程中根据客户的具体需要定制,该cube中的各个测量值是相关的,各维度是与预测分析有联系的.处理由用户选择回归模型分析角度和分析指标(包括因变量和自变量.注意:此处的分析指标是指cube中的测量值,下同),系统进行回归方程的拟合以及假设检验.展示回归方程式及假设检验的结果,并利用回归方程式进行预测.具体操作步骤如下: 分析角度的选取依照以下原则: 1. 选择分析角度和分析指标(包括因变量和自变量). 若对时间序列数据的回归分析,时间维必须在同一层次上,否则,系统给出下列提示信息:"分析角度的选择有误,时间维必须在同一层次上,请做修改!",如果用户不做相应的修改,则回归模型不进行构建.其它的维度原则上只能选取一个成员,若存在选择多个的情况,系统给出相应的警告提示:"分析角度的选择可能有误,请检查!",但允许用户在不进行任何修改的情况下继续回归模型的构建;所选中的时间维成员个数必须多于"自变量的个数+3",否则给出下列提示信息:"数据量太少,不能完成回归模型的构建"; 若进行横截面数据的回归分析,除时间维外的其它维度中必须有一个是选择所有成员的,时间维只能

选择一个维成员,否则给出下列出错信息:"不同时间点的横截面数据没有可比性,不适合进行回归分析!" 如果用户不做相应的修改,则回归模型不进行构建.对于选取的所有成员的维度,其成员个数必须多于"自变量的个数+3",否则给出下列提示信息:"数据量太少,不能完成回归模型的构建"; 分析指标(包括自变量和因变量)的选取依照下列原则. 自变量的选择.自变量可以选择了多个分析指标. 因变量的选择.因变量只能选取一个指标,在编码时必须对其进行设置. 2. 回归方程的拟合回归分析原理是利用具有因果关系的经济变量的样本观测量,按照一定的实现原理来建立能够使被解释变量的计算值与实际值误差最小的回归方程,以此作为研究对象总体模型的估计参数.多元线性回归模型的构建就是求出因变量(以y表示)自变量(以表示,其中M为自变量的个数)的线性关系式: 回归模型的拟合就是利用最小二乘法求出参数的估计值(其中i=1,2,…,M).具体求解的过程如下:假设已从cube中读入了因变量(以y表示)的N(N>3)个数据,记为,自变量的(其中i=1,2,…,M)的N(N>3)个数据,记为,(注意:此处需要用一个N×M 的二维数组存放自变量的数据,数组中的每一列存放一个测量值的数据,此处与报表中所显示的格式是相同的,在报表中,一个测量值的数据也是用一个列来显示的.)参数的计算请参见下面的文档: 3. 回归结果的呈现显示回归方程式在界面上显示回归方程式 4. 回归模型的假设检验构建一个经济计量模型会涉及到模型的形式,自变量的参数,模型的总体效果等的问题,因此,利用最小二乘法估计参数构成一元线性回归模型后,还需要进行拟合优度检验,t检验和F检验等统计检验.

多元线性回归与曲线拟合――

第十章:多元线性回归与曲线拟合―― Regression菜单详解(上) (医学统计之星:张文彤) 上次更新日期: 10.1 Linear过程 10.1.1 简单操作入门 10.1.1.1 界面详解 10.1.1.2 输出结果解释 10.1.2 复杂实例操作 10.1.2.1 分析实例 10.1.2.2 结果解释 10.2 Curve Estimation过程 10.2.1 界面详解 10.2.2 实例操作 10.3 Binary Logistic过程 10.3.1 界面详解与实例 10.3.2 结果解释 10.3.3 模型的进一步优化与简单诊断 10.3.3.1 模型的进一步优化 10.3.3.2 模型的简单诊断 回归分析是处理两个及两个以上变量间线性依存关系的统计方法。在医学领域中,此类问题很普遍,如人头发中某种金属元素的含量与血液中该元素的含量有关系,人的体表面积与身高、体重有关系;等等。回归分析就是用于说明这种依存变化的数学关系。 §10.1Linear过程 10.1.1 简单操作入门 调用此过程可完成二元或多元的线性回归分析。在多元线性回归分析中,用户还可根据需要,选用不同筛选自变量的方法(如:逐步法、向前法、向后法,等)。

例10.1:请分析在数据集Fat surfactant.sav中变量fat对变量spovl的大小有无影响? 显然,在这里spovl是连续性变量,而fat是分类变量,我们可用用单因素方差分析来解决这个问题。但此处我们要采用和方差分析等价的分析方法--回归分析来解决它。 回归分析和方差分析都可以被归入广义线性模型中,因此他们在模型的定义、计算方法等许多方面都非常近似,下面大家很快就会看到。 这里spovl是模型中的因变量,根据回归模型的要求,它必须是正态分布的变量才可以,我们可以用直方图来大致看一下,可以看到基本服从正态,因此不再检验其正态性,继续往下做。 10.1.1.1 界面详解 在菜单中选择Regression==>liner,系统弹出线性回归对话框如下: 除了大家熟悉的内容以外,里面还出现了一些特色菜,让我们来一一品尝。

一种非线性函数的曲线拟合方法

一种非线性函数的曲线拟合方法(函数公式:k = A*(T^a)*exp(E/T) ) 上一篇文章说了,函数的曲线拟合我以前没做过,所以是摸着石头过河,不知道所采用的方法是否合理,虽然是完成了拟合,不过我觉得自己采用的拟合方法还是比较原始的,希望做曲线拟合的朋友多多指教。 原始数据如下: T(K) K 200.00 2.5069E-13 220.00 3.5043E-13 223.00 3.6741E-13 225.00 3.7904E-13 250.00 5.4617E-13 275.00 7.5744E-13 295.00 9.6192E-13 298.00 9.9551E-13 300.00 1.0183E-12 325.00 1.3346E-12 350.00 1.7119E-12 375.00 2.1564E-12 400.00 2.6739E-12 425.00 3.2706E-12 450.00 3.9527E-12 475.00 4.7261E-12 480.00 4.8922E-12 500.00 5.5968E-12 525.00 6.5710E-12 550.00 7.6544E-12 575.00 8.8529E-12 600.00 1.0172E-11

800.00 2.5705E-11 1000.00 5.1733E-11 1250.00 1.0165E-10 目标:拟合成k = A*(T^a)*exp(E/T) 模式的公式, 其中A、a和E为未知常数,是我们需要通过曲线拟合要求出的数据。 拟合目标中的公式是幂逼近和指数逼近的混合,用Matlab的cftool 工具箱的自定义函数来逼近,效果并不理想,所以我就参考了网上的一些博客和百度知道等资源,采取如下策略: 首先将非线性的拟合公式转化为线性公式,再用求解线性方程组的矩阵方法求出未知常数的值。 具体地说,拟合公式的线性化表达式为:log(k) = log(A) + a*log(T) + E/T 。这里有三个未知常数log(A)、a 和E,则依次取T,K各三个数据,组成N 个线性方程组:Cx=b,其中:x=[log(A), a, E], C=[1, log(T), 1/T], b=log(k) 。 解这些线性方程组,得到所有方程组的解组成的解矩阵xMat,其大小为N*3,对解矩阵的每一列求平均,即可得到所求的未知常数值。 根据以上策略,可求得未知常数A、a和E的值如下: A = 3.8858e-020,a = 3.0595,E = -117.2915 程序源码: function [A,a,E]= fun_NLFit(T,K) % 函数FUN_NLFIT() 根据输入T,K的数据集,求出拟合公式k = A*(T^a)*exp(E/T) % 的未知常数A,a,E 。 logT=log(T); logK=log(K);

数据拟合——线性回归

数据拟合——线性回归法 【概述】 MATLAB支持用户对数据用线性回归方法linear regression建立模型。模型是指自变量和因变量之间的关系。线性回归方法建立的模型的系数是线性的。最常用的线性回归方法是最小二乘拟合,可进行线性拟合和多项式拟合。 1.线性相关性分析Linear Correlation Analysis 在对两组测量数据建立关系模型前,最好对这些数据之间的关系作一个判断——相关性分析,看二者是否真的存在线性关系。 这里,我们只介绍相关性系数①Correlation coefficient的计算。简单的说,相关性系数是绝对值在0-1之间的数,其绝对值越接近1,表明数据之间存在线性关系的可能性越大。反之,数据越接近0,表明数据之间不太可能存在线性关系。 ?MATLAB语法:R = corrcoef(x,y) 计算数据x和y的相关系数矩阵R 示例1: x = [1 2 3 4 5 6 7 8 9 10]; y = [1 4 9 16 25 36 49 64 81 100]; R = corrceof(x,y) R = 1.0000 0.9746 此数据表明两组数据具有很强的线性关系 0.9746 1.0000 示例2: x = [1 2 3 4 5 6 7 8 9 10]; y = [0.8415 0.9093 0.1411 -0.7568 -0.9589 -0.2794 0.6570 0.9894 0.4121 -0.5440]; R = corrceof(x,y) R = 1.0000 -0.1705 此数据表明两组数据不存在线性关系 -0.1705 1.0000 2.评价数据拟合的优劣——残差计算 残差被定义为实际测量数据与利用模型拟合(预测)的数据之差。合适的模型计算的残差应该接近独立的随机误差。如果计算得到的残差具有某种特殊的模式,那么模型就不合适。 3.利用MATLAB函数进行数据拟合 ?多项式模型 MATLAB提供了2个用于多项式拟合的函数polyfit和polyval。 ?MATLAB语法:p = polyfit(x,y,n) 通过对数据x和y进行n阶多项式②拟合(基于最小二乘法),计算n阶多项式系数p ?MATLAB语法:y = polyval(p,x) 计算以p为系数的多项式,在x处的函数值y 示例3:

Origin8.0 非线性拟合法

Origin8.0 非线性拟合法 1.打开Origin 8.0软件。 2.在A(X)列输入自变量,在B(Y)列输入因变量。不能把二 者位置搞错。 3.点击analysis下拉菜单→点击Fitting→Nonlinear Curve Fit →Open Dialog… 4.在打开的新窗口中选择Function Selection,点击Gauss下 拉菜单→点击,这时会出现新的页面。然后在新页面进行如下操作: 5.在Independent Variables中选定自变量,在Dependent Variables中选定因变量,在Parameters name 中给出所有待拟合参数的符号如p1,p2,p3…… 6.在Function中建立待拟合的非线性函数关系。 7.就建立了待拟合的非线性函数关系后,依次点击右上角的 Save和右边靠近下方的Ok,这时会出现新的页面。 8.从新页面的Function栏可查看欲用的函数名(即刚建立的 非线性拟合函数);点击新页面的Code,可查看新建的非线性拟合函数;点击Parameters,然后在Value下分别给待拟合参数输入初始值。 9.接下来,可一次次点击下方从左到右第五个按钮,一次一 次进行拟合;也可以击下方从左到右第六个按钮,此时系统会反复进行多次拟合直到收敛为止。收敛后,第五和第六个按钮就都改变颜色变成不能再点击了。这时,点击Ok按钮。结果就出来了。 10.可从中读取待拟合参数的拟合值。 11.双击其中的拟合曲线(Fitted Curves Plot),即可把图放大, 并可按下法进行适当编辑。 12.右键单击横坐标轴或纵坐标轴,点击下拉菜单钟的 Properties…,然后可以选择性调整坐标轴的刻度、刻度线的朝向(朝里或朝外) 13.在Origin中把坐标刻度、刻度线的朝向、数据点的符号、

多元线性回归实例分析

SPSS--回归-多元线性回归模型案例解析!(一) 多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程为: 毫无疑问,多元线性回归方程应该为: 上图中的x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示: 那么,多元线性回归方程矩阵形式为: 其中:代表随机误差,其中随机误差分为:可解释的误差和不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样) 1:服成正太分布,即指:随机误差必须是服成正太分别的随机变量。 2:无偏性假设,即指:期望值为0 3:同共方差性假设,即指,所有的随机误差变量方差都相等 4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。 今天跟大家一起讨论一下,SPSS---多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。数据如下图所示:

点击“分析”——回归——线性——进入如下图所示的界面:

将“销售量”作为“因变量”拖入因变量框内,将“车长,车宽,耗油率,车净重等10个自变量拖入自变量框内,如上图所示,在“方法”旁边,选择“逐步”,当然,你也可以选择其它的方式,如果你选择“进入”默认的方式,在分析结果中,将会得到如下图所示的结果:(所有的自变量,都会强行进入) 如果你选择“逐步”这个方法,将会得到如下图所示的结果:(将会根据预先设定的“F统计量的概率值进行筛选,最先进入回归方程的“自变量”应该是跟“因变量”关系最为密切,贡献最大的,如下图可以看出,车的价格和车轴跟因变量关系最为密切,符合判断条件的概率值必须小于0.05,当概率值大于等于0.1时将会被剔除)

多元线性回归拟合分析

楚雄师范学院 2012年数学建模竞赛 第一次实战训练(一)第一题论文 题目多元非线性回归拟合模型 姓名郜红霞杨环刘发稳 2012年8月20日

多元非线性回归拟合模型 摘要:本文推论了多元非线性数据拟合的通用数学模型,利用最小二乘法和极值原理,导出求解多元非线性回归方程的规范方程组。并用矩阵形式对规范方程组进行表述,在所表述的诸矩阵中,结构矩阵是其基础。用它可方便地转化出其他矩阵,这将大大简化程序的编制和规范方程组的解算。计算机根据输入数据自变量的个数和实验所作次数的多少,求解出相应的多元非线性回归方程及其评估方程质量的数据。 关键字:规范方程;非线性回归方程;最小二乘法;结构矩阵;极值原理;对称矩阵;数据分析;计算机拟合;矩阵形式自变量。

1 问题重述

要求:1.检验强影响点; 2.正态性检验; 3.相关性检验; 4.自变量的多重共线性检验; 5.残差的相关性分析,模型的合理分析。 x=(470 81 82 50 13.7 225)'。 6.预测 2 问题分析 先建立基础的多元线性回归方程,以初步确定输入变量与输出变量的关系,若预测效果不理想,则需要对方程进行进一步优化,考虑建立非线性回归方程模型或其他更优模型,反复进行判断和优化,最后得到较理想的预测方程。并用一定的评价标准对得出的预测方程进行判定,最后,用实验数据对模型预测的精度进行验证。 3 基本假设与符号说明

Q 残差平方和 E 拟合误差 ε 无偏估计值 2s 方差 R 复相关系数 SE 标准误差 4 模型建立 3.1 问题分析 3.2 模型建立 (1)我们先假设输入变量和输出变量之间的关系是线性函数关系,建立多元线性回归模型。 {) ,0(~ (2) ' '110'σεε βββN x x Y m m ++++= (2)为了在研究两个指定变量之间的相关关系的同时,控制可能对其产生影 响的其他变量,我们在研究任意两个输入变量的相互作用的判断中,运用了偏相关分析先对任意两个输入变量之间是否有交互作用进行判断。 设随机变量X 、Y 、Z 之间彼此存在着相关关系,为了研究X 和Y 之间的关系,就必须在假定Z 不变的条件下,计算和Y 的偏相关系数,记为z xy r .。 在考察多个变量时,i X (i =1,2...,p )之间的p-1阶偏相关关系可由如下的递推式定义: 2 ) 1)...(1)(1...(12.2 ) 1...(1 2.0) 1)...(1)(1...(12.0)1...(12.0)1)...(1)(1...(12.0)...1)(1...(12.011-+---+---+-+---= p i i ip p p p i i ip p ip p i i i p i i i r r r r r r 计算得出输出变量的相关性检验。 (3)我们建立部分多元非线性回归模型,来判断在Y 与i X 的模型中有交互

SPSS多元线性回归分析教程.doc

线性回归分析的SPSS操作 本节内容主要介绍如何确定并建立线性回归方程。包括只有一个自变量的一元线性回归和和含有多个自变量的多元线性回归。为了确保所建立的回归方程符合线性标准,在进行回归分析之前,我们往往需要对因变量与自变量进行线性检验。也就是类似于相关分析一章中讲过的借助于散点图对变量间的关系进行粗略的线性检验,这里不再重复。另外,通过散点图还可以发现数据中的奇异值,对散点图中表示的可能的奇异值需要认真检查这一数据的合理性。 一、一元线性回归分析 1.数据 以本章第三节例3的数据为例,简单介绍利用SPSS如何进行一元线性回归分析。数据编辑窗口显示数据输入格式如下图7-8(文件7-6-1.sav): 图7-8:回归分析数据输入 2.用SPSS进行回归分析,实例操作如下: 2.1.回归方程的建立与检验 (1)操作 ①单击主菜单Analyze / Regression / Linear…,进入设置对话框如图7-9所示。从左边变量表列中把因变量y选入到因变量(Dependent)框中,把自变量x选入到自变量(Independent)框中。在方法即Method一项上请注意保持系统默认的选项Enter,选择该项表示要求系统在建立回归方程时把所选中的全部自变量都保留在方程中。所以该方法可命名为强制进入法(在多元回归分析中再具体介绍这一选项的应用)。具体如下图所示:

图7-9 线性回归分析主对话框 ②请单击Statistics…按钮,可以选择需要输出的一些统计量。如Regression Coefficients(回归系数)中的Estimates,可以输出回归系数及相关统计量,包括回归系数B、标准误、标准化回归系数BETA、T值及显著性水平等。Model fit项可输出相关系数R,测定系数R2,调整系数、估计标准误及方差分析表。上述两项为默认选项,请注意保持选中。设置如图7-10所示。设置完成后点击Continue返回主对话框。 图7-10:线性回归分析的Statistics选项图7-11:线性回归分析的Options选项 回归方程建立后,除了需要对方程的显著性进行检验外,还需要检验所建立的方程是否违反回归分析的假定,为此需进行多项残差分析。由于此部分内容较复杂而且理论性较强,所以不在此详细介绍,读者如有兴趣,可参阅有关资料。 ③用户在进行回归分析时,还可以选择是否输出方程常数。单击Options…按钮,打开它的对话框,可以看到中间有一项Include constant in equation可选项。选中该项可输出对常数的检验。在Options对话框中,还可以定义处理缺失值的方法和设置多元逐步回归中变量进入和排除方程的准则,这里我们采用系统的默认设置,如图7-11所示。设置完成后点击Continue返回主对话框。 ④在主对话框点击OK得到程序运行结果。

多元线性回归与曲线拟合

多元线性回归与曲线拟合

————————————————————————————————作者: ————————————————————————————————日期: ?

第十章:多元线性回归与曲线拟合―― Regression菜单详解(上) 回归分析是处理两个及两个以上变量间线性依存关系的统计方法。在医学领域中,此类问题很普遍,如人头发中某种金属元素的含量与血液中该元素的含量有关系,人的体表面积与身高、体重有关系;等等。回归分析就是用于说明这种依存变化的数学关系。 §10.1Linear过程 10.1.1 简单操作入门 调用此过程可完成二元或多元的线性回归分析。在多元线性回归分析中,用户还可根据需要,选用不同筛选自变量的方法(如:逐步法、向前法、向后法,等)。 例10.1:请分析在数据集Fat surfactant.sav中变量fat对变量spovl的大小有无影响? 显然,在这里spovl是连续性变量,而fat是分类变量,我们可用用单因素方差分析来解决这个问题。但此处我们要采用和方差分析等价的分析方法--回归分析来解决它。 回归分析和方差分析都可以被归入广义线性模型中,因此他们在模型的定义、计算方法等许多方面都非常近似,下面大家很快就会看到。 这里spovl是模型中的因变量,根据回归模型的要求,它必须是正态分布的变量才可以,我们可以用直方图来大致看一下,可以看到基本服从正态,因此不再检验其正态性,继续往下做。 10.1.1.1 界面详解 在菜单中选择Regression==>liner,系统弹出线性回归对话框如下:

除了大家熟悉的内容以外,里面还出现了一些特色菜,让我们来一一品尝。 【Dependent框】 用于选入回归分析的应变量。 【Block按钮组】 由Previous和Next两个按钮组成,用于将下面Independent框中选入的自变量分组。由于多元回归分析中自变量的选入方式有前进、后退、逐步等方法,如果对不同的自变量选入的方法不同,则用该按钮组将自变量分组选入即可。下面的例子会讲解其用法。 【Independent框】 用于选入回归分析的自变量。 【Method下拉列表】 用于选择对自变量的选入方法,有Enter(强行进入法)、Stepwise(逐步法)、Remove(强制剔除法)、Backward(向后法)、Forward(向前法)五种。该选项对当前Independent框中的所有变量均有效。

基于BP神经网络的非线性函数拟合

基于BP神经网络的非线性函数拟合 摘要:本文建立BP神经网络对一个多输入多输出系统的二元非线性函数进行拟合,仿真实验表明:在样本数据充足且不含噪声的情况下,训练的精度越高,逼近的效果越好;数据不充足且不含噪声时,训练精度的高低在一定范围内对于网络性能没有决定性的影响,网络性能主要取决于初始化;不管训练数据是否充足,若含有噪声,训练精度过高会使网络泛化能力降低。 0引言 作为当前应用最为广泛的一种人工神经网络,BP网络在函数逼近、模式识别、数据压缩、智能控制等领域有着非常广泛的应用。BP网络由大量简单处理单元广泛互联而成,是一种对非线性函数进行权值训练的多层映射网络,结构简单,工作状态稳定,具有优良的非线性映射能力,理论上它能够以任意精度逼近任意非线性函数。BP神经网络通过学习能够存储大量输入输出样本中蕴含的映射关系,只需提供足够的样本模式对BP网络进行训练,而无需事先了解数学方程。本文采用BP神经网络解决下列函数拟合问题。 函数逼近:设计一个神经网络拟合下列多输入多输出函数: y1=2+x1RP1.5-1.5sin(3x2); y2=x2sin(x1)+x1cos(x2); 1< x1, x2<5 产生200个数据,其中100个用来训练网络,另外100个用于网络模型的测试。1BP神经网络结构和算法 一个典型的3层BP神经网络结构如图1所示,包括输入层、隐含层和输出层。各层

神经元之间无反馈连接,各层内神经元之间无任何连接。其中隐含层的状态影响输入输出之间的关系,及通过改变隐含层的权系数,就可以改变整个多层神经网络的性能。BP 神经网络的学习过程由正向传播和反向传播组成。在正向传播中,输入的样本从输入层经过隐含层之后,传向输出层,在逐层处理的过程中,每一层神经元的状态只对下一层神经元的状态产生影响。在输出层把现行输出和期望输出进行比较,如果现行输出不等于期望输出,则进入反向传播过程。反向传播过程中,误差信号从输出层向输入层传播,并对每个隐含层的各个神经元的权系数进行修改,使误差不断减少,直至达到精度要求。BP 算法的实质是求取误差函数最小值问题,通过多个样本的反复训练,一般采用非线性规划中的最速下降方法,按误差函数的负梯度方向修改权系数。 隐含节点 图1 典型3层BP神经网络结构图 2用于函数拟合的BP神经网络模型的建立 为建立函数拟合的BP神经网络模型,一般要考虑以下几步: (1) 样本数据的产生 为简单起见,在x1,x2均属于[1,5]区间内选择均匀分布的200个数据点分别作为训练和测试样本。如图2所示。

matlab非线性参数拟合估计_很好的参考材料

使用nlinfit、fminsearch在matlab中实现基于最小二乘法的 非线性参数拟合 (整理自网上资源) 最小二乘法在曲线拟合中比较普遍。拟合的模型主要有 1.直线型 2.多项式型 3.分数函数型 4.指数函数型 5.对数线性型 6.高斯函数型 ...... 一般对于LS问题,通常利用反斜杠运算“\”、fminsearch或优化工具箱提供的极小化函数求解。在Matlab中,曲线拟合工具箱也提供了曲线拟合的图形界面操作。在命令提示符后键入:cftool,即可根据数据,选择适当的拟合模型。 “\”命令 1.假设要拟合的多项式是:y=a+b*x+c*x^ 2.首先建立设计矩阵X: X=[ones(size(x)) x x^2]; 执行: para=X\y para中包含了三个参数:para(1)=a;para(2)=b;para(3)=c; 这种方法对于系数是线性的模型也适应。 2.假设要拟合:y=a+b*exp(x)+cx*exp(x^2) 设计矩阵X为 X=[ones(size(x)) exp(x) x.*exp(x.^2)]; para=X\y 3.多重回归(乘积回归) 设要拟合:y=a+b*x+c*t,其中x和t是预测变量,y是响应变量。设计矩阵为X=[ones(size(x)) x t] %注意x,t大小相等! para=X\y polyfit函数 polyfit函数不需要输入设计矩阵,在参数估计中,polyfit会根据输入的数据生成设计矩阵。 1.假设要拟合的多项式是:y=a+b*x+c*x^2 p=polyfit(x,y,2) 然后可以使用polyval在t处预测: y_hat=polyval(p,t) polyfit函数可以给出置信区间。 [p S]=polyfit(x,y,2) %S中包含了标准差 [y_fit,delta] = polyval(p,t,S) %按照拟合模型在t处预测 在每个t处的95%CI为:(y_fit-1.96*delta, y_fit+1.96*delta)

第二章(简单线性回归模型)2-3答案

拟合优度的度量 一、判断题 1.当 ()∑-2i y y 确定时,()∑-2 i y y ?越小,表明模型的拟合优度越好。(F ) 2.可以证明,可决系数2R 高意味着每个回归系数都是可信任的。(F ) 3.可决系数2R 的大小不受到回归模型中所包含的解释变量个数的影响。(F ) 4.任何两个计量经济模型的2R 都是可以比较的。(F ) 5.拟合优度2R 的值越大,说明样本回归模型对数据的拟合程度越高。( T ) 6.结构分析是2R 高就足够了,作预测分析时仅要求可决系数高还不够。( F ) 7.通过2R 的高低可以进行显著性判断。(F ) 8.2R 是非随机变量。(F ) 二、单项选择题 1.已知某一直线回归方程的可决系数为,则解释变量与被解释变量间的线性相关系数为( B )。 A .± B .± C .± D .± 2.可决系数2R 的取值范围是( C )。 A .2R ≤-1 B .2R ≥1 C .0≤2R ≤1 D .-1≤2R ≤1 3.下列说法中正确的是:( D ) A 如果模型的2R 很高,我们可以认为此模型的质量较好 B 如果模型的2R 较低,我们可以认为此模型的质量较差 C 如果某一参数不能通过显著性检验,我们应该剔除该解释变量 D 如果某一参数不能通过显著性检验,我们不应该随便剔除该解释变量 三、多项选择题 1.反映回归直线拟合优度的指标有( ACDE )。 A .相关系数 B .回归系数 C .样本可决系数 D .回归方程的标准差 E .剩余变差(或残差平方和) 2.对于样本回归直线i 01i ???Y X ββ+=,回归变差可以表示为( ABCDE )。 A .2 2i i i i ?Y Y -Y Y ∑ ∑  (-) (-) B .2 2 1 i i ?X X β∑ (-) C .2 2 i i R Y Y ∑ (-) D .2 i i ?Y Y ∑(-) E .1 i i i i ?X X Y Y β∑ (-()-) 3.对于样本回归直线i 01i ???Y X ββ+=,?σ为估计标准差,下列可决系数的算式中,正确的有( ABCDE )。 A .2i i 2 i i ?Y Y Y Y ∑∑(-)(-) B .2i i 2 i i ?Y Y 1Y Y ∑∑ (-)-(-)

matlab非线性拟合

如何拟合曲线 表达式必须自己估计。有很多表达式都能拟合出类似曲线。matlab里做曲线拟合的主要有(我经常用的)有这两个:polyfit和lsqcurvefit。前者专门对高次多项式拟合,后者则适用于绝大多数非线性拟合。根据描点判断可以用多项式拟合,我下面以二次多项式举例: clear x=[ 0 28 64 103 123 144 217 291 429 504 553 657 711 783 838]'; y=[ 31.5300 30.4300 29.3800 28.8000 28.1300 27.5900 25.5300 24.3000 22.8300 21.5700 21.8600 29.4900 34.5200 41.7600 44.6000]; %用polyfit拟合 p=polyfit(x,y,2); %用2次多项式 figure(1); title('拟合1') hold on plot(x,y,'+',x,polyval(p,x)); legend('原始值','拟合值'); %用lsqcurvefit拟合 f=@(b,x) b(1)+b(2).*x+b(3).*x.^2; %构造要拟合的函数 b=lsqcurvefit(f,[1,1,1],x,y); %进行拟合 figure(2) title('拟合2'); hold on plot(x,y,'+',x,f(b,x)); legend('原始数据','拟合数据') 如何计算残差! 首先确定你把拟合曲线图画出来了,然后在figure 1上边的选项中按Tools----Basic Fitting-----cubic----Show equations----plot residuals-----"然后点向右的箭头"-----”再从右边选项框里选Save to workspace“ 这就行了

线性回归分析 拟合

如何用excel做线性拟合公开2009-10-12 13:43 |(分类:something useful) 在数据分析中,对于成对成组数据的拟合是经常遇到的,涉及到的任务有线性描述,趋势预测和残差分析等等。很多专业读者遇见此类问题时往往寻求专业软件,比如在化工中经常用到的Origin和数学中常见的MATLAB等等。它们虽很专业,但其实使用Excel就完全够用了。我们已经知道在Excel自带的数据库中已有线性拟合工具,但是它还稍显单薄,今天我们来尝试使用较为专业的拟合工具来对此类数据进行处理。 注:本功能需要使用Excel扩展功能,如果您的Excel尚未安装数据分析,请依次选择“工具”-“加载宏”,在安装光盘支持下加载“分析数据库”。加载成功后,可以在“工具”下拉菜单中看到“数据分析”选项 实例某溶液浓度正比对应于色谱仪器中的峰面积,现欲建立不同浓度下对应峰面积的标准曲线以供测试未知样品的实际浓度。已知8组对应数据,建立标准曲线,并且对此曲线进行评价,给出残差等分析数据。 这是一个很典型的线性拟合问题,手工计算就是采用最小二乘法求出拟合直线的待定参数,同时可以得出R的值,也就是相关系数的大小。在Excel中,可以采用先绘图再添加趋势线的方法完成前两步的要求。 选择成对的数据列,将它们使用“X、Y散点图”制成散点图。 在数据点上单击右键,选择“添加趋势线”-“线性”,并在选项标签中要求给出公式和相关系数等,可以得到拟合的直线。

由图中可知,拟合的直线是y=15620x+6606.1,R2的值为0.9994。 因为R2 >0.99,所以这是一个线性特征非常明显的实验模型,即说明拟合直线能够以大于99.99%地解释、涵盖了实测数据,具有很好的一般性,可以作为标准工作曲线用于其他未知浓度溶液的测量。

非线性回归分析(常见曲线及方程)

非线性回归分析 回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。通常线性回归分析法是最基本的分析方法,遇到非线性回归问题可以借助数学手段化为线性回归问题处理 两个现象变量之间的相关关系并非线性关系,而呈现某种非线性的曲线关系,如:双曲线、二次曲线、三次曲线、幂函数曲线、指数函数曲线(Gompertz)、S型曲线(Logistic) 对数曲线、指数曲线等,以这些变量之间的曲线相关关系,拟合相应的回归曲线,建立非线性回归方程,进行回归分析称为非线性回归分析 常见非线性规划曲线 1.双曲线1b a y x =+ 2.二次曲线 3.三次曲线 4.幂函数曲线 5.指数函数曲线(Gompertz) 6.倒指数曲线y=a / e b x其中a>0, 7.S型曲线(Logistic) 1 e x y a b-= + 8.对数曲线y=a+b log x,x>0 9.指数曲线y=a e bx其中参数a>0 1.回归: (1)确定回归系数的命令 [beta,r,J]=nlinfit(x,y,’model’,beta0) (2)非线性回归命令:nlintool(x,y,’model’, beta0,alpha) 2.预测和预测误差估计: [Y,DELTA]=nlpredci(’model’, x,beta,r,J) 求nlinfit 或lintool所得的回归函数在x处的预测值Y及预测值的显著性水平为1-alpha的置信区间Y,DELTA. 例2 观测物体降落的距离s与时间t的关系,得到数据如下表,求s 2 解: 1. 对将要拟合的非线性模型y=a/ e b x,建立M文件volum.m如下:

多元线性回归分析案例

SPSS19.0实战之多元线性回归分析 (2011-12-09 12:19:11) 转载▼ 分类:软件介绍 标签: 文化 线性回归数据(全国各地区能源消耗量与产量)来源,可点击协会博客数据挖掘栏:国泰安数据服务中心的经济研究数据库。 1.1 数据预处理 数据预处理包括的内容非常广泛,包括数据清理和描述性数据汇总,数据集成和变换,数据归约,数据离散化等。本次实习主要涉及的数据预处理只包括数据清理和描述性数据汇总。一般意义的数据预处理包括缺失值填写和噪声数据的处理。于此我们只对数据做缺失值填充,但是依然将其统称数据清理。 1.1.1 数据导入与定义 单击“打开数据文档”,将xls格式的全国各地区能源消耗量与产量的数据导入SPSS中,如图1-1所示。 图1-1 导入数据 导入过程中,各个字段的值都被转化为字符串型(String),我们需要手动将相应的字段转回数值型。单击菜单栏的“ ”-->“ ”将所选的变量改为数值型。如图1-2所示:

图1-2 定义变量数据类型 1.1.2 数据清理 数据清理包括缺失值的填写和还需要使用SPSS分析工具来检查各个变量的数据完整性。单击“ ”-->“ ”,将检查所输入的数据的缺失值个数以及百分比等。如图1-3所示: 图1-3缺失值分析

表1-1 能源消耗量与产量数据缺失值分析 SPSS提供了填充缺失值的工具,点击菜单栏“ ”-->“ ”,即可以使用软件提供的几种填充缺失值工具,包括序列均值,临近点中值,临近点中位数等。结合本次实习数据的具体情况,我们不使用SPSS软件提供的替换缺失值工具,主要是手动将缺失值用零值来代替。 1.1.3 描述性数据汇总 描述性数据汇总技术用来获得数据的典型性质,我们关心数据的中心趋势和离中趋势,根据这些统计值,可以初步得到数据的噪声和离群点。中心趋势的量度值包括:均值(mean),中位数(median),众数(mode)等。离中趋势量度包括四分位数(quartiles),方差(variance)等。 SPSS提供了详尽的数据描述工具,单击菜单栏的“ ”-->“ ”-->“ ”,将弹出如图2-4所示的对话框,我们将所有变量都选取到,然后在选项中勾选上所希望描述的数据特征,包括均值,标准差,方差,最大最小值等。由于本次数据的单位不尽相同,我们需要将数据标准化,同时勾选上“将标准化得分另存为变量”。

Matlab线性回归(拟合)-应用

Matlab 线性回归(拟合) 对于多元线性回归模型: e x x y p p ++++=βββ 110 设变量12,,,p x x x y 的n 组观测值为 12(,,,)1,2,,i i ip i x x x y i n =. 记 ??????? ??=np n n p p x x x x x x x x x x 2122221112 11111,??????? ??=n y y y y 21, 则?????? ? ??=p ββββ 10 的估计值为 y x x x b ')'(?1-==β 在Matlab 中,用regress 函数进行多元线性回归分析,应用方法如下: 语法:b = regress(y, x) [b, bint, r, rint, stats] = regress(y, x) [b, bint, r, rint, stats] = regress(y, x, alpha) b = regress(y, x),得到的p+1维列向量b 即为(11.2)式给出的回归系数β的 估计值. [b, bint, r, rint, stats]=regress(y, x) 给出回归系数β的估计值b ,β的95%置 信区间((p+1)*2向量)bint ,残差r 以及每个残差的95%置信区间(2?n 向量)rint ;向量stats 给出回归的R2统计量和F 以及临界概率p 的值. 如果i β的置信区间(bint 的第i+1行)不包含0,则在显著水平为α时拒绝0i β=的假设,认为变量i x 是显著的. [b, bint, r, rint, stats]=regress(y, x, alpha) 给出了bint 和rint 的100(1-alpha)%的置信区间. 1.三次样条插值函数的MATLAB 程序 matlab 的spline x = 0:10; y = sin(x); %插值点 xx = 0:.25:10; %绘图点 yy = spline(x,y,xx);

多元线性回归讲解学习

简要回答题: 1. 在多元线性回归分析中,F检验和t检验有何不同? 答案: 在多元线性回归中,由于有多个自变量,F检验与t检验不是等价的。 F检验主要是检验因变量同多个自变量的整体线性关系是否显著,在k个自变量中,只要有一个自变量同因变量的线性关系显著,F检验就显著,但这不一定意味着每个自变量同因变量的关系都显著。检验则是对每个回归系数分别进行单独的检验,以判断每个自变量对因变量的影响是否显著。 知识点:多元线性回归 难易度:1 2. 在多元线性回归分析中,如果某个回归系数的t检验不显著,是否就意味着这个自变量与因变量之间的线性回归不显著?为什么?当出现这种情况时应如何处理? 答案: (1)在多元线性回归分析中,当t检验表明某个回归系数不显著时,也不能断定这个自变量与因变量之间线性关系就不显著。因为当多个自变量之间彼此显著相关时,就可能造成某个或某些回归系数通不过检验,这种情况称为模型中存在多重共线性。 (2)当模型中存在多重共线性时,应对自变量有所选择。变量选择的方法主要有向前选择、向后剔除和逐步回归等。 知识点:多元线性回归 难易度:2 计算分析题: 1. 一家餐饮连锁店拥有多家分店。管理者认为,营业额的多少与各分店的营业面积和服务人员的多少有一定关系,并试图建立一个回归模型,通过营业面积和服务人员的多少来预测营业额。为此,收集到10家分店的营业额(万元)、营业面积(平方米)和服务人员数(人)的数据。经回归得到下面的有关结果(a=0.05)。 Multiple R R Square Adjusted R Square 标准误差 0.9147 0.8366 0.7899 60.7063 df SS MS F Significance F 回归 2 132093.199 66046.600 17.922 0.002 残差7 25796.801 3685.257 总计9 157890.000 Coefficients 标准误差t Stat P-value Intercept -115.288 110.568 -1.043 0.332 X Variable 1 0.578 0.503 1.149 0.288 X Variable 2 3.935 0.699 5.628 0.001 (2)写出多元线性回归方程。 (3)分析回归方程的拟合优度。 (4)对回归模型的线性关系进行显著性检验。 答案: (1)自变量是营业面积和销售人员数,因变量是营业额。 (2)多元线性回归方程为:。 (3)判定系数,表明在营业额的总变差中,有83.66%可由营业额与营业面积和服务人

相关文档
最新文档